Cooperative Cache Partitioning
for Chip Multiprocessors

Jichuan Chang
Guri Sohi

University of Wisconsin—Madison

1CS-21, 6/20/2007

CMP Caching Overview

¢ Critical for CMPs PO@®
— Processor/memory gap “ N
— Limited pin-bandwidth (P

Slow

. 4-core CMP
® Current designs

— Shared cache: sharing can lead to contention
— Private caches: isolation can waste resources

Capacity Wasted
contention capacity

2

Challenges and Our Approach

e Key challenges
— Growing on-chip wire delay
— Expensive off-chip accesses

— Destructive inter-thread interference
— Diverse workload characteristics

Cooperative Caching Partitioning
* Adapting to a wide range of workloads

CMP Cooperative Caching Time-sharing Based
[Chang/Sohi ISCAO06] + Cache Partitioning
e Locality (private caches) * Throughput

e Capacity (LRU-based sharing) e Fairness

* QoS guarantee

Outline

* Problems of destructive interference
— Motivating examples
— Objectives and metrics

— Limitations of prior proposals
* Cooperative caching partitioning

e Evaluation results

Thrashing

e Different ways to run 4 copies of art
— on a 4-core CMP with 4MB total L2 cache

Throughput

-

P

Human intervention;
CMP-aware OS scheduler

@

ﬂ@

Cache partitioning

-

ﬁ@@@

~N

ﬁ@@@

e

CMP Cache Partitioning

S N = O

Space (cache ways)

400

450

500 550 Time (M—cycle) 600

¢ art-1

art-2

&= apsi-1 === apsi-2

(A) LRU-based sharing

S DN B~ O

Space (cache ways)

400

450

500 550 Time (M-cycle) 600
(B) Cache Partitioning

e Two limitations of prior partitioning schemes
1. Coarse-grained partitions: often worse than LRU
2. Single spatial partition (SSP): hard to resolve contlicts

Optimization Goals

e Important resource sharing objectives
— Maximize overall throughput
— Improve fairness
— Guarantee QoS
— Support priority

* ... can sometimes be conflicting
— “Some” threads have to suffer to mitigate thrashing
— QoS guarantee can restrict throughput optimization
— Priority support further complicates the problem

Performance Baseline ®> D

baselPC,

* Proportional partitioning

— Resource allocation proportional to priorities/weights

— Special case: equal priority among concurrent threads
[Kim et al. PACT "04] [Yeh/Reinman CASES "05] [Hsu et al. PACT "06]

* Equal-share partition as our default baseline
— Correspond to private cache based CMPs and SMPs
— Achieve the “baseline” performance without effort

— Our proposal can support proportional partitioning

* Different speedup curves, same partitioning policy/algorithm

Metrics Definition i@) ® &

e Our metrics baselPC;

— QoS =) (slowdown,) = > min(0, IPC./baselPC-1)
* QoS guaranteed if this value > threshold (e.g., -5%)
¢ [Yeh/Reinman CASES “05]

— Fair speedup (FS) := Hmean (IPC,/basell’C))
* Reduce execution time; penalize unequal speedups

e Hmean used in [Luo et al. IPDPS '01] (SMT baseline)
* Hmean of IPCs used in [Dybdahl/Stenstrom HPCA "07]

-

e Other metrics SCIPC,
— Weighted speedup (WS) = sum (IPC,/scIPC))
— Throughput := sum (IPC))

Prior Cache Partitioning Schemes

e Use one partition repeatedly in a stable phase
— Hard to satisty conflicting optimization goals

Speedups of vpr when co-scheduled with large applications

- 14
2 |
S 1.2
Qo rea ¢ Reeiba ﬁ XX AT I T
‘q", 1 Aoooﬂobgnaoomnmlmoaasgaagaqwmu
%‘ e —+— Base]
g -a— [RU
g_‘ - ~ 4 WSopt |
Do \ Poor QoS ¢ Fast-fair| |

' ~ CCP

0

1 11 21 31 41 51

Workload ID "

