& Penn

Univansrrs of Pesnimesania

NoSQ:

Store-Load Communication without a Store Queue

Tingting Sha, Milo M.K. Martin, Amir Roth

University of Pennsylvania o
édd) =« addr | data
CAN m<(RAM) (RAM)
{shatingt, milom, amir}@cis.upenn.edu
http://www.cis.upenn.edu/acg

Store-Load Forwarding: Conventional

Associatively-searched store queue (SQ)
— Complex
— On load execution critical path
— Doesn't scale well
— Exists for benefit of 10% of loads

R . UNIVERSITY of PENNSYLVANIA [2] m& Penn
e . ARCHITECTURE + CompiLERS GROUP Dniveasetsof Prnsmivints

Store-Load Forwarding: Proposals

Reduce range and frequency of search
¢ Bloom-filtered SQ [Sethumadhavan+03]
¢ Pipelined/chained SQ [Park+03]
« Hierarchicalffiltered SQ [Srinivasan+04, Ghandi+'05, Torres+'05]
* Decomposed SQ [Roth’05; Baugh+'04]
Replace full associativity with set associativity
« Address-indexed forwarding cache [Stone+'05]
Replace search with speculative indexed access
e Speculative indexed SQ [sha+05], Fire-and-Forget [Subramaniam+06]

Some forwarding structure still there
in the middle of the datapath

3 % UNIVERSITY of PENNSYLVANIA [3] mﬂp
ﬂ CG ARCHITECTURE + CompiLERS GROUP lenn

Store-Load Forwarding: Hmmm...

Observe I. can predict the exact forwarding store accurately
* Memory dependence prediction [Moshovos+'97, Chrysos+'98, ...]
* No need to search SQ to find it

Observe Il store data already exists in register file
« No need to copy store input register —» SQ — load output register

Should be able to eliminate SQ if ...
« Can connect store’s input data register to load’s consumers
 Can verify in some way that doesn’t require SQ

A.we have the technology
» Speculative memory bypassing (SMB) [Moshovos+'97]
* Filtered in-order load re-execution [Cain+'04, Roth’05]

3 % UNIVERSITY of PENNSYLVANIA [4] mﬂP
B CG ARCHITECTURE + CompILERS GROUP lenn

Store-Load “Forwarding”: NoSQ

Predictor distinguishes bypassing/non-bypassing loads
* Non-bypassing loads just access the data cache
» Bypassing loads skip out-of-order execution (SMB)

Store vulnerability window (SVW) verifies and trains

Stores skip out-of-order execution too
» Don't participate in forwarding anymore

Commit pipeline extended to “execute” stores

No Store Queue (or any forwarding structure)!
No Load Queue!

ﬂ‘ :6 UNIVERSITY of PENNSYLVANIA (5] mpe
S L ARCHITECTURE + COMPILERS GROUP % .,,“,,_,‘,I.‘“Hb,,,._]‘.‘

Road Map

Overview

The road to NoSQ (prior work)
» Conventional store-load forwarding
 Load verification with filtered load re-execution
* Speculative memory bypassing

NoSQ
 Eliminating out-of-order stores and the store queue
 Eliminating the load queue
« Store-load bypassing predictor

Evaluation

ﬂ‘ :G UNIVERSITY of PENNSYLVANIA (6] mpe
& N ARCHITECTURE + COMPILERS GROUP o, .,,“,,_,‘,I.‘“Hb,,,._l.‘

Conventional Design

load ~__out-of-order core
store i
free list [E— l
— Map Issue || Reg
Table| |Queuel|| File S D$
: [L—
Scheduling 1
Predictor T _
flush?
Loads
» Execute: search SQ, write address into LQ
BEQ [y o P & Penn
Conventional Design
r—~__out-of-order core
—load i
store I+
free list E— l
— Map Issue || Reg
Table| |Queuel|| File S D$
: [L—
Scheduling 1
Predictor T
flush?
Loads
» Execute: search SQ, write address into LQ
Stores

» Execute: write address/data to SQ, search LQ for early loads

UNIVERSITY of PENNSYLVANIA (8l v
n CG ARCHITECTURE -J omp1 ;F.: IROUP &.Penn

Conventional Design

out-of-order core

_load] o

store 1+
free list E— l
— Map Issue || Reg
Table| |Queuel|| File S D$
. [L—

Scheduling 1

Predictor T _

flush?

Loads
» Execute: search SQ, write address into LQ

Stores
» Execute: write address/data to SQ, search LQ for early loads

» Commit: use data/address from SQ to write D$

UNIVERSITY of PENNSYLVANIA (o1 v
n CG ARCHITECTURE -J omP1 1F IROUP &Penn

+ In-Order Load Re-Execution [cain+04]

out-of-order core

—load 5
store i+
free list [E— l
— Map Issue || Reg
Table| [Queuel|| File S D$
o

Scheduling 1
Predictor T
flush?

