
1

MICRO-06 :: Dec 12, 2006

NoSQ:
Store-Load Communication without a Store Queue

Tingting Sha, Milo M.K. Martin, Amir Roth

University of Pennsylvania

{shatingt, milom, amir}@cis.upenn.edu

http://www.cis.upenn.edu/acg

addr
(CAM)

addr

data
(RAM)

data

addr
predictor

addr
(RAM)

==

predictor

[2]

Store-Load Forwarding: Conventional

Associatively-searched store queue (SQ)
– Complex
– On load execution critical path
– Doesn’t scale well
– Exists for benefit of 10% of loads

Pentium III (1999)

2

[3]

Store-Load Forwarding: Proposals

Reduce range and frequency of search
• Bloom-filtered SQ [Sethumadhavan+’03]

• Pipelined/chained SQ [Park+’03]

• Hierarchical/filtered SQ [Srinivasan+’04, Ghandi+’05, Torres+’05]

• Decomposed SQ [Roth’05; Baugh+’04]

Replace full associativity with set associativity
• Address-indexed forwarding cache [Stone+’05]

Replace search with speculative indexed access
• Speculative indexed SQ [Sha+’05], Fire-and-Forget [Subramaniam+’06]

Some forwarding structure still there
in the middle of the datapath

[4]

Store-Load Forwarding: Hmmm…

Observe I: can predict the exact forwarding store accurately
• Memory dependence prediction [Moshovos+’97, Chrysos+’98, …]
• No need to search SQ to find it

Observe II: store data already exists in register file
• No need to copy store input register → SQ → load output register

Should be able to eliminate SQ if …
• Can connect store’s input data register to load’s consumers
• Can verify in some way that doesn’t require SQ

…we have the technology
• Speculative memory bypassing (SMB) [Moshovos+’97]
• Filtered in-order load re-execution [Cain+’04, Roth’05]

3

[5]

Store-Load “Forwarding”: NoSQ

Predictor distinguishes bypassing/non-bypassing loads
• Non-bypassing loads just access the data cache
• Bypassing loads skip out-of-order execution (SMB)

Store vulnerability window (SVW) verifies and trains

Stores skip out-of-order execution too
• Don’t participate in forwarding anymore

Commit pipeline extended to “execute” stores

No Store Queue (or any forwarding structure)!
No Load Queue!

[6]

Road Map

Overview
The road to NoSQ (prior work)

• Conventional store-load forwarding
• Load verification with filtered load re-execution
• Speculative memory bypassing

NoSQ
• Eliminating out-of-order stores and the store queue
• Eliminating the load queue
• Store-load bypassing predictor

Evaluation

4

[7]

Conventional Design

Loads
• Execute: search SQ, write address into LQ

Map
Table

store

D$SQ

load

free list

LQ

+

Scheduling
Predictor

+

flush?

Reg
File

Issue
Queue

out-of-order core

[8]

Conventional Design

Loads
• Execute: search SQ, write address into LQ

Stores
• Execute: write address/data to SQ, search LQ for early loads

Map
Table

store

D$SQ

load

free list

LQ

+

Scheduling
Predictor

+

flush?

Reg
File

Issue
Queue

out-of-order core

5

[9]

Conventional Design

Loads
• Execute: search SQ, write address into LQ

Stores
• Execute: write address/data to SQ, search LQ for early loads
• Commit: use data/address from SQ to write D$

Map
Table

store

D$SQ

load

free list

LQ

+

flush?

Scheduling
Predictor

+

Reg
File

Issue
Queue

out-of-order core

[10]

+ In-Order Load Re-Execution [Cain+’04]

Scheduling
Predictor

Map
Table

store

D$SQ

load

free list

+

LQ

+

flush?

Reg
File

Issue
Queue

out-of-order core

6

[11]

+ In-Order Load Re-Execution [Cain+’04]

Replace LQ search with load re-execution prior to commit
• Squash if in-order value != out-of-order value
+ Moves load queue out of core datapath
+ Can verify any form of load speculation
– Consumes a lot of cache bandwidth if all loads are speculative

Scheduling
Predictor

Map
Table

store

D$SQ

load

free list

+

LQ

+

flush ?
=

flush?

Reg
File

Issue
Queue

out-of-order core

[12]

+ Store Vulnerability Window (SVW) [Roth’05]

Scheduling
Predictor

Map
Table

store

D$SQ

load

free list

+

LQ

Don’t re-execute if no store to load’s address in long time
• Store Sequence Numbers (SSNs): formalize time
• SSN Bloom Filter (SSBF): SSN of youngest store to address
• Store commit: update SSBF
• Load commit: read SSBF, skip re-execution if entry is older than…

• Forwarding? …forwarding store
• Non-forwarding? …youngest committed store at time of execute

+

flush?
=

SS
BF

Reg
File

Issue
Queue

out-of-order core

re-exec?

