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Technology Scaling: Classical View
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e Classical Scaling: successive generations
— Device size is halved: same area offers 2X resources

e Opportunity: performance and concurrency
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Technology Scaling: Power
18 W
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e Scaling Challenge: Power

— Power improvement lags capacity improvement
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Why power iIs a problem?

AMD

Athlon T400
Socket 462

VidA KTT33A Chipset

* Warning: Do not attempt this on your system
-
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Power and Cooling

d Power Supply and Cooling
— Hard limit on cost-effective cooling solution
— Difficult to supply (large) power in small enclosure
— Cost components are substantial

d Limited room for increasing processor power
consumption
— Constant Thermal Design Power (TDP)
— Performance and energy efficiency must improve
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Thesis Contributions

O Simultaneously Active Fraction
— Model for power constraint
— Application in multicore design
d Over-provisioned Multicore Systems (OPMS)
— Over-provisioning core resources
— Design consideration and implementation
d Computation Spreading

— Classic application for an OPMS

— Selectively employs on-chip processing cores to reduce power
consumption but improve compute efficiency
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Outline

J Motivation

O Simultaneously Active Fraction
— Area perspective of power constraint
— SAF Trends
— Application of SAF in Multicore Design

O Over-provisioned Multicore System
d Computation Spreading

U Results

d Conclusion
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Area and Power constraints

O Area constraint
— Aggregation of on-chip device area
— Statically satisfied
— Each technology generation defines the minimum device
area
O Power constraint
— Aggregation of individual device power
— Dynamically satisfied
— Devices operate at a wide range of power levels
— Different subsets of devices can account for chip power
— Hard to accurately estimate chip power at an early design phase
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Power constraint: An Area Perspective

A Current systems are power limited
— A shift from area limited designs of the past
— Many architectural intuitions deal well with area
— Connecting theme: managing resources

Power Budget SAF
Area Budget

Simultaneously Active Fraction (SAF): Fractional area consuming target power

Transformation: Power constraint to Area constraint
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SAF: First order model

SAF = Power / (Individual Device Power * Np)

O Np: Number of devices

— 2X increase from Device scaling
O Power: remains constant
O Individual Device Power

— Dynamic power from switching

— Key parameters: voltage, capacitance, frequency

— Small improvement due to limited voltage scaling
— Static power from leakage

— Manufacturing process and circuit design style

SAF will shrink with technology scaling
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SAF Trend
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Technology Scaling: SAF View

P P

Generation 1 Generation X

O Opportunity: SAF-aware multicore design

O Paradigm shift: Can’t use all resources simultaneously

— what if 64 cores, but can use only 32 at a time?
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Application of SAF

d Impact of power constraint at the early design phase

d Dissertation illustrates two examples
— Hill-Marty model extension
— Multithreaded Workloads
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Hill-Marty model: Multicore Speedup

O Based on Amdahl’s Law
— Workload: sequential and infinitely parallel phase

J Resources: n unit cores
— r cores can be combined, sequential performance: perf(r)

O Multicore Configurations
— Symmetric: all on-chip cores look alike
— Asymmetric: structurally distinct on-chip cores

— Dynamic: dynamic re-configuration (e.g., combine r unit cores
dynamically to boost sequential performance)

O Speedup: Dynamic > Asymmetric > Symmetric

What if Multicores are only power limited?
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Power constraint in Hill-Marty Model

O De-couple Area and Power constraint
— Modeling Power constraint using SAF o, where (0 < a <1)
— Number active cores limited by o *n
— Dynamically allocate power budget among on-chip cores

0 Symmetric Multicore

1 SAFSpeedup = 1
1 — f ) f peeaup 1 — f X f
perf(r) perf(r)*(n/r) perf(r) perf(r)*(a*n/r)

Speedup =

O Dynamic Multicore

1 1
SAFSpeedup =
-5 N T

perf(n) n perf(a*n) ax*n

Speedup =
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Asymmetric Multicore

 Distinct cores: where to assign computation?
— Best fit computation assignment

d Hill-Marty Model

— Sequential phase: large core composed of r unit cores
— Parallel phase: all the on-chip cores

