
Streamling Memory Operation with Dependence Prediction 1A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Novel Techniques for Memory

• Speculative Memory Cloaking

• Speculative Memory Bypassing

• Transient Value Cache

Streamling Memory Operation with Dependence Prediction 2A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

The “Memory Problem”

A
dd

re
ss

 S
tre

am

CPU

L1

L2

Main Memory

Organization

Name-Centric Approach
observe and exploit address stream behavior

&
Management

Store & Retrieve Values with: 1. Low Latency
2. High Bandwidth

Not all storage can be built this way: Intelligent Mechanisms

Streamling Memory Operation with Dependence Prediction 3A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Memory

What Purpose Does Memory Serve?

load

addr
calc

address

address

store

Memory can be an inter-operation communication mechanism
Addresses -> Communication Channels
Instructions -> Communicating Parties
Values -> Messages
Address Calculation -> Channel Selection

addr
calc

value

Streamling Memory Operation with Dependence Prediction 4A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

The Name-Centr ic Approach
• Programs access memory using addresses, i.e., names
• Optimize for that: quick response on address requests
• How to organize and manage?

A
dd

re
ss

 S
tre

am

CPU

L1

L2

main memory

Organization
&

Management

exploit:
 address stream locality
Recent data in faster
storage

AAAA

Hardware

Goal: Approximate a Large-Fast Memory
Exploit Address Stream Behavior

1. Caching

Streamling Memory Operation with Dependence Prediction 5A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Address-Based Memory Concerns

de
la

y

store
value

store addr

load

load addr

Timeline

Store - Load: Direct Link

store2 addr

Implicit

1. Calculate address
2. Establish Dependence

?

ad
dre

ss

va
lu

e

Memory

P
ro

gr
am

 O
rd

er store

load

store 2

Instructions

Explicit

Delays:
 No Delays

Implicit

Explicit

address

Streamling Memory Operation with Dependence Prediction 6A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

The Communicat ion-Conscious Approach

Organization
&

Management
L2

CPU

L1

Main Memory

In
st

ru
ct

io
ns

Hardware

In addition to address stream behavior:
Expose and Exploit the Inter-Operation Communication

1. Approximate a Large-Fast Memory
2. Optimize for the Communication

A
dd

re
ss

es

Goals:

Streamling Memory Operation with Dependence Prediction 7A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Communication-Conscious Approach
Expose the communication

Observe and exploit its behavior

Memory as a Communicat ion Agent

In Addition to

CPU

L1

L2

Main Memory

address

address

memory

store

load

DEF

USE

va
lu

e
Name-Centric

Communication-Conscious

addresses

Streamling Memory Operation with Dependence Prediction 8A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Communicat ion-Conscious Techniques

Observe:

1. Speculative Memory Cloaking

2. Speculative Memory Bypassing

• Prediction: link load - store
• pass value
• verify through memory

• link DEF - USE

Communication Latency is Reduced

ad
dre

ss

address

memory

DEF

USE

va
lu

e

va
lu

e

1
2

store

load

Communicating via addresses => inherent delay

• Many loads get their value from a recent store
• These dependences are predictable

Streamling Memory Operation with Dependence Prediction 9A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Communicat ion-Conscious Techniques

DCache ports are becoming expensive

Observe:
A. Recent stores feed many loads
B. Many recent stores are killed

+ Small cache can service these
- Latency for other loads will increase

Yes - in series No - in parallel

CPU

TVC

L1

CPU

TVC

L1

Avoid L1 access Avoid latency

dependence?

Ô

A & B / Dependence Status is predictable
3. Transient Value Cache

C.

L1 DCache Bandwidth/Port Requirements are Reduced

Streamling Memory Operation with Dependence Prediction 10A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Speculat ive Memory Cloaking/Bypassing
Address-based Memory as: Storage vs. Interface

1. What is memory used for?
2. How addresses impact the action?

Ask:

