Use-Based Register Caching

J. Adam Butts and Guri Sohi
{butts,sohi}@cs.wisc.edu

University of Wisconsin—Madison
Architecture Affiliates Meeting
October 9, 2003

Motivation

Need large register file Need fast register file
= Deep, wide pipelines = High clock frequency
= Many instructions in flight = >1 cycle latency hurts IPC
= Many read and write ports s Complex bypass network
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 2124

Motivation

Need large register file Need fast register file
= Deep, wide pipelines = High clock frequency
= Many instructions in flight = >1 cycle latency hurts IPC
= Many read and write ports s Complex bypass network
Register values needed for small 07—
. . . 90_ o‘x.
fraction of lifetime ol [° Ralas
s Few registers contain live values % 0]
c 60—
= Use a cache S 5]
T 40
physical overwriting L - N
register value last instruction X 30-
allocated ready use retires 20 -] Live
18 1 17 i o’
¢ >’< > _ o eeeees Allocated
empty >’<Iive dead 12 -
hvsi AL DL DAL DL L BN
< ﬁ’eé’fs'fg' > 0 50 100 150 200 250 300
lifetime Registers
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 3/24

Overview

What register values should be present in the cache?

Values that have live consumers will be read in the future
s Keep these values close, others available

s Degree of use indicates total number of consumers
s Count uses as they occur to determine future usefulness of value
m Use future usefulness to make (re)placement decisions

How should values be placed within the cache?

Assign cache sets to minimize conflicts
= NO meaning in physical register tags
s Map register tags to cache indices intelligently

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 4/24

Outline

Register Caching
s Prior work

= Shortcomings

Use-based Register Cache Management
Decoupled Indexing
Evaluation

Conclusion

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 5/24

Register Caching

Reduce average access latency
ms Like cache hierarchy

s Small, fast, high-level file

s Large, slow low-level file
Many variations

= Visibility to ISA

s Software vs. hardware
management

s Supply values from both levels
or only high-level register file

= Inclusion policy

Execution Core

A

I

Fast

Registers

| |

Slow

Registers

Use-Based Register Caching — J. Adam Butts and Guri Sohi
UW-Madison Architecture Affiliates Meeting, October 2002

R[0-7]

R[8-31]

Slide
6/24

Register Cache Pipeline

Like Yung and Wilhelm or Cruz et al.
= Hardware managed

s Cache fill on miss

Cycle 1 2 3 4 5 6 7 8 9
1 read ¢ write WILE =
slle Rcache ©X€CU e.‘ Rcache| regfile
2 . read 3 % ‘ write write
ISSue Rcache® ©X€CUC I Rcache| regfile
IeeEEEEm
13 : read |4 i write write
Eetle Rcache| SX€CU® 1 Rcache regfile
142 : read ¢ write write
ISSue Rcache| ©X€CU® Rcache regfile
14b : read Lb read read ¢ write
sellls Rcache regfile regfile ~ ®X€CU® , Rcache
L 2

o
I5b issue REZ%ﬂe execute

Use-Based Register Caching — J. Adam Butts and Guri Sohi
UW-Madison Architecture Affiliates Meeting, October 2002

10

write
regfile

write
Rcache

s Values assumed to be in cache
= All values written to register file

11

write
regfile

Slide
7/24

Problems with Register Caching

Fully-associative caches
= Required to obtain reasonable performance (conflict misses)

= Need many ports [J slow
Poor content management
s LRU replacement
s Leads to frequent misses
Implementation complexity
s EXpensive recovery mechanisms
= Many additional datapaths

Optimistic evaluations
s Cheap misses

s Unrealistic baselines

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 8/24

Outline

Use-based Register Cache Management
= |nsertion policy

= Replacement policies

Decoupled Indexing
Evaluation

Conclusion

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 9/24

Use-Based Cache Insertion

Observation: a subset of values bypass to all their consumers

= Avoid placing in the register cache values already communicated
through the bypass network

Bypass counting
s Write to cache only if number of bypasses < predicted degree of use
s Store remaining uses with each value in cache
= Monitor subsequent uses (for use-based replacement)

