Coherence Optimization in Multiprocessors
Work by Kaxiras and Goodman (HPCA-5)

Distributed shared-memory multiprocessors
Directory-based cache coherence protocol

Sharing pattern optimization:
Migratory, Wide, Producer-Consumer

Sharing pattern identification:
Dynamic identification
Previous work: address-based techniques

- examine history of data (what happens to the data?)
- adaptive protocols, coherence message prediction

Contribution

Novel approach to identify (& optimize) sharing patterns:
Instruction-based prediction
Discover what (load/store) instructions are trying to do
Benefits:  few resources to capture instruction behavior
fast to adapt
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Migratory Sharing

Migratory data move from processor to processor:
« Read-modify-write by a processor at a time
« Read & write latency for new processor

Optimization: migrate data in one step
« Read with write permission (& invalidate old node)
« No write latency or traffic

Previous work: adaptive protocols (address-based)
« Directory detects pattern: R,W, RyW, R.W....
 Applies migratory optimization

Cost:

Must remember last writer for every data block

Instruction-Based Prediction

ldentify instructions responsible for migratory sharing:
« Predict a store-write-fault follows a load-miss
 Detect Write-after-Read on cache blocks
« Typical behavior of migratory blocks
« Migratory optimization: convert read to write

Cost:
Predictor per node

+ few predictor entries for programs examined
+ only track load instructions accessing migratory data



Migratory Sharing Prediction Example
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Migratory Sharing Predictor

A simplified implementation
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Results for Migratory Sharing

32-node SCI system (2-D torus network)
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Wide Sharing

Widely Shared Data: read by many, written frequently
Very expensive to access (worse with system size)
Hot spot and network congestion near home node
Many invalidations waste B/W
WS Optimization
 Tree protocol (STEM, STP, TD, etc.)
« GLOW: scalable reads + scalable writes + network locality
« USE GLOW only for WSD

Dynamic WS identification:
address-based vs. instruction-based



Address-based Identification for WS

Directory Detection
e Directory discovers WSD blocks
« Counts reads between writes
« Notifies nodes about the data
« Nodes remember WSD (storage cost)
* Nodes use GLOW when accessing WSD

Slow to adapt

Instruction-Based Prediction for WS

Idea: discover load instructions accessing WSD
If load accessed WSD in the past, probably it will in the future
Track loads accessing WSD in a small predictor

probe predictor on load-miss
update predictor with response (feedback)
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Instruction-Based Prediction for WS (Cont)

Feedback to determine if load accessed WSD:
« Miss-latency (heuristic):

Wide sharing — long latencies (congestion, hot spots)
« Directory-feedback:

Directory informs about WSD blocks (Directory Detection)
Adapt-back

» miss-latency: delete predictor entries after a while
« directory feedback: accessing non-WSD

Node Network Home Node

predictor e response/feedback <] Dir.

Results for Wide Sharing

64-node SCI system (2-D torus network)
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Producer-Consumer Sharing

Producer-consumer sharing optimizations:
« Send data ASAP from producer to consumer(s)
« Update protocols, Competitive update, Data Forwarding

Dynamic Identification
« Previous work: directory detects P-C data

Contributions:
e Instruction-based prediction:
Predict consumers of store instructions
« Optimization: speculative pre-send

Optimization: Speculative Pre-Send

1. Predict consumer(s)
2. Send the data speculatively to consumer(s)
3. Consumer(s) can use data speculatively
But have to verify data through normal CC-protocol

Producer =
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Stpﬁ, Predictor pre-send |
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Instruction-Based Prediction for P-C

Predict set of new consumers of a store
History: set of previously invalidated nodes by the store
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Results for P-C Sharing

32-node SCI system, 64-byte blocks
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Results for P-C Sharing

32-node SCI system, 64-byte blocks
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Summary

Instruction-based prediction:
Observe load/store history in relation to CC events
Predict future behavior

Instruction-based Prediction

Address-based

Migratory Few resources Many resources
Sharing

Wide Fast to adapt Slow to adapt
Sharing

Producer-consumer + speculative pre-send

 Simple predictors (few resources/room for improvement)
» Low mis-speculation rates




