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Guarded execution, or simply guarding, is a powerful and promising concept, with the potential to
reduce the unpredictability of the control flow caused by branches, and smoothen the flow of instruc-
tions in processor pipeline(s). Guarding also boosts the compiler’s ability to expose instruction level
parallelism to the processor, while requiring a modest amount of hardware support. These features
make guarding attractive for inclusion in an architecture. However, the integration of guarding in an
instruction set is not easy, especially when the designer needs to extend an existing instruction set. This
thesis address two issues that are critical to the widespread acceptance for guarding: (i) the required
instruction set support for guarded instructions, and (ii) the performance on aggressive processor con-
figurations.

This thesis proposes GUARD instructions, a new class of instructions that offer an easy and
powerful way to accommodate guarded execution in an instruction set. With the modest requirement
of just a few opcodes, GUARD instructions are sufficient to provide efficient support for full guarding.

This thesis evaluates and compares the performance of three ways of supporting guarding: (i)
using explicit guard operand fields in each instruction, (ii) using conditional move instructions, and (iii)
the newly proposed GUARD instructions. The results of this evaluation show that for all configurations,
GUARD instructions perform better than ordinary guarding. They also show that conditional moves can
exploit a large fraction of the potential of full guarding, and that hardware mechanisms such as 2-level
adaptive branch prediction and out-of-order execution diminish the performance potential of guarded
execution.
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Chapter 1
Introduction

In the quest for ever-faster processors, and with a considerable transistor budget per chip, processor
designers rely heavily on Instruction Level Parallelism (ILP) to achieve higher performance. Current
high-end processors can issue up to 4 or more instructions per cycle, while mainstream processors al-
ready can issue two or three instructions per cycle. Meanwhile, efforts to achieve higher clock frequen-
cies force designers to split tasks that traditionally occupied a single pipeline stage (such as instruction
decoding) into multiple stages, deepening the processor pipelines.

In these deep and wide pipelines, a continuous instruction supply is critical to sustain a high
issue rate. Changes in the control flow of a program can introduce bubbles in the pipeline, resulting
in underutilization of the resources, and longer execution times. Furthermore, conditional branches
introduce a dependency between the execution of the branch instruction and the fetching of the tar-
get instruction. In a deep pipeline, resolving this dependency and fetching the correct target can take
several cycles, during which the (multiple) resources of the processor remain idle.

Branches also introduce control dependences which restrict the ability of the compiler to re-
arrange instructions and achieve better instruction schedules. Control dependent computation (that
is, computation who’s execution depends on a branch outcome) cannot, in general, be moved across
branches, unless it is safe, i.e., unless the compiler can guarantee that the computation will never cause
an exception, or unless adequate hardware support is provided to buffer the exceptions until the condi-
tion is resolved (e.g., sentinel scheduling [MCH

�

92], or boosting [SLH90, SHL92]).

1.1 What can we do about branches?

A number of solutions have been proposed to deal with the limitations of branches. The general idea
behind many techniques is to predict a likely direction for a branch and optimize the execution along
that path. This general idea can used both statically during code generation, and dynamically using
some information tracking mechanism.

A static manifestation of this general framework is static branch prediction, in which branches
are tagged with a direction bit; this bit indicates to the processor the likely branch outcome. Static
predictions can also be used by the compiler for scheduling purposes, as in the case of trace scheduling
and its variants [Fis81, LFK

�

93, CNO
�

88, CMC
�

91]. In trace scheduling, the compiler predicts a
branch and optimizes the code assuming the prediction is correct. To recover the correct state after an
incorrect prediction, the compiler generates special fix-up code that will be executed when an incorrect
prediction is detected. This fix-up code is responsible for reversing all the effects of the code that was
incorrectly executed.

Dynamic branch prediction utilizes information collected at run time to decide which is the
most likely direction for a branch. Generally, dynamic branch prediction is based on maintaining a table
of counters that record the past behavior of branches [Smi81, YP92, YP93] and a selection mechanism
(called a divisor by Young et al. [YGS95]) that will determine which counter to use for the prediction
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of each branch. Because the direction of a branch is not by itself sufficient to allow the instruction
fetch mechanism to commence fetching new instructions, a Branch Target Buffer is also used to cache
branch target address [LS84]. Dynamic branch prediction techniques are significantly more accurate
than static ones, and due of their simple, table-based structure, are relatively easy to implement. As a
result, virtually every new processor resorts to some form of dynamic branch prediction.

Even the most accurate prediction mechanisms face performance limitations. The behavior of
some branches is unpredictable, forcing a lengthy recovery action to be employed by the processor.
In addition, branches restrict the ability of the compiler to schedule the code, making it harder for the
execution hardware to discover the available parallelism.

One way to alleviate these limitations, is to use if-conversion [AKPW83] and guarded execu-
tion [Hsu86, HD86, Mac93, MLC

�

92, RYYT89, KSR94]. In guarded execution, instructions in condi-
tional regions of code are augmented with a guard operand. This operand specifies whether the instruc-
tion should be executed or not, and the branch controlling the execution of that region can be removed
from the code. As a result, the compiler or dynamic scheduler can rearrange these instructions arbitrar-
ily, as long as the dependences are respected. Furthermore, regardless of the direction of the branch,
the control flow is always sequential through the if-converted part of the code, allowing a fast, sequen-
tial instruction fetching, and eliminating the pipeline bubbles due to branches. Since the if-converted
branches are not predicted, they never require corrective actions. However, these advantages come at
some cost. The guarded instructions that the compiler generates may be dynamically converted into
NOPs, in which case they will not contribute to the useful computation of the program. However the
processor will still have to fetch and decode them, possibly preventing other useful instructions from
executing.

1.2 Guarding Background

Guarded execution (or simply guarding), has been proven effective in several contexts. Originally, it
was proposed by Dijkstra [Dij75] as a high level programming construct, meant to simplify the expres-
sion of algorithms and to allow the formal verification of the derived algorithms. Dijkstra allowed an
arbitrary Boolean conditions to be used as the guard condition of a high level statement.

Vector processors such as the CDC STAR-100 [HT72], TI ASC [Wat72] and Cray-1 [Rus78]
have long benefited from guarded execution expressed through the use of vector masks. A vector mask
is an N-bit wide control register, where N is the number of elements in a vector register. Each bit in
the vector mask controls whether the corresponding element of a destination vector register should be
updated or not. Essentially the vector mask stores multiple guard conditions. Using a vector mask,
loops that contain if-statements can be vectorized by breaking the loop in two phases: one in which
vector instructions are used to compute the bits of the vector mask, and one in which vector instructions
perform the necessary computation, with the newly computed vector mask masking the results that
should not be written to their destinations. The Cray-1 also includes a scalar version of the vector mask,
and a merge instruction which is a superset of the conditional move instruction.

Allen et al. formalized and generalized the idea of vector masks introducing if-conversion
[AKPW83], a general code transformation technique that facilitates the vectorization of floating point
intensive applications. As part of PFC, the Parallel Fortran Converter, if-conversion was responsible
for the simplification of the control flow of loops with conditional statements by converting the control
dependences introduced by branches into data dependences, which are easier for the compiler to handle.
The overall operation of PFC is to convert the loops into the two phases described for use with a vector
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mask: first compute the appropriate conditions, and then do the actual computation guarded with the
appropriate condition. A later phase of PFC was responsible for mapping these converted loops into
vector instructions using the vector masks if they were supported by the underlying architecture.

VLIW machines, for example Cydra-5 [RYYT89, DHB89], and the IBM VLIW machine
[Ebc88], have also used if-conversion and guarded execution to facilitate the software pipelining of
loops with conditional branches. The general methodology is to apply if-conversion to loop bodies so
they become free of control dependences, and then to apply other loop scheduling technique such as
software pipelining [RG91, BRRP82, Lam88, Ebc87]. These machines provided instruction set and
hardware support for guarded execution. For example, the Cydra-5 contained a predicate field per op-
eration, and the IBM VLIW machine supported tree instructions, which would evaluate an expression
tree and depending on the exact conditions would nullify the appropriate operations along the branches
of the tree.

Hsu and Davidson [Hsu86, HD86] used guarding on a scalar processor to allow better schedul-
ing of decision trees. In the context of a decision tree, the conditional branches are essential because
they steer the flow of control to the correct branch of the tree. These diverging control structures are
not amenable to if-conversion, and guarding was used as a general purpose technique to fill multiple
architectural branch delay slots. However, the only current commercial scalar instruction set to include
support for guarded execution is the ARM instructions set [Mac93].

The Illinois IMPACT group [CMC
�

91, MCH
�

92, MLC
�

92, MHB
�

94, MHM
�

95] has de-
veloped several compilation techniques to improve the performance of guarded execution for ordinary
programs. The main compilation construct they use is the Hyperblock, which is a compilation region
that may contain ordinary, as well as guarded instructions. A hyperblock is defined to have a single
entry and may have multiple exits. The IMPACT compiler performs an extensive set of code trans-
formation techniques, such as loop restructuring, unrolling, loop peeling, etc. in order to enlarge the
amount of computation that can be encapsulated in a hyperblock. The compiler chooses the most ap-
propriate code transformation technique using profiling information.

1.3 Contributions of this thesis

Why isn’t guarded execution a part of many instructions set architectures? The answer is not simple;
however, we can identify two key factors that hinder the general acceptance of guarding:

� It requires substantial support in the instruction set, for guard operands and new instruction spec-
ifiers. Guarding requires new opcodes and instruction formats, and perhaps additional registers
or register files to hold guard conditions. While this support can be trivially added to a new in-
struction set, extending an existing one is considerably harder. In an existing instruction set the
unused space in the instruction encoding is very limited, especially for instructions with imme-
diate fields such as load and store instructions.

� The expected performance in an ordinary development environment is unknown. Most research
in the area of guarding has been done for numerical intensive programs, or under very controlled
environments, where plenty of information about the compiled programs is available. Under
every-day use, such a controlled environment may not be possible.

This thesis focuses on these two practical issues concerning guarded execution. Our contribu-
tion is twofold.
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First, we propose a new way of supporting guarding which requires only small additions to an
existing (or new) instruction set architecture (ISA). This is achieved through a new class of instructions,
the GUARD instructions. GUARD instructions augment the semantics of ordinary computation to add
the guard operands. GUARD instructions can also reduce the number of instructions required to perform
condition evaluation and can sustain better performance than other methods for guarding.