LOAD RY

USE RY

Cloaking
LOAD RZ

USE RY

USE RZ

Cloaking
Byp

as
sin

g
DEF RX

STORE RX

LOAD RY

Bypassing

Inter-operation Communication Data-Sharing

register
address

Memory

Dynamically Create Direct Links Between Producers/Consumers

Streamling Memory Operation with Dependence Prediction 11A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Speculat ive Memory Cloaking - Example

de
la

y

store

value

store addr

load

load addr

Timeline

load value

1

2

4

3

5

6

1. Store: predict load PC
2. Associate value and load PC
3. Load: predict store

Check if value is there
Pass to other instructions

4. Write value to memory
5. Access memory
6. Verify value, re-execute if

On-the-fly: Convert implicit communication into explicit

Streamling Memory Operation with Dependence Prediction 12A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Speculat ive Memory Cloaking - Extension
Could be used for load-to-load dependences

de
la

y

load 1

value

load 2 addr

load 2

load 1 addr

Timeline
1

2

4

3

Streamling Memory Operation with Dependence Prediction 13A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

cloak n \’klok\
 2 : to alter so as to hide the character of
 3 : something that conceals
“Speculative Memory Renaming”?
• Already in use in the same context: ARB, LSQ (w/o Speculative)
• Re-name: change the name

- associate address with a new name
- Legacy of “Register Renaming”:
- can go from address to new name

synonym and address are NEVER associated
can’t determine synonym from address
other accesses to the same address can’t locate synonym

Why “Cloaking”?

Streamling Memory Operation with Dependence Prediction 14A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Dynamically & Transparently convert implicit into explicit
• Dependence prediction => direct store-load or load-load links
• Speculative and has to be eventually verified

Speculat ive Memory Cloaking

store PC synonym

Dependence Prediction

Memory
Hierarchy

Traditional

 value f/e

Synonym File

address

address

1

2

3

4
speculative

verify
value

Timeline

store
value
addr

addr

load

 load PC synonym

Streamling Memory Operation with Dependence Prediction 15A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Predict ing RAW and RAR Dependences
1. Build Dependence history: Dependence Detection Table

2. Use history to predict forthcoming dependences
assign synonyms to detected dependences
use synonym to locate value

Record: (store PC, address) or (load PC, address)
Loads: (load PC, address)

=> (store PC, load PC)
=> (load PC, load PC)

Streamling Memory Operation with Dependence Prediction 16A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

An Implementat ion

loop:
t = AllocateToken()
SetToken(t)...
ActOnToken(t)...

SetToken(t):
t->type = ...

ActOnToken(t):
switch (t->type)...

...
store

load

Support Structures:
1. Dependence Detection Table DDT
2. Dependence Prediction and Naming Table DPNT
3. Synonym File SF

Example:
store

load

store

load

detect

cloak

tim
e

addr

Streamling Memory Operation with Dependence Prediction 17A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

An implementat ion - Example

store
D

PN
T

PC TAG Pred V
addr1 STPC
addr PC

addr1

D
D

T
load

D
PN

T

PC TAG Pred V
addr1 STPC
addr PC

addr1
D

D
TLDPC tag Y 1

STPC tag Y 1

STPC LDPC

Streamling Memory Operation with Dependence Prediction 18A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

An implementat ion - Example

store

D
PN

T

PC TAG Pred V
????? tag 0 1
value tag f/e V

SF

LDPC tag Y 1
STPC tag Y 1

STPC

store

D
PN

T

PC TAG Pred V
xxxxx tag 1 1
value tag f/e V

SF

LDPC tag Y 1
STPC tag Y 1

memory

load

D
PN

T

PC TAG Pred V
xxxxx tag 1 1
value tag f/e V

SF

LDPC tag Y 1
STPC tag Y 1

LDPC

addr2

addr2
memory

Streamling Memory Operation with Dependence Prediction 19A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

0%
20%
40%
60%
80%

100%

0%
20%
40%
60%
80%

100%

20%

40%

60%

80%

0%

0%
20%
40%
60%
80%

100%

go m88ksim gcc compress li ijpeg perl vortex

tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

Streamling Memory Operation with Dependence Prediction 20A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Predict ing Dependences - Synonym Generat ion

store

load

store

load

store

1-on-1 straightforward N-to-N is common

1. Predict dependence status (existence)

2. Figure out with who / synonym

dependences w/ common parties same synonym

Break into steps:

tagtag

execution path determines which is the right one

load

store

load
tagtag

Streamling Memory Operation with Dependence Prediction 21A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Speculat ive Memory Bypassing

Observation: Store and Load are used to just pass values
Take store & load off the communication path

• DEF-store-load-USE must be in the instruction window
Larger windows: higher potential coverage

• Extents over multiple store-load dependences

address

address

load

DEF

USE

va
lu

e

Memory
store

DEF

USE

va
lu

e

Streamling Memory Operation with Dependence Prediction 22A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

synonym TAG1

• Extents over multiple store-load dependences
• DEF and USE must co-exist in the instruction window

Speculat ive Memory Bypassing

store R1

USE R2

load R2

1
2

R2 TAG1 TAG2

3

4

R1 TAG1

Observe: Store and Load are used to just pass values

USE R2

Takes load-store or loads off the communication path

load R2
store R1

DEF R1DEF R1

Streamling Memory Operation with Dependence Prediction 23A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

P
ro

gr
am

O
rd

er

Speculat ive Memory Bypassing

= R1...
R1 = ...

