
Exploiting Program Structure and Behavior in Computer Architecture Slide
1

Slide
1

Slide
1

Using Program Structure Information

• We can learn program dependences using 
dependence predictors

• Can we use program structure information in innovative 
ways?
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Program Structure Information: An Example

Example: branch prediction
O   Early: Branches predicted in isolation
O   Major Leap: Branch correlation
O   Then: Golden age of branch prediction

Great insight? Different branches related
programs have structure!

Example II: memory hierarchy design
O   Early: Program structure not taken into account
O   Now: Still not. Why not?
O   Major leap: Coming soon
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Secondary Information: Not Really Program Structure

Branch correlation is a secondary method

Secondary information: instruction inputs/outputs
O   Examples: branch outcomes, addresses, values
O   Properties: spatial/temporal locality, patterns

Current mechanisms almost exclusively based on 
secondary information and its properties

Problem I: weak properties may not hold all the time

Problem II: Hard to figure out what’s going on sometimes
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Primary Information: Real Program Structure

“Programs have structure” is too obvious

Primary information: relationships amongst operations
O   Examples: control dependences, data dependences
O   Properties: 

- temporal stability: program is invariant (strong)
- causality: causes all observed secondary behavior

We have program structure handy! Can we exploit it?
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Application: Fast Communication Through Memory

Problem: Accessing memory is inherently slow, ambiguous

Program structure: Memory is a communication device 
for passing values from stores to loads.
Not random: only certain stores to certain loads

Speculative Memory Cloaking
Link stores to loads explicitly, pass value along link

Store

Load
Value

Value/Addr

Value/Addr

Memory
Value
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Fast Communication II

Program structure: Loads and stores are used for passing 
values from one instruction (DEF) to another (USE).
Via memory? (maybe not, can do it directly)

Speculative Memory Bypassing
Collapse DEF-store, store-load, load-USE links into 
a direct DEF-USE link

More on Cloaking & Bypassing: [Moshovos & Sohi, MICRO-30]

Store

Load
Value

Memory
DEF

USE

Value

Value

Value Value
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Fast communication III: Shared memory MP’s

Problem: Optimize CC protocols for sharing patterns

So far: Detect patterns using address attributes
O   Track state proportional in size to data (big)
O   Little predictive power

Program structure: Sharing pattern property of program, 
not data 

Detect using instruction relationships
O   Track state proportional in size to program (small)
O   Great predictive power, works much better

More: Work by Kaxiras
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Application: Prefetching Linked Data Structures

Problem: Linked data structures
O   Chains of long-latency loads limit parallelism
O   Hard to predict addresses for prefetching

Program structure: (l = list; l; l = l->next) 
Traversal uses few static loads, few relationships

Learn structure and pre-execute speculatively:
O   No explicit address prediction, predict loads and execute
O   All we need to remember: l = l->next
O   Compresses chains, removes aritificial issue delays

More: [Roth, Moshovos & Sohi, ASPLOS 1998]
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Application: Branch Pre-execution

Program structure: Branches more closely related to 
instructions that feed them than to other branches

Learn dependences, use to pre-compute branches
O   Early: avoid mis-speculation
O   A little late: reduce penalty

Proof of concept: Virtual Function Calls
O   Hard to predict: Multiple targets a problem
O   Easy to pre-compute: Linear dependence chains
O   Cuts misspeculation by ~80%

More: [Roth, Moshovos & Sohi, ICS 1999]
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Basics

Linked Data Structures (LDS): pointer-based
O   Lists, trees, graphs, etc.
O   Prevalent: simulators, compilers, databases, OO-progs

for (l = list; l; l = l->next)

 process(l);
if (l->key == key)key

next
A B C

Pointer Load

Pointer Chasing Problem

Solution: Make sure latencies are short → Prefetch

→ Pointer loads serialized

key
next

key
next

→ Latencies add

As if memory latency wasn’t a problem already...
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Problem and Solution

v /Pre.fetch/ := Issue loads as early as possible
(as soon as address is ready)

First reaction: Try to predict addresses
O   Array: See A[0], A[1], A[2] → predict A[3]
O   LDS: See A, B, C → predict ?