Second, we identify a set of guarding alternatives for existing instruction sets and we evalu-
ate their performance potential. We perform the evaluation in two steps. In the first step, we evaluate
the impact of guarding on the dynamic characteristics (such as the instruction count and branch be-
havior) of the programs; these characteristics provide insight in the effectiveness of guarding. In the
second step, we perform detailed simulations to determine the execution time for each of our guard-
ing alternatives. The context of the evaluation is a MIPS-like processor. We carry out the evaluation
assuming varying levels of support for guarding, using either the traditional specification method, or
using GUARD instructions.

The thesis is organized as follows: Chapter 2 describes in detail guarded execution, its use and
potential, its hardware support requirements and its ISA requirements. Chapter 3 describes the com-
piler support required for the effective use of guarded execution. Chapter 4 introduces GUARD instruc-
tions, a mechanism to allow the introduction of guarding in existing instruction sets, and discusses the
required changes in the instruction set architecture level and at the execution hardware level. Chapter 5
presents the effect of guarding on the dynamic program characteristics. Chapter 6 presents the execu-
tion time evaluation of guarding, and Chapter 7 concludes the thesis and summarizes the implications
of this work.
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Chapter 2
Guarded Execution

Guarded execution is the use of guarded instructions to express conditional program structures. In
this chapter, we define the exact semantics and the key characteristics of guarded instructions, and we
briefly describe if-conversion, a method that uses guarded instructions to express conditional compu-
tation. Then we discuss the advantages and limitations of using guarding execution and we discuss the
implications of supporting guarded execution on the instruction set architecture and on the implemen-
tation of the execution engine.

2.1 Semantics and use of guarded instructions

A guarded instruction is a ordinary instruction augmented with a guard condition specifier. The seman-
tics of a guarded instruction are as follows: evaluate the guard condition and if it evaluates to true, then
execute the instruction, otherwise treat the instruction as a NOP. For example, a guarded add instruction
can be written as:

g add gcond ? dst, src1, src2

and its semantics would be: if gcond evaluates to true, perform the addition of src1 and src2 into
dst, otherwise leave dst unmodified.

The conditional nature of guarded instructions allows the expression of conditional computa-
tion structures without the use of conditional branches, since the guard operands will make sure that
only the correct results are committed to the architectural state of the processor.

2.1.1 Use of guarded instructions

To understand why guarded execution can be a useful feature in a processor, let us first consider how
a program is compiled and executed. A common program representation form used by compilers is a
control flow graph (CFG). A control flow graph is a directed graph where each node is a basic block and
each arc corresponds to the possible flow of control through that node. The compilation of a program
can be thought of as a set of traversals of the CFG during which instructions are rearranged. During
code generation, the nodes of the CFG are placed in a linear fashion in the program memory. The exe-
cution of a program can be thought of as a traversal of the linearized CFG during which the processor
decides which instructions must be executed. The existence of conditional structures in the CFG gives
rise to control dependences. A CFG node

�
is said to be control dependent on CFG node � , when (i)

� has two (or more) outgoing arcs, and (ii) when the flow of control reaches node � , node
�

may or
may not be executed, according to the condition that selects the outgoing arc of node � .

Figure 2.1 illustrates the control dependences in a CFG. Figure 2.1(a) shows the C-code for a
small loop containing an if-then-else statement. Figure 2.1(b) shows the corresponding control flow
graph, annotated (using dashed lines) with the control dependences. In this example node � and � are
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add  r10, r10, 1
add  r11, r11, 1
bne  r10, r9, L0

add  r8, r8, 1
sw   r2, 0(r11)add  r7, r7, 1

(a) (b)

(r4 != 0)(r4 == 0)

1

2 3

4

lw   r2, 0(r10)
lw   r3, 0(r11)
sle  r4, r2, r3

for (i = 0; i < N; i++)
{
      if (A[i] > B[i]) {
          g_count ++;
      } else {
          le_count ++;
          A[i] = B[i];
      }
}

Figure 2.1: A small loop and its corresponding CFG. The dashed arrows in the CFG
indicated control dependences.

control dependent on node � . Note that node � is not control dependent on node � , since node � will be
executed regardless of the outcome on the branch in node � . Node � is not control dependent on nodes

� and � since these nodes have a single exit arc.
In a traditional instruction set, the conditional structures in the CFG are expressed in the assem-

bly code using conditional branches to express the decision points (node � ) and unconditional branches
to redirect the control flow to the reconvergence points (node � ) as shown in Figure 2.2(a). During the
execution of the generated code, the processor navigates through the CFG by means of executing the
conditional and unconditional branches.

If the instruction set supports guarded instructions, a process known as if-conversion can be
used to express the conditionally executed parts of the CFG using guarded instructions as shown in
Figure 2.2(b). (In Figure 2.2(b), the prefix “g ” denotes the guarded version of an instruction, so g add
is a guarded add, g sw is a guarded store, etc; the first operand of a conditional instruction is the condi-
tion register.) If-conversion works on loop-free subsets of the CFG of a program in three steps. First, it
assigns a guard condition register to each conditionally executed node. Second, it identifies where each
guard condition should be set and inserts code that sets it appropriately. As a last step, if-conversion
transforms all the instruction in the conditionally executed nodes into guarded instructions using the
corresponding guard condition. (A detailed description of an algorithm for if-conversion will be pre-
sented in Chapter 3.) After these three steps, the control dependences are transformed into data depen-
dences which are explicitly expressed as the settings and the uses of the guard registers.

The positive effects of guarded execution can be seen in Figure 2.2 (a) and (b). Comparing
the two figures we find that two static branches were eliminated (corresponding to the if-then-else con-
struct in the C-code), and that the basic blocks are considerably larger: the MIPS-like assembly con-
tains eight non-branch and three branch instructions, while the guarded version contains 8 non-branch
and 1 branch instructions. The instruction level parallelism is increased considerably with guarding.
In Figure 2.2(a), the maximal dependence path is five or six instructions per iteration depending on
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(a)

L0: lw   r2, 0(r10) # A[i]
    lw   r3, 0(r11) # B[i]
    sle  r4, r2, r3
    bne  r4, r0, L1
    add  r7, r7, 1
    j    L2
L1: add  r8, r8, 1
    sw   r2, 0(r11)
L2: add  r10, r10, 1
    add  r11, r11, 1
    bne  r10, r9, L0

r2

r4

CT

CT

r10

(b)

L0: lw          r2, 0(r10) # A[i]
    lw          r3, 0(r11) # B[i]
    sle         r4, r2, r3
    g_add  !r4? r7, r7, 1
    g_add   r4? r8, r8, 1
    g_sw    r4? r2, 0(r11)
    add         r10, r10, 1
    add         r11, r11, 1
    bne         r10, r9, L0

r2

r4

r10

Figure 2.2: MIPS-like assembly for the code in Figure 2.1. Conditional computa-
tion is implemented using branches in part (a) and guarded instructions in part (b).
The arrows indicate the worst dependence path(s) through the code, and are tagged
with the register that causes the dependency. The CT tag stands for “Control Trans-
fer”.

whether the conditional branch is taken or not. (The arrows in the right of the assembly code indicate
the worst path corresponding to the not-taken case.) In Figure 2.2(b), the maximal dependence is three
instructions per iteration. Assuming adequate resources, data cache hits and equal probability for each
direction of the conditional branch, the execution the non-guarded version of the code will take 6.5
cycles on the average (the two possible paths are 5 and 6 instructions long plus one cycle for the load
latency), while the execution of the guarded version of the code will take 4 cycles (a critical path of
three instructions plus one cycle for the load latency), corresponding to a 62% speedup.

2.1.2 Advantages of guarding

The previous example illustrated that a seemingly small difference, the conversion of control depen-
dences into data dependences, had a significant impact on the execution time of the code. The reason is
that control dependences have a negative effect both on the compiler and on the processor which was
relieved by the conversion.

When if-conversion is used, several basic blocks of the CFG are merged together. The com-
bined basic block contains more instructions and presents more scheduling opportunities and flexibility.
A compiler for an instruction level parallel processor generally has to first identify the set of instructions
that are independent, and then schedule them so they are executed in parallel. Under realistic assump-
tions, the processor resources are finite and the compiler has the additional task of scheduling resource
usage among the competing instructions. The larger basic blocks after if-conversion generally contain
larger amounts of parallelism, permitting the compiler to produce instructions schedules that are more
parallel and match the processor resources better.

Furthermore, after if-conversion, instructions from different control paths can be freely inter-
mixed, allowing instruction schedules that overlap different control paths during execution, a flexibility
that is shown to have significant performance potential; Lam and Wilson [LW92] found that allowing
the execution of multiple flows of control almost tripled the amount of parallelism exposed to their
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abstract machine models. In essence, the ability to overlap different control paths is similar to global
scheduling techniques [Nic85, Smi92]. The removal of control dependences also can increase the effec-
tiveness of other code transformation techniques such as software pipelining [RG91, BRRP82, Lam88,
Ebc87], modulo scheduling [Rau94], etc.

For the instruction fetch unit of a processor, the larger, if-converted basic blocks allow for
higher instruction fetch efficiency. Small basic blocks cause frequent changes in the flow of control,
resulting in under-utilization of the instruction fetch bandwidth and the processor resources. The exe-
cution of if-converted straight-line code benefits from an instruction memory system that provides high
bandwidth, but not necessarily short latency. High bandwidth from the instruction memory to the pro-
cessor, is relatively cheap for single chip implementations, since the processor can take advantage of
a wide on-chip instruction cache. Furthermore, prefetching can be used to shorten the latency due to
instruction cache misses during sequential parts of instruction fetch.

Processors employing dynamic branch prediction, can also benefit from guarding. For pro-
grams with small basic blocks, multiple predictions per cycle may be required to find enough instruc-
tions and to fully utilize the pipeline resources [YMP93]. The larger basic blocks of the if-converted
code keep the pipeline more full, reducing the importance of multiple predictions per cycle. A smaller
number of predictions usually generates fewer mispredictions. For every misprediction, the processor
has to invoke a recovery action to undo the effects of the mis-speculated instructions and commence
the instruction fetching from the correct target. Since these recovery actions can cost several cycles, re-
ducing the number of mispredictions will reduce the total execution time of programs. The advantages
of guarding are summarized in the top part of Table 2.1.

2.1.3 Limitations of guarding

However guarded execution is not without limitations. First, guarded execution requires adequate sup-
port in the Instruction Set Architecture (ISA) level. This support that may range from a few new in-
structions, to a complete overhaul of the architecture and the instruction set. Providing adequate ISA
support for guarding may be relatively easy when designing a new architecture, but extending an exist-
ing architecture is a much more challenging endeavor. Section 2.2 of this chapter will discuss in detail
the instruction set requirements of guarding.

