
Exploiting Program Structure and Behavior in Computer Architecture Slide
1

Slide
1

Slide
1

Using Program Structure Information

• We can learn program dependences using
dependence predictors

• Can we use program structure information in innovative
ways?

Exploiting Program Structure and Behavior in Computer Architecture Slide
2

Slide
2

Slide
2

Program Structure Information: An Example

Example: branch prediction
O Early: Branches predicted in isolation
O Major Leap: Branch correlation
O Then: Golden age of branch prediction

Great insight? Different branches related
programs have structure!

Example II: memory hierarchy design
O Early: Program structure not taken into account
O Now: Still not. Why not?
O Major leap: Coming soon

Exploiting Program Structure and Behavior in Computer Architecture Slide
3

Slide
3

Slide
3

Secondary Information: Not Really Program Structure

Branch correlation is a secondary method

Secondary information: instruction inputs/outputs
O Examples: branch outcomes, addresses, values
O Properties: spatial/temporal locality, patterns

Current mechanisms almost exclusively based on
secondary information and its properties

Problem I: weak properties may not hold all the time

Problem II: Hard to figure out what’s going on sometimes

Exploiting Program Structure and Behavior in Computer Architecture Slide
4

Slide
4

Slide
4

Primary Information: Real Program Structure

“Programs have structure” is too obvious

Primary information: relationships amongst operations
O Examples: control dependences, data dependences
O Properties:

- temporal stability: program is invariant (strong)
- causality: causes all observed secondary behavior

We have program structure handy! Can we exploit it?

Exploiting Program Structure and Behavior in Computer Architecture Slide
5

Slide
5

Slide
5

Application: Fast Communication Through Memory

Problem: Accessing memory is inherently slow, ambiguous

Program structure: Memory is a communication device
for passing values from stores to loads.
Not random: only certain stores to certain loads

Speculative Memory Cloaking
Link stores to loads explicitly, pass value along link

Store

Load
Value

Value/Addr

Value/Addr

Memory
Value

Exploiting Program Structure and Behavior in Computer Architecture Slide
6

Slide
6

Slide
6

Fast Communication II

Program structure: Loads and stores are used for passing
values from one instruction (DEF) to another (USE).
Via memory? (maybe not, can do it directly)

Speculative Memory Bypassing
Collapse DEF-store, store-load, load-USE links into
a direct DEF-USE link

More on Cloaking & Bypassing: [Moshovos & Sohi, MICRO-30]

Store

Load
Value

Memory
DEF

USE

Value

Value

Value Value

Exploiting Program Structure and Behavior in Computer Architecture Slide
7

Slide
7

Slide
7

Fast communication III: Shared memory MP’s

Problem: Optimize CC protocols for sharing patterns

So far: Detect patterns using address attributes
O Track state proportional in size to data (big)
O Little predictive power

Program structure: Sharing pattern property of program,
not data

Detect using instruction relationships
O Track state proportional in size to program (small)
O Great predictive power, works much better

More: Work by Kaxiras

Exploiting Program Structure and Behavior in Computer Architecture Slide
8

Slide
8

Slide
8

Application: Prefetching Linked Data Structures

Problem: Linked data structures
O Chains of long-latency loads limit parallelism
O Hard to predict addresses for prefetching

Program structure: (l = list; l; l = l->next)
Traversal uses few static loads, few relationships

Learn structure and pre-execute speculatively:
O No explicit address prediction, predict loads and execute
O All we need to remember: l = l->next
O Compresses chains, removes aritificial issue delays

More: [Roth, Moshovos & Sohi, ASPLOS 1998]

Exploiting Program Structure and Behavior in Computer Architecture Slide
9

Slide
9

Slide
9

Application: Branch Pre-execution

Program structure: Branches more closely related to
instructions that feed them than to other branches

Learn dependences, use to pre-compute branches
O Early: avoid mis-speculation
O A little late: reduce penalty

Proof of concept: Virtual Function Calls
O Hard to predict: Multiple targets a problem
O Easy to pre-compute: Linear dependence chains
O Cuts misspeculation by ~80%

More: [Roth, Moshovos & Sohi, ICS 1999]

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
10

Dependence Based Prefetching for Linked
Data Structures

1998 ASPLOS Conference

Amir Roth

Andreas Moshovos, Guri Sohi

amir,moshovos,sohi@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
11

Basics

Linked Data Structures (LDS): pointer-based
O Lists, trees, graphs, etc.
O Prevalent: simulators, compilers, databases, OO-progs

for (l = list; l; l = l->next)

 process(l);
if (l->key == key)key

next
A B C

Pointer Load

Pointer Chasing Problem

Solution: Make sure latencies are short → Prefetch

→ Pointer loads serialized

key
next

key
next

→ Latencies add

As if memory latency wasn’t a problem already...