Catch 22: Need to prefetch, but... 
can’t predict addresses

Our work: what to do about this
1. Schedule pointer loads aggressively
2. Isolate pointer load thread and pre-execute
3. Use dependence information to do this transparently

...and this works!
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Prefetching as Aggressive Scheduling

Ti
m

e

OOO issue tries, but constrained..
1. window: must see 

Strategy: Schedule loads when addresses ready

l = l->next

Key Issue: Distance between dependent pointer loads

l = l->next

l = l->next
We win

Long: constraints kick in

Not much to do

Short: “optimal”

l = l->next

l = l->next

l = l->next

2. schedule: consider all instructions

Exploit long distances: Remove constraints
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Prefetching as Aggressive Scheduling (cont.)

l = l->next

l = l->next

l = l->next

Build a prefetch engine
2. schedule: considers pointer loads only
1. window: issues pointer loads without seeing them

Q: Where do these come from? A: Predict

Address Prediction → Load Prediction

Right? We win

Predict

Can’t happen
l = l->next

l = l->next

l = l->next

OOO issue What we do

Ti
m

e
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Load Prediction for LDS Access

What do loads need to know:
“Is what I just loaded an address?”
“Who will use this address?” or “Who can issue now?”

analyze dynamically

Answer using Data Dependence Information

Load Dependences

l = l->next
l = l->next

l = l->next
l->key

Done Can go

+ Tell us what we need: “who can go now?”

Why? Once a dependence, always a dependence (almost)

+ Ignore irrelevant info like sequencing

l = l->next

l = l->next

l->key

represent statically
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Address Prediction vs. Operation Prediction

Arrays: Observe addresses, extract formula
Formula: Base + stride

But really: Captures program operation

LDS: Cannot extract formula from addresses
Observe program directly

Formula: Load dependences

Lesson on Pattern/History Based Prediction?

Complex/Hidden? → Predict operation and pre-compute
Simple/Expressed pattern? → Predict

Address: Addresses
Operation: Program operation that computes addresses
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Mechanics I - Overview

Step 1. Examine running program, learn dependences
Step 2. Use dependences to launch prefetches
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Mechanics II - Learning Dependences

l = l->next
l = l->next

l->key
l = l->next

Done Can go

1. How many outputs can we buffer? (64 is enough)
2. How many deps can we remember? (256)

Output Load

Parameters (see paper)

l = l->next

l->key

l = l->nextA B

B

B

C

 Establish (dynamic) dependence between (static) loads

Ti
m

e/
Pr

og
ra

m
 O

rd
er B l = l->next

1. Buffer recent load outputs

Use values exchanged to do this 

2. Compare current load inputs



 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
19

Mechanics III - Prefetching

2. Compute prefetch address

D-Cache

Issues/Lessons: (see paper)

2. Keep prefetch chains short
3. Prefetch into a small buffer?

1. Don’t contend for L1 ports, queue prefetches

l = l->next
l = l->next

l = l->next
l->key

Done Can goB

l = l->next

l->key

l = l->next

l->key

B C

C

C

D

Ti
m

e/
Pr

og
ra

m
 O

rd
er

1. Access dependence table

C->next
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Evaluation - Benchmark Programs

Olden Benchmarks:
O   Scientific simulations: Barnes-Hut, EM3D
O   Models/solvers: Health, Power
O   Graphics utilities: Perimeter, Voronoi
O   Other: Bisort, MST, TSP, Treeadd (toy)

Data structures:
O   Lists: EM3D, MST, Health, TSP
O   Binary Trees: Bisort, Treeadd, TSP, Voronoi
O   k-ary Trees: Barnes-Hut, Health, Power, Perimeter
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Characterization I - Pointer Load Behavior

Are pointer loads a problem? 

0%

10%

20%

30%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

Other loads
Pointer loadsL1 miss rates:

Yes: Account for the majority of data cache misses
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Characterization II - Pointer Load Distances

Overall: yes and no
Future: prefetch LDS in short distance situations

0%

25%

50%

75%

100%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

Is there enough distance between pointer loads?