A second limitation of guarding is that it increases the total number of instructions executed dy-
namically. In general, instructions from both paths (traversed and not traversed) of a branch instruction
are transformed into guarded instructions; the processor has to fetch and decode all these instructions,
since it has no prior knowledge of which instructions will be useful until the instructions are fetched
and examined, and the corresponding conditions (if any) are evaluated. After the condition evaluation,
instructions from the not-traversed path are transformed into NOPs in the earlier stages of the pipeline
(these NOPs need not be executed, but they will consume part of the fetch and decode bandwidth of the
processor). These extra instructions, from the not-traversed path, may be scheduled to execute in par-
allel with other useful computation, if the processor has a sufficient number of resources. If sufficient
resources do not exist, the additional instructions can actually increase the overall execution time. The
execution time may also increase if the paths are of unequal lengths: when the longer path cannot be
scheduled in parallel with other useful computation, the shorter path might have to be lengthened and
performance along that path will suffer.

A third limitation of guarding is that the addition of guard operand(s) to each guarded instruc-
tion requires additional read port(s) in the register file. The additional read ports are used to read the
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Advantages

Fewer control dependencies allow better compiler schedules
Larger Basic Blocks present more parallelism to compiler
Compiler can overlap execution of different control paths
Improves or facilitates other compiler optimizations (S/W pipelining, etc.)
Large sequential blocks of instructions
Fewer control flow changes
Less important to predict multiple branches per cycle
Fewer mispredictions and fewer recovery actions

Requires ISA support
Increases the dynamic instruction count

Limitations Requires additional read port(s) in the register file
Consumes architecturally visible registers
Requires adequate compiler support

Table 2.1: Advantages and limitations of guarding.

guard operand(s) of a guarded instructions in parallel with its regular source operands. The additional
read ports will increase the size of the register file and can make it slower.

Finally, the conversion of control dependences to data dependences consumes architecturally
visible registers. Without guarding, the register that holds the condition is used once to decide the
branch outcome and set the correct PC value. With guarding, the condition register is used as a
source operand in all the instructions it covers. Therefore, the lifetime of this register must extend
to the last guarded instruction, thus increasing the register pressure. The problem is exacerbated by
the instruction scheduler which, by rearranging instructions to increase parallelism, can increase the
register lifetimes. One possible solution to this problem is to add a separate predicate register file
[MLC

�

92, RYYT89, KSR94], to relieve the pressure on the general purpose registers. This solution,
however, is a major architectural change and may not be easily incorporated into existing architectures.
Table 2.1 summarizes the advantages and limitations of guarding.

2.2 Instruction set support for guarding

The introduction of guarded instructions in a new or existing instruction set gives rise to a number of
tradeoffs between opcode space, performance and flexibility. As described earlier, if-conversion mod-
ifies the program by introducing instructions that evaluate guard conditions, and instructions that use
these conditions as guard operands. The extent of the instruction set support for these two operations
will determine the performance of the generated guarded code. Two questions arise naturally at this
point: (i) how can we evaluate the guard conditions, and (ii) how can we specify the guard conditions
and the guarded computation?

2.2.1 Support for guard condition evaluation

When a conditional branch instruction is removed by if-conversion, it is replaced by an instruction se-
quence that evaluates the guard condition and sets the appropriate the guard registers for the subsequent
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T F

F

Always 1

2

Always 5

T

g2 ?

g4 ? 3g3 ?

g4 = false
g2 =   t1
g3 = ! t1

g4 = ! t2
g3 =   t2

Figure 2.3: An example of multiple guard register sets and guard register initializations.

guarded computation. Depending on the complexity of the guard condition, its evaluation can range
from a simple set instruction when the condition is a simple comparison of two values, to a sequence
of logic instructions when the condition is a complex Boolean expression. Generally, an instruction set
provides an adequate (if not complete) set of both bit-wise logic evaluation instructions such as logical
and, or, etc, and comparison instructions such as set less than, set equal, etc, that operate
on the general purpose register file. These instructions are adequate to evaluate any arbitrary guard
condition without requiring any further instruction set support. If a separate guard register file is used,
the instruction set must include a set of condition evaluation instructions that will operate on the guard
registers, as well as instructions to transfer values between the guard and the general purpose register
files.

When the possible successors of a node � in the CFG are assigned distinct guard condition
registers, each of these registers will have to be set in � according to � ’s condition. For example, in
Figure 2.3, node � has two successors, nodes � and � . These nodes are assigned different guard reg-
isters, which introduces two distinct set instructions in node � . In addition, to ensure that no guard
register can be used before it is set (which would yield an unknown value), some guard condition reg-
isters may need to be initialized to a known value before the condition evaluation begins. This situation
arises for the inner-most nodes in nested conditional structures. For example, in Figure 2.3 node � is
assigned guard register g4. The only set instruction for register g4 is in node � , which is itself condi-
tional on condition t1 (through the guard register g2). If t1 is false, the set instruction in node � will
not be executed, and the value of g4 would be undefined. Therefore, g4 must be initialized to False in
the beginning of node � .

The initialization and set instructions are bursty in nature and in many cases in the critical path
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0 0 0 0 – – – – – –

0 1 0 0 – – – – – –

1 0 0 1 0 1 – 1 0 –

1 1 1 0 1 0 1 – – 0

Table 2.2: Predicate Definition Truth Table for pred set instructions in the Play-
Doh instruction set. A dash in an entry indicates that the destination register is left
unmodified.

of the computation. The PlayDoh instruction set [KSR94] addresses these potential problems by sup-
porting a rich set of predicate setting instructions. PlayDoh, supports a special pred clear instruc-
tion which initializes all the guard registers in a single cycle. PlayDoh defines a separate guard register
file consisting of sixty four 1-bit registers, so clearing all of them is a relatively simple task. PlayDoh
also supports a set of predicate-set instructions which specify two sources for the condition evaluation
and two distinct destinations. The syntax of a predicate set instruction is:

pred set.<cmp> dst1, A1, dst2, A2, src1, src2 ? g

where <cmp> is the comparison to be performed on the source operands, dst1 and dst2 are guard
registers, src1 and src2 are the source operands for the comparison, g is a guard register guarding
the pred set instruction and A1 and A2 are action specifiers that determine how the corresponding des-
tination guard register will be set. Depending on the value of the guard register g, the result of the
comparison and the action specifier, the pred set instruction will either write a 1, write a 0 or leave
the destination register unchanged. The possible actions are Unconditional, Conditional, OR and AND,
as well as the complement of these four actions. Table 2.2 defines the outcome for all the combinations
of predicate and predicate values, and action specifiers; a dash in an entry indicates that the destination
register should not be written. For example, the instruction:

pred_set.< t1, U, t2, C, a, b ? t3

will perform a “less-than” comparison of
�

and - , and will set the registers t1 unconditionally (i.e.,
regardless of the value of t3), and t2 conditionally, that is, only if t3 is true.

The various actions provided in the pred set instruction are used to closely match the source
level condition evaluation to the set of predicate set instructions avaliable. For example, if the source
level condition is the OR of several variables, the compiler can use the OR action in the generated
pred set instructions that evaluate the condition. The pred set instructions also facilitate the
control-tree height reduction technique that will be described in the next Chapter, in Section 3.3.4.

Since a single pred set instruction can set up to two guard registers, the number of instruc-
tions required to set the guard registers be reduced significantly. This is an important capability, con-
sidering the bursty nature of condition evaluation. Without two destinations, the set instructions can
deplete the issue resources of a processor, excluding the actual computation from executing. Similarly,
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the pred clear instruction reduces the number of guard register initializations that may be needed to
ensure correct condition evaluation. While these architectural additions certainly improve the perfor-
mance of guarded code, they are hard to incorporate in an instruction set. The pred set instruction
specifies 5 register operands, a comparison function and two set actions. With a total of six possible
set actions and assuming that each register specifier is 5 bits (in PlayDoh it is 6 bits), we need 31 bits
just to encode the parameters of the pred set instruction, without specifying the actual comparison
that should be performed, or the pred set opcode. Clearly such an instruction cannot be supported
in any of the current 32-bit instruction sets. Furthermore, allowing an instruction to have more than
one destination can double the number of write-ports in the register file.

2.2.2 Support for specifying guarded computation

Once the guard condition is evaluated, guarded instructions use it to determine whether to commit their
results. Compared to ordinary instructions, guarded instructions must specify their guard condition
registers and a comparison function that will determine, depending of the value of the guard registers,
whether the overall guard condition is true. The specification of the each guard register operand as well
as the specification of the condition consume instruction bits, a precious resource that should be used
cautiously and efficiently. Given a fixed instruction budget, a designer has to balance the complexity
of the permitted guard conditions, and the number of guarded instructions supported in the instruction
set.

Guard Condition Complexity

Allowing more powerful guard expressions in a single guarded instruction can shorten the critical paths
through the code by speeding up the evaluation of the guard condition. For example, if the instruction
set allows the conjunction of two registers to be used as a guard expression (in a manner similar to
Hsu and Davidson’s work [Hsu86, HD86]), the guard condition ����� can be attached to a guarded
instruction directly. For example an add instruction guarded by that condition would be written as:

g add (A & B) ? Rd, Rs1, Rs2

If the instruction set restricts the guard condition to a single register, a complex guard condition must
first be computed in a temporary register before it can be used. The above guarded add for example
would have to be expanded into:

and R1, A, B
g_add R1 ? Rd, Rs1, Rs2

A more complicated guard condition clearly requires more bits for its specification and therefore con-
sumes more opcode space. In the remainder of this thesis we assume that only one guard register can
be specified per guarded instruction, as we feel that the specification of more than one guard operand
would be impractical for an existing instruction set. Even in the context of a new instruction set, com-
mitting two operand specifiers to the guard condition will either reduce the number of operands of the
actual computations, or will add read ports to the register file.
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Guarding general computation

The extent of support for guarded instructions is another manifestation of the space–flexibility trade-
off, and is especially important when extending an existing instruction set. To allow maximum flex-
ibility to the compiler, every instruction must be available in a guarded form, allowing any arbitrary
conditional code construct to be transformed in a guarded form by attaching the guard condition to
it. This symmetry simplifies the compiler construction since no case analysis is needed to deter-
mine whether a code sequence can be expressed using the existing set of guarded instructions. Pro-
posed methods for specifying guarded execution use an additional operand field for each instruction
[MLC

�

92, RYYT89, Mac93, KSR94]. An additional bit in the opcode specifies whether the guard
condition should be true or false for the instruction to execute. This specification method allows max-
imum flexibility to the compiler but consumes a significant fraction of the total instruction bits: for
an architecture with 32 registers, 5 unused instruction bits must be dedicated to the guard condition
operand.

