Novel Techniques for Memory

» Speculative Memory Cloaking
» Speculative Memory Bypassing

* Transient Value Cache

A. Moshovos m Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

The “Memory Problem”

1. Low Latency
2. High Bandwidth

Not all storage can be built this way: Intelligent Mechanisms

Store & Retrieve Values with:

Main Memory

A -

Organization L2

s

&
Management E 3
L1

5

\ CPU

Address Stream

Name-Centric Approach
observe and exploit address stream behavior

A. Moshovos B Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

What Purpose Does Memory Serve?

addr
calc
Memory

address

addr
calc

address

Memory can be an inter-operation communication mechanism
Addresses -> Communication Channels

Instructions -> Communicating Parties

Values -> Messages

Address Calculation -> Channel Selection

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 3

Permission to use these slides is granted provided that a reference to their origin is included.

The Name-Centric Approach

* Programs access memory using addresses, i.e., names

» Optimize for that: quick response on address requests
* How to organize and manage?

1. Caching

main memory

= exploit:

@© /

e Hardware € 3 address stream locality

U) . .

0 Organization—»{= L2 Recent data in faster

o & 3 storage

o Management ~—_["| ¢ /

< $ A AA A
\CPU /

Exploit Address Stream Behavior
Goal: Approximate a Large-Fast Memory

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 4

Permission to use these slides is granted provided that a reference to their origin is included.

Address-Based Memory Concerns

Implicit Explicit

Store - Load: Direct Link

1. Calculate address

Delays: _
2. Establish Dependence
Instructions Memory

QO .

= store Of@@

'E $

@ \

c store 2| ? I

©

(@)}

o

o load

Y

delay

No Delays

Timeline
store

value

store addr

load

load addr
store2 addr

e

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 5

Permission to use these slides is granted provided that a reference to their origin is included.

The Communication-Conscious Approach

Instructions

Addresses

\ Hardware 7
Organization
&
Management

— E 4 ?
e

-

Main Memory

‘

L2

v

In addition to address stream behavior:

Expose and Exploit the Inter-Operation Communication

Goals:

1. Approximate a Large-Fast Memory

2. Optimize for the Communication

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 6

Permission to use these slides is granted provided that a reference to their origin is included.

Memory as a Communication Agent

Main Memory
DEF ﬁ NEEE Centrlc ‘

address ~—__| Ltl

load
USE — \ .

\ CPU

Communication-Conscious Approach
In Addition to

Expose the communication
addresses

Observe and exploit its behavior

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 7

Permission to use these slides is granted provided that a reference to their origin is included.

Communication-Conscious Techniques

Communicating via addresses => inherent delay

* Many loads get their value from a recent store
» These dependences are predictable

1. Speculative Memory Cloaking E*‘:—i\
DEF ;

e Prediction: link load - store

Observe:

* pass value

| (&}
I
« verify through memory | ol |

C

\ S

2. Speculative Memory Bypassing \ Y \\ load @6//
« link DEF - USE \<SE$<\ /

Communication Latency is Reduced

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 8

Permission to use these slides is granted provided that a reference to their origin is included.

Communication-Conscious Techniques

DCache ports are becoming expensive
A. Recent stores feed many loads

Observe: .
B. Many recent stores are killed
+ Small cache can service these

- Latency for other loads will increase
C. A& B/ Dependence Status is predictable

3. Transient Value Cache

L1 dependence? L1
/ \
a Yes -in series No - in parallel <Ml
TVC TVC
e 3
CPU Avoid L1 access AvoidQ latency CPU

L1 DCache Bandwidth/Port Requirements are Reduced

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 9

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Cloaking/Bypassing

Address-based Memory as: Storage vs. Interface

' ?
Ask: 1. What is memory used for

2. How addresses impact the action?

Inter-operation Communication Data-Sharing

DEF Ry /\ Memory OAD R |
Y _—m!
_ N AN
Bypadsing STORE Clogking) USE Ry
Clodking |

\ 4
LOAD R
LOAD Ry#——" T
. / USE RZ
USE Ry ~

NG N | — register

—» address
Dynamically Create Direct Links Between Producers/Consumers

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 10

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Cloaking - Example

Timeline @
store
_/
1. Store: predict load PC value
1./ @

2. Associate value and load PC
) I
3. Load: predict store oad @

Check if value is there store addr @
Pass to other instructions load addr @
4. Write value to memory
5. Access memory load value @

6. Verify value, re-execute if

On-the-fly: Convert implicit communication into explicit

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 1

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Cloaking - Extension

Could be used for load-to-load dependences

Timeline

load 1
e ©
load 1 addr

value @
load 2 @

\

T load 2 addr @

3

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 12

Permission to use these slides is granted provided that a reference to their origin is included.