1
-7/
perf(r) perf (r)+n—r

Speedup =

1 SAF aware: available cores > allowable active cores
— Core resources can be over-provisioned
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Asymmetric Multicore

O Sequential and parallel phase exploit different cores

— Best case: a*n+r<n

Large core Several unit cores
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SAF-aware Asymmetric Multicore

O Sequential and parallel phase exploit different cores
— Bestcase: ag*n+r<nm
— Otherwise, during parallel phase choose between
— Using sequential core + few unit cores
— Only use unit cores

( 1
1-f N f
SAFSpeedup — perf (r) a#*n 1
1-f .\ I3

| perf (r) max(perf(r)+a*n—r,n—r)

,Af a*n+r<n

,Af a*n+r>n
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Parameters

U SAF: O
— Speedups shown for ¢ =0.1to0 1.0

d n: 256

4 r: graph shows speedup for optimal r
— Restriction: 7 < (X *n

d f: degree of parallelism
— Graph shows speedup for five different f
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SAF Speedup: Dynamic Multicore
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SAF Speedup: Asymmetric Multicore

Performance stability with diminishing SAF
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Asymmetric versus Dynamic
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At SAF=1/2 and lower, core assignments become logically equivalent
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SAF Summary

O SAF: abstract model of power constraint
— SAF expected to shrink with technology scaling

U SAF Application: Hill-Marty model extension

— At higher power constraints, power rivals available parallelism
as a major performance bottleneck

— Asymmetric multicore speedup equals dynamic multicore at
higher power constraint

— Qver-provisioning core resources is the key
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Outline

L Motivation
O Simultaneously Active Fraction

 Over-provisioned Multicore Systems
— SAF-aware Multicore design paradigm
— Fundamental Characteristics

O Computation Spreading
J Results
. Conclusion
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Power Management: SAF reduction

O Utilizing more resources requires SAF reduction

d Current Approaches
— Clock Gating: save power from unused circuit component
— Dynamic, but fine grain
— L2/L3 Caches: low SAF by design
— Coarse grain, but static
— Performance does not scale with size

L New approaches for SAF reduction

Dynamic coarse-grain SAF reduction
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Over-provisioned Multicore Systems

( Consider SAF Reduction at core granularity

— ALU:Uni-processor = core:Multicore

Application

OS
VMM

AF Koushik Chakraborty

OPMS Design Principles
— By design, total cores exceed power budget

— SAF-aware: avoid concurrent computation on all
cores

— Flexible computation assignment on cores

— VMM maintains software transparency

Inactive Active
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Technology Invariants in OPMS design

 Processing Cores

— Area cost is marginal compared to the cost of powering them up
simultaneously

d On-chip Communication
— Superior bandwidth between on-chip cores
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OPMS: Design Considerations

4 Interfacing with System Software
— Constantly varying pool of computation resources
— Dissertation implements a lightweight VMM component
— Virtualizes processor resources only

— Software transparent Computation Transfer (CT) between
on-chip cores

O Managing Inactive Cores
4 Flexible Computation Assignment
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Managing Inactive Cores: Cost/Benefit

1 Benefit

— Retain predictive state
— Speed up computation

— Reduce thermal load on each core
— Avoid hotspots

1 Cost

— Static Power

O Remedy: Use circuit techniques
— Sleep transistors based on MTCMOS removes leakage

— Design issues: length of inactive periods (> ~100 cycles [Borkar
2003]), no state-retention

— Retain state in low leakage drowsy mode [Flautner 2002]
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Flexible Computation Assignment

O Opportunity: More available cores than active

O Distribute computation to enhance benefit from
predictive structures

— Improve execution time and reduce energy consumption
 Classic Application: Computation Spreading

A%
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Outline

L Motivation
O Simultaneously Active Fraction
L Over-provisioned Multicore Systems

O Computation Spreading
— Multithreaded Server Application
— General Case and specific application
— Implementation

] Results
d Conclusion
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CSP: Overview

d Multithreaded Server Application
— Extensive code reuse among on-chip processor cores
— Poor utilization of private resources

O Computation Spreading (CSP)

— Collocate similar computation fragments from different threads
on the same core

— Distribute dissimilar computation fragments from same thread
onto different cores