Cumulative distance (dyn. inst.): 8,16,32,64,128 256
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Speedups

Base machine: 4 wide, 64 OOO, 32KB Data cache
Prefetch: 256 dependences/buffer 64 load outputs
D-Cache x2: 64KB cache, prefetch using spatial locality

0%

5%

10%

15%

20%

25%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

D-Cache x2

Dependence Pref

Scaling conventional memory structures doesn’t work
Dependence Based Prefetching Works
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Summary

LDS Double Trouble
   Unpredictable addresses → use scheduling tricks
   Serialized latencies → tricks better be good

   

Dependence Based Prefetching
Don’t predict addresses
Use dependences to predict loads, compute addresses
Aggressive scheduling without window restrictions
Better use of resources than larger cache
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Other Results - Diagnostics

• Miss coverage: 
   Would-be misses hidden: Fully: ~20%, Partially: ~60%
   → Not enough work between pointer loads (future)

• Prefetch utilization:
   Prefetched blocks used: ~80%
   

• Bandwidth overhead:
   L1: ~15%, L2: ~5%
   → Fetches converted to prefetches

Dependences give accurate address predictions
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Can We Do This in Software?

Yes [e.g., Mowry & Luk, ASPLOS ‘96]
+ Don’t have to build anything

Our solution
+ No explicit overhead 
+ Can potentially prefetch sooner → hide more latency
+ Adapt to dynamic behavior
+ Easy path for existing software
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Adding Confidence

• Learn whether blocks prefetched by load used or not
• Simple mechanism (2-bit counters, stop at 0)
• Eliminates pathologies/unlearns bad prefetching

0%

5%

10%

15%

20%

25%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

D-Cache x2

Dep Pref

Dep Pref + Conf
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Prefetching Recurrent Loads Only

• Effective on simple structures: treeadd, perimeter, mst
• Potentially simpler to implement

Simpler ways for prefetching self recurrent loads only
[e.g., IRB: Mehrotra & Harrison]

0%

5%

10%

15%

20%

25%

bh bis em3 hea mst per pow tre tsp vor

Dep Pref

IRB
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Introduction

Goal: Reduce branch/target mispredictions

Idea: Dependence-Based Pre-Computation
•  Supplement conventional prediction
•  Pre-compute selected targets/branch outcomes

O   Identify instructions that compute targets/branches
O   Speculatively pre-execute these instruction sequences
O   Use results as predictions

•  This work: Virtual-Function-Call (V-Call) targets
O   Proof of concept
+ Simple implementation
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Overview: Problem and Technique

They rely on expressed correlation (which may not exist)
•  Local: a[i]->valid == TRUE using a[i-1]->valid == TRUE?
•  Global: a[i]->valid == TRUE using i < ASIZE?

No Correlation? Use Pre-Computation
•  Identify branch computation: a[i]->valid == TRUE
•  Using a,i as inputs, pre-compute and store the result
•  Use stored result as a prediction
+ No correlation necessary!

for (i = 0; i < ASIZE; i++)
if (a[i]->valid == TRUE)

print(a[i]);

Why do conventional predictors mispredict?
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Virtual Function Calls (V-Calls)

Use: Polymorphism (C++/Java)
•  Multiple dynamic function targets from single static call site 
•  Object type selects target at runtime

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

class Base
virtual int Valid();
virtual void Print();

class Derived : Base
int Valid();
void Print(); a[0]->Base::Valid()

a[0]->Base::Print()

a[1]->Derived::Print()
a[1]->Derived::Valid()

C++ types Statically: one call site

Dynamically: multiple targets
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BTB’s (Branch Target Buffers) don’t work
-  Single target per static call (need multiple)

Correlated (path-based) BTB’s are better
•  Target history index [Driesen&Hoelzle ISCA97,98]

Conventional V-Call Target Prediction

-  Local: a[i]->Valid() using a[i-1]->Valid()? No (different object)
+  Global 1: a[i]->Print() using a[i]->Valid()? Yes (same object)
-  Global 2: a[i]->Valid() using a[i-1]->Print()? No (different object)

There is room for improvement!