Why “Cloaking”?

cloak n V'klok\
2 : to alter so as to hide the character of
3. something that conceals
“Speculative Memory Renaming”?
* Already in use in the same context: ARB, LSQ (w/o Speculative)
* Re-name: change the name
- associate address with a new name
- Legacy of “Register Renaming”:
- can go from address to new name
synonym and address are NEVER associated
can't determine synonym from address
other accesses to the same address can't locate synonym

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 13

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Cloaking

Dynamically & Transparently convert implicit into explicit

 Dependence prediction => direct store-load or load-load links
» Speculative and has to be eventually verified

Dependence Prediction Timeline
load PC | synonym

store PC | synony Traditional
Memory
. Hierarch
Synonym File L y
I 1
value | fle |/
speculative
IOvalue v

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 14

Permission to use these slides is granted provided that a reference to their origin is included.

Predicting RAW and RAR Dependences

1. Build Dependence history: Dependence Detection Table

Record: (store PC, address) or (load PC, address)
Loads: (load PC, address)

=> (store PC, load PC)
=> (load PC, load PC)

2. Use history to predict forthcoming dependences
assign synonyms to detected dependences
use synonym to locate value

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 15

Permission to use these slides is granted provided that a reference to their origin is included.

An Implementation

Support Structures:
1. Dependence Detection Table DDT

2. Dependence Prediction and Naming Table DPNT
3. Synonym File SF

Example:
detect y addr
loop: SetToken(t):
t = AllocateToken() _ t->type = ...
SetToken(t o
N . : <
ActOnToken(t) ActOnToken(t): =
switch (t>type) = L l0ad | =
cloak
\J

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 16

Permission to use these slides is granted provided that a reference to their origin is included.

An implementation - Example

PC TAG PredV addr PC
E addrl | STPC
& a
(@) Q |
addrl
store
PC TAG Pred V addr PC
— STPC| tag Y |1 addrl | STPC
=z
< LDPC| tag Y |1 E
o | | | a |
addrl
[STPC :LDPC | -m.

A. Moshovos

ermission to use

these

slides is granted provided that a reference to their o

rigin is included.

m Streamling Memory Operation with Dependence Prediction =

An implementation - Example

PC TAG PredV value tag fle V
— STPCltag | Y |1 ?????| tag | 0 | 1
5 LDPC|tag | Y |1 STPC "
@) | | wn
| store |
PC TAG Pred V value tag fle V
— STPC | tag Y |1 XXXXX | tag 11
2
< LDPC|tag | Y |1 L
= | | | w |
store Ad: memory
PC TAG PredV value tag fle V
- STPC|tag | Y |1 XXxxx | tag |1 |1
§ LDPC|tag | Y |1 LDPC "
()])]
| | | | d |
oa addr2
|—I‘\> memory

A. Moshovos

ermission to use

these

slides is granted provided that a reference to their o

rigin is included.

B Streamling Memory Operation with Dependence Prediction =

ORI P i

60%

20%| - -1 RSy 2

20% — - | | H
0%

v I I o

60%

40%
20%
0%

go m88ksim gce compress li ijpeg perl vortex
100% i 1]

80%
60% T

40%

20%
0%

100%
T
60%

40%

20% = 1 L |14 77/ | UL |

0% L T R S| L
tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp waveb

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 19

Permission to use these slides is granted provided that a reference to their origin is included.

Predicting Dependences - Synonym Generation

1-on-1 straightforward N-to-N is common

- E |tstorel 1store| E E
= T
n s

tag tag
[load |--{load |

Break into steps:
1. Predict dependence status (existence)
2. Figure out with who / synonym
dependences w/ common parties same synonym

execution path determines which is the right one

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 20

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Bypassing

Observation: Store and Load are used to just pass values
Take store & load off the communication path

DEF
| Memory DI
store _address
) (o))
=) S
© I
> \ >
load “5ddress |
USE USE

» DEF-store-load-USE must be in the instruction window
Larger windows: higher potential coverage
 Extents over multiple store-load dependences

21

A. Moshovos m Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Bypassing

Observe: Store and Load are used to just pass values

| DEF R1 | DEF R1
N @{ store R1

e Ioad R2
R1[TAGL B2 %

TAG1 synonyrn\‘ Pae

R2 TAGl

» Extents over multiple store-load dependences
 DEF and USE must co-exist in the instruction window

Takes load-store or loads off the communication path

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 22

Permission to use these slides is granted provided that a reference to their origin is included.

