Mixed-Mode Multicore Reliability

Philip Wells, Koushik Chakraborty, Gurindar Sohi

pwells@google.com
kchak@engineering.usu.edu
sohi@cs.wisc.edu

ASPLOS '09
Washington, D.C.

© Philip Wells, 2009

Overview

Circuit reliability decreasing as technology scales
— Dual-modular redundancy (DMR): high coverage & cost
— Software has different reliability requirements

= You might want to run them at the same time

Mixed-mode multicore (MMM) reliability
— Allow some applications to run in ‘performance mode’
— Run others in DMR-based ‘reliable mode’

Conceptually simple, but:

— Need to protect the integrity of apps in ‘reliable mode’
« Recheck TLB permission, run OS in reliable mode

— Desire to increase throughput by utilizing all cores
» Leverage Multicore Virtualization techniques

© Philip Wells, 2009 ASPLOS - 3/10/09 2

Background
— Reliability trends
— DMR Overheads

Mixed-mode multicore

— Objectives & challenges
— Implementation

— Performance results

Summary

© Philip Wells, 2009 ASPLOS - 3/10/09 3

Background: Reliability trends

Circuits become more susceptible to:
— Transient faults (e.g., particle strikes)
— Permanent faults (e.g., broken wires)
— Intermittent faults (e.g., thermal/power variation)

Dual-modular redundancy (DMR)
— Join two cores to make a redundant pair
— Can provide very high coverage from a variety of faults

© Philip Wells, 2009 ASPLOS - 3/10/09 4

Dual-modular redundancy (DMR)

SW Threads
System SW <

ISA suns Virtual Procs

Physical

Chip <

Physical Cores

We leverage Reunion [Smolens, 2007]

© Philip Wells, 2009 ASPLOS - 3/10/09 5

DMR overhead: Throughput

“ No DMR 2X B No DMR MW Reunion

o
o

O
o

©
B

Throughput

O
n

Apache OLTP pgoltp pmakepgbench Zeus

Simics full-system
simulation (SPARC)

16-core system:

— Reunion:

8 threads / 16 cores
— No DMR:

8 threads / 8 cores

— No DMR 2x:
16 threads / 16 cores

IPC overheads arise:
— Window occupancy
(Especially with SC)
— Serializing Instrs
[HPCA 2008]
— C2C transfers

© Philip Wells, 2009 ASPLOS - 3/10/C9 [6

Outline

Mixed-mode multicore

— Objectives & challenges
— Implementation

— Performance results

Summary

© Philip Wells, 2009

ASPLOS - 3/10/09

Mixed-mode objectives

Some apps need DMR, but many don’t (web, media)
=>Allow some apps to run in ‘performance mode’

SW Threads
System SW <
ISA sansmannna] V0 _____ Virtual Procs
Physical y
Chip |
Physical Cores

§ Needs Reliability § Doesn’t Needs Reliability

© Philip Wells, 2009 ASPLOS - 3/10/09 8

Mixed-mode objectives

Some apps need DMR, but many don’t (web, media)
=>Allow some apps to run in ‘performance mode’

A performance app can erroneously change state
1) Protect the integrity of the system

System software must run in ‘reliable’ mode
2) Creates frequent mode switches

Provide a simple interface to system software
3) But fully utilize cores to improve throughput

© Philip Wells, 2009 ASPLOS - 3/10/09

Challenge 1: Protect system integrity

Fault in performance mode can corrupt
Private or ‘reliable’ state

Shared L2 — Need to isolate faults to perf apps

Memory state
— Protection Assistance Table (PAT)

________ « OSvisible
il B « 1-bit/phys page, notes pages
L1 | L1D accessible in perf mode
_ — Protection Assistance Buffer (PAB)
Core g « Hardware
« Cache of PAT, operates when core in
................... non-DMR mode
Untrusted « Duplicates permission check of L1

write-throughs

© Philip Wells, 2009 ASPLOS - 3/10/09 10

Protection Assistance Buffer (PAB)

Private or
Shared L2

s L1l L1D

TLB

Core

Untrusted

Phys Tag Info for 512 pages
1001 10010101001000111

Control

Logic

Physically tagged

— Each line: 64-bytes of protection info
— 128-entry PAB maps 512MB of mem
— 8.2KB of storage overhead

Can operate in parallel or series with L2

© Philip Wells, 2009

ASPLOS - 3/10/09 11

Challenge 3: Improving throughput

Redundant cores used independently
— Run more software threads

Preserve a simple interface to system software:
— For each VCPU, does it currently require DMR?

Simple interface allows:

— Protect entire OS

— Abstract complex mechanisms
— Handle frequent mode changes

© Philip Wells, 2009 ASPLOS - 3/10/09 12

Improving throughput cont...

Must expose 6 (instead of 3) VCPUs to OS
— VCPUs dynamically and independently switch modes

SW Threads
System SW <
ISA ssuums _ Virtual Procs
Physical y
Chip |
Physical Cores

\.