R1 = ...
P1 = ... P2 = ...

= P2 ...Ti
m

e

=rx... =rx... =rx...

= R1...

synonymP1

store R1

USE R2

load R2

1
2

 R2 Ô P1 & P2

3

4

 R1 Ô P1 USE R2
load R2

store R1
DEF R1DEF R1

Observation: Store and Load are used to just pass values

R1 Ô P1

R1 Ô P2

Take store & load off the communication path

• Straightforward extension to Register Renaming

= P1...
=rx...

Memory Dependence
 Prediction

Streamling Memory Operation with Dependence Prediction 24A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Evaluat ion Roadmap
• Detecting Dependences
• Cloaking Coverage
• Cloaking Mispeculation Rate
• Performance

1. Squash Invalidation
2. Selective Invalidation

Base Machine:
8-way superscalar 4 load/store ports
128-entry window + 128 entry ABS w/ 1 cycle latency
Naive Memory Dependence Speculation

Streamling Memory Operation with Dependence Prediction 25A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Detect ing Dependences

SpecINT SpecFP Overall
0%

20%

40%

60%

80%

100%
32

64 256
512

1K
128 2K

128-entries: Captures Dependences for ~65% of all loads

better

 RAW RAR

Streamling Memory Operation with Dependence Prediction 26A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Cloaking Coverage

10
1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

 DATA STACK HEAP

0%

20%

40%

60%

80%

100%

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7

Most Dependences Correctly Predicted

Streamling Memory Operation with Dependence Prediction 27A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Cloaking - Mispeculat ion Rates

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7 10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

60%
1%
2%
3%
4%
5%
6%

0.0%
0.2%
0.4%
0.6%
0.8%
1.0%

 DATA STACK HEAP

Streamling Memory Operation with Dependence Prediction 28A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Performance - Squash Inval idat ion
Base Machine is highly optimized

Penalty outweights benefits

-15%

-10%

-5%

0%

5%

09
9
12

4
12

6
12

9
13

0
13

2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

Streamling Memory Operation with Dependence Prediction 29A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Performance - Select ive Inval idat ion
Selective Invalidation is required for Cloaking/Bypassing

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

 Oracle Selective

0%
2%
4%
6%
8%

10%
12%
14%

Streamling Memory Operation with Dependence Prediction 30A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Cloaking and Load Value Predict ion

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6
0%

5%

10%

15%

20%
 CLOAKING 8K-DPNT

 CLOAKING 16K-DPNT

 VALUE PRED. 16K

Streamling Memory Operation with Dependence Prediction 31A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Cloaking - Dynamic Loads Serviced

0%

20%

40%

60%

%
 L

oa
ds

 E
xe

cu
te

d

Correct
Wrong

go
m88ksim gcc

compress xlisp ijpeg perl vortex

2k-entry 2-bit saturating counters

75 %

96 %

78 %

86 % 91 %

62 %

92 %

95 %

1. First-cut implementation

better

2. Cloaking Extension for Read-after-Read

Streamling Memory Operation with Dependence Prediction 32A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Cloaking - Predict ion Breakdown

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

go
m88ksim gcc

compress xlisp ijpeg perl vortex

Wrong

Stack

Data

Heap

%
 L

oa
ds

 E
xe

cu
te

d

Streamling Memory Operation with Dependence Prediction 33A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

0%

1%

2%

3%

4%

5%

6%

Cloaking - Mispredict ion Breakdown

go
m88ksim gcc

compress xlisp ijpeg perl vortex

Stack

Data

Heap
%

 L
oa

ds
 E

xe
cu

te
d

Streamling Memory Operation with Dependence Prediction 34A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Back to the Memory System

Program’s View

CPU

Data

Actual System

Regs

L1

L2

Main Memory

CPU

Streamling Memory Operation with Dependence Prediction 35A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Increasing Memory Bandwidth
• Parallelism => more bandwidth => more L1 ports

L1

CPU

L1

CPU

• A very small cache is easier to multi-port

• But, it increases the latency for all accesses that miss in it

L1

CPU

L0

Streamling Memory Operation with Dependence Prediction 36A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Transient Value Cache

Adaptive Placement via Memory Dependence Prediction
load: reads a value from a recent store?
store: will be killed by a close-by store?