Using conditional moves to support guarding

Existing instruction sets have already partitioned the opcode space in a certain way and may not have
enough unused opcode bits to allocate to specify guarded instructions. The opcode space limitations
forced designers to introduce only a small number of guarded instructions. Many instruction set ar-
chitectures such as the Cray-1 [Rus78], the DEC Alpha [Com88], the SPARC V9 [Cas93], the MIPS
R10000 [Pri94], the PowerPC [Cor94] and the Intel P6 [Gwe95] include a conditional move (cmov)
instruction. The cmov instruction is almost trivial to add: since a move uses only one source speci-
fier, the second specifier is used to specify the guard condition. Having only two source operands, the
conditional move instruction does not require the additional register file read port that guarding usually
requires.

Conditional move instructions have an additional desirable property: they can be used to syn-
thesize other guarded instructions. This is achieved using ordinary unconditional instructions to com-
pute results in temporary registers and then committing the results in the real destination registers using
conditional moves. For example, a guarded add instruction will be synthesized using a ordinary add
followed by a conditional move instruction. In general, the guarded form of instructions that may cause
exceptions (such as loads, stores, integer division or floating point instructions) are harder to synthe-
size using cmovs. For example, synthesizing a guarded load using a load into a temporary register
followed by a conditional move may incorrectly generate exceptions. The synthesis of guarded ver-
sions of these instructions can only be allowed if additional code is inserted to check the instruction
operands and verify that the operation will not cause any exceptions.

The Cray compilers have always been able to deal with this problem. Unlike the STAR-100
and the ASC vector processors that define a general purpose vector mask register, in the Cray-1 archi-
tecture the vector mask can only be used in a vector move (called “merge”) instruction. To synthesize
the “masked” version of other vector instructions, the compiler used instruction sequences that would
initialize the masked element of the operands, so that the subsequent vector instruction would not cause
an exception. For example, for a vector division, the compiler would first set all the masked elements
of the divisor to 1, ensuring that the subsequent vector division would only cause an exception only for
the non-masked elements. A representative subset of the scalar equivalent of these sequences is listed
in the second column of Table 2.3. Mahlke et al. [MHM

�

95] used these sequences to synthesize the
guarded form of all instructions using cmovs. The code sequences in Table 2.3 are between two and
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four (dependent) instructions in length, and can be used effectively only when the guarded condition
and the source operands are available well in advance of the uses of the guarded result. When the com-
piler synthesizes the guarded version for an expression tree, it can optimize the sequences by removing
the conditional moves for all the intermediate (temporary) registers. The sequences can also be opti-
mized using predicate promotion, a code transformation that will be described in the next chapter, in
Section 3.3.7.

The synthesized sequences can be shortened by the use of non-excepting instructions. The idea
is that, if non-excepting instructions are available in an instruction set, the guarded form of any instruc-
tion can be synthesized simply using the non-excepting version of the instruction storing its result in
a temporary register, followed by a conditional move to commit the result in the destination register,
without the need for instructions that verify that an exception will not be generated. For example, a
guarded load can be synthesized by a non-excepting load followed by a conditional move. As can be
seen in the last column of Table 2.3, the sequences that use non-excepting instructions are all two in-
structions in length, a significant improvement over the sequences using ordinary instructions.

While the code sequences that use non-excepting instructions are guaranteed not to cause any
spurious exception, they will not generate any exceptions even when the original code would have gen-
erated one. To ensure that an exception should only be generated when the guard condition is true, the
processor must buffer the exception and propagate it through the computation until the guard condition
is verified to be true. To implement the exception buffering, the processor can maintain an exception
tag along each register. A non-excepting instruction that suppresses an exception would set the excep-
tion tag and other computation instructions would propagate it to their destination registers. The tag
can be checked later by the conditional move instruction if the condition evaluates to true and if so,
the exception should be serviced. This functionality is very similar to sentinel scheduling proposed
by Mahlke et al. [MCH

�

92] and the Rogers and Li’s hardware support for speculative loads [RL92].
However, the storage required to postpone the handling of exceptions (for example, the exception tags
along each register) is part of the architectural state of the processor. Therefore, this storage must be
saved and restored in contexts switched, external interrupts etc, requiring additional mechanisms to
support these operations. Overall, non-excepting instructions can be used to facilitate the synthesis of
guarded forms of instructions only in environments that ignore exceptions, or on hardware platforms
that provide enough hooks to allow the use of non-excepting instructions without compromising ex-
ception handling.

Restricted guarding

Integrating guarded execution in an existing instruction set is a non-trivial task: the number of unused
opcode bits is usually small and the opcode space is already partitioned in a certain way. One way
to add partial support for guarded execution in an existing instruction set without modifying the ex-
isting instruction formats, is to provide the guarded form only for the instructions whose encoding is
sparse enough to accommodate the guard operand(s). For example, imagine trying to add a 5-bit guard
operand to the MIPS R2000 instruction set. Figure 2.4 shows the three major instruction formats. In
Figure 2.4 we see that the Immediate and Jump formats use all the available bits, leaving no space for
the addition of a guard condition. (A guarded jump instruction would, of course, be equivalent to a
conditional branch instruction, with the sole difference of a larger target range.) On the other hand, all
the instructions in the Register format contains 5 unused bits, (in the MIPS instruction set, all instruc-
tions that use the sa field leave the rs field unused), exactly as many as needed to encode the guard
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Instruction sequences using
Guarded instruction Instruction sequences using CMOVs non-excepting instructions

g add cond? dst, src1, src2 add tmp, src1, src2 same
cmov cond? dst, tmp

g div cond? dst, src1, src2 mov tmp2, src2 div tmp, src1, src2
cmov cond? tmp2, 1 cmov cond? dst, tmp
div tmp, src1, tmp2
cmov cond? dst, tmp

g load cond? dst, addr(base) add tmpaddr, base, addr load tmp, addr(base)
cmov !cond? tmpaddr, $safe addr cmov cond? dst, tmp
load tmp, tmpaddr(0)
cmov cond? dst, tmp

g store cond? dst, addr(base) add tmpaddr, addr, base same
cmov !cond? tmpaddr, $safe addr
store tmp, 0(tmpaddr)

Table 2.3: Synthesis of general guarded statements using conditional move instructions, with and
without non-excepting instructions. The $safe addr register contains an memory address guaranteed
not to cause an exception.The guarded form of floating point instructions are synthesized in a manner
similar to the div instruction.
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R−Type (Register)
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

rt rd functionopcode rs sa

J−Type (Jump)
24 bits6 bits

targetopcode

I−Type (Immediate)
5 bits 5 bits6 bits 16 bits

immediatertopcode rs

Figure 2.4: The MIPS R2000 instruction formats.

register specifier. Based on this observation, Pnevmatikatos and Sohi [PS94] defined restricted guard-
ing to include the guarded form only for ALU operations. However, their results indicate that the lack
of guarded forms of memory operations and operations with immediate values, limits the performance
potential of restricted guarding.

2.3 Hardware support for guarding

The hardware required to support guarded execution are fairly straightforward. For each guarded in-
struction the execution engine has to perform two actions: (i) read the guard register and evaluate the
guard condition and (ii) squash the instruction if the guard condition is false. The first action can be
implemented by adding an extra read port in the register file so that each guarded instruction reads its
guard operand in parallel with its source operands. The implementation of the second action is more
involved.

In a pipelined processor without guarded execution, by the end of the decode stage the con-
trol logic has determined whether the instruction will generate a result to be written in the destination
register. The forwarding logic paths are set so that once a destination is declared (that is, when the
instruction with that destination register enters the pipeline), all subsequent reads of this register are
forwarded from this instruction, until the register file is updated with the new value. A guarded in-
struction however may or may not produce a result, depending on its guard condition. This conditional
behavior mandates careful modifications in the forwarding structures of the processor.

2.3.1 Implementing guarding using select logic

A simple solution is to force the guarded instruction to always produce a result, either a new value, or
the old value of the destination register. This solution is simple and requires no changes in the forward-
ing logic, as the invariant that every instruction generates a (correct) result is maintained. Essentially,
this solution converts the Write-After-Write hazard that exists between the previous write into the des-
tination register and the current (potential) write by the guarded instruction into a Write-After-Read
hazard, since the older value is read instead of just being overwritten.

To be able to select between the new and the old value of the destination register, each guarded
instruction must read the value of its destination register along with its source and guard register during
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the decode stage of the pipeline. Treating the destination register as a source operand adds one more
read port in the register file, and brings the total number of read ports to four per instruction issued; this
additional read port makes the register file bigger and possibly slower. Furthermore, the old value of
the destination register may be a result of an instruction that is still in flight in the pipeline. To handle
this case correctly, one more forwarding path must be added in the pipeline to forward the old value of
the destination register.

In addition, the implementation of this solution requires a multiplexor at the end of each stage
where the result of an instruction is produced, to select between old and new value. For example, for
a 5-stage pipeline a multiplexor is needed at the end of the EX stage for ALU instructions and at the
end of the MEM stage for load instructions, as shown in Figure 2.5. These multiplexors are usually
incorporated in the computation logic or in the pipeline latches. However, if the multiplexors cannot be
merged with other pre-existing circuits, they may increase the critical path of the instruction execution.
The total amount of hardware devoted to the support of guarding is not trivial as can be seen in the high
level pipeline schematic in Figure 2.5.

2.3.2 Implementing guarding by overloading the forwarding logic

If reading the destination register of guarded instructions is impractical, guarding can be implemented
by overloading the guarding functionality on the forwarding logic and paths. Consider the following
instruction sequence:

g add r9 ? r3, r1, r2
sub r5, r4, r3

During decoding, the sub instruction will read its operands from the register file, reading the old value
for register r3, as the new value is not yet produced by the g add instruction. If the guard condition
of g add is true, the new value of r3 can be forwarded to the sub instruction using the existing for-
warding paths. If the guard condition is false, the sub instruction is supposed to use the old value of
r3, which is already read. If the forwarding logic does not forward the result from the guarded add,
the sub will execute using read the correct (old) value of register r3. Thus, if the forwarding logic is
modified so that it only forwards the result of a guarded instruction when the guard condition is true, the
extra register file read port is not required. The modification of the forwarding logic obviates the need
for a multiplexor to select the correct value: we use the multiplexors in the forwarding paths to achieve
that function. Figures 2.6 and 2.7 detail the pipelined execution of the above instruction sequence for
the guard condition evaluating to true and false respectively.

Figure 2.8 outlines the additions to a pipeline that are required to support guarding. Comparing
Figures 2.5 and 2.8 we see that implementing guarding by overloading the existing forwarding logic
and paths is significantly less demanding in hardware. Nevertheless, it may introduce new critical paths
in the pipeline control logic.

