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CMP Caching Overview

¢ Critical for CMPs PO@®
— Processor/memory gap “ N
— Limited pin-bandwidth (P

Slow

. 4-core CMP
® Current designs

— Shared cache: sharing can lead to contention
— Private caches: isolation can waste resources

Capacity Wasted
contention capacity

2




Challenges and Our Approach

e Key challenges
— Growing on-chip wire delay
— Expensive off-chip accesses

— Destructive inter-thread interference
— Diverse workload characteristics

Cooperative Caching Partitioning
* Adapting to a wide range of workloads

CMP Cooperative Caching Time-sharing Based
[Chang/Sohi ISCAO06] + Cache Partitioning
e Locality (private caches) * Throughput

e Capacity (LRU-based sharing) e Fairness

* QoS guarantee




Outline

* Problems of destructive interference
— Motivating examples
— Objectives and metrics

— Limitations of prior proposals
* Cooperative caching partitioning

e Evaluation results



Thrashing

e Different ways to run 4 copies of art
— on a 4-core CMP with 4MB total L2 cache

Throughput
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Human intervention;
CMP-aware OS scheduler

@

ﬂ@

Cache partitioning

-

ﬁ@@@

~N

ﬁ@@@

e




CMP Cache Partitioning

S N = O

Space (cache ways)

400

450

500 550 Time (M—cycle) 600

¢ art-1

art-2

&= apsi-1 === apsi-2

(A) LRU-based sharing

S DN B~ O

Space (cache ways)

400

450

500 550 Time (M-cycle) 600
(B) Cache Partitioning

e Two limitations of prior partitioning schemes
1. Coarse-grained partitions: often worse than LRU
2. Single spatial partition (SSP): hard to resolve contlicts



Optimization Goals

e Important resource sharing objectives
— Maximize overall throughput
— Improve fairness
— Guarantee QoS
— Support priority

* ... can sometimes be conflicting
— “Some” threads have to suffer to mitigate thrashing
— QoS guarantee can restrict throughput optimization
— Priority support further complicates the problem



Performance Baseline ®> D

baselPC,

* Proportional partitioning

— Resource allocation proportional to priorities/weights

— Special case: equal priority among concurrent threads
[Kim et al. PACT "04] [Yeh/Reinman CASES "05] [Hsu et al. PACT "06]

* Equal-share partition as our default baseline
— Correspond to private cache based CMPs and SMPs
— Achieve the “baseline” performance without effort

— Our proposal can support proportional partitioning

* Different speedup curves, same partitioning policy/algorithm



Metrics Definition i@) ® &

e Our metrics baselPC;

— QoS =) (slowdown,) = > min(0, IPC./baselPC-1)
* QoS guaranteed if this value > threshold (e.g., -5%)
¢ [Yeh/Reinman CASES “05]

— Fair speedup (FS) := Hmean (IPC,/basell’C))
* Reduce execution time; penalize unequal speedups

e Hmean used in [Luo et al. IPDPS '01] (SMT baseline)
* Hmean of IPCs used in [Dybdahl/Stenstrom HPCA "07]

-

e Other metrics SCIPC,
— Weighted speedup (WS) = sum (IPC,/scIPC))
— Throughput := sum (IPC))




Prior Cache Partitioning Schemes

e Use one partition repeatedly in a stable phase
— Hard to satisty conflicting optimization goals

Speedups of vpr when co-scheduled with large applications
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Outline

* Cooperative caching partitioning
— Time-sharing based cache partitioning

— Integration with CMP cooperative caching

e Evaluation results
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Time-share Based Partitioning

 Throughput-fairness dilemma
— Cooperation: Taking turns to speed up
— Multiple time-sharing partitions (MTP)

* QoS guarantee

— Cooperatively shrink/expand across MTPs
— Bound average slowdown over the long term

:I@@ :I@@
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[PC=0.52 WS=2.42 == [PC=0.52 W§5=242
QoS=-0.52 F5=1.22 << QoS =0 FS=1.97

Fairness improvement and QoS guarantee
reflected by higher FS and bounded QoS values 12
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MTP Benefits

o Better than single spatial partition (SSP)
— MTP/long-termQoS almost the same as MTP/noQoS
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Offline analysis based on profile info, 210 workloads (job mixes) .