A very small cache captures ~ 55% of all memory accesses
Without adding latency to all other accesses

L1

CPU

TVC

Predict
Dependence

L1

CPU

TVC

Predict No
Dependence

Streamling Memory Operation with Dependence Prediction 37A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Many loads get their value from a recent store
Many stored values are quickly killed

Transient Value Cache

0%

20%

40%

60%

80%
100%

8 8K256

Observations:

Vortex
8 8K256

0%

20%

40%

60%

80%
100%

A 256-FA word cache can service ~50% of loads, ~60% of stores
Hit: No need to consume L1 ports
Miss: Latency increases

+
-

stores recorded # stores recorded

loads serviced % stores killed%

Vortex

Data Cache ports: becoming expensive but more are needed

Streamling Memory Operation with Dependence Prediction 38A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Transient Value Cache

TVC

Dependence: In Series No Dependence: In Parallel

Adaptive Placement via Memory Dependence Prediction
load: reads a value from a recent store?
store: will be killed by a close-by store?

L1

load miss

TVC

L1

loadstoreloadstore

• Extension to handle Read-after-Read (load-load)
• Can be combined w/ the Detection Table needed for Cloaking
• Accuracy: Loads > 90%, miss ~%2 max %5, Stores ~ 80%

Streamling Memory Operation with Dependence Prediction 39A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

True/Output Dependence Predict ion
Loads / True

0%

25%

50%

75%

100%

Y/Y N/YN/N Y/NPredicted/Actual

go

m88
ks

im gc
c

co
mpre

ss
xli

sp
ijp

eg pe
rl

vo
rte

x
0%

25%

50%

75%

100%

go

m88
ks

im gc
c

co
mpre

ss
xli

sp
ijp

eg pe
rl

vo
rte

x

Stores / Output

Streamling Memory Operation with Dependence Prediction 40A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

Pessimistic model: last 256 stores - not last 256 addresses

TVC - Reduct ion in Accesses

0%

20%

40%

60%

80%

100%

StoresLoads

go

m88
ks

im gc
c

co
mpre

ss
xli

sp
ijp

eg pe
rl

vo
rte

x

Streamling Memory Operation with Dependence Prediction 41A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

8-way superscalar
64 inst. window
16 entry write buffer
32K data cache/2-way SA/8-way interleaved/16 cycle miss
Same instruction cache
4 memory ports
Perfect disambiguation: cloaking can be used for synchronization.
Mechanism

• Perfect prediction over last 256-stores
• must see dep. at least once

• 256-word FA Synonym File
• 256-word fully associative TVC/8-ports

Evaluat ion Parameters

Streamling Memory Operation with Dependence Prediction 42A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

TVC vs. L0 - Hi t Rates

0%

20%

40%

60%

80%

100%
 TVC

 L0

09
9

12
4

12
6

12
9

13
0

13
2

13
4

14
7

10
1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

Streamling Memory Operation with Dependence Prediction 43A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

TVC vs. L0 - “Miss” Rates

09
9

12
4

12
6

12
9

13
0

13
2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

0%
10%
20%
30%
40%
50%
60%
70%

 TVC

 L0

0%
1%
2%
3%
4%
5%
6%
7%
8%

Streamling Memory Operation with Dependence Prediction 44A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

There is a point where:
Is better to allocate real-estate for our mechanisms

Performance

0%

5%

10%

15%

go

m88
ks

im gc
c

co
mpre

ss
xli

sp
ijp

eg pe
rl

vo
rte

x

Mechanism 2×DCache (64k)

Sp
ee

du
p

better

Streamling Memory Operation with Dependence Prediction 45A. Moshovos

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos

More Performance

0%

5%

10%

15%

go

m88
ks

im gc
c

co
mpre

ss
xli

sp
ijp

eg pe
rl

vo
rte

x

16 cycle miss 24 cycle miss
Sp

ee
du

p

go

m88
ks

im gc
c

co
mpre

ss
xli

sp
ijp

eg pe
rl

vo
rte

x

