Coherence Optimization in Multiprocessors
Work by Kaxiras and Goodman (HPCA-5)

Distributed shared-memory multiprocessors
Directory-based cache coherence protocol

Sharing pattern optimization:
Migratory, Wide, Producer-Consumer

Sharing pattern identification:
Dynamic identification
Previous work: address-based techniques

- examine history of data (what happens to the data?)
- adaptive protocols, coherence message prediction

Contribution

Novel approach to identify (& optimize) sharing patterns:
Instruction-based prediction
Discover what (load/store) instructions are trying to do
Benefits: few resources to capture instruction behavior
fast to adapt

CPU load-miss
Nodes store-miss/write-fault PREDICTION:

apply
LI L L] == | PREDICTOR > optimization
w MECHANISMS [feedback

Migratory Sharing

Migratory data move from processor to processor:
« Read-modify-write by a processor at a time
« Read & write latency for new processor

Optimization: migrate data in one step
« Read with write permission (& invalidate old node)
« No write latency or traffic

Previous work: adaptive protocols (address-based)
« Directory detects pattern: R,W, RyW, R.W....
 Applies migratory optimization

Cost:

Must remember last writer for every data block

Instruction-Based Prediction

ldentify instructions responsible for migratory sharing:
« Predict a store-write-fault follows a load-miss
 Detect Write-after-Read on cache blocks
« Typical behavior of migratory blocks
« Migratory optimization: convert read to write

Cost:
Predictor per node

+ few predictor entries for programs examined
+ only track load instructions accessing migratory data

Migratory Sharing Prediction Example

miss: Invalid - RO

100 load /\\ cache block

igg ctompute " address x |
store
\/ Constraint for migratory data:

write-fault: RO - RW Cache-block 2nd or only copy
unaffected between load-miss &

miss: Invalid - RW store

100 Ioad/\\

104 compute | address y |
108 store,

write- : — RW

Migratory Sharing Predictor

A simplified implementation

set data address . _
counter > threshold — positive prediction

load-mi
oad-miss m A
Set

load PC address rcounter| P-bit
lookup counter ++ \ Reset

by store

@o?e-write-fault

Results for Migratory Sharing

32-node SCI system (2-D torus network)

O

‘Q 1.5

(]

5

o o Adaptive
5 protocol
S 1. N W o 1

N Instruction-
3 based

N | s B B B B prediction
<

£

(@)

Z 05

19 24 53 1 77 # of predictor entries
per node (average)

cholesky mp3d pthor apsp ocean

Wide Sharing

Widely Shared Data: read by many, written frequently
Very expensive to access (worse with system size)
Hot spot and network congestion near home node
Many invalidations waste B/W
WS Optimization
 Tree protocol (STEM, STP, TD, etc.)
« GLOW: scalable reads + scalable writes + network locality
« USE GLOW only for WSD

Dynamic WS identification:
address-based vs. instruction-based

Address-based Identification for WS

Directory Detection
e Directory discovers WSD blocks
« Counts reads between writes
« Notifies nodes about the data
« Nodes remember WSD (storage cost)
* Nodes use GLOW when accessing WSD

Slow to adapt

Instruction-Based Prediction for WS

Idea: discover load instructions accessing WSD
If load accessed WSD in the past, probably it will in the future
Track loads accessing WSD in a small predictor

probe predictor on load-miss
update predictor with response (feedback)

Node Network

GLOW/Normal
1 request

load | [predictor
miss

i

[response/feedback

Instruction-Based Prediction for WS (Cont)

Feedback to determine if load accessed WSD:
« Miss-latency (heuristic):

Wide sharing — long latencies (congestion, hot spots)
« Directory-feedback:

Directory informs about WSD blocks (Directory Detection)
Adapt-back

» miss-latency: delete predictor entries after a while
« directory feedback: accessing non-WSD

Node Network Home Node

predictor e response/feedback <] Dir.

Results for Wide Sharing

64-node SCI system (2-D torus network)

B Directory Detectionll Instruction-based Prediction
2

0 iIIIiI
3 51 11 24 3 11

of predictor entries per node (average)
apsp barnes gauss sparse tc cholesky

[EEN
- 63

Normalized Speedup (over SCI)
o
(0]

Producer-Consumer Sharing

Producer-consumer sharing optimizations:
« Send data ASAP from producer to consumer(s)
« Update protocols, Competitive update, Data Forwarding

Dynamic Identification
« Previous work: directory detects P-C data

Contributions:
e Instruction-based prediction:
Predict consumers of store instructions
« Optimization: speculative pre-send

Optimization: Speculative Pre-Send

1. Predict consumer(s)
2. Send the data speculatively to consumer(s)
3. Consumer(s) can use data speculatively
But have to verify data through normal CC-protocol

Producer =
onsumer
Stpﬁ, Predictor pre-send |
rite accept / reject
write-fault
coherent read load spec. data
spec. exec.
L data Spec. exec.
E verify
'e commit / squash

Instruction-Based Prediction for P-C

Predict set of new consumers of a store
History: set of previously invalidated nodes by the store

Last-prediction

Intersection-
prediction

N .
store — invalidate (a, ... &;)

_ _ } overlap
store — invalidate (b, ... b;)

store — invalidate (cq, ... C}) EUEI LR
~ predict (cq, ... Cy)

~

v
store — invalidate (a, ... &;)

store — invalidate (b, ... by)

L ™~ predict (ay, ... &) AND (b4, ... b))

-y,

)
\

Results for P-C Sharing

32-node SCI system, 64-byte blocks

I | ast-prediction

B |ntersection-prediction

better

A 100
o
(D]
a
o 80+
(@]
(&)
S
(%)) 60 -
©
[
(D)
T
Qo
o
o 20 -
X

79 78 51 51 15 15 10 10
of predictor entries per node (average)

ocean barnes gauss sparse

Results for P-C Sharing

32-node SCI system, 64-byte blocks

better B | ast-prediction I |ntersection-prediction
A 100
)
o - 4
D
= -
o
O i |
B 60} |
c
q) L 1
7p]
& a0t |
-
S . _
Y
© 20+t i
o
> i]
0
ocean barnes gauss sparse
Summary

Instruction-based prediction:
Observe load/store history in relation to CC events
Predict future behavior

Instruction-based Prediction

Address-based

Migratory Few resources Many resources
Sharing

Wide Fast to adapt Slow to adapt
Sharing

Producer-consumer + speculative pre-send

 Simple predictors (few resources/room for improvement)
» Low mis-speculation rates