AF Koushik Chakraborty PhD. Oral Examination 32




CSP: Design Considerations

O Dynamic Specialization
— Mutually exclusive code fragments

d Preserving Data Locality
— Different computation fragments may share data

O Fragment Size
— Amortizing computation transfer cost

d Core Contention
— Different fragments may be assigned to the same core

A¥ Koushik Chakraborty PhD. Oral Examination
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Implementation

d OS and User computation
— Satisfies all fragment selection objectives
— Server apps spend significant time in OS mode

 Core provision
— Provision some cores for running user code, rest for OS code
— VMM perform CT on mode transfer
— OPMS mitigates core contention

U Assignment Policies
— Thread Assignment Policy (TAP)
— Maintain VCPU to core mapping
— Syscall Assignment Policy (SAP)
— Maintain system call to core mapping for OS computation
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Outline

O Motivation

O Simultaneously Active Fraction

L Over-provisioned Multicore System
1 Computation Spreading

O Results

1 Conclusion
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Methodology

d SIMICS based full system simulation

4 Energy estimation: Wattch and HotSPOT
— Thermal model used to calibrate power estimation
— 32nm technology generation, 0.9V, 3.0GHz

O Unmodified Application running on Solaris 9
O Out-of-order cores

d Performance Comparison

— Baseline System: 8 cores, 16MB shared L2
— OPMS: 12 cores, 12MB shared L2
— Invariants: Power and Area

Koushik Chakraborty PhD. Oral Examination
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Results

4 Locality Impact
— Memory references: instruction and data
— Performance impact

U Energy Efficiency

— Core utilization, energy savings, energy-delay
d Sensitivity Analysis
— 12-core system fully utilized at all times

AF Koushik Chakraborty PhD. Oral Examination
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Instruction Latency Improvement
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Data Latency Improvement
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Performance
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Energy Efficiency

1 OPMS employs 12 cores instead of 8
— Cores engaged in computation largely determine SAF/power

— Partial reduction in active cores can allow several inactive cores
to subsist within the same power envelope

d Impact of better compute efficiency
— Runtime reduction will save leakage energy
— Lesser access in shared L2 saves active energy
— Energy-delay improvements from savings in energy and delay
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Cache Energy
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Comparative Study with 12-core

O Improvements in performance and energy efficiency in
OPMS

— But, OPMS employs different micro-arch (12 cores)
— What if the same micro-arch exploits more threads?

O Exploiting app. concurrency on 12-core system
—  Will exceed the baseline power budget

4 Apply frequency scaling to reduce power

— Voltage scaling is unlikely at this design point, but results will
show its impact

O Methodological challenge from differing system configs
— Longer simulation runs to alleviate transient effects
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Power Comparison
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Energy Delay Improvement
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Outline

O Motivation

O Simultaneously Active Fraction

L Over-provisioned Multicore System
1 Computation Spreading

O Results

d Conclusion
— Related and Summary
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Related Work

d OPMS
— Power Reduction [several]
— Dynamic voltage frequency scaling
— Activity Migration
— Heat and Run [Powell 2004], AM [Barr 2003]
d Computation Spreading
— Software re-design: staged execution

— Cohort Scheduling [Larus and Parkes 01], STEPS [Ailamaki
04], SEDA [Welsh 01], LARD [Pai 98]

— OS and User Interference [several]
— Structural separation to avoid interference
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Summary of Contributions

O Simultaneously Active Fraction

— Models first order impact of power constraint in architectural
design

— Technology trends indicate diminishing SAF in future chips
— Demonstrates reasoning with SAF in multicore designs

O Over-provisioned Multicore Systems

— SAF-aware paradigm of multicore designs

— Versatile framework enabling flexible computation assignments
O Computation Spreading

— Dynamic specialization of on-chip cores in an OPMS

— Energy-efficiency and performance without demanding more
power
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Inactive Periods
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Runtime
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Multicore Evolution
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SAF

Core Logic contributes 75% of power

— 30% area: wer

fjh#‘lllﬁl i“ll. 'iul"l'_

5-10 years

Technology Trend:

— Improvement in power lagging improvement in effective area

Today (Tulsa: Intel Xeon)

SAF will shrink with technology scaling
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OPMS: The Next Step Ahead

Conventional Multicore aims simultaneous
computation on all cores

OPMS Design Principles

— By Design, total cores exceed power budget
— Forgo concurrent computation on all cores
— Flexible computation assignment on cores

— VMM maintains software transparency

OPMS - Wha*''222v and Why ?