2.3.3 Implications of out-of-order execution

When a processor supports out-of-order execution, the decoding and the execution of an instruction
are decoupled, and it is possible that the guard register of a guarded instruction is not available during
decoding. To continue decoding instructions, the processor must allow guarded instructions to enter
the pipeline, even if it is not known at decode time whether they will commit their results or not. How-
ever, the asynchronous nature of the out-of-order execution disallows the use of the forwarding logic
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Figure 2.5: A 5-stage pipeline implementing guarding as a select between the (potential) new and the
old value of the destination register. The shaded portion of the pipeline is the portion that needs to be
added to support guarded execution while the dashed line in the register file indicates the possibility
of a dedicated guard register file.
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g_add r9 ? r3, r1, r2

sub        r5, r4, r3

IF MEM WBID

IF ID EX MEM WB

sub reads old
value of r3

Read operands Guard condition
evaluates to true

EX

forwarding of
r3 takes place

sub uses the
new value of r3

Figure 2.6: Pipeline operation when the guard condition of a guarded instruction
evaluates to true. When the guard condition of a guarded instruction evaluates to
true, its result is forwarded to subsequent instructions using the existing forwarding
paths.

g_add r9 ? r3, r1, r2

sub        r5, r4, r3

IF MEM WBID

IF ID EX MEM WB

sub reads old
value of r3

Read operands

EX

Guard condition
evaluates to false

sub uses the
old value of r3

forwarding of
r3 is suppressed

Figure 2.7: When the guard condition of a guarded instruction evaluates to false,
the forwarding of its result in suppressed, and subsequent instructions use the old
value of the destination register of the guard instruction.
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Figure 2.8: A 5-stage pipeline implementing guarding with changes in the register forwarding logic.
The shaded portion of the pipeline is the portion that needs to be added or modified to support guarded
execution, while the dashed line in the register file indicates the possibility of a dedicated guard reg-
ister file.
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to implement the on-the-fly squashing described above. Instead the processor must treat all guarded in-
structions as selects between the old and the new value. This solution is essentially the out-of-order ex-
ecution equivalent of Figure 2.5. To implement this solution, the Reservation Station entries [Tom67]
or Reorder Update Unit entries [SV87] must be augmented with storage that will hold the old value
of the destination register, in case the guard condition evaluates to false. The logic that determines
whether an instruction is ready to be executed and produce a result must also be modified. A guarded
instruction is ready to produce a result only after the guard condition is available. If the guard condi-
tion evaluates to true, the instruction is ready when all the source operands are available; if the guard
condition evaluates to false, the instruction is ready when the old value is available.

2.4 Summary

Guarded execution is a very powerful and promising concept, with the potential to reduce the unpre-
dictability of the control flow caused by branches, smoothing the flow of instruction in the pipeline(s)
and exposing more instruction level parallelism to the compiler and processor. The amount of hard-
ware required to support guarded execution is also reasonable, making guarding an attractive feature
for inclusion in an instruction set.

However, the integration of guarding in an instruction set is not easy, especially when the de-
signer has to extend an existing instruction set, rather than design a new one. In addition, compiler
techniques that make efficient use of guarding and introduce small amounts of overhead computation
are needed. The next chapter describes in detail the compilation techniques that can be used to take ad-
vantage of guarded execution, while Chapter 4 describes GUARD instructions, a class of instructions
that permit the introduction of full guarding in new as well as in existing instruction sets.
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Chapter 3
Compiling for guarded execution

A compiler that effectively utilizes guarded execution involves a considerable number of decisions and
tradeoffs. Generally, the front end of the compiler remains unchanged, implementing all the traditional
code transformations and optimizations. Guarding introduces a set of new phases and possible opti-
mizations in the back end of the compiler. Figure 3.1 shows the typical phases of a compiler that sup-
ports guarded execution. While this arrangement of compilation phases is not the only possible one,
it is a natural one, since if-conversion involves decisions that are best taken when the program repre-
sentation is as close to the target executable as possible. In addition, placing all the guarding specific
phases before the instruction scheduling allows the same mechanism to be used for ordinary as well as
guarded computation.

In Figure 3.1, the guard-specific compilation phases perform the following major functions:

� Region selection: identify the regions to be if-converted using guarding, possibly pre-
conditioning the code generated by the compiler to increase the effectiveness of if-conversion,

� If-conversion: determine the conditions that guard each basic block in the selected region and
insert the instructions required to evaluate the guard conditions,

� Guard-specific optimizations: perform optimization steps that improve the quality of the
guarded code, and

� Instruction scheduling: schedule the if-converted regions for a particular execution model and
resource configuration.

Each of these steps involves a number of tradeoffs that determine the quality and the perfor-
mance of the generated code. The compiler aspects of guarded execution of general purpose programs
have been only recently explored in detail and mostly by the Illinois IMPACT group [Lin92, MLC

�

92].
This chapter presents an overview of the code transformations that can be used by a compiler that sup-
ports guarded execution.

3.1 Choosing what to guard

Starting with a control flow graph of a (piece of a) program, the compiler has to decide: (1) where if-
conversion is applicable, and (2) where would it be beneficial. The first decision depends mainly on
the CFG structure, since if-conversion cannot eliminate function calls and returns and in general cannot
eliminate indirect branches; also, as described in Chapter 2, if-conversion has limited applicability on
diverging CFG structures such as decision trees. The second decision involves an estimation of the
execution time, parameterized by the execution model as well as the number and type of resources
available in the target processor.
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Figure 3.1: The structure of an if-converting compiler. The dashed line indicate a
possible feedback from the instruction scheduler that may guide the if-conversion
specific optimizations.

To decide which parts of the program should be guarded, the compiler makes an attempt to
balance the execution time benefits of if-conversion, against the overhead of the computation that
will be squashed at run time. This process can be helped by the use of profiling information. An if-
converting compiler can take advantage of several types of profile information. The simplest and more
widespread type of profiling information is basic block counts; tools such as pixie [MIP90] and QPT
[Lar93, BL94] can provide this type of information. Other types of profiling include CFG arc frequen-
cies [Lar93, BL94], and branch prediction accuracies [FF92].

Basic block or arc frequency profiling can be used to control the amount of squashed computa-
tion; using this information, the compiler can identify nodes and arcs that are so infrequent that includ-
ing them in the if-converted code will only consume resources, without a corresponding improvement
in execution time. The profile information can also be used to completely bypass the if-conversion pro-
cess in the part of the programs that are executed infrequently, in order to reduce the compilation time
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for the program.
Branch prediction profile information can be used by the compiler when the target processor

utilizes a dynamic branch prediction mechanism. In this context, branches that are correctly predicted
most of the time may not be a very big performance impediment, and may not be worth eliminating.
With branch prediction profile information, the compiler can determine the branches that dynamically
cause most of the incorrect predictions and identify them as prime candidates for if-conversion. If pro-
file information for the prediction accuracies of branches is not available, the compiler can resort to
heuristic approaches to derive static branch prediction estimates [BL93].

When no profiling information is available, the compiler can follow a conservative approach
and assume that all paths in the CFG are equally likely. This approach will only if-convert regions for
which the guarded schedule will perform better than the original schedule regardless of the exact arc
frequencies of the branch prediction accuracies. Obviously, this conservative approach will not be able
to achieve the performance levels that profiled based approaches will.

Next, we describe two region selection schemes that have been used in earlier studies. The
first, called Multiblock [PFS93], is based on the CFG structure, and the second, called Hyperblock
[MLC

�

92], is based on the CFG structure as well as on profiling information and heuristics to guide
the Hyperblock formation process. Both schemes form a collection of nodes of the CFG, that have a
single entry point. This requirement allows the compiler to freely rearrange the instructions inside the
region. If multiple entry points are allowed, the compiler cannot move instructions across the multiple
entry points.

3.1.1 The Multiblock region selection scheme

Pnevmatikatos et al. [PFS93] used the CFG structure to construct Multiblocks, which are loop free re-
gions of contiguous basic blocks having at most two possible successors. The simple structure of these
regions permits an easy, on-the-fly identification of multiblocks and allows dynamic branch prediction
to be performed in a granularity of multiblocks rather than basic blocks. Multiblocks must satisfy three
conditions:

� Condition 1: there should be a single entry point to each multiblock,

� Condition 2: the should be no nested loops inside a multiblock, and

� Condition 3: a multiblock should have at most two targets.

The Multiscalar processor [FS92, Fra93], used these multiblocks to dispatch multiple basic
blocks to each of its multiple execution stages and to “avoid” predicting the branches that were inside
multiblocks. Within each execution stage, the multiscalar processor employed speculative execution
and suppressed the commitment of speculative results until all the control dependences were resolved,
implementing in this way a dynamic form of guarding.

The guarding regions used by Pnevmatikatos and Sohi [PS94] are also similar to multiblocks,
with the additional restriction that one of the two possible targets is restricted to be the fall through
path. Since both these targets can be encoded in a single branch instruction, all the branches inside
these regions can be eliminated using if-conversion, and the composite branch condition can be used in
the branch that terminates the guarding region. Pnevmatikatos and Sohi used these regions to evaluate
the effects of guarded execution on the static and dynamic branch behavior of programs.
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3.1.2 The Hyperblock region selection scheme

The Hyperblock construct [MLC
�

92], proposed by the Illinois IMPACT group, is a hybrid of trace
scheduling and if-conversion. Given a control flow graph, a hyperblock is formed by identifying a
subset of the graph for inclusion in the hyperblock. The criterion for inclusion of a basic block into a
hyperblock is a function of the execution frequency, the size and the instruction characteristics of each
basic block. When the execution path can be predicted with high probability, the hyperblock selection
process degenerates to trace selection process. To handle unpredictable branches hyperblock resorts to
if-conversion.

The set of nodes selected for inclusion in a hyperblock must satisfy two conditions:

� Condition 1: There should be a single entry point from blocks outside the set, and

� Condition 2: The should be no nested loops inside the hyperblock.

These conditions ensure that all hyperblocks are entered only from the top and that each in-
struction in a hyperblock is executed at most once. The main difference from a multiblock is that a
hyperblock is allowed to contain branches (and therefore have multiple exit targets). This difference
gives more flexibility to the compiler to select the hyperblocks and permits the hyperblocks to be larger
than multiblocks. Lin’s Masters thesis [Lin92] and Mahlke et al. [MLC

�

92] provide a more detailed
discussion of the hyperblock formation.