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
12

Problem and Solution

v /Pre.fetch/ := Issue loads as early as possible
(as soon as address is ready)

First reaction: Try to predict addresses
O Array: See A[0], A[1], A[2] → predict A[3]
O LDS: See A, B, C → predict ?

Catch 22: Need to prefetch, but...
can’t predict addresses

Our work: what to do about this
1. Schedule pointer loads aggressively
2. Isolate pointer load thread and pre-execute
3. Use dependence information to do this transparently

...and this works!

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
13

Prefetching as Aggressive Scheduling

Ti
m

e

OOO issue tries, but constrained..
1. window: must see

Strategy: Schedule loads when addresses ready

l = l->next

Key Issue: Distance between dependent pointer loads

l = l->next

l = l->next
We win

Long: constraints kick in

Not much to do

Short: “optimal”

l = l->next

l = l->next

l = l->next

2. schedule: consider all instructions

Exploit long distances: Remove constraints

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
14

Prefetching as Aggressive Scheduling (cont.)

l = l->next

l = l->next

l = l->next

Build a prefetch engine
2. schedule: considers pointer loads only
1. window: issues pointer loads without seeing them

Q: Where do these come from? A: Predict

Address Prediction → Load Prediction

Right? We win

Predict

Can’t happen
l = l->next

l = l->next

l = l->next

OOO issue What we do

Ti
m

e

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
15

Load Prediction for LDS Access

What do loads need to know:
“Is what I just loaded an address?”
“Who will use this address?” or “Who can issue now?”

analyze dynamically

Answer using Data Dependence Information

Load Dependences

l = l->next
l = l->next

l = l->next
l->key

Done Can go

+ Tell us what we need: “who can go now?”

Why? Once a dependence, always a dependence (almost)

+ Ignore irrelevant info like sequencing

l = l->next

l = l->next

l->key

represent statically

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
16

Address Prediction vs. Operation Prediction

Arrays: Observe addresses, extract formula
Formula: Base + stride

But really: Captures program operation

LDS: Cannot extract formula from addresses
Observe program directly

Formula: Load dependences

Lesson on Pattern/History Based Prediction?

Complex/Hidden? → Predict operation and pre-compute
Simple/Expressed pattern? → Predict

Address: Addresses
Operation: Program operation that computes addresses

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
17

Mechanics I - Overview

Step 1. Examine running program, learn dependences
Step 2. Use dependences to launch prefetches

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
18

Mechanics II - Learning Dependences

l = l->next
l = l->next

l->key
l = l->next

Done Can go

1. How many outputs can we buffer? (64 is enough)
2. How many deps can we remember? (256)

Output Load

Parameters (see paper)

l = l->next

l->key

l = l->nextA B

B

B

C

 Establish (dynamic) dependence between (static) loads

Ti
m

e/
Pr

og
ra

m
 O

rd
er B l = l->next

1. Buffer recent load outputs

Use values exchanged to do this

2. Compare current load inputs

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
19

Mechanics III - Prefetching

2. Compute prefetch address

D-Cache

Issues/Lessons: (see paper)

2. Keep prefetch chains short
3. Prefetch into a small buffer?

1. Don’t contend for L1 ports, queue prefetches

l = l->next
l = l->next

l = l->next
l->key

Done Can goB

l = l->next

l->key

l = l->next

l->key

B C

C

C

D

Ti
m

e/
Pr

og
ra

m
 O

rd
er

1. Access dependence table

C->next

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
20

Evaluation - Benchmark Programs

Olden Benchmarks:
O Scientific simulations: Barnes-Hut, EM3D
O Models/solvers: Health, Power
O Graphics utilities: Perimeter, Voronoi
O Other: Bisort, MST, TSP, Treeadd (toy)

Data structures:
O Lists: EM3D, MST, Health, TSP
O Binary Trees: Bisort, Treeadd, TSP, Voronoi
O k-ary Trees: Barnes-Hut, Health, Power, Perimeter

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
21

Characterization I - Pointer Load Behavior

Are pointer loads a problem?

0%

10%

20%

30%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

Other loads
Pointer loadsL1 miss rates:

Yes: Account for the majority of data cache misses

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
22

Characterization II - Pointer Load Distances

Overall: yes and no
Future: prefetch LDS in short distance situations

0%

25%

50%

75%

100%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

Is there enough distance between pointer loads?