7

[13]

Speculative Memory Bypassing [Moshovos+’97]

add R1, 4 → R2
store R2 → A
load A → R3
sub R3, 4 → R4

Raw insns:

sub P3, 4 → P4

add P1, 4 → P2
store P2 → A
load A → P3

Renamed insns:

sub P2, 4 → P4

store P2 → A
load A → P2

add P1, 4 → P2

SMB renamed insns:

Convert DEF-store-load-USE to DEF-USE
• Extend register renaming

• Map-table[store.input] := Map-table[DEF.output]
• Predict store-load dependence
• Map-table[load.output] := Map-table[store.input]

+ Store-load removed from dataflow graph

[14]

+ Speculative Memory Bypassing

SRQ (store register queue): maps store to input data register

Originally: verify bypassing loads by executing out-of-order
Modification: verify using SVW-filtered re-execution [Petric+’05]

+ Bypassing loads skip out-of-order execution
+ Bypassing loads (~10%) never access data cache

Map
Table

store

Reg
File D$SQ

load

free list

+

LQ

+

flush?
=

SS
BF

SRQ
Bypassing
Predictor

Issue
Queue

re-exec?

out-of-order core

8

[15]

NoSQ: A New Use of SMB

Load re-execution / SVW filtering: target design simplification
• Eliminate associative load queue search

Traditional SMB: targets performance improvement
• SMB as opportunistic complement to store queue
– Only 10% of loads forward → only 4% gains
• “Not worth the effort” [Loh+’02]

NoSQ SMB: targets design simplification
• SMB as exclusive replacement for store queue

[16]

NoSQ 1: Remove Store Queue from Load Path

Map
Table

store

Reg
File D$SQ

load

free list

+

LQ

+

flush?
=

SS
BF

SRQ
Bypassing
Predictor

Issue
Queue

re-exec?

Loads don’t need to access store queue during execution
• Bypassing loads: skip out-of-order execution (SMB)
• Non-bypassing loads: get values from the data cache

9

[17]

NoSQ 1: Remove Store Queue from Load Path

Loads don’t need to access store queue during execution
• Bypassing loads: skip out-of-order execution (SMB)
• Non-bypassing loads: get values from the data cache

Remove store queue from the the load path

Map
Table

store

Reg
File D$SQ

load

free list

+

LQ

+

flush?
=

SS
BF

SRQ
Bypassing
Predictor

Issue
Queue

re-exec?

[18]

NoSQ 2: Remove Store Queue

Map
Table

store

Reg
File D$

load

free list

+

LQ

flush?
=

SS
BF

SRQ
SQ

+

Bypassing
Predictor

Issue
Queue

re-exec?

10

[19]

NoSQ 2: Remove Store Queue

Move store execution from out-of-order to commit
• Extend ROB to remember store registers, offsets and data sizes
• Elongate commit pipeline to read register file, calculate address
+ No additional regfile ports, adders: out-of-order ports → in-order ports

Don’t dispatch stores to out-of-order core
Eliminate store queue

Bypassing
Predictor

Map
Table

store

Reg
File D$

load

free list

+

LQ

flush?
=

SS
BF

SRQ
SQ

Issue
Queue

re-exec?

+

[20]

NoSQ 3: Remove Load Queue

Map
Table

store

Reg
File D$

load

free list

+
+

flush?
=

SRQ
LQ SS

BF

Bypassing
Predictor

Issue
Queue

re-exec?

11

[21]

NoSQ 3: Remove Load Queue

Map
Table

store

Reg
File D$

load

free list

+
+

flush?
=

SRQ
LQ

Generate addresses for bypassed loads at commit (to verify)
• ROB is already extended, pipeline already elongated

SS
BF

Bypassing
Predictor

Issue
Queue

re-exec?

[22]

NoSQ 3: Remove Load Queue

Generate addresses for bypassed loads at commit (to verify)
• ROB is already extended, pipeline already elongated

Re-generate addresses for non-bypassed loads at commit
• May need additional register read port

Map
Table

store

Reg
File D$

load

free list

+
+

flush?
=

SS
BF

SRQ
LQ

Bypassing
Predictor

Issue
Queue

re-exec?

12

[23]

NoSQ 3: Remove Load Queue

Generate addresses for bypassed loads at commit (to verify)
• ROB is already extended, pipeline already elongated

Re-generate addresses for non-bypassed loads at commit
• May need additional register read port

Eliminate load queue

Map
Table

store

Reg
File D$

load

free list

+
+

flush?
=

SS
BF

SRQ
LQ

Bypassing
Predictor

Issue
Queue

re-exec?