UNIVERSITY of PENNSYLVANIA [10] Exa
n CG ARCHITECTURE -J omp1 ;F.: IROUP &.Penn

+ In-Order Load Re-Execution [cain+04]

load ~~__out-of-order core
store i+
free list — ¥ I T

— Map Issue || Reg

Table| |Queuel|| File S D$

[]
Scheduling
Predictor T _ %
fluBlash?

Replace LQ search with load re-execution prior to commit
« Squash if in-order value != out-of-order value
+ Moves load queue out of core datapath
+ Can verify any form of load speculation
— Consumes a lot of cache bandwidth if all loads are speculative

UNIVERSITY of PENNSYLVANIA [11] mP
ﬂ c G ARCHITECTURE + CompILERS GROUP &,enn

+ Store Vulnerability Window (SVW) [roth0s]

r~~__out-of-order core
—load | i
free list — 3 l I 13
— Map Issue || Reg
Table| [Queuel|| File S D$ LQ
[I
Scheduling
Predictor T !%
flush? +re-exec?

Don’t re-execute if no store to load’s address in long time
 Store Sequence Numbers (SSNs): formalize time
» SSN Bloom Filter (SSBF): SSN of youngest store to address
 Store commit: update SSBF
» Load commit: read SSBF, skip re-execution if entry is older than...
» Forwarding? ...forwarding store
* Non-forwarding? ...youngest committed store at time of ext{agt};te —

BRERR |insrmyor Py & Penn

Speculative Memory Bypassing [Moshovos+97]

Raw insns: Renamed insns: SMB renamed insns:
add R1, 4 —» R2 add P1, Ai;PZ add P1, 4 — P2
store R2 »> A store PE)A store P2
load A —» R3 load AA—}PB load A 4 P2
subR3,4 > R4 sub P3,4 — P4 sub P2,4 — P4

Convert DEF-store-load-USE to DEF-USE
< Extend register renaming

» Map-table[store.input] := Map-table[DEF.output]
 Predict store-load dependence

» Map-table[load.output] := Map-table[store.input]

+ Store-load removed from dataflow graph

H c G UNIVERSITY of PENNSYLVANIA
. ARCHITECTURE + ComPILERS GROUP

& Penn

+ Speculative Memory Bypassing

load 5 out-of-order core
store é—
free list = l I 13
Issue || Reg SS
Queue|| File S D$ LQ {BF
[I
Bypassing
Predictor T E\’:f

'%ﬂush? re-exec?

SRQ (store register queue): maps store to input data register

Originally: verify bypassing loads by executing out-of-order

Modification: verify using SVW-filtered re-execution [Petric+05]
+ Bypassing loads skip out-of-order execution
+ Bypassing loads (~10%) never access data cache

H c G UNIVERSITY of PENNSYLVANIA
. ARCHITECTURE + CompiLERS GROUP

[14] % Penn

NoSQ: A New Use of SMB

Load re-execution / SVW filtering: target design simplification
» Eliminate associative load queue search

Traditional SMB: targets performance improvement
» SMB as opportunistic complement to store queue
— Only 10% of loads forward — only 4% gains
» “Not worth the effort” [Loh+02]

NoSQ SMB: targets design simplification
» SMB as exclusive replacement for store queue

UNIVERSITY of PENNSYLVANIA [15] mP
ﬂ c G ARCHITECTURE + CompILERS GROUP &,enn

NoSQ 1: Remove Store Queue from Load Path

—load 5
free list E— l I [T ¥
Map Issue || Reg ss
S D$ LQ {BF

Table:l Queuel|| File
SRQ

)|

'%ﬂush? re-exec?

Loads don't need to access store queue during execution
« Bypassing loads: skip out-of-order execution (SMB)
* Non-bypassing loads: get values from the data cache

Bypassing
Predictor T

H“at

UNIVERSITY of PENNSYLVANIA [16] mP
ﬂ c G ARCHITECTURE + ComPILERS GROUP & |eI]»I]:

NoSQ 1: Remove Store Queue from Load Path

free list

—load I
store E\—
p— = [RIE
Map Issue || Reg SS
S D$ LQ {BF

Table:l Queue|| File

SRQ |

Bypassing
Predictor

[

|?ﬂush? re-exec?