3.2 If-conversion basics

If-conversion as introduced by Allen et al. [AKPW83] operated on a per-statement level on the source
of Fortran programs. Their if-conversion algorithm works by allocating a Boolean variable to hold the
guard condition for each conditional branch in the code. As each branch under consideration is elim-
inated, the corresponding Boolean variable is added into the guard expression for all the statements
that depended on that branches outcome. The process iterates until all branches in the loop body are
processed, at which point, each statement is guarded with an arbitrary logical expression involving one
or more Boolean variables. This expression is a flat representation of the conditions under which each
statement would be executed. Since the algorithm was based on textual modifications of the source
program, the guard expressions may be redundant. To reduce the amount computation required for
the condition evaluation, Allen et al. suggest a Boolean minimization step which, using the Quine-
McCluskey prime-implicant simplification method, would minimize these large expressions and elim-
inate any redundancies in them.

The textual-based if-conversion algorithm proposed by Allen et al. is very well suited to the
purposes of a source to source translation program such as the PFC, but does not fit well with the graph-
based internal representation used by compilers. Furthermore, the assignment of guard expressions and
the insertion of the required instructions to evaluate them can be tricky, especially when the code is
not structured, that is, when the code cannot be expressed as a hierarchy of nested blocks, where each
block has a single entry and a single exit point. At least one compiler, the Cydrome compiler used by
the Cydra 5 [RYYT89], is reported [PS91] to produced incorrect code for certain control flow graphs.

Park and Schlansker addressed this problem and formalized the if-conversion process in the
RK algorithm [PS91]. The RK algorithm determines the guard condition that will be assigned to each
basic block and the operations required to evaluate the guard conditions. The algorithm is provably
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correct for all types of control flow graphs, and generates a minimal set of condition evaluation instruc-
tions. Lin [Lin92] compared three if-conversion algorithms, one that associates a guard condition to
each CFG arc (roughly corresponding to Allen et al.’s if-conversion algorithm after the Boolean min-
imization step and common subexpression elimination), one that associates one guard condition for
every basic block, and the RK algorithm. Lin’s results show that the optimality of the RK algorithm
translates to a measurable improvement in execution time for four benchmark programs.

Given a directed acyclic control flow graph G with a single entry point, the first step of the RK
algorithm is the computation the control dependences in G, as described by Ferrante et al. [FOW87].
A node � in G is control dependent on node

�
when (i)

�
has two exit arcs, and (ii) when the path

from one of the exit arcs from
�

guarantees that � will be executed, while a path from the other arc
may result in � not being executed. The RK algorithm uses the control dependence information to de-
termine which conditions determine the execution of each basic block. Next the algorithm determines
the necessary set instructions that have to be inserted at every decision point (i.e., in the place of the
original conditional branch instructions). A final step determines whether it is possible for a guard con-
dition to be used without being previously set. The RK algorithm handles these cases by introducing
initialization instructions in the entry point of the control flow graph. The result of the algorithm is two
mappings, one called R and K (hence the name). R is a mapping from basic blocks to guard conditions
and determines the assignment of guard conditions to each basic block in the control flow graph. K
is a mapping between guard registers and sets of basic blocks and determines where (in which basic
blocks) should a particular guard register be set. The number of guard registers that is produced by
the RK algorithm depends solely on the structure of the input CFG. If the number of guard registers
required to guard a CFG is larger than the number of available registers, the compiler has two options:
either to partition the CFG into a set of smaller CFGs and re-run the RK algorithm, or to rely on register
allocation to make the best use of the available registers.

Figures 3.2 shows the RK algorithm. The first step is the computation of control dependences
in G, identifying in this way the control equivalent basic blocks, i.e., basic blocks that are executed
under the same condition and should therefore be assigned the same guard register. The second step
computes the R and K mappings. The third step, Augment(K), solves a data flow problem on G to
determine the set of guard registers for which a use can be reached from the entry point of the graph
before the register is defined. Augment(K) then records this set in the K mapping for the entry node of
graph G.

The if-convert algorithm, shown in Figure 3.3, is straightforward. The first step is to call RK to
determine the R and K mappings. Then steps (3) and (4) use the K mapping to determine which condi-
tion evaluation instructions must be added in each basic block. Step (5) removes the conditional branch
from an if-converted basic block and steps (6) and (7) use the R mapping to introduce the appropriate
guard register in each instruction of a guarded basic block of code. The result of this algorithm is a
single, straight-line sequence of instructions.

Figure 3.4 illustrates the operation of the RK algorithm with a simple control flow graph of
two nested if-then-else statements. The corresponding R and K mappings are shown in Tables 3.1 and
3.2. The two conditional branches in nodes � and � define the two corresponding conditions

� � and
� � .

These conditions are used to set the individual guard registers. The R mapping assigns one condition
register to each node of the graph, with the exception of nodes � and � which are always executed,
and node � which is control equivalent with node � and is assigned

� � as the guard register. The K
mapping determines that the guard registers � and � can be used before they are set (this would happen
when condition

� � is false, so node � will not be executed and the guard registers
� � and

� � will not be
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Algorithm RK:
Given a rooted graph G, compute the R and K mappings
{

(1) Compute Control Dependences(G)
(2) Decompose Control Dependences(G) into R and K
(3) Augment(K)

}

Figure 3.2: The RK algorithm.

Algorithm if-convert(G):
Given a rooted, acyclic graph G,

produce the if-converted graph G’
{

(1) use RK to compute the R and K mappings
(2) foreach basic block B {
(3) foreach guard register P in K such that

the set K[ P ] contains B {
(4) add an instruction in B that sets P

}
(5) remove the branch if any
(6) foreach instruction I in basic block B {
(7) assign guard register R[ B ] to instruction I

}
}

}

Figure 3.3: The if-conversion algorithm.

set), and must therefore be initialized in node � .

3.3 Guarding-specific optimizations

The success of if-conversion depends on the structure of the control flow graph as well as on the dy-
namic behavior of the program. Several optimizations can improve the effectiveness of if-conversion.
These optimizations can be categorized into two sets: optimizations that manipulate the control flow
graph before if-conversion is performed so as to increase its ability to eliminate branches, and optimiza-
tions that reduce the execution time of the if-converted code in order to improve the overall execution
time of the program. The optimizations can be further categorized according to whether their perfor-
mance is dependent on the availability of accurate profiling information. A general purpose compiler
cannot assume the availability of (accurate) profiling information, and is therefore limited to a set of
optimizations that will improve the program’s execution time regardless of profiling information. Ta-
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p4 ?

Initialization

p3 ?

p5 ?

p2 ?

p4 = False
p5 = False

p2 =   t1
p3 = ! t1

p4 =   t2
p5 = ! t2

(a) (b)

< 1 >
if (t1) {
         < 2 >
         if (t2) {
                 < 4 >
         } else {
                 < 5 >
         }
         < 6 >
} else {
         < 3 >
}
< 7 >

Figure 3.4: Condition register assignment and definitions by the RK algorithm.
Part (a) shows the skeleton of a C code fragment, and part (b) shows the correspond-
ing CFG, annotated with the condition registers and the instructions to set the condi-
tion registers. In part (b), p

�
is the condition register and t

�
is the branch condition

for node
�

.

Basic Block 0 1 2 3 4 5 6 7
Guard Register N/A True 2 3 4 5 2 True

Table 3.1: The R mapping assigns a guard register to each basic block. Note that
the same guard register is assigned to the control equivalent basic blocks 2 and 6.

Guard Register 2 3 4 5
Basic block � 1 � � -1 � � 2, -0 � � -2, -0 �

Table 3.2: The K mapping determines the basic blocks in which each guard register
should be set. A minus sign indicates that the required set instruction should invert
the outcome of the comparison.
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ble 3.3 categorizes a number of proposed optimizations according to these two criteria. In the following
subsections we give a short overview of these optimizations and we discuss their requirements.

Optimization
Before or after Profile information needed
If-conversion? for performance?

Loop restructuring Before Useful
Tail duplication Before Yes
Loop peeling Before Yes
Control-tree height reduction After No
Condition evaluation optimizations After No
Exit coalescing After Yes
Predicate promotion After Useful

Table 3.3: Categorization of if-conversion specific optimizations.

3.3.1 Loop restructuring

Loop restructuring (also called loop branch coalescing by Chang et al. [CHPC95]) transforms the con-
trol flow graph of a loop into a canonical form, in an effort to increase the number of forward branches
and make the if-conversion more effective.

The basic observation motivating this optimization is that the front end of the compiler can pro-
duce multiple loop-back arcs for a single logical loop of the source code. These loop-back arcs corre-
spond to uses of the C continue and goto statements, or the results of the jump-optimization phase
of the compiler. Since if-conversion cannot eliminate backward branches, loop restructuring merges all
the loop-back arcs into a single one. All the original backward branches of the loop are redirected to
this single backward branch using forward branches. These forward branches will later be eliminated
by the if-conversion. For example, the control flow graph in Figure 3.5(a) has two loop-back arcs, one
from node

� � and another from node
� � . Loop restructuring, shown in Figure 3.5(b), will move the

loop-back arc from node
� � into a new node

� � and redirect the loop-back arc from node
� � to this

new node, transforming it into a forward branch.
While the loop restructuring transformation is very successful in increasing the effectiveness

of if-conversion in eliminating branches [MHB
�

94], it comes at a considerable cost. The amount of
computation that is bypassed in the original code using the multiple backward arcs can be large, and
including it in the if-conversion can hurt the performance instead of improving it. Hence, loop restruc-
turing can be used successfully only when accurate profiling information is available to the compiler
to evaluate the merit of this optimization, or when the amount of extra computation is limited. When
accurate profiling information is not available, loop restructuring can confuse nested loop structures for
a single loop with many loop-back arcs; for example, the control flow graph in Figure 3.5(a) could be
the control flow graph of a doubly nested loop, or the control flow graph of a single loop that contains
a continue statement.
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Figure 3.5: Loop restructuring example. Part (a) shows the original control flow
graph. Part (b) shows the CFG after loop restructuring. Loop restructuring splits
node

� � into
� ��� and

� � , and redirected the loop-back arc from node
� � to node� � , converting it into a forward arc.

3.3.2 Tail duplication

Tail duplication is a technique that eliminates multiple entries to a control flow region by replicating
some of the nodes. This is a general optimization but is of particular importance in the hyperblock
formation, because the trace selection process can exclude certain nodes and any reconverging arcs
from these nodes will introduce additional entry points in the hyperblock. This situation is illustrated
in Figure 3.6. The dashed line in Figure 3.6(a) outlines the desired hyperblock. Node

� � is excluded
from the hyperblock formation of this loop body, under the assumption that the path to this node is
infrequent. The “tail” path of node

� � (that is, all the paths starting from node
� � ) contains node

� �
and introduces a second entry point to the desired hyperblock, violating in this way the first condition
on hyperblock formation. Tail duplication, replicates all the nodes in the tail path(s) to eliminate all the
entry points in the hyperblock. Figure 3.6(b) shows the body of the loop after the tail duplication. Node� � is replicated as node

� � � allowing the creation of two hyperblocks. Tail duplication does not increase
the dynamic instruction count, but it does increase the static code size of a program and can adversely
affect the instruction cache performance. To limit the code increase, Mahlke et al. [MLC

�

92] suggest
limiting the duplication to make at most one copy of each basic block.
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Figure 3.6: Tail duplication example. The selected hyperblock (outlined with a
dashed line) in (a) has two entry points. Tail duplication (b) eliminates the second
entry point by replicating node

� � .