S Needs Reliabilty & Doesn't Need Reliability

© Philip Wells, 2009 ASPLOS - 3/10/09 13

Solution: Overcommitted system

Multicore virtualization [PACT ‘06]
— Flexibly map VCPUs onto cores
— Enable more OS-visible VCPUs than available cores

HW spin detection heuristic

— Determine when VCPU is not performing useful work
 Preempt itin favor of one that is

— Incurs low overheads

© Philip Wells, 2009 ASPLOS - 3/10/09 14

Mixed-mode performance

16 core system
— Two guest VMs: One app needs DMR, the other doesn’t

Three systems compared:
— Reunion DMR baseline
 Both apps must run in DMR mode because one needs to
— MMM-IPC
 Turns off spare cores to improve IPC
 Does not need multicore virtualization
— MMM-TP
 Uses spare cores to execute 8 more VCPUSs
* Requires multicore virtualization

© Philip Wells, 2009 ASPLOS - 3/10/09 15

Mixed-mode results: Per-thread IPC

B DMR Base VIMM-IPC B MMM-TP
7 DMR DMR 7 DMR
1.6

1.4 |

0.8
0.6 1
0.4

0.2

0 9/ 97 . ,
Apache OLTP pgoltp pmakepgbench Zeus

Per—thread IPC

NN

© Philip Wells, 2009 ASPLOS - 3/10/09 16

e
.
O

L
@),
.
O
 —

-

_I
0

=
.
)
&)
 —
)

©
®
S
©
<

X

=

TP

IPC E MMM

MMM
DMR

B DMR Base
7z DMR

7 DMR

0
o

o

indybnouy| paziiewlioN

17

ASPLOS - 3/10/09

© Philip Wells, 2009

Future work

Investigate different phases within a program
— E.g., media player rendering vs. network authentication
— Proposed hardware interface already allows this

 Need to define appropriate system API for marking pages
and code regions as ‘performance’ or ‘reliable.’

Security implications
— E.g., relying on SPARC clean-win trap, or requiring
loads to snoop PAB as well

© Philip Wells, 2009 ASPLOS - 3/10/09 18

Mixed-mode summary

SW has different reliability requirements
— Want to run both ‘reliable’ and ‘performance’ apps

Mixed-mode multicore reliability

— Provide reliability when needed

— Improves IPC and/or throughput when not

— Maintains system integrity & simple software interface

© Philip Wells, 2009 ASPLOS - 3/10/09 19

Thank you!

pwells@google.com
http://www.cs.wisc.edu/~pwells

© Philip Wells, 2009 ASPLOS - 3/10/09 20

Backup Slides

© Philip Wells, 2009

DMR overhead: Per-thread IPC

B No DMR 2X ®mNo DMR M Reunion

1.2 1

0.8 -

0.6 -

0.4

Per—thread IPC

0.2

OLTP
pgoltp
pmake
Zeus

)
-
3]
m
Q
<

pgbench

Apachelx

© Philip Wells, 2009 ASPLOS - 3/10/09

22

O
)
4
O
S
af
<
al
[
©
U)
9
S
V)
Q
oY

7# DMR

M Serial PAB ® MMM Dyn. B Serial PAB
7z DMR

7%z DMR

o MMM Stat.
7 DMR

©
—

I
N
—

21
—

90UE

o)
o
ey

O

N

) ©
o

1

m
|

N
NN

NN
NN

RN

N
N

NN
".7/////M

TP pgoltp pmake pgbench Zeus Apachelx

”,./////A/M @_

NN

| Apache

_—.
N N O
o o

°d

23

ASPLOS - 3/10/09

© Philip Wells, 2009

)
O
-
D
-
D
-
O
O
D
o
-
=
7
—
-
)
D
nd

7z DMR

7% DMR

® MMM Stat. @ Mute Coher. @ MMM Dyn. B Mute Coher.
7z DMR

7 DMR

W
|
|
|

///////M

N\
DONUNNNNNNNN
?///////M

M
NN

Rl
NN

P pgoltp pmake pgbench Zeus Apachelx

N
NN

NN =
W O

h ()]

NN G

NN

5 /hﬁ

_ AN A I E—
O = o — 0O W = o O
- = = S S o o

souewlopsd

24

ASPLOS - 3/10/09

© Philip Wells, 2009

	Mixed-Mode Multicore Reliability
	Overview
	Outline
	Background: Reliability trends
	Dual-modular redundancy (DMR)
	DMR overhead: Throughput
	Outline
	Mixed-mode objectives
	Mixed-mode objectives
	Challenge 1: Protect system integrity
	Protection Assistance Buffer (PAB)
	Challenge 3: Improving throughput
	Improving throughput cont…
	Solution: Overcommitted system
	Mixed-mode performance
	Mixed-mode results: Per-thread IPC
	Mixed-mode results: Throughput
	Future work
	Mixed-mode summary
	Thank you!
	Backup Slides
	DMR overhead: Per-thread IPC
	Results: Serial PAB lookup
	Results: Mute coherence

