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Novel Techniques for  Memory

• Speculative Memory Cloaking

• Speculative Memory Bypassing

• Transient Value Cache
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The “Memory Problem”
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Organization

Name-Centric Approach
observe and exploit address stream behavior

&
Management

Store & Retrieve Values with: 1. Low Latency
2. High Bandwidth

Not all storage can be built this way: Intelligent Mechanisms
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Memory

What Purpose Does Memory Serve?

load

addr
calc

address

address

store

Memory can be an inter-operation communication mechanism
Addresses -> Communication Channels
Instructions -> Communicating Parties
Values ->  Messages
Address Calculation -> Channel Selection 

addr
calc

value
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The Name-Centr ic Approach
• Programs access memory using addresses, i.e., names
• Optimize for that: quick response on address requests
• How to organize and manage?
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 address stream locality
Recent data in faster 
storage

AAAA

Hardware

Goal: Approximate a Large-Fast Memory
Exploit Address Stream Behavior

1. Caching
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Address-Based Memory Concerns
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Store - Load: Direct Link
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2. Establish Dependence
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The Communicat ion-Conscious Approach
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In addition to address stream behavior:
Expose and Exploit the Inter-Operation Communication

1. Approximate a Large-Fast Memory
2. Optimize for the Communication
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Communication-Conscious Approach
Expose the communication

Observe and exploit its behavior

Memory as a Communicat ion Agent

In Addition to

CPU

L1

L2

Main Memory

address

address

memory 

store

load

DEF

USE
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e
Name-Centric

Communication-Conscious

addresses 
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Communicat ion-Conscious Techniques

Observe:

1. Speculative Memory Cloaking

2. Speculative Memory Bypassing 

• Prediction: link load - store
• pass value
• verify through memory

• link DEF - USE

Communication Latency is Reduced
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address

memory 

DEF

USE
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e
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2

store

load

Communicating via addresses => inherent delay

• Many loads get their value from a recent store
• These dependences are predictable
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Communicat ion-Conscious Techniques

DCache ports are becoming expensive

Observe:
A. Recent stores feed many loads
B. Many recent stores are killed

+ Small cache can service these
- Latency for other loads will increase

Yes - in series No - in parallel

CPU

TVC

L1

CPU

TVC

L1

Avoid L1 access Avoid     latency

dependence? 

Ô

A & B / Dependence Status is predictable
3. Transient Value Cache

C.

L1 DCache Bandwidth/Port Requirements are Reduced
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Speculat ive Memory Cloaking/Bypassing
Address-based Memory as: Storage vs. Interface 

1. What is memory used for? 
2. How addresses impact the action?

Ask:

LOAD RY

USE RY

Cloaking
LOAD RZ

USE RY

USE RZ

Cloaking
Byp

as
sin

g
DEF RX

STORE RX

LOAD RY

Bypassing

Inter-operation Communication Data-Sharing

register
address

Memory

Dynamically Create Direct Links Between Producers/Consumers
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Speculat ive Memory Cloaking -  Example

de
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store 

value

store addr

load

load addr

Timeline

load value

1

2

4

3

5

6

1. Store: predict load PC
2. Associate value and load PC
3. Load: predict store

Check if value is there
Pass to other instructions

4. Write value to memory
5. Access memory
6. Verify value, re-execute if 

On-the-fly: Convert implicit communication into explicit
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Speculat ive Memory Cloaking -  Extension
Could be used for load-to-load dependences
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y

load 1 

value

load 2 addr

load 2

load 1 addr

Timeline
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2

4

3
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cloak n  \’klok\
       2 : to alter so as to hide the character of 
       3 :  something that conceals
“Speculative Memory Renaming”?
• Already in use in the same context: ARB, LSQ (w/o Speculative)
• Re-name: change the name

- associate address with a new name
- Legacy of “Register Renaming”:
- can go from address to new name

synonym and address are NEVER associated
can’t determine synonym from address
other accesses to the same address can’t locate synonym