Inactive Active

Application

!

Operating System

]

VMM

- ~——o o
-\ /-

Multiconppgstem
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Implementation

— OS assians two threads T1. T2
\Y, ¢l NC2

Mode transfers:

< ( > — User to OS: system calls, traps

D0 Basse  — OS to User: returns
11 | Oxaa..
VMM VC1 12 Diedab?2.
P1 P2 P3 ——
WQ  [{in] pxoetd11
) Contention
— two computation assigned to same core
ol e — Wait Queue is populated

— Resumes computation when available
59
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OS-User Data Communication

B OS-User
M User-User
B OS-0S

Apache OLTP

OS-User Communication is limited
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CSP: Longer
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Multithreaded Server Application

d Important class of multicore applications

O Memory stalls are #1 performance bottleneck
— Memory stall = instruction stall + data stall
— Substantial instruction stalls from large code footprint

O Software architecture
— Each server thread services one client request
— Individual thread assigned to individual core

Extensive code reuse
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Multicore Code Reuse
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Exploiting Code Reuse

d Lack of instruction stream specialization
— Redundancy in predictive state and poor capacity utilization
— Destructive interference

U No synergy among multiple cores
— Lost opportunity for co-operation

d Computation Spreading (CSP)
— Collocate similar computation fragments from multiple threads
— Distribute dissimilar computation fragments from a single thread
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Example

Conventional Multicore
P1 P2 P3

CSP

P1

L T2 T3
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CSP: Design Considerations

O Dynamic Specialization
— Mutually exclusive code fragments

d Preserving Data Locality
— Different computation fragments may share data

O Fragment Size
— Amortizing computation transfer cost

d Core Contention
— Different fragments may be assigned to the same core

A¥ Koushik Chakraborty PhD. Oral Examination
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OS and User Computations

 Coarse grain computation fragments
d Exercise mutually exclusive code
4 Limited data communication

w Koushik Chakraborty PhD. Oral Examination
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OS-User Data Communication

B OS-User
M User-User
B OS-0S

Apache OLTP

OS-User Communication is limited
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Implementation

d OS and User computation
— Satisfies all fragment selection objectives
— Server apps spend significant time in OS mode

 Core provision
— Provision some cores for running user code, rest for OS code
— VMM perform CT on mode transfer

d Assignment Policies
— Thread Assignment Policy (TAP)
— Maintain VCPU to core mapping
— Syscall Assignment Policy (SAP)
— Maintain system call to core mapping for OS computation
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CSP: Key Aspects

P2 P3

T1 ' T3

T3

N rq
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Performance Comparison

O Invariants: Area and power budget

Baseline * OPMS *

0 OPMS Schemes: Core Hopping (CHP) and Computation Spreading (CSP)
O Full System simulation using SIMICS

— Unmodified server apps running on Solaris

@ Koushik Chakraborty * Figuresiaingdemigsent floorplan 71



Branch Prediction Improvements

W Koushik Chakraborty PhD. Oral Examination
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Future Work

1 Managing Heterogeneity
— Need for energy efficiency push towards specialization
— Both static and dynamic heterogeneity will co-exist
— How can we engage application developers and compilers?
— Abstract model and interface

 Bridging general purpose and mobile architecture
— Mobile: sophisticated software with diverse requirements
— Holistic approach breaks the separation of s/w and h/w
— Managing complexity will become infeasible
— Requires abstraction for developing complex software

Koushik Chakraborty PhD. Oral Examination
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Memory Latency Improvements
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L1 Instruction Miss Comparison

11 - fl

Apache OLTP Zeus pgoltp  pmake

Base

—k

Normalized L1 Instruction Miss
] ] ] [ [ ) [ [
%] T i rh for - oo Lo

]
—

@ Koushik Chakraborty PhD. Oral Examination



L1 Load Miss Breakdown
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SAF Speedup: Symmetric and Dynamic

Diminishing perfomance gap at higher power constraint
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