Cumulative distance (dyn. inst.): 8,16,32,64,128 256

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
23

Speedups

Base machine: 4 wide, 64 OOO, 32KB Data cache
Prefetch: 256 dependences/buffer 64 load outputs
D-Cache x2: 64KB cache, prefetch using spatial locality

0%

5%

10%

15%

20%

25%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

D-Cache x2

Dependence Pref

Scaling conventional memory structures doesn’t work
Dependence Based Prefetching Works

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
24

Summary

LDS Double Trouble
 Unpredictable addresses → use scheduling tricks
 Serialized latencies → tricks better be good

Dependence Based Prefetching
Don’t predict addresses
Use dependences to predict loads, compute addresses
Aggressive scheduling without window restrictions
Better use of resources than larger cache

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
25

Other Results - Diagnostics

• Miss coverage:
 Would-be misses hidden: Fully: ~20%, Partially: ~60%
 → Not enough work between pointer loads (future)

• Prefetch utilization:
 Prefetched blocks used: ~80%

• Bandwidth overhead:
 L1: ~15%, L2: ~5%
 → Fetches converted to prefetches

Dependences give accurate address predictions

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
26

Can We Do This in Software?

Yes [e.g., Mowry & Luk, ASPLOS ‘96]
+ Don’t have to build anything

Our solution
+ No explicit overhead
+ Can potentially prefetch sooner → hide more latency
+ Adapt to dynamic behavior
+ Easy path for existing software

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
27

Adding Confidence

• Learn whether blocks prefetched by load used or not
• Simple mechanism (2-bit counters, stop at 0)
• Eliminates pathologies/unlearns bad prefetching

0%

5%

10%

15%

20%

25%

bh bisort em3d health mst perimeter power treeadd tsp voronoi

D-Cache x2

Dep Pref

Dep Pref + Conf

 Dependence Based Prefetching for Linked Data Structures
© 1998 Amir Roth UW-Madison

Slide
28

Prefetching Recurrent Loads Only

• Effective on simple structures: treeadd, perimeter, mst
• Potentially simpler to implement

Simpler ways for prefetching self recurrent loads only
[e.g., IRB: Mehrotra & Harrison]

0%

5%

10%

15%

20%

25%

bh bis em3 hea mst per pow tre tsp vor

Dep Pref

IRB

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
29

Improving Virtual-Function-Call
Target Prediction

via Dependence-Based Pre-Computation

ICS 1999

Amir Roth, Andreas Moshovos and Guri Sohi

amir,sohi@cs.wisc.edu
moshovos@ece.nwu.edu

Computer Sciences Department
University of Wisconsin-Madison

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
30

Introduction

Goal: Reduce branch/target mispredictions

Idea: Dependence-Based Pre-Computation
• Supplement conventional prediction
• Pre-compute selected targets/branch outcomes

O Identify instructions that compute targets/branches
O Speculatively pre-execute these instruction sequences
O Use results as predictions

• This work: Virtual-Function-Call (V-Call) targets
O Proof of concept
+ Simple implementation

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
31

Overview: Problem and Technique

They rely on expressed correlation (which may not exist)
• Local: a[i]->valid == TRUE using a[i-1]->valid == TRUE?
• Global: a[i]->valid == TRUE using i < ASIZE?

No Correlation? Use Pre-Computation
• Identify branch computation: a[i]->valid == TRUE
• Using a,i as inputs, pre-compute and store the result
• Use stored result as a prediction
+ No correlation necessary!

for (i = 0; i < ASIZE; i++)
if (a[i]->valid == TRUE)

print(a[i]);

Why do conventional predictors mispredict?

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
32

Virtual Function Calls (V-Calls)

Use: Polymorphism (C++/Java)
• Multiple dynamic function targets from single static call site
• Object type selects target at runtime

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

class Base
virtual int Valid();
virtual void Print();

class Derived : Base
int Valid();
void Print(); a[0]->Base::Valid()

a[0]->Base::Print()

a[1]->Derived::Print()
a[1]->Derived::Valid()

C++ types Statically: one call site

Dynamically: multiple targets

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
33

BTB’s (Branch Target Buffers) don’t work
- Single target per static call (need multiple)

Correlated (path-based) BTB’s are better
• Target history index [Driesen&Hoelzle ISCA97,98]

Conventional V-Call Target Prediction

- Local: a[i]->Valid() using a[i-1]->Valid()? No (different object)
+ Global 1: a[i]->Print() using a[i]->Valid()? Yes (same object)
- Global 2: a[i]->Valid() using a[i-1]->Print()? No (different object)

There is room for improvement!

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
34

Dependence-Based Pre-Computation

Idea: Watch the program and imitate

Three step process:
 1. Identify and cache relevant instruction sequences
 2. Speculatively instantiate with appropriate inputs
 3. Match pre-computed results with predictions (challenge)

Why V-Calls?
+ Simple dependence chain makes steps 1+2 easy

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
35

BTB’s (Branch Target Buffers) don’t work
- Single target per static call (need multiple)

Correlated (path-based) BTB’s are better
• Target history index [Driesen&Hoelzle ISCA97,98]

Conventional V-Call Target Prediction

- Local: a[i]->Valid() using a[i-1]->Valid()? No (different object)
+ Global 1: a[i]->Print() using a[i]->Valid()? Yes (same object)
- Global 2: a[i]->Valid() using a[i-1]->Print()? No (different object)

There is room for improvement!