3.3.3 Loop peeling

Loops that are executed frequently but only iterate a few times can be main sources of mispredictions.
For example, the SPEC benchmark Gcc contains many loops that generate code for the arguments in
a function call of the compiled program; since the number of parameters is unbounded, a loop is used
to handle the general case. In practice however, the average number of parameters to a function call
is fairly small, and the loop only iterates a few times. A counter based branch prediction mechanism
will always predict the loop-closing branch as taken, generating one incorrect prediction every time the
loop terminates. Since the loop iterates just a few times, the prediction accuracy for the loop-closing
branch will be very low. Loop peeling alleviates this situation using a limited form of loop unrolling.

In loop-peeling, a small number ( ' , called the peeling factor) of the initial iterations of the
loop are unrolled. After the ' peeled iterations, the original loop body is inserted. If-conversion can
eliminate the forward branches in the first '�� � iterations leaving only the last branch which redirects
the execution to the real loop body. In cases where the loop iterates fewer than ' times (which is
expected to be the common case), all the computation is captured by the unrolled and if-converted part
of the loop, and instructions are executed in a sequential fashion, eliminating any branch misprediction
that would occur in the original code. In cases where the loop iterates more than ' times, the original
body of the loop executes the remaining loop iterations.

Figure 3.7 shows an example of loop peeling. Part (a) shows the control flow graph for a simple
loop and part (b) shows the peeled version for a peel factor of 3. The dashed lines in the peeled version
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Figure 3.7: Loop peeling example. Part (a) shows the original unpeeled control
flow graph and Part (b) shows the same loop peeled three times. The dashed lines
outline possible if-conversion regions.

indicate possible if-conversion regions. The larger if-conversion regions in Figure 3.7(b) would capture
all executions of the loop that iterate less than four times. Note that the simple loop structure in this
example was used for the sake of simplicity. The loop peeling transformation can be used even when
the loop body has an arbitrarily complicated control structure.

A good choice of the peeling factor ' is very important for the effectiveness of this optimiza-
tion. If the chosen value of ' is less than the average number of iterations,

�
, peeling will be only

partially successful. If ' is larger than
�
, the code expansion will be larger, and the ' � � peeled iter-

ations will be uselessly executed. The peeling factor for each loop can be accurately determined using
profiling information. However, the usefulness of this optimization is limited when profiling informa-
tion is not available, reducing the general purpose value of the transformation.

3.3.4 Control-tree height reduction

Control-tree height reduction [SKA94, SK95] is a technique that reduces the time to evaluate complex
condition expressions. The C programming language employs short-circuit semantics for control ex-
pression evaluation. Compilers also employ short circuit evaluation for expressions in an attempt to
reduce the instruction count of the generated program. For example, the condition:

� ��� -�� � � ���	� � � � � � �
�	� � � � � � ��� � � (3.1)

would be evaluated using the four conditional branch instructions shown in Figure 3.8(a). After if con-
version, the four branches would be converted into the four set shown in Figure 3.8(b). All these set
instructions are dependent and must therefore be executed sequentially.
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bge a, b, Next
ble c, d, Next
bgt e, d, Next
bge a, c, Next

.

.

.
Next:

(a)

slt g1, a, b
sgt g1 ? g2, c, d
sle g2 ? g3, e, d
slt g3 ? g4, a, c

.

.

.
Next:

(b)

Figure 3.8: Short circuit condition evaluation. Part (a) shows the assembly for the
short circuit condition evaluation of condition 3.1. Part (b) shows the if-converted
set sequence for the same condition.

Expression 3.1 can be represented using the expression tree of height three, show in Figure 3.9.
Control-tree height reduction is similar to the technique that was proposed by Kuck to reduce the time
to evaluate expression trees [Kuc78]. This technique works by evaluating all the leaf nodes in parallel
during the first step, and continues with the evaluation of the next level until the root of the tree is
reached. In this way, the expression tree (control or computation alike) is evaluated in logarithmic time.
Using the control-tree height reduction technique, Expression 3.1 can be represented with the tree in
Figure 3.9(a), and it can be evaluated in just 3 cycles using the code sequence shown in Figure 3.9(b)

The control height reduction can be even more effective using the special set instructions and
semantics provided by the PlayDoh architecture [KSR94]. As described in Chapter 2, the PlayDoh
architecture defines an action specifier which, together with the result of the comparison, determine
whether the destination register should be left unmodified, and if not, they determine the value that
should be written to it. The possible actions include the functions $&% , �('*) and their complements$&% and �('*) . These action specifiers can be used to directly map the control expression trees into set
instructions. In addition, the PlayDoh architecture allows multiple writes to single register to be per-
formed in a single cycle, as long as they all write the same value. Using these semantics, an arbitrary
AND-tree can be evaluated by initializing a guard register to 1 and by performing all the pred set
instructions in a single cycle (if the processor has sufficient resources) using the �('*) action specifier.
The semantics of the �+',) action specifier (defined in Table 2.2 in Chapter 2) are such that the destina-
tion register will only be written if the result is 0. That means that if more than one set instructions write
the destination register, they all write the same value (zero), conforming with the PlayDoh semantics.
The $ % action specifier can be similarly used to speed-up the evaluation time for OR-trees. Figure 3.10
shows the pred set sequence required for the evaluation of Expression 3.1. All pred set instruc-
tions write register p1, using the �('*) action specifier. The dashes in the instructions indicate that the
corresponding field is left unused.

3.3.5 Condition evaluation optimizations

The if-conversion process can introduce definitions and uses of similar conditions. For example, for
each if-then-else statement two complementary conditions are generated and used, each of which must
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Figure 3.9: Condition evaluation using control-tree height reduction.

pred_set.< t1, AND, -, -, a, b
pred_set.> t1, AND, -, -, c, d
pred_set.<= t1, AND, -, -, e, d
pred_set.< t1, AND, -, -, a, c

Figure 3.10: Condition evaluation using pred set instructions.

be set separately. A peephole optimization step can identify similar conditions, and make the transfor-
mations necessary to eliminate all but one of them. For the case of an if-then-else statement, the only
transformation needed is the inversion of all the uses of the guard condition in one of the then and else
parts of the code. Figure 3.11 illustrates the condition evaluation optimization.

3.3.6 Exit coalescing

In loops with many exit points and arcs, a limited form of trace scheduling can be performed assuming
that the exits are infrequent. Instead of leaving all the exit branches and executing them one after the

set_eq r10, r1, r2
set_ne r11, r1, r2
g_add r11? r3, r4, r5
g_sub r10? r6, r7, r8

(a)

set_eq r10, r1, r2
g_add !r10? r3, r4, r5
g_sub r10? r6, r7, r8

(b)

Figure 3.11: Condition evaluation optimization for an if-then-else statement. In
part (a), r10 and r11 are set to complementary conditions; in part (b) r11 is elim-
inated and the guard condition of the add instruction is negated.
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Figure 3.12: Exit coalescing example. Part (a) shows the original control flow
graph of a loop with exits to two targets � and � . In part (b) the two exits are coa-
lesced into one, node

� � , which in turn will direct the control flow to the right target.

other to find out that in the common case none of them was taken, all the exit arcs are replaced with a
single exit branch controlled by the OR of all the individual exit conditions. Once the loop is exited, the
original exit sequence has to be executed to determine which one of the exit arcs should be followed.
In processor implementations that are limited to execute a single branch instructions per cycle, exit
coalescing can considerably improve the performance of loops with multiple, infrequent exit arcs, at
the expense of a longer latency when the exits are indeed taken. Figure 3.12 shows an example of exit
coalescing. Part (a) shows the original control flow graph for a loop with exits to targets � and � . The
transformed control flow graph in part (b) shows the two exits coalesced into one, node

� � . Node
� �

is then responsible to demultiplex the control flow to the actual target.

3.3.7 Predicate promotion

If-converted code is restrictive in that it does not allow the execution of an instruction before its guard
condition is evaluated. In the presence of long latency instructions such as multiplications or load in-
structions that may miss in the level-1 cache, this restriction can limit the performance. Code promo-
tion, initially proposed by Tirumalai et al. [TLS90] and subsequently used by other research groups
[MLC

�

92, CHPC95, HMG
�

95], bypasses this limitation by moving the guarded computation before
the guard condition is evaluated and executing them unconditionally. Since the dependency on the
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guard register is removed, the instruction can be moved as far back as the remaining data dependences
permit. This code transformation is essentially global code motion similar to Nicolau’s Percolation
Scheduling [Nic85]. (An excellent overview of global scheduling techniques can be found in Michael
Smith’s thesis [Smi92].)

Promoted instructions are always executed and produce results, even when the actual guard
condition is false. As in the case of global scheduling, an instruction cannot be promoted unless the
movement is safe (i.e., it will never generate an exception) and it is legal (i.e., the promoted instruc-
tion will not clobber the value of register that is not dead). Figure 3.13 illustrates the cases of unsafe
and illegal promotions. In part (a), the promotion of the load instruction may cause an exception;
in part (b), the promotion of the sub instructions will clobber the value of register r2, which is live
along the path from

� � to
� � . Unsafe instructions can be promoted only if there is sufficient architec-

tural support, for example support for non-excepting instructions, or sentinel scheduling as described
in Chapter 2. Instructions that would clobber live register values can be made legal by statically re-
naming the destination register and all its possible uses along the original guarded path; for example,
the sub instruction in Figure 3.13(b) can be promoted as shown in Figure 3.13(c); r2, the destination
register of the sub instruction is renamed to r9 and the sub instruction is promoted to node

� � . All
the uses of r2 along the False path from node

� � must also be renamed to r9, as shown for the and
instruction.

(b)

add r1, r2, r3 N2 N3 sub r2, r4, r5
and r6, r7, r2

add r1, r2, r3 N2

(c)

N1 sub r9, r4, r5

N3 and r6, r7, r9

FT

FT

(a)

N1

add r1, r2, r3 N2 load r4, 0(r5)N3

FT

N1

Figure 3.13: Instruction promotion example: case (a) is unsafe because the load
may cause an exception, case (b) is illegal because r2 is in use along the other path.
In case (c) the promotion of the sub instruction from case (b) is made legal by stat-
ically renaming register r2 to r9.

