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Motivation

Need large register file Need fast register file
= Deep, wide pipelines = High clock frequency
= Many instructions in flight = >1 cycle latency hurts IPC
= Many read and write ports s Complex bypass network
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Overview

What register values should be present in the cache?

Values that have live consumers will be read in the future
s Keep these values close, others available

s Degree of use indicates total number of consumers
s Count uses as they occur to determine future usefulness of value
m Use future usefulness to make (re)placement decisions

How should values be placed within the cache?

Assign cache sets to minimize conflicts
= NO meaning in physical register tags
s Map register tags to cache indices intelligently
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Outline

Register Caching
s Prior work

= Shortcomings

Use-based Register Cache Management
Decoupled Indexing
Evaluation

Conclusion
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Register Caching

Reduce average access latency
ms Like cache hierarchy

s Small, fast, high-level file

s Large, slow low-level file
Many variations

= Visibility to ISA

s Software vs. hardware
management

s Supply values from both levels
or only high-level register file

= Inclusion policy
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Register Cache Pipeline

Like Yung and Wilhelm or Cruz et al.
= Hardware managed

s Cache fill on miss
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Problems with Register Caching

Fully-associative caches
= Required to obtain reasonable performance (conflict misses )

= Need many ports [J slow
Poor content management
s LRU replacement
s Leads to frequent misses
Implementation complexity
s EXpensive recovery mechanisms
= Many additional datapaths

Optimistic evaluations
s Cheap misses

s Unrealistic baselines
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Outline

Use-based Register Cache Management
= |nsertion policy

= Replacement policies

Decoupled Indexing
Evaluation

Conclusion

Use-Based Register Caching — J. Adam Butts and Guri Sohi Slide
UW-Madison Architecture Affiliates Meeting, October 2002 9/24



Use-Based Cache Insertion

Observation: a subset of values bypass to all their consumers

= Avoid placing in the register cache values already communicated
through the bypass network

Bypass counting
s Write to cache only if number of bypasses < predicted degree of use
s Store remaining uses with each value in cache
= Monitor subsequent uses (for use-based replacement)

Compare with non-bypass proposed by Cruz et al. [ISCA 27]
= Write to cache if value is not bypassed
= Assumes single-use values

» Def-first use distance largely independent of degree of use
e Subsequent consumers experience higher latency
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Use-Based Victim Selection

Observation: LRU is poor
m Does not accurately capture the behavior of register values

Use-based replacement
s Use remaining uses stored in cache to select victim

Handling unknown numbers of remaining uses
= Unknown default when initial prediction unavailable

« During training of degree of use predictor

« Unknown default of 1 works well; 2 for larger cache sizes
= Fill default after register cache miss

 Fill default of O performs best

 Still need to fill!
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Outline

Decoupled Indexing
s Register cache set assignment

= Round-robin indexing

s Performance

Evaluation

Conclusion
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Decoupled Indexing

Problem: Conflict misses
s Standard cache index equals register tag modulo number of sets

= No spatial locality in physical register tag references

Solution: Assign set index intelligently
= Augment rename map to hold register cache index

= Allocate set index with physical register using some algorithm
s Provide set index to consumers along with physical register tag

Algorithm considerations
= Avoid assigning long-lived values to same cache set
= Information available

» Predicted number of uses
« Set assignment history
» Current front end status, performance
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Round-Robin Indexing

Simple scheme to avoid conflicts

= Single state variable: last
assigned set

s Assumes execution order
resembles rename order

Slide

Use-Based Register Caching — J. Adam Butts and Guri Sohi
14/24

UW-Madison Architecture Affiliates Meeting, October 2002



Round-Robin Indexing

Simple scheme to avoid conflicts 19+

= Single state variable: last e 64-entries
assigned set : /g’
1.7 i 32-entries

= Assumes execution order " 07 -
resembles rename order 161 16-enties

153~

Advantage dependent on cache

organization

: T ld 74— :
= Helps more with less associativity 1 = ~o- Round-robin
-/ Preg-derive

13 -1— | | |
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Associativity

Performance (I PC)

s More sets helps to a point

Room for improvement

s Data still indicates 25% of misses
due to conflicts

s Use-based set assignment?
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Outline

Motivation and Overview

Register Caching
Use-based Register Cache Management
Decoupled Indexing

Evaluation
= Methodology

s Cache parameters

s Performance

Conclusion
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Methodology

Simulator
s EXxecution driven, SimpleScalar syscalls (trap to OS)

s 512 instructions in-flight, 128-instruction window, 8-wide issue
s 15-cycle minimum fetch redirect, 12 KB YAGS, 9KB DOU predictor
= 32 KB 2-way L1 (4), 1IMB 4-way L2 (12), 180 cycles to memory

SPECInt 2000, training inputs, 1 billion instructions

Register cache miss model
s Replay all operations within one cycle issue (Alpha 21264-style)

m Block issue port for duration of miss resolution
s Re-issue delay to ensure complete writeback
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Register Cache Tuning
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Associativity Is important Larger caches than prior work
= 4-way minimum s 48-64 entries vs. 16
= Capacity can compensate = Due to wider, deeper pipeline
m Conflicts n Use 48-entry, 6-way
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Register Cache Miss Breakdown

LRU is bad
= No write-filtering (75% never read)

7.2 . Capacity

._ Conflict

. Not written
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LRU | Non- | use- 1 use-
bypass filtering based

= Many capacity & conflict misses

Non-bypass is worse (!)
s Reduces capacity and conflict misses

2.1

= But, larger increase in misses from write
filtering

Register cache missrate (%)
o = N w IS o1 o ~ oo

Use-based scheme is superior

= Insertion policy reduces capacity and
conflict misses

= Only with small increase in misses from
write filtering

s Replacement policy reduces misses from
premature evictions of useful values
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Performance vs. Cache Size

Small cache sizes favor filtering 197
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Sensitivity to Register File Latency

Use-based register cache 19
exhibits least sensitivity .
Backing file latency can be 2 g7
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Incremental Performance Breakdown
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Outline

Motivation and Overview

Register Caching

Use-based Register Cache Management
Decoupled Indexing

Evaluation

Conclusion
s Future Work

s Questions
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Future Work

Augmented heuristics to reduce misses from write-filtering?
= Account for mis-speculation

= Use additional information (static, operand type, etc.)
Deterministic scheduling latency

s Degree of use prediction + use counting

= False positive problem
Additional indexing schemes to reduce conflict misses

s Apply degree of use information

= Synchronization of front-end and register cache
Combine with previous work to reduce cache write ports

= Cache write bandwidth <1 value per cycle

= Requires arbitration, queueing, extra bypassing
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Questions
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Access Bandwidth
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Write-filtering Effects
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Maximum Degree of Use
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Sources of Values for Execution
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Comparison with Two-Level RegFile
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