Compare with non-bypass proposed by Cruz et al. [ISCA 27]
= Write to cache if value is not bypassed
= Assumes single-use values

» Def-first use distance largely independent of degree of use
e Subsequent consumers experience higher latency

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 10/24

Use-Based Victim Selection

Observation: LRU is poor
m Does not accurately capture the behavior of register values

Use-based replacement
s Use remaining uses stored in cache to select victim

Handling unknown numbers of remaining uses
= Unknown default when initial prediction unavailable

« During training of degree of use predictor

« Unknown default of 1 works well; 2 for larger cache sizes
= Fill default after register cache miss

 Fill default of O performs best

 Still need to fill!

Use-Based Register Caching — J. Adam Butts and Guri Sohi
UW-Madison Architecture Affiliates Meeting, October 2002

Slide
11/24

Outline

Decoupled Indexing
s Register cache set assignment

= Round-robin indexing

s Performance

Evaluation

Conclusion

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 12/24

Decoupled Indexing

Problem: Conflict misses
s Standard cache index equals register tag modulo number of sets

= No spatial locality in physical register tag references

Solution: Assign set index intelligently
= Augment rename map to hold register cache index

= Allocate set index with physical register using some algorithm
s Provide set index to consumers along with physical register tag

Algorithm considerations
= Avoid assigning long-lived values to same cache set
= Information available

» Predicted number of uses
« Set assignment history
» Current front end status, performance

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 13/24

Round-Robin Indexing

Simple scheme to avoid conflicts

= Single state variable: last
assigned set

s Assumes execution order
resembles rename order

Slide

Use-Based Register Caching — J. Adam Butts and Guri Sohi
14/24

UW-Madison Architecture Affiliates Meeting, October 2002

Round-Robin Indexing

Simple scheme to avoid conflicts 19+

= Single state variable: last e 64-entries
assigned set : /g’
1.7 i 32-entries

= Assumes execution order " 07 -
resembles rename order 161 16-enties

153~

Advantage dependent on cache

organization

: T ld 74— :
= Helps more with less associativity 1 = ~o- Round-robin
-/ Preg-derive

13 -1— | | |
1 2 4 8 16

Associativity

Performance (I PC)

s More sets helps to a point

Room for improvement

s Data still indicates 25% of misses
due to conflicts

s Use-based set assignment?

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 15/24

Outline

Motivation and Overview

Register Caching
Use-based Register Cache Management
Decoupled Indexing

Evaluation
= Methodology

s Cache parameters

s Performance

Conclusion

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 16/24

Methodology

Simulator
s EXxecution driven, SimpleScalar syscalls (trap to OS)

s 512 instructions in-flight, 128-instruction window, 8-wide issue
s 15-cycle minimum fetch redirect, 12 KB YAGS, 9KB DOU predictor
= 32 KB 2-way L1 (4), 1IMB 4-way L2 (12), 180 cycles to memory

SPECInt 2000, training inputs, 1 billion instructions

Register cache miss model
s Replay all operations within one cycle issue (Alpha 21264-style)

m Block issue port for duration of miss resolution
s Re-issue delay to ensure complete writeback

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 17/24

Register Cache Tuning

1.9
18-
O
T 174
Q]
8 1.6
2 154
E ' E I:/ / > guleg ;ssociative
14- et
E O/ =O= Direc)': mapped
4 === No Rcache
L R AU S I e —
16 24 32 40 48 56 64
Number of entries
Associativity Is important Larger caches than prior work
= 4-way minimum s 48-64 entries vs. 16
= Capacity can compensate = Due to wider, deeper pipeline
m Conflicts n Use 48-entry, 6-way
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 18/24

Register Cache Miss Breakdown

LRU is bad
= No write-filtering (75% never read)