[24]

Road Map

Overview
From conventional to NoSQ

• Conventional store-load forwarding
• Load verification with filtered load re-execution
• Speculative memory bypassing

NoSQ
• Eliminating out-of-order stores and the store queue
• Eliminating the load queue
• NoSQ’s store-load bypassing predictor

Evaluation

13

[25]

NoSQ’s Store-Load Bypassing Prediction

Similar to previous store-load prediction, but more difficult

Load scheduling prediction: [Chrysos+’98]
• Can predict store conservatively, predicts only violating loads

Speculative forwarding prediction [Sha+’05]
• Must predict all loads, but benefits from store-load address check

Traditional bypassing prediction [Moshovos+’97]
• No address check, but can decline to predict difficult loads

NoSQ’s bypassing prediction
• Must predict all loads precisely, no address check

[26]

Distance-Based Dependence Prediction

Predictor interface: load PC → dynamic store

Load PC → store PC(s) → dynamic store
• E.g., Store Sets [Chrysos+’98], Speculative indexed SQ [Sha+’05]
– Store PC → dynamic store requires table
– Can only (easily) represent most recent instance of each store PC

Load PC → distance (in stores) to store → dynamic store
• E.g., [Lipasti+’97, Yoaz+’98]
+ Can represent any store instance
+ Dovetails with SVW: just compare/subtract distances/SSNs

• Predict: load.SSNbypass = SSNrename – load.distancebypass
• Verify: load.SSNbypass == SSBF[load.address]
• Train: load.distancebypass = SSNcommit – SSBF[load.address]

14

[27]

Predictor Design

Each entry includes tag, store distance

Explicitly path-sensitive design
• Two tables: path-insensitive + path-sensitive

• Both set-associative
• Predict: prefer path-sensitive prediction
• Train: update both tables on every load commit

load PC
disttag

disttagxor

branch+call history

[28]

Evaluation

Goal
No store queue or load queue

• Same (or better) IPC as conventional design
– Bypassing mis-predictions
– Deeper commit pipeline
+ Latency benefit of SMB
+ Reduced consumption of issue bandwidth and queue slots

Simulation environment
• SPECint2000, SPECfp2000, Mediabench (only show 9)

• Dynamically scheduled 4-way superscalar
• 128-ROB, 40-entry issue queue, 11-stage front-end/core
• Base: 24/48-entry SQ/LQ, 2K-entry Store Sets, 6 stage commit
• NoSQ: No SQ/LQ, 2K-entry predictor, 8 stage commit

15

[29]

0.85

0.9

0.95

1

1.05

mesa.t pegwit.d gcc perl.s applu apsi swim g721.e vpr.p Gmean

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

NoSQ Performance

+ On average: slightly outperforms conventional design
+ Prediction accuracy is ~99.8% (15 mis-predictions per 10,000 loads)

– In a few cases: slowdowns
• 10 of 47 benchmarks >1% slowdown (worst case 7%)

NoSQ

[30]

Avoid Bypass Mis-Predictions with Delay
Two kinds of bypassing mis-predictions

• Difficult to predict
• Long signature, data dependent, predictor conflicts, etc.

• Simply cannot be bypassed
• Narrow-store to wide-load

• NoSQ can do wide-store/narrow-load and narrow-store/narrow-load
• See paper

Catch-all: convert bypassing to delayed non-bypassing load
• Inject it to the out-of-order core
• But delay it until the predicted bypassing store commits
• Load gets value from data cache
• Attach a confidence counter to each predictor entry

16

[31]

0.85

0.9

0.95

1

1.05

mesa.t pegwit.d gcc perl.s applu apsi swim g721.e vpr.p Gmean

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

NoSQ with Delay

+ Robust performance: only 1 of 47 benchmarks > 1%
– Overdelay hurts sometimes, but not too bad

+ As fast or faster than conventional in almost all cases

NoSQ NoSQ + delay

[32]

NoSQ with Perfect Predictor

+ Only 2% between realistic and perfect predictor

See paper for
• Predictor scalability, data cache accesses, etc.

0.85

0.9

0.95

1

1.05

mesa.t pegwit.d gcc perl.s applu apsi swim g721.e vpr.p Gmean

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

NoSQ NoSQ + delay NoSQ + perfect predictor

17

[33]

Conclusions
Conventional store queue / load queue

– Complex, non scalable
– Exist for the benefit of 10% forwarding loads

NoSQ
• Exploits synergy of previously proposed mechanisms

• Re-execution with SVW filter, speculative memory bypassing
• New highly accurate bypassing predictor

+ Simple, clean data path with no store queue/load queue
• More scalable out-of-order core
• Fits well with distributed, partitioned cores (e.g., SMT)

+ Outperforms conventional design