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();
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Dependence-Based Pre-Computation

Idea: Watch the program and imitate

Three step process:
  1. Identify and cache relevant instruction sequences
  2. Speculatively instantiate with appropriate inputs
  3. Match pre-computed results with predictions (challenge)

Why V-Calls?
+  Simple dependence chain makes steps 1+2 easy
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One Problem

Pre-computation wins? Great

Prediction wins? Problems

  
1. Ineffectiveness/Waste

•  Late pre-comps don’t help
•  Pre-computed for nothing

2. Introduced Mispredictions
•  a[1]->Print() may mess up

   a[2]->Print() prediction

Pre-computation and fetch/prediction are in a race

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Print()

a[1]->Print()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

2

1
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Preventing Introduced Mispredictions

Mechanism
•  Tag pre-comp with a[i] seq#
•  Pre-comp good if seq# is

   most recent for a[i]

How it works
•  a[1]->Print() pre-comp seq# is

   a[1]
•  At a[2]->Print() prediction time,

   most recent seq# is a[2]
•  Pre-comp with seq# a[1] stale

   (use BTB)
  
  (see paper for more details)

Idea: Invalidate a[1] pre-comps when a[2] is fetched

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Print()

a[1]->Print()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

a[1]

a[2]

#

last#

??
BTB
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Ineffectiveness: Lookahead Pre-Computations

Mechanism
•  a[i] usually address predictable
•  Using &a[i-1], predict &a[i]
•  Launch a[i]->Valid()
•  Incorporate into seq# scheme

   (see paper)

Two schemes
•  Lookahead: address prediction
•  Simple: no address prediction

Problem: Not enough distance from a[i] to a[i]->Valid()
Idea: Exploit distance from a[i-1] to a[i]->Valid()

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Valid()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

a[2]
#

Addr
Pred &a[2]
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Experiments

Benchmarks: OOCSB (C++)

Simulations: SimpleScalar [MIPS, GCC]
•  4-wide superscalar, 5-stage pipe
•  Speculative OOO-issue, 64 instructions in-flight
•  64 KB L1 D-Cache, 512KB L2 U-Cache
•  Branches: 8K-entry combined 10-bit GSHARE + 2-bit counters 
•  Target prediction:

O   BTB: 2K-entry, 4-way associative
O   PATH: BTB + 2K-entry, DM, 2-level BTB, 3 target history
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0%

20%

40%

60%

coral deltablue eqn idl ixx lcom porky richards troff

Numbers: BTB base predictor
Misprediction Rates

BTB

BTB + Lookahead
BTB + Simple

richards, eqn, lcom, porky, troff: 
+  Simple handles long distance cases (a[i]->Print())
+  Lookahead handles short distance cases (a[i]->Valid())

others: 
-  Simple: short distances, lookahead: unpredictable addresses 
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0%

10%

20%

30%

coral deltablue eqn idl ixx lcom porky richards troff

Numbers: PATH base predictor
Misprediction Rates (NOTE: change in scale)

overall:
•  PATH handles correlated cases (a[i]->Print())

richards, eqn, troff: 
+  Lookahead helps uncorrelated (a[i]->Valid())

PATH

PATH + Lookahead
PATH + Simple
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Numbers: Explanations

What about overall performance?
•  V-Call rate low in absolute terms (1 per 200-1000 instructions)
•  Performance improves by 0-2%

Sometimes (coral) more harm than good
•  Lookahead pre-computation relies on address prediction
•  Wrong address prediction? Wrong pre-computation
+  Not common
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Summary

Dependence-Based Pre-Computation
+  Can be used to augment branch/target prediction
+  Succeeds where statistical correlated prediction fails
  
•  Similar technique prefetches linked structures [ASPLOS98]
  (where statistical address prediction also fails)

Closely related
•  Branch Flow Window [Farcy et.al., MICRO98]

Can be generalized to handle all branches