Why “Cloaking”?
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Dynamically & Transparently convert implicit into explicit
•  Dependence prediction  => direct store-load or load-load links
• Speculative and has to be eventually verified

Speculat ive Memory Cloaking

store PC   synonym

Dependence Prediction

Memory
Hierarchy

Traditional

 value   f/e

Synonym File

address

address

1

2

3

4
speculative

verify
value

Timeline

store 
value 
addr 

addr 

load 

 load PC   synonym
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Predict ing RAW and RAR Dependences
1. Build Dependence history: Dependence Detection Table

2. Use history to predict forthcoming dependences
assign synonyms to detected dependences
use synonym to locate value

Record: (store PC, address) or (load PC, address) 
Loads:   (load PC, address)

=> (store PC, load PC)
=>  (load PC, load PC)
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An Implementat ion

loop:
t = AllocateToken()
SetToken(t)...
ActOnToken(t)...

SetToken(t):
t->type = ...

ActOnToken(t):
switch (t->type)...

...
store 

load

Support Structures:
1. Dependence Detection Table DDT
2. Dependence Prediction and Naming Table DPNT
3. Synonym File SF

Example:
store 

load

store 

load

detect

cloak

tim
e

addr
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An implementat ion -  Example

store 
D

PN
T

PC    TAG  Pred V
addr1   STPC
addr    PC 

addr1

D
D

T
load

D
PN

T

PC    TAG  Pred V
addr1   STPC
addr    PC 

addr1
D

D
TLDPC   tag      Y    1

STPC   tag      Y    1

STPC LDPC
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An implementat ion -  Example

store

D
PN

T

PC    TAG  Pred V
?????     tag      0     1
value    tag       f/e   V 

SF

LDPC   tag      Y    1
STPC   tag      Y    1

STPC

store

D
PN

T

PC    TAG  Pred V
xxxxx      tag      1     1
value    tag       f/e   V 

SF

LDPC   tag      Y    1
STPC   tag      Y    1

memory

load

D
PN

T

PC    TAG  Pred V
xxxxx      tag      1     1
value    tag       f/e   V 

SF

LDPC   tag      Y    1
STPC   tag      Y    1

LDPC

addr2

addr2
memory
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Predict ing Dependences -  Synonym Generat ion

store

load

store

load

store

1-on-1 straightforward N-to-N is common

1. Predict dependence status (existence)

2. Figure out with who / synonym

dependences w/ common parties same synonym

Break into steps:

tagtag

execution path determines which is the right one

load

store

load
tagtag
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Speculat ive Memory Bypassing

Observation: Store and Load are used to just pass values
Take store & load off the communication path

• DEF-store-load-USE must be in the instruction window
Larger windows: higher potential coverage

• Extents over multiple store-load dependences

address

address

load

DEF

USE

va
lu

e

Memory
store

DEF

USE

va
lu

e
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synonym TAG1

• Extents over multiple store-load dependences
• DEF and USE must co-exist in the instruction window

Speculat ive Memory Bypassing

store R1

USE R2

load R2

1
2

R2   TAG1   TAG2

3

4

R1   TAG1

Observe: Store and Load are used to just pass values

USE R2

Takes load-store or loads off the communication path

load R2
store R1

DEF R1DEF R1
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Speculat ive Memory Bypassing

= R1...
R1 = ...

R1 = ...
P1 = ... P2 = ...

= P2 ...Ti
m

e

=rx... =rx... =rx...

= R1...

synonymP1

store R1

USE R2

load R2

1
2

   R2 Ô P1 & P2   

3

4

  R1 Ô P1  USE R2
load R2

store R1
DEF R1DEF R1

Observation: Store and Load are used to just pass values

R1 Ô P1

R1 Ô P2

Take store & load off the communication path

• Straightforward extension to Register Renaming

= P1...
=rx...