Outline

* Cooperative caching partitioning
— Time-sharing based cache partitioning

— Integration with CMP cooperative caching

e Evaluation results

11

Time-share Based Partitioning

 Throughput-fairness dilemma
— Cooperation: Taking turns to speed up
— Multiple time-sharing partitions (MTP)

* QoS guarantee

— Cooperatively shrink/expand across MTPs
— Bound average slowdown over the long term

:I@@ :I@@
] T

[PC=0.52 WS=2.42 == [PC=0.52 W§5=242
QoS=-0.52 F5=1.22 << QoS =0 FS=1.97

Fairness improvement and QoS guarantee
reflected by higher FS and bounded QoS values 12

Time v

MTP Benefits

o Better than single spatial partition (SSP)
— MTP/long-termQoS almost the same as MTP/noQoS

2.00 ¢

—— MTP/noQoS
o 1801 ° MTIP/long-termQoS
?”) 1.60 SSP/noQoS
c;?; a0 ey MTP/real-timeQoS
< . L (C<eree .
& —— SSP/real-ti S
kS \\‘: /real-timeQo.

1.20 -

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 1009
Percentage of workloads achieving various FS values

Offline analysis based on profile info, 210 workloads (job mixes) .

Better than MTP

e MTP issues

— Not needed if LRU performs better
(LRU often near-optimal [Stone et al. IEEE TOC "92])

— Partitioning is more complex than SSP

* Cooperative Cache Partitioning (CCP)
— Integration with Cooperative Caching (CC)
— Exploit CC’s latency and LRU-based sharing benetfits
— Simplity the partitioning algorithm
— Total execution time = Epochs(CC) + Epochs(MTP)
* Weighted by # of threads benefiting from CC vs. MTP

14

CC Background

* CC = private caches + capacity sharing

e Sharing mechanism - spill
— Placing locally evicted blocks in other on-chip caches
— Randomly selected host caches, no ripple spilling

e Sharing policy — aging-based global LRU
— Spill brings global data to local caches

— Global LRU = Local LRU + global spill/reuse
e Age :=0 when being used (—>MRU)
e Age ++ when being spilled (MRU —»LRU)
e Age > N triggers global eviction (N=1 is sufficient)

* Benefits: better latency + LRU-sharing

15

Partitioning Heuristic

* When is MTP better than CC
— QoS:) speedup >) slowdown (over N partitions)

— Speedup should be large
d CC already good at fine-grained tuning

= C_shrink Baseline C_expand
N 35 {
TES - /\/é * * L 1 g
5 25
g // > Speedup
s, 15 .
S g J thrashing _test
§ 05 | Slowdown Speedup > (N-1) x Slowdown
E |
= o

1 2 3 4 5 6 7 8 9 10 11 12 13

Allocated cache ways (16-way total, 4-core) >

Partitioning Algorithm

1. S=All threads - supplier threads (e.g., gcc, swim)

e Allocate them with gPar (guaranteed partition, or min.
capacity needed for QoS) [Yeh/Reinman CASES "05]
e For threads in S, init their C_expand and C_shrink

2. Do thrashing_test iteratively for each thread in S
o [f thread t fails, allocate t with gPar, remove t from S

e Update C_expand and C_shrink for other threads in S
3. Repeat until S is empty or all threads in S pass the test

17

Outline

e Evaluation results

18

Evaluation

e Workloads

— 7 benchmarks (diverse IPCs and speedup curves)
— All 4-thread combinations (210 combinations)
— In-order cores, simulation for fine-grained schemes

0.5 T T T T T T T T T T -
4+ | apsl
T Sy S S S S —" twolf
0.4 _ A—vpr
—+—gcc
F— * $——F * % + * 4 | ——ammp
0.3 I ——— ot
%&J 2 o -t me
0.2 _,y//f’ <]
yd % - H
< . - " -
U1T_ ‘e — - — A T i
0 1] 1]]]]]]] | |
1 2 3 4 5 6 7 8 9 10 11 12 13 19

Number of cache ways

Fair Speedup Results

 Two groups of workloads

— PAR: MTP better than CC (partitioning helps)
— LRU: CC better than MTP (partitioning hurts)