Speculative Memory Bypassing

Observation: Store and Load are used to just pass values
Take store & load off the communication path

« Straightforward extension to Register Renaming

e o -1 K...
S5 RL=..I[R1IOPI | o | [PI=n{P2=..
9 O = Rl... g — Pl ——
o Ri=..|[R1OP2] ==
- D"
DEF R1 DEF R1
@{ store R1
- /‘@ load R2 |

P1|synonym
—\ @

Memory Dependence =
Prediction _J R e

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 23

Permission to use these slides is granted provided that a reference to their origin is included.

Evaluation Roadmap

 Detecting Dependences
 Cloaking Coverage
 Cloaking Mispeculation Rate
 Performance
1. Squash Invalidation
2. Selective Invalidation
Base Machine:
8-way superscalar 4 load/store ports
128-entry window + 128 entry ABS w/ 1 cycle latency
Naive Memory Dependence Speculation

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 24

Permission to use these slides is granted provided that a reference to their origin is included.

Detecting Dependences
100% I

80%

60%

40%

20%

0%

SpecINT SpecFP Overall
0 RAW m RAR

128-entries: Captures Dependences for ~65% of all loads

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 25

Permission to use these slides is granted provided that a reference to their origin is included.

Cloaking Coverage

100%

80%

60%

40%

20%

0%
D A0 O A S D>
RN ZNZNSN(S /N NS

B stack EHEAP

L DATA

Most Dependences Correctly Predicted

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 26

Permission to use these slides is granted provided that a reference to their origin is included.

Cloaking - Mispeculation Rates

o

6% 1.0%

5% i

104 0.8%

204 0.6% _

0% 0.4%

| oo onellNIE B

0% HEE 0.0% —
NP D QD 11O

SO be P SESISINIGENEN N
I DATA B stack IR HEAP

Permission to use these slides is granted provided that a reference to their origin is included.

Performance - Squash Invalidation

5% Base Machine is highly optimized
Penalty outweights be

0%

-5%

-10%

-15%

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 28

Permission to use these slides is granted provided that a reference to their origin is included.

Performance - Selective Invalidation
1494>¢elective Invalidation is required for Cloaking/Bypassing
12% |
10%

8%

6%

4%

2%

0%

[Oracle | | Selective

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 29

Permission to use these slides is granted provided that a reference to their origin is included.

Cloaking and Load Value Prediction

20%
ICLOAKING 8K-DPNT D VALUE PRED. 16K
D CLOAKING 16K-DPNT
15% i
10% -
5% (
0% ™ 00 1D o o o A QO B D D W D 1O
O Y N
NENSNANZN LI NN S S SN Ny

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 30

Permission to use these slides is granted provided that a reference to their origin is included.

Cloaking - Dynamic Loads Serviced

60%
2k-entry 2-bit saturating counters 95 %

A 96 % 86 % 91 94
75 04 92 %
40%
78 %
better
20%
62 %
0%

88\‘5‘m 90 ompres® xisP yjped per yorte®

% Loads Executed

1. First-cut implementation B Correct
2. Cloaking Extension for Read-after-Read @ Wrong
A. Moshovos m Streamling Memory Operation with Dependence Prediction = 31

Permission to use these slides is granted provided that a reference to their origin is included.

Cloaking - Prediction Breakdown

90%

80%

70%]

60%

50%

40% |]

% Loads Executed

30%

200 | —

B wrong

10% S
[] Stack °

0%
[] Heap ° 40

[] Data

8g\<s\m Q»C’ p(eSS AsP jjped pert yorer

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 32

Permission to use these slides is granted provided that a reference to their origin is included.

Cloaking - Misprediction Breakdown

6%

5%

4%

3%

2%

% Loads Executed

1%

0%

[] stack
[] Heap
[] Data

9 mg%\k‘s\m 9ee mpYess YisP {jped pe(\ Joret

cO

A. Moshovos

m Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Back to the Memory System

33

Program’s View

Actual System

!Main Memory!

