
Coherence Optimization in Multiprocessors
Work by Kaxiras and Goodman (HPCA-5)

Distributed shared-memory multiprocessors

Directory-based cache coherence protocol

Sharing pattern optimization:
Migratory, Wide, Producer-Consumer

Sharing pattern identification:
Dynamic identification
Previous work: address-based techniques

• examine history of data (what happens to the data?)
• adaptive protocols, coherence message prediction

Contribution

Novel approach to identify (& optimize) sharing patterns:
Instruction-based prediction

Discover what (load/store) instructions are trying to do
Benefits: few resources to capture instruction behavior

fast to adapt

CPU
Nodes

Network
CC

MECHANISMS
PREDICTOR

PREDICTION:
load-miss

feedback

apply
optimization

store-miss/write-fault

Migratory Sharing

Migratory data move from processor to processor:
• Read-modify-write by a processor at a time
• Read & write latency for new processor

Optimization: migrate data in one step
• Read with write permission (& invalidate old node)
• No write latency or traffic

Previous work: adaptive protocols (address-based)
• Directory detects pattern: RaWa RbWb RcWc...
• Applies migratory optimization

Cost:
Must remember last writer for every data block

Instruction-Based Prediction

Identify instructions responsible for migratory sharing:
• Predict a store-write-fault follows a load-miss
• Detect Write-after-Read on cache blocks
• Typical behavior of migratory blocks
• Migratory optimization: convert read to write

Cost:
Predictor per node

+ few predictor entries for programs examined
+ only track load instructions accessing migratory data

Migratory Sharing Prediction Example

100 load

miss: Invalid → RO

108 store

write-fault: RO → RW

cache block
104 compute address x

100 load

miss: Invalid → RW

108 store

write-fault: RO → RW

104 compute address y

Constraint for migratory data:
Cache-block 2nd or only copy
unaffected between load-miss &
store

Migratory Sharing Predictor
A simplified implementation

load PC address P-bitcounter

load-miss

store-write-fault

lookup counter ++

lookup
counter > threshold → positive prediction

set data address

Reset
by store

Set

Results for Migratory Sharing
N

or
m

al
iz

ed
 S

pe
ed

up
 (o

ve
r S

C
I)

Instruction-

Adaptive

based
prediction

protocol

19 24 53

cholesky mp3d pthor apsp ocean

of predictor entries
per node (average)

1 77

32-node SCI system (2-D torus network)

0.5

1

1.5

Wide Sharing

Widely Shared Data: read by many, written frequently
Very expensive to access (worse with system size)

Hot spot and network congestion near home node
Many invalidations waste B/W

WS Optimization
• Tree protocol (STEM, STP, TD, etc.)
• GLOW: scalable reads + scalable writes + network locality
• USE GLOW only for WSD

Dynamic WS identification:
address-based vs. instruction-based

Address-based Identification for WS

Directory Detection
• Directory discovers WSD blocks
• Counts reads between writes
• Notifies nodes about the data
• Nodes remember WSD (storage cost)
• Nodes use GLOW when accessing WSD

Slow to adapt

Instruction-Based Prediction for WS

Idea: discover load instructions accessing WSD
If load accessed WSD in the past, probably it will in the future
Track loads accessing WSD in a small predictor

probe predictor on load-miss
update predictor with response (feedback)

load predictor

GLOW/Normal

response/feedback

Node

miss

Network

request

Instruction-Based Prediction for WS (Cont)
Feedback to determine if load accessed WSD:

• Miss-latency (heuristic):
Wide sharing → long latencies (congestion, hot spots)

• Directory-feedback:
Directory informs about WSD blocks (Directory Detection)

Adapt-back
• miss-latency: delete predictor entries after a while
• directory feedback: accessing non-WSD

predictor response/feedback

Node Network Home Node

Dir.

Results for Wide Sharing

apsp barnes gauss tc

0

0.5

1

1.5

2

sparse cholesky

11 243 51 3 11

64-node SCI system (2-D torus network)

N
or

m
al

iz
ed

 S
pe

ed
up

 (o
ve

r S
C

I) Directory Detection Instruction-based Prediction

of predictor entries per node (average)

Producer-Consumer Sharing

Producer-consumer sharing optimizations:
• Send data ASAP from producer to consumer(s)
• Update protocols, Competitive update, Data Forwarding

Dynamic Identification
• Previous work: directory detects P-C data

Contributions:
• Instruction-based prediction:

Predict consumers of store instructions
• Optimization: speculative pre-send

Optimization: Speculative Pre-Send

1. Predict consumer(s)
2. Send the data speculatively to consumer(s)
3. Consumer(s) can use data speculatively
 But have to verify data through normal CC-protocol

store
Producer

pre-send
Consumer

load spec. datacoherent read
spec. exec.
spec. exec.
verify

commit / squash

data

Ti
m

e

Predictor
accept / rejectmiss

write-fault

Instruction-Based Prediction for P-C

Predict set of new consumers of a store
History: set of previously invalidated nodes by the store

store → invalidate (a1, ... ai)
store → invalidate (b1, ... bj)
store → invalidate (c1, ... ck)

...

} overlap

} overlap

store → invalidate (a1, ... ai)
store → invalidate (b1, ... bj)

predict (c1, ... ck)

predict (a1, ... ai) AND (b1, ... bj)

...

Last-prediction

Intersection-
prediction

Results for P-C Sharing

ocean barnes gauss sparse

32-node SCI system, 64-byte blocks

%
 o

f p
re

-s
en

ds
 a

cc
es

se
d

79 51 15 1078 51 15 10

better

0

20

40

60

80

100
Last-prediction Intersection-prediction

of predictor entries per node (average)

Results for P-C Sharing

ocean barnes gauss sparse

%
 o

f p
re

-s
en

ds
 c

or
re

ct
better

0

20

40

60

80

100

32-node SCI system, 64-byte blocks

Last-prediction Intersection-prediction

Summary

Instruction-based prediction:
Observe load/store history in relation to CC events
Predict future behavior

Producer-consumer + speculative pre-send
• Simple predictors (few resources/room for improvement)
• Low mis-speculation rates

Instruction-based Prediction Address-based
Migratory
Sharing

Few resources Many resources

Wide
Sharing

Fast to adapt Slow to adapt