Fair Speedup

e

Wl
. | |

16 R S

1 4\\% __________ ___________
' “‘\\f&/% |
N :

120 N %% """""""

e
P TS SRS ST S,

PAR (67 out of 210 workloads)

0% 25% 50% 75%

Percentage of workloads

100%

Fair Speedup

-
w

—_—
N

—
.
—

1

----------- SRS B e N
0% 25% 50% 75% 100%
Percentage of workloads

LRU (143 out of 210 workloads)

20

Results of Other Metrics (for PAR)

D¢ v [IPCopt - M, eI, -
| | WSopt 04} I TFTRIIERRRRRONY R !
1.8r) - e MTP | %WH%H'& } }
| | - CCP 021 R HHHHHE—
TR B P —— " | R
o . © 03| R Lo
e, g 1 1 1 \
04 S]
05 T -
(EEEEEEE RS P A : ; ; ; M
0% 25% 90% 75% 100% 0% 25% 90% 715% 100%
(A) Fair speedup (B) QoS
O
&

02 i ; i 1 i ; i
0% 25% 50% 75% 100% 0% 25% 50% 5% 100%
(C) Throughput (D) Weighted speedup

Average Improvement

1.3

1.25

1.2

1.4

LRU All
(A) Fair Speedup

Par

QoS

-0.05¢-

-0.1+

-0.15+

-0.2

shared [/ CC | cCP

LRU All
(C) Throughput

Par

I \vSopt [IPCopt [|

1.4

13}
2 12f

1.1+

LRU All
(D) Weighted Speedup

Par

22

Summary

* Cooperative Cache Partitioning
— Cooperation to resolve conflicts
— Integration to exploit CC benetfits
— Adaptation to accommodate diversity

Cooperative Caching Partitioning
* Adapting to a wide range of workloads

CMP Cooperative Caching Time-sharing Based
[Chang & Sohi ISCAO06] + Cache Partitioning
e Locality (private caches) * Throughput

e Capacity (LRU-based sharing) e Fairness

* QoS guarantee

Backup Slides

More on Baseline

* Desirable attributes of a baseline
— Provide schedule-independent performance
— Directly guarantee QoS (no resource overcommitment)
— Correspond to real implementation (intuitive results)

e Candidate baselines

— LRU sharing among threads
— Single thread using all caches (SMT)
— Proportional sharing [Waldspurger thesis 1995]

* Private caches (equal-share allocation)

* Policy decoupled from baseline definition
— MTP works for proportional sharing partitions
— We use equal-share allocation for our study

25

Offline Analysis

e Idealized setting
— Profile available for all (benchmark, capacity) pairs
— Each workload combination forms a partition space
— Offline search in the space for optimal results
— Suitable for cache partitioning (coarse-grained)

e Used for limit study
— Estimate the performance upper limit
— Discover the limitations of existing schemes
— Avoid comparison with real implementations

26

MTP Benefits — QoS Results

-0.2 MTPHOGDS --------------------------------------- R R L Bt
MTPi00s :
-0.25 + SPHOQOS --------------------------------------- --------------------------------------
o MTPass f
-03H I-I-ISPQDS
I I | I | | I | I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

(B) Percentage of Workloads Achieving Various QoS Values

100%

Other MTP Issues

e Support of priority

— MTP supports other proportional sharing baseline

— Also support prioritized time-sharing of MTPs

— Currently study equal priority (equal-share baseline)

— Future work need to study software implementation
¢ Real-time QoS

— Guaranteed partition for threads w/ real-time QoS

— Apply MTP to other threads

e Better adaptation to phase/schedule changes
— Phase change detection/prediction
— Cooperate with software to handle schedule changes

28

Why MTP + CC? Why not shared?