Loads don't need to access store queue during execution
« Bypassing loads: skip out-of-order execution (SMB)
* Non-bypassing loads: get values from the data cache

Remove store queue from the the load path

l\u\nmn of PENNSYLVANIA [17] Exa
HCG ARCHITECTURE + CompiLERS GROUP &Penn

NoSQ 2: Remove Store Queue

—load 5
store é—
free list T l I [T 3
Map Issue || Reg SS
Table:l Queue || File SQ D$ LQ {BF
SRQ [— I
Bypassing
Predictor T !%
flush? v re-exec?

l\u\nu\ PENNSYLVANIA 8 X
HCG ARCHIT . ’-Irw ERS R\Df‘r rel &Penn

NoSQ 2: Remove Store Queue

—load I
store E I
free list (X] ¥ I [T ¥
Map Issue || Reg sS
Table:l Queue || File SQ D$ LQ {BF
SRQ | 1 1
Bypassing T
Predictor T I%
flush? v re-exec?

Move store execution from out-of-order to commit

» Extend ROB to remember store registers, offsets and data sizes

» Elongate commit pipeline to read register file, calculate address

+ No additional regfile ports, adders: out-of-order ports — in-order ports
Don’t dispatch stores to out-of-order core

Eliminate store queue
INIVERSITY of PENNSYLVANI/ =]
H c G 5\.:er'|‘:1:’}'; IF" -I Ir"-.w?\ :'\F.]:\P?i':’ (el & Penn

NoSQ 3: Remove Load Queue

_load |

+
store i+
free list —il B l
Map Issue || Reg SS
Table:l Queue || File D$ LQ 1| | ge
SRQ I
Bypassing T
Predictor T !%
flush? re-exec?
INIVERSITY of PENNSYLVANI/ =]
T T e =% Penn

10

free list

NoSQ 3: Remove Load Queue

Bypassing
Predictor

—load I
store }
=
el
Map Issue || Reg I [l
Table :l Queue || File D$ LQ
SRQ T
t

|?ﬂush? re-exec?

Generate addresses for bypassed loads at commit (to verify)
« ROB is already extended, pipeline already elongated

HCG l\mnml\ of PENNSYLVANIA
ARCHITECTURE + ComPILERS GROUP

= & Penn

free list

NoSQ 3: Remove Load Queue

Bypassing
Predictor

MQ> +
store i+ I
]
Map Issue || Reg
Table :l Queuel|| File D$
SRQ
E

SS
BF

flush? re-exec?

Generate addresses for bypassed loads at commit (to verify)
« ROB is already extended, pipeline already elongated
Re-generate addresses for non-bypassed loads at commit
* May need additional register read port

HCG l\mnml\ of PENNSYLVANIA
ARCHITECTL +CompILERS GROUP

= & Penn

11

NoSQ 3: Remove Load Queue

—load 5
store é t
free list (X1

Map Issue || Reg sS
Table:l Queue || File D$ BF
SRQ

Bypassing

Predictor f

flush? re-exec?

Generate addresses for bypassed loads at commit (to verify)
« ROB is already extended, pipeline already elongated

Re-generate addresses for non-bypassed loads at commit
« May need additional register read port

Eliminate load queue
BRG [rmof Pen = & Penn

Road Map

Overview

From conventional to NoSQ
» Conventional store-load forwarding
 Load verification with filtered load re-execution
* Speculative memory bypassing

NoSQ

 Eliminating out-of-order stores and the store queue
 Eliminating the load queue
* NoSQ's store-load bypassing predictor

Evaluation

3 UNIVERSITY of PENNSYLVANIA [24] mP
ﬂc\G ARCHITECTURE + COoMPILERS GROUP & .y.en.r..]:

12

NoSQ’s Store-Load Bypassing Prediction

Similar to previous store-load prediction, but more difficult

Load scheduling prediction: [Chrysos+98]

» Can predict store conservatively, predicts only violating loads
Speculative forwarding prediction [Sha+05]

» Must predict all loads, but benefits from store-load address check
Traditional bypassing prediction [Moshovos+97]

» No address check, but can decline to predict difficult loads

NoSQ'’s bypassing prediction
» Must predict all loads precisely, no address check

UNIVERSITY of PENNSYLVANIA [25] mP
H c G ARCHITECTURE + CompILERS GROUP &,enn

Distance-Based Dependence Prediction
Predictor interface: load PC — dynamic store

Load PC — store PC(s) — dynamic store
» E.g., Store Sets [Chrysos+'98], Speculative indexed SQ [Sha+'05]
— Store PC — dynamic store requires table
— Can only (easily) represent most recent instance of each store PC