Better than MTP

e MTP issues

— Not needed if LRU performs better
(LRU often near-optimal [Stone et al. IEEE TOC "92])

— Partitioning is more complex than SSP

* Cooperative Cache Partitioning (CCP)
— Integration with Cooperative Caching (CC)
— Exploit CC’s latency and LRU-based sharing benetfits
— Simplity the partitioning algorithm
— Total execution time = Epochs(CC) + Epochs(MTP)
* Weighted by # of threads benefiting from CC vs. MTP
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CC Background

* CC = private caches + capacity sharing

e Sharing mechanism - spill
— Placing locally evicted blocks in other on-chip caches
— Randomly selected host caches, no ripple spilling

e Sharing policy — aging-based global LRU
— Spill brings global data to local caches

— Global LRU = Local LRU + global spill/reuse
e Age :=0 when being used (—>MRU)
e Age ++ when being spilled (MRU —»LRU)
e Age > N triggers global eviction (N=1 is sufficient)

* Benefits: better latency + LRU-sharing
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Partitioning Heuristic

* When is MTP better than CC
— QoS: ) speedup > ) slowdown (over N partitions)

— Speedup should be large
d CC already good at fine-grained tuning
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Partitioning Algorithm

1. S=All threads - supplier threads (e.g., gcc, swim)

e Allocate them with gPar (guaranteed partition, or min.
capacity needed for QoS) [Yeh/Reinman CASES "05]
e For threads in S, init their C_expand and C_shrink

2. Do thrashing_test iteratively for each thread in S
o [f thread t fails, allocate t with gPar, remove t from S

e Update C_expand and C_shrink for other threads in S
3. Repeat until S is empty or all threads in S pass the test

17



Outline

e Evaluation results
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Evaluation

e Workloads

— 7 benchmarks (diverse IPCs and speedup curves)
— All 4-thread combinations (210 combinations)
— In-order cores, simulation for fine-grained schemes
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Fair Speedup Results

 Two groups of workloads

— PAR: MTP better than CC (partitioning helps)
— LRU: CC better than MTP (partitioning hurts)

Fair Speedup
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Results of Other Metrics (for PAR)
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Average Improvement
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Summary

* Cooperative Cache Partitioning
— Cooperation to resolve conflicts
— Integration to exploit CC benetfits
— Adaptation to accommodate diversity

Cooperative Caching Partitioning
* Adapting to a wide range of workloads

CMP Cooperative Caching Time-sharing Based
[Chang & Sohi ISCAO06] + Cache Partitioning
e Locality (private caches) * Throughput

e Capacity (LRU-based sharing) e Fairness

* QoS guarantee
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More on Baseline

* Desirable attributes of a baseline
— Provide schedule-independent performance
— Directly guarantee QoS (no resource overcommitment)
— Correspond to real implementation (intuitive results)

e Candidate baselines

— LRU sharing among threads
— Single thread using all caches (SMT)
— Proportional sharing [Waldspurger thesis 1995]

* Private caches (equal-share allocation)

* Policy decoupled from baseline definition
— MTP works for proportional sharing partitions
— We use equal-share allocation for our study
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Offline Analysis

e Idealized setting
— Profile available for all (benchmark, capacity) pairs
— Each workload combination forms a partition space
— Offline search in the space for optimal results
— Suitable for cache partitioning (coarse-grained)

e Used for limit study
— Estimate the performance upper limit
— Discover the limitations of existing schemes
— Avoid comparison with real implementations

26



MTP Benefits — QoS Results
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Other MTP Issues

e Support of priority

— MTP supports other proportional sharing baseline

— Also support prioritized time-sharing of MTPs

— Currently study equal priority (equal-share baseline)

— Future work need to study software implementation
¢ Real-time QoS

— Guaranteed partition for threads w/ real-time QoS

— Apply MTP to other threads

e Better adaptation to phase/schedule changes
— Phase change detection/prediction
— Cooperate with software to handle schedule changes

28



Why MTP + CC? Why not shared?

FS normalized against Max[FS(MTP), FS(CC)]
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CCP Implementation

* Epoch size 20M-cycles
— Shorter epochs can lead to inaccurate prediction
* Measurement

— Candidate threads get C_expand in sampling epochs

— Use LRU stack hit counters to estimate the miss
rates for smaller capacities

— Estimate speedups over the given baseline
e Partitioning

— Can be implemented in either software or hardware
* Enforcement - quota-based throttling

— Under-quota threads: spill, but cannot accept spill;
— Over-quota threads: cannot spill, but accept spill

30



2MB Total Capacity (for PAR)
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2MB Total Capacity- Summary
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Metrics Examples

Different trade-offs needed for WS and FS optimizations
Weighted speedup improvement can be unfair
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Weighted speedup=1.40 >> Weighted speedup =1.27
Fair speedup = 0.86 << Fair speedup =1.16
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Average IPC
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