7.2 . Capacity

._ Conflict

. Not written
5.0

: -
i

LRU | Non- | use- 1 use-
bypass filtering based

= Many capacity & conflict misses

Non-bypass is worse (!)
s Reduces capacity and conflict misses

2.1

= But, larger increase in misses from write
filtering

Register cache missrate (%)
o = N w IS o1 o ~ oo

Use-based scheme is superior

= Insertion policy reduces capacity and
conflict misses

= Only with small increase in misses from
write filtering

s Replacement policy reduces misses from
premature evictions of useful values

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 19/24

Performance vs. Cache Size

Small cache sizes favor filtering 197
= Net gain from filtering 18-
unneeded values R
O 172
s Non-bypass surpasses LRU for 3]
caches with 16-24 entries é 16
Very large cache sizes favor LRU £ 154
: o - No Rcache
= Not due to replacement policy!] —— Use-based
: : L4 —o0— LRU
= NoO misses from incorrect] —— Non-bypass
filtering 139717171717 T T T T 1
16 24 32 40 48 56 64
s Large cache U low capacity/ Register cache size (entries)
conflict miss rate
= T0o0 large to be much benefit as
a cache
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 20/24

Sensitivity to Register File Latency

Use-based register cache 19
exhibits least sensitivity .
Backing file latency can be 2 g7
lower than monolithic % o
= Few shared read ports c
154
| 24'p0rt |:| 8'p0rt g'_-)]l ----- No Rcache \EI\
_ 1 4_: —— Use-based
Use-based register cache "] —o—LRU o
1 —0O— Non-bypass
tracks fully-bypassed 13 1— 7 I | |
. . 1 4 5
reg|5ter file Backing register filelatency (cycles)
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 21/24

Incremental Performance Breakdown

1.9 -
1.8
— R
O]
@ 17
N -
q) -
2 i
8 16
S]
O Y 4
T 154
a i
1.4
1.3 - | | | | |
LRU Round- Write- Replace Perfect
robin filtering least uses degree
indexing prediction
Configuration
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 22124

Outline

Motivation and Overview

Register Caching

Use-based Register Cache Management
Decoupled Indexing

Evaluation

Conclusion
s Future Work

s Questions

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 23/24

Future Work

Augmented heuristics to reduce misses from write-filtering?
= Account for mis-speculation

= Use additional information (static, operand type, etc.)
Deterministic scheduling latency

s Degree of use prediction + use counting

= False positive problem
Additional indexing schemes to reduce conflict misses

s Apply degree of use information

= Synchronization of front-end and register cache
Combine with previous work to reduce cache write ports

= Cache write bandwidth <1 value per cycle

= Requires arbitration, queueing, extra bypassing

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 24/24

Questions

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 25/24

Access Bandwidth

B
o

B LRU
B Non-bypass
O Use-filtering
Bl Use-based

w
Ul

w
o

Average Bandwidth (per cycle)
N
o
|

0.0 =
RCache ! RCache ' Redfile ' Redfile
read write read write
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 26/24

Write-filtering Effects

100

. Il LRU
90 - B Non-bypass
80] Use-filtering
] B Use-based
70 —
+= 60 -
o]
O 50—+
e]
O 40
30
20 <
10 -
0 -
Cached, Not written Never
never read initially cached
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 27124

Maximum Degree of Use

=
0o

Performance (1 PC)
P
o
IIIIIIIIIIIIIIIIIIIIIIIIIIIII

=
\l

15
14
—J— 48/6
—O— 32/4
13 | | | | | | |

2 4 6 8 10 12 14 16
Maximum predictable degree of use

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 28/24

Sources of Values for Execution

100 —
80 — B
§ . Register file
< 60—+ H H |
> 2 t
Z (]] | . nd bypass stage
Q 1st bypass stage
£ 40- _
N - Register cache
20 —
0= S5 0o
x I 3
| o a
>~ QO
T @
S @
>)
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 29/24

Comparison with Two-Level RegFile

1.9 —
1.8 5
O]
T 17
q) -
2)
g 16
&]
S]
db_ 1'5_: No Rcache
- —tN— Use-based
1.4 — »— Two-level
] —_—— | _RU
13 —{ = NOn-bypass
' I 01T 1
16 24 32 40 48 56 64
Register cache size (entries)
Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide

UW-Madison Architecture Affiliates Meeting, October 2002 30/24