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
36

BTB’s (Branch Target Buffers) don’t work
- Single target per static call (need multiple)

Correlated (path-based) BTB’s are better
• Target history index [Driesen&Hoelzle ISCA97,98]

Conventional V-Call Target Prediction

- Local: a[i]->Valid() using a[i-1]->Valid()? No (different object)
+ Global 1: a[i]->Print() using a[i]->Valid()? Yes (same object)
- Global 2: a[i]->Valid() using a[i-1]->Print()? No (different object)

There is room for improvement!

for (i = 0; i < ASIZE; i++)
if (a[i]->Valid())

a[i]->Print();

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
37

One Problem

Pre-computation wins? Great

Prediction wins? Problems

1. Ineffectiveness/Waste

• Late pre-comps don’t help
• Pre-computed for nothing

2. Introduced Mispredictions
• a[1]->Print() may mess up

 a[2]->Print() prediction

Pre-computation and fetch/prediction are in a race

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Print()

a[1]->Print()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

2

1

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
38

Preventing Introduced Mispredictions

Mechanism
• Tag pre-comp with a[i] seq#
• Pre-comp good if seq# is

 most recent for a[i]

How it works
• a[1]->Print() pre-comp seq# is

 a[1]
• At a[2]->Print() prediction time,

 most recent seq# is a[2]
• Pre-comp with seq# a[1] stale

 (use BTB)

 (see paper for more details)

Idea: Invalidate a[1] pre-comps when a[2] is fetched

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Print()

a[1]->Print()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

a[1]

a[2]

#

last#

??
BTB

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
39

Ineffectiveness: Lookahead Pre-Computations

Mechanism
• a[i] usually address predictable
• Using &a[i-1], predict &a[i]
• Launch a[i]->Valid()
• Incorporate into seq# scheme

 (see paper)

Two schemes
• Lookahead: address prediction
• Simple: no address prediction

Problem: Not enough distance from a[i] to a[i]->Valid()
Idea: Exploit distance from a[i-1] to a[i]->Valid()

a[1]
a[1]->Valid()

a[1]->Print()

a[2]
a[2]->Valid()

a[2]->Valid()

a[i] a[i]->Valid()
a[i]->Print()a[i]

Internal Rep

Buffer

Executing
Program

a[2]
#

Addr
Pred &a[2]

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
40

Experiments

Benchmarks: OOCSB (C++)

Simulations: SimpleScalar [MIPS, GCC]
• 4-wide superscalar, 5-stage pipe
• Speculative OOO-issue, 64 instructions in-flight
• 64 KB L1 D-Cache, 512KB L2 U-Cache
• Branches: 8K-entry combined 10-bit GSHARE + 2-bit counters
• Target prediction:

O BTB: 2K-entry, 4-way associative
O PATH: BTB + 2K-entry, DM, 2-level BTB, 3 target history

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
41

0%

20%

40%

60%

coral deltablue eqn idl ixx lcom porky richards troff

Numbers: BTB base predictor
Misprediction Rates

BTB

BTB + Lookahead
BTB + Simple

richards, eqn, lcom, porky, troff:
+ Simple handles long distance cases (a[i]->Print())
+ Lookahead handles short distance cases (a[i]->Valid())

others:
- Simple: short distances, lookahead: unpredictable addresses

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
42

0%

10%

20%

30%

coral deltablue eqn idl ixx lcom porky richards troff

Numbers: PATH base predictor
Misprediction Rates (NOTE: change in scale)

overall:
• PATH handles correlated cases (a[i]->Print())

richards, eqn, troff:
+ Lookahead helps uncorrelated (a[i]->Valid())

PATH

PATH + Lookahead
PATH + Simple

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
43

Numbers: Explanations

What about overall performance?
• V-Call rate low in absolute terms (1 per 200-1000 instructions)
• Performance improves by 0-2%

Sometimes (coral) more harm than good
• Lookahead pre-computation relies on address prediction
• Wrong address prediction? Wrong pre-computation
+ Not common

Improving Virtual Function Call Target Prediction via Dependence-Based Pre-Computation
© 1999 Amir Roth UW-Madison

Slide
44

Summary

Dependence-Based Pre-Computation
+ Can be used to augment branch/target prediction
+ Succeeds where statistical correlated prediction fails

• Similar technique prefetches linked structures [ASPLOS98]
 (where statistical address prediction also fails)

Closely related
• Branch Flow Window [Farcy et.al., MICRO98]

Can be generalized to handle all branches