Load PC — distance (in stores) to store — dynamic store
e E.g., [Lipasti+'97, Yoaz+'98]
+ Can represent any store instance
+ Dovetails with SVW: just compare/subtract distances/SSNs
* Predict: load.SSNy .o = SSN,gname — l0ad.distancey, .
* Verify: load.SSN,, ., == SSBF[load.address]
* Train: load.distance,, ,,ss = SSNom — SSBF[load.address]

UNIVERSITY of PENNSYLVANIA [26] mP
H c G ARCHITECTURE + CompILERS GROUP &,enn

13

Predictor Design

load PC

@ tag dist
branch+call history

Each entry includes tag, store distance

Explicitly path-sensitive design
« Two tables: path-insensitive + path-sensitive
» Both set-associative
« Predict: prefer path-sensitive prediction
 Train: update both tables on every load commit

l\mnml\ a,ﬂl’l\\ﬂl\\\l\ [27] P
HCG ARCHITECTU + CompiLERS GROUP &.enn

Evaluation

Goal
No store queue or load queue
« Same (or better) IPC as conventional design
— Bypassing mis-predictions
— Deeper commit pipeline
+ Latency benefit of SMB
+ Reduced consumption of issue bandwidth and queue slots

Simulation environment
» SPECint2000, SPECfp2000, Mediabench (only show 9)

Dynamically scheduled 4-way superscalar

128-ROB, 40-entry issue queue, 11-stage front-end/core

Base: 24/48-entry SQ/LQ, 2K-entry Store Sets, 6 stage commit
NoSQ: No SQ/LQ, 2K-entry predictor, 8 stage commit

l\mnml\ i[|’l\\.\\l\\\l\ [28] mQP
HCG ARCHITECTURE + CompILERS GROUP .enn

NoSQ Performance
1 B NoSQ

1
0.95 A
0.9 A I
0.85

mesa.t pegwn d perl.s applu apsi swim g721 e vpr.p Gmean

Relative execution time

+On average: slightly outperforms conventional design

+ Prediction accuracy is ~99.8% (15 mis-predictions per 10,000 loads)
—In a few cases: slowdowns

» 10 of 47 benchmarks >1% slowdown (worst case 7%)

l\mnmn a,ﬂ PENNSYLVANIA [29] mﬂp
HCG ARCHITECTURE + CompILERS GROUP .enn

Avoid Bypass Mis-Predictions with Delay

Two kinds of bypassing mis-predictions
« Difficult to predict
 Long signature, data dependent, predictor conflicts, etc.
« Simply cannot be bypassed
» Narrow-store to wide-load
* NoSQ can do wide-store/narrow-load and narrow-store/narrow-load
» See paper

Catch-all: convert bypassing to delayed non-bypassing load
« Inject it to the out-of-order core
« But delay it until the predicted bypassing store commits
» Load gets value from data cache
« Attach a confidence counter to each predictor entry

l\mnmn a,ﬂ |’I\'\.\\I\'\'\I\ [30] mP
ﬂ c 6 ARCHITECTU +CompiLERS GROUP &.enn

15

NoSQ with Delay

B NoSQ [NoSQ + delay

1
o 05
£
=]
5 QP
IS V
>
ol

0.95 A
X
M)
[<H)
.; 09 -4
<
Q
o

0.85 T T T T T T T

mesa.t pegwit.d gce perl.s applu apsi swim g721.e vpr.p Gmean

+ Robust performance: only 1 of 47 benchmarks > 1%
— Overdelay hurts sometimes, but not too bad

+ As fast or faster than conventional in almost all cases

ﬂc G UNIVERSITY of PENNSYLVANIA [31] mP nn
S \, ARCHITECTURE + CompILERS GROUP & Usivass: PN

NoSQ with Perfect Predictor

B NoSQ [NoSQ +delay B NoSQ + perfect predictor

1.05

0.95 A

0.9 A

Relative execution time

0.85
mesa.t pegwit.d gce perl.s applu apsi swim g721.e vpr.p Gmean

+Only 2% between realistic and perfect predictor

See paper for
 Predictor scalability, data cache accesses, etc.

ﬂc 6 UNIVERSITY of PENNSYLVANIA [32] mP nn
S s ARCHITECTURE + ComPILERS GROUP &. P

16

Conclusions

Conventional store queue / load queue
— Complex, non scalable
— Exist for the benefit of 10% forwarding loads

NoSQ

 Exploits synergy of previously proposed mechanisms
< Re-execution with SVW filter, speculative memory bypassing
« New highly accurate bypassing predictor

+ Simple, clean data path with no store queue/load queue
* More scalable out-of-order core

« Fits well with distributed, partitioned cores (e.g., SMT)

+ Outperforms conventional design

UNIVERSITY of PENNSYLVANIA [33] mP
ﬂ c G ARCHITECTURE + CompILERS GROUP &,enn

17