Memory Dependence
 Prediction
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Evaluat ion Roadmap
• Detecting Dependences
• Cloaking Coverage
• Cloaking Mispeculation Rate
• Performance

1. Squash Invalidation
2. Selective Invalidation

Base Machine:
8-way superscalar 4 load/store ports
128-entry window + 128 entry ABS w/ 1 cycle latency
Naive Memory Dependence Speculation
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Detect ing Dependences

SpecINT SpecFP Overall
0%

20%

40%

60%

80%

100%
32

64 256
512

1K
128 2K

128-entries: Captures Dependences for ~65% of all loads

better

  RAW   RAR
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Cloaking Coverage
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Cloaking -  Mispeculat ion Rates
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Performance -  Squash Inval idat ion
Base Machine is highly optimized

Penalty outweights benefits
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Performance -  Select ive Inval idat ion
Selective Invalidation is required for Cloaking/Bypassing
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Cloaking and Load Value Predict ion
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Cloaking -  Dynamic Loads Serviced
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2k-entry 2-bit saturating counters
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1. First-cut implementation

better

2. Cloaking Extension for Read-after-Read
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Cloaking -  Predict ion Breakdown
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Back to the Memory System

Program’s View

CPU

Data

Actual System

Regs

L1

L2

Main Memory

CPU
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Increasing Memory Bandwidth
• Parallelism => more bandwidth => more L1 ports

L1

CPU

L1

CPU

• A very small cache is easier to multi-port

• But, it increases the latency for all accesses that miss in it

L1

CPU

L0
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Transient Value Cache

Adaptive Placement via Memory Dependence Prediction
load: reads a value from a recent store?
store: will be killed by a close-by store?

A very small cache captures ~ 55% of all memory accesses
Without adding latency to all other accesses

L1

CPU

TVC

Predict 
Dependence

L1

CPU

TVC

Predict No 
Dependence
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Many loads get their value from a recent store
Many stored values are quickly killed

Transient Value Cache

0%
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80%
100%

8 8K256

Observations:

Vortex
8 8K256

0%

20%

40%
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80%
100%

A 256-FA word cache can service ~50% of loads, ~60% of stores
Hit: No need to consume L1 ports
Miss: Latency increases

+
-

# stores recorded # stores recorded

loads serviced % stores killed%

Vortex

Data Cache ports: becoming expensive but more are needed
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Transient Value Cache

TVC

Dependence: In Series No Dependence: In Parallel

Adaptive Placement via Memory Dependence Prediction
load: reads a value from a recent store?
store: will be killed by a close-by store?

L1

load miss

TVC

L1

loadstoreloadstore

• Extension to handle Read-after-Read (load-load)
• Can be combined w/ the Detection Table needed for Cloaking
• Accuracy: Loads > 90%, miss ~%2 max %5, Stores ~ 80%
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True/Output Dependence Predict ion
Loads / True
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Stores / Output
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Pessimistic model: last 256 stores - not last 256 addresses

TVC - Reduct ion in Accesses
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8-way superscalar
64 inst. window 
16 entry write buffer
32K data cache/2-way SA/8-way interleaved/16 cycle miss
Same instruction cache
4 memory ports
Perfect disambiguation: cloaking can be used for synchronization.
Mechanism

• Perfect prediction over last 256-stores 
• must see dep. at least once

• 256-word FA Synonym File
• 256-word fully associative TVC/8-ports

Evaluat ion Parameters
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TVC vs.  L0 -  Hi t  Rates
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TVC vs.  L0 -  “Miss” Rates

09
9

12
4

12
6

12
9

13
0

13
2
13

4
14

7
10

1
10

2
10

3
10

4
10

7
11

0
12

5
14

1
14

5
14

6

0%
10%
20%
30%
40%
50%
60%
70%

 TVC

  L0

0%
1%
2%
3%
4%
5%
6%
7%
8%

Streamling Memory Operation with Dependence Prediction   44A. Moshovos 

Permission to use these slides is granted provided that a reference to their origin is included.

A. Moshovos 

There is a point where:
Is better to allocate real-estate for our mechanisms

Performance
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More Performance
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