Data

[L2 |
[—

=
rLL |

CPU

IRGQSI CPU

A. Moshovos

B Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

34

Increasing Memory Bandwidth

* Parallelism => more bandwidth => more L1 ports

L1 L1
i B ¥ ¥ 3
CPU CPU

A very small cache is easier to multi-port
o

1

LO

CPU

* But, it increases the latency for all accesses that miss in it

A. Moshovos m Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Transient Value Cache

Adaptive Placement via Memory Dependence Prediction
load: reads a value from a recent store?
store: will be killed by a close-by store?

Predict Predict No
Dependence Dependence
L1 L1

TVC TVC
CPU CPU

A very small cache captures ~ 55% of all memory accesses
Without adding latency to all other accesses

A. Moshovos B Streamling Memory Operation with Dependence Prediction =

Permission to use these slides is granted provided that a reference to their origin is included.

Transient Value Cache

Data Cache ports: becoming expensive but more are needed
Many loads get their value from a recent store

Observations:

100%
80%
60%
40%
20%

0%

loads serviced %

\

Vortex

256 8K

stores recorded

100%
80%
60%
40%
20%

0%

Many stored values are quickly killed

stores killed%o

\Vortex

256

8K

stores recorded

A 256-FA word cache can service ~50% of loads, ~60% of stores
+ Hit: No need to consume L1 ports

B Miss: Latency increases

A. Moshovos

Permission to use

these

m Streamling Memory Operation with Dependence Prediction =

slides is granted provided that a reference to their origin is included.

Transient Value Cache

37

Adaptive Placement via Memory Dependence Prediction

load: reads a value from a recent store?

store: will be killed by a close-by store?

No Dependence: In Parallel

Dependence: In Series

L1 |

load miss

Sstore

L1

TVC

» Accuracy: Loads > 90%, miss ~%2 max %5, Stores ~ 80%
« Can be combined w/ the Detection Table needed for Cloaking
» Extension to handle Read-after-Read (load-load)

A. Moshovos

ission to use

these

B Streamling Memory Operation with Dependence Prediction =

slides is granted provided that a reference to their origin is included.

38

True/Output Dependence Prediction

Loads / True Stores / Output
100% — 100%

75% 75%

50%

50%

25% 25%

0% 0%

X
&

.)
(4

S

RS

Predicted/Actual [Y/Y Il N/N B N/Y []Y/N

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 39

Permission to use these slides is granted provided that a reference to their origin is included.

TVC - Reduction in Accesses

100%
80% B Loads [Stores ||

60%

40%

20%

0%

Pessimistic model: last 256 stores - not last 256 addresses

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 40

Permission to use these slides is granted provided that a reference to their origin is included.

Evaluation Parameters

8-way superscalar

64 inst. window

16 entry write buffer

32K data cache/2-way SA/8-way interleaved/16 cycle miss

Same instruction cache

4 memory ports

Perfect disambiguation: cloaking can be used for synchronization.
Mechanism

* Perfect prediction over last 256-stores
* must see dep. at least once

« 256-word FA Synonym File
« 256-word fully associative TVC/8-ports

A. Moshovos m Streamling Memory Operation with Dependence Prediction =

eee

100%

80%

60%

40%

20%

0%

eee

TVC vs. LO - “Miss” Rates

70%
60%
50%
40%
30%
20%
10%
0%
8%
7%
6%
5%
4%
3%
2%
1%

0%
D AX* A0 D 4O AL oD QA 5SAUOM> QA WY o
NENANANZN LU AN NSNS
A. Moshovos m Streamling Memory Operation with Dependence Prediction = 43
Performance
15%
2 10%
>
°©
(¢}
()
@ 5%
1o
etter
o . O L R D A
S q;@@ § Q&% EARC AR 40(@
& &
< &

B Mechanism B 2xDcache (64k)

There is a point where:
Is better to allocate real-estate for our mechanisms

A. Moshovos B Streamling Memory Operation with Dependence Prediction = 44

Permission to use these slides is granted provided that a reference to their origin is included.

More Performance

16 cycle miss 24 cycle miss

A. Moshovos m Streamling Memory Operation with Dependence Prediction = 45

Permission to use these slides is granted provided that a reference to their origin is included.