FS normalized against Max[FS(MTP), FS(CC)]

1.2

1.1

’
0.7 om e
0B -
o I + MTP
x CC
Shared
0.4 : :
FS(MTP)>FS(CC) FS(MTP)<FS(CC)

(A) Fair Speedup (FS)

QoS

= W]
~0.05 X
X X
Y
X
WX
X
X, .
-01}F - b SR I N
X
%
w %
" %
COABE
% e
0 S
FS(MTP)>FS(CC) FS(MTP)<FS(CC)
(B) QoS

29

CCP Implementation

* Epoch size 20M-cycles
— Shorter epochs can lead to inaccurate prediction
* Measurement

— Candidate threads get C_expand in sampling epochs

— Use LRU stack hit counters to estimate the miss
rates for smaller capacities

— Estimate speedups over the given baseline
e Partitioning

— Can be implemented in either software or hardware
* Enforcement - quota-based throttling

— Under-quota threads: spill, but cannot accept spill;
— Over-quota threads: cannot spill, but accept spill

30

2MB Total Capacity (for PAR)

15 ; 0 1
-. : : + IPCopt N
I S S L WSopt | it S o el R - —
- I.I I I 77777 MTP _005 _W'H'{:H:—‘I """""" I ST '.'..'..'j,.'.-'..'.,'..'.. """""
‘ : : - CCP \ : :
1.3 SRR . § A
------- : : : N : : : :
N] § 0Mp SRR \ ----- "
N 5 5 5 A T
110 Sy '-:-'-i-'i:;i.;.:-: AR """""" -015 """""" PR """ \ T
Thoes Lo S S - _ ; ;
0% 25% 50% 75% 100% 0% 25% 50% 75% 100%
(A) Fair speedup (B) QoS

IPC

2 ; ; ; ; ; ; .
0% 25% 50% 5% 100% 0% 25% 50% 75% 100%
(C) Throughput (D) Weighted speedup 31

2MB Total Capacity- Summary

FS

IPC

1.15

1.1

1.05¢-

1.25

1.2}

1.15¢-

1.1}

1.05-

Par LRU All
(A) Fair Speedup

-0.02

-0.04}

w
o -

Q

-0.08 -

0.1}

-0.12

0.06

Par LRU Al
(B) QoS

shared [] cC | cCcP

Par LRU All
(C) Throughput

I \vSopt I IPCopt [

1.2

115
2 11p

1.05-

Par LRU All
(D) Weighted Speedup

32

Metrics Examples

Different trade-offs needed for WS and FS optimizations
Weighted speedup improvement can be unfair

4

Mart Ovpr

) .

Weighted speedup=1.40 >> Weighted speedup =1.27
Fair speedup = 0.86 << Fair speedup =1.16

3,

Speedup

1,

33

Average IPC

©

£

O AL -
m

0

ke

QB el .
N

g .

S 20 ol m .
£

O

SRR (IR | —— i, ‘ S

o

o

0]

> 0 L

< ammp apsi art gcc mcf twolf HMEAN

(A) PAR workloads

B v/sopt I 7 [1PCopt | | MTP | | Shared [T cc [N ccr I X
E T T T T T I T
T .
®
0
ie)
Q3 I AR IR .
N
g
S 2 K - W Tl .
S
O
Q44 .
: II‘ ‘ | | ‘ |I| ‘ll
o
©
2o |
< ammp apsi art gcc mcf twolf HMEAN

(B) All workloads

	Cooperative Cache Partitioning�for Chip Multiprocessors
	CMP Caching Overview
	Challenges and Our Approach
	Outline
	Thrashing
	CMP Cache Partitioning
	Optimization Goals
	Performance Baseline
	Metrics Definition
	Prior Cache Partitioning Schemes
	Outline
	Time-share Based Partitioning
	MTP Benefits
	Better than MTP
	CC Background
	Partitioning Heuristic
	Partitioning Algorithm
	Outline
	Evaluation
	Fair Speedup Results
	Results of Other Metrics (for PAR)
	Average Improvement
	Summary
	Backup Slides
	More on Baseline
	Offline Analysis
	MTP Benefits – QoS Results
	Other MTP Issues
	Why MTP + CC? Why not shared?
	CCP Implementation
	2MB Total Capacity (for PAR)
	2MB Total Capacity- Summary
	Metrics Examples
	Average IPC