Predicate promotion can also be supported directly in hardware. Ando et al. [ANHN95]
proposed “Predicate State Buffering” which allows a guarded instruction to execute before its guard
operand(s) is available. In Predicate State Buffering, when a promoted guarded instruction is executed,
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the result, tagged with the guard condition, is stored into a “speculative” version of the destination reg-
ister. When the guard operands become available, the tag in the speculative version of each register
evaluates the guard condition, and determines whether the speculative state should be committed into
the architectural state or should be squashed.

3.4 Scheduling guarded code

Once the code is if-converted, the control dependences within the if-converted regions are converted to
data-dependences, allowing traditional scheduling algorithms, such as greedy prioritized scheduling,
to be used to produce the final scheduled output. These algorithms can be used almost unchanged, with
minor modifications that depend on the idiosyncrasies of the underlying execution hardware.

If the target instruction set does not support guarded instructions, the necessary branches can be
introduced in the scheduled code using the Reverse if-conversion technique [WMHR93]. Although this
transformation negates the branch eliminating benefits of if-conversion, it retains some of the schedul-
ing benefits and can be used as an alternative to global scheduling for architectures that do not support
guarded execution.

3.5 Summary

In this chapter we described the structure and operation of an if-converting compiler. To get effec-
tively utilize guarded execution, the compiler uses optimizations that (i) restructure the control flow
graph before if-conversion is performed, and (ii) reduce the amount of instructions required to eval-
uate the guard conditions after the if-conversion is performed. The compiler can also take advantage
of special ISA support for guarded execution, such as the pred set instructions of the PlayDoh in-
structions set, to generate more efficient guarded code. Profiling information may be used to evaluate
the relative merit of possible actions and is critical to the effectiveness of many of the optimizations.
Profiling information can also used to reduce the amount of wasted computation that is introduced by
if-conversion. However, in the absence of profiling information the compiler is limited to conservative
decisions, or can resort to the use static prediction and heuristics to determine the best course of action.

In this thesis we make the assumption that profiling information is not available, as we feel
that in a casual, every-day use of the compiler profiling in not an option. This assumption restricts the
range of optimizations that can be effectively used. The scheduler we use for our evaluation (which we
will describe in Chapter 5 Section 5.3.1 implements a limited form of the control-tree height reduction,
predicate promotion and some condition evaluation optimizations.
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Chapter 4
GUARD instructions

The last two chapters described how guarded execution can increase the ability of the compiler to gen-
erate better instruction schedules and to smooth the flow of instructions in the processor. However, as
we mentioned earlier, one of the biggest obstacle to the widespread use of guarding is that it cannot be
easily incorporated in the successful existing instruction set architectures. Summarizing section 2.1.3,
guarded execution specified using explicit guard condition operands with each (guarded) instruction
has the following limitations: (i) it consumes a considerable amount of valuable instruction space, (ii)
it increases the dynamic instruction count for a program (due to predicate set instructions and guarded
computation), consuming instruction fetch, decode and possibly execute bandwidth, (iii) it requires an
additional operand for each guarded instruction, requiring an additional read port in the register file for
every instruction issued per cycle, and (iv) it uses registers to hold the value of guard conditions and in-
creases the pressure on the architectural register file, unless a separate condition register file is defined
in the architecture). In this chapter, we propose a new class of instructions called “GUARD” instruc-
tions which alleviates or completely overcomes these limitations, and allows a designer to incorporate
guarding in either a new or an existing instruction set.

GUARD instructions are based on two observations (which we will verify in Chapter 5). The
first observation is that guarded computation exhibits a form of spatial locality: instructions guarded by
the same condition are likely to be in close proximity, both in the static and in the dynamic instruction
stream. The second observation is that instructions in close proximity are likely guarded by the same
guard condition or by a small number of guard conditions, in either true or complement form. These
program properties arise from the common programming practices which favor small, modular code
structures, and by the natural nesting of control structures that limit the scope of movement for the in-
structions (either guarded or not). The above observations indicate that a “forward” specification of
guarding, in which the guard condition is specified in advance of the guarded computation, is possible.
GUARD instructions implement such a forward specification, communicating to the processor both a
guard condition and the list of instructions that are guarded by it. The benefits of this forward speci-
fication will become clear shortly. Next, we define the syntax and semantics of GUARD instructions,
and show how they can be used to specify guarding.

4.1 Semantics of GUARD instructions

A generic GUARD instruction has two operands, a guard condition to be evaluated, and a guard list,
which specifies which of the subsequent instructions (in the static, as well as in the dynamic instruction
sequence) are guarded by the specified condition. The semantics of a GUARD instruction are: evaluate
the condition, and if it is false, squash all the instructions in the guard list. For example, a GUARD

instruction which evaluates whether a condition is true and if not squashes a set of instructions can be
written as:

GUARDTRUE cond, i1, i2, i3, ...
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where

 � 
 � ,


 � , ..., are the labels of the instructions that should be guarded by the condition
� � � �

.

4.1.1 A small example

The following example illustrates the use of GUARD instructions. The simple control flow graph in
Figure 4.1(a) consists of four basic blocks forming two nested if structures. The column labeled “Con-
dition” indicates the guard condition for each of the basic blocks in the graph. To specify the guarded
execution of basic blocks B and C, we need two GUARD instructions, one for each of the conditions �
and � ��� . Figure 4.1(b) shows the assembly code for a MIPS-like instruction set without using guard-
ing, while Figure 4.1(c) shows the if-converted assembly code with guarding specified using GUARD

instructions. In Figure 4.1(c), we assume that register r3 holds the condition � , and register r5 holds
the condition � . To specify the guarding of the instructions in basic block B, the first GUARD instruc-
tion lists the labels


 � ,

 � and


 � in its guard list. Similarly, the second GUARD instruction lists the
labels


 � and

 � , to specify the guarding of basic block C with the condition � ��� .

Comparing Figures 4.1(b) and (c) we notice that the non-branch instructions in both cases are
identical in every respect; the only differences between the two assembly listings are the elimination
of the branch instructions, the use of the AND instruction to evaluate the guard condition ��� � in r3,
and the use of GUARD instructions to specify guarding.

4.1.2 Features of GUARD instructions

The previous example, although simple, illustrated the power of GUARD instructions. Consider the
limitations of guarding as described in Chapter 2, and re-iterated in the beginning of this chapter. All
these limitations are artifacts of the way guarding is specified, and can be alleviated or completely elim-
inated by the use of GUARD instructions. The key property of the GUARD instruction is that it specifies
the guard condition for many (subsequent) instructions. Several benefits stem from this property. First,
the GUARD solution requires the addition of a very small number of instructions, and no modifications
to any pre-existing instructions in the instruction set. This feature allows guarded execution, in its full
form, to be easily integrated into existing (or new) instruction sets. Second, the processor is informed in
advance that some of the instructions will be squashed, and can avoid even fetching them, proceeding
with the fetching of instructions that will be useful. This early-out capability is very important, because
it allows the compiler to use guarding more aggressively, relying on the hardware to ensure that exten-
sive use of guarding does not result in too much dynamic overhead. (For example, in the guarded code
of Figure 4.1, if the condition in r3 evaluates to false, the processor could jump to i8 after it is done
with i5, bypassing the execution of instructions i6-i7 since these two instructions will be dynamically
transformed into NOPs.) Third, since the computation is guarded in an indirect way, the guard register
is read once by the GUARD instruction and is not read by each individual guarded instruction, obviating
the need for the additional read port in the register file of the processor. Finally, since the guard register
is read only once by the GUARD instruction, it can be immediately re-used for other computation, re-
ducing the importance of a separate condition register file. In this thesis, we propose using the general
purpose register file to hold both regular computation and guard conditions.
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(b)

Assembly Code

i1:   ld    
i2:   add  
       beq 

i3:   ld  
i4:   or 
i5:   sw 
       beq 

i6:   mov 
i7:   sub  

Label:

i8:   add  
i9:   add  

r6,  0(r2)
r1,  r2,  #2
r7,  zero, Label

r3,  0(r1)
r17, r17, r3
r17, 0(r1)
r5,  zero, Label

r1,  r3
r6,  r6,  #1

r7,  r7,  1
r5,  r5,  1

(c)

       and 
       GUARD
       GUARD
i1:   ld  
i2:   add
  

i3:   ld  
i4:   or  
i5:   sw 
 

i6:   mov
i7:   sub

i8:   add
i9:   add

r3,  r7, r5
r7,  i3, i4, i5
r3,  i6, i7
r6,  0(r2)
r1,  r2,  #2
  

r3,  0(r1)
r17, r17, r3
r17, 0(r1)
 

r1,  r3
r6,  r6,  #1

r7,  r7,  1
r5,  r5,  1

Assembly Code
Using GUARDs

(a)

Condition

 A

always

always

 A & B

A

D

C

B

T
F

T
F

Figure 4.1: The use of GUARD instructions. Part (a) shows a simple control flow
graph, part (b) lists the corresponding assembly for a MIPS-like instruction set, and
part (c) shows the if-converted assembly using GUARD instructions.

4.2 ISA support for GUARD instructions

To introduce GUARD instructions in an instruction set, we must be able to encode the GUARD opcode,
the guard condition and the guard list using or modifying the existing formats of the instruction set.
Encoding GUARD opcodes can be easily achieved by allocating one (or more) of the unused opcodes
in the instruction set, while encoding of a guard condition can be achieved using one (or more) of the
register specifier fields in the instruction. However, a realistic instruction set cannot directly encode
a list of multiple instruction labels in a single instruction. Instead, we can can take advantage of the
spatial locality of the instructions guarded by the same condition, and encode the guard list using a
bit-mask. This guard mask indicates which of the instructions following the GUARD instruction are
guarded by the specified guard condition. Ideally, an infinite mask would be specified. However, given
the likely proximity of the instructions guarded by the same condition, even a limited-size mask is likely
to be an effective way to encode the list of guarded instructions. For example if the mask size is 10 bits,
the syntax of a GUARD instruction would be:

GUARD cond, 0011010100

indicating which four of the instructions that follow are guarded with condition cond.
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4.2.1 New instructions

The exact number of GUARD instructions that must be added to an instruction set to efficiently sup-
port guarding, and the nature of encoding of the mask field are tradeoffs between larger opcode space
requirements and more compact and efficient guarding representation.

The simplest form of a GUARD instruction specifies a single condition and its guard mask.
The simplest GUARD opcodes are GUARDTRUE and GUARDFALSE, specifying guarding on the con-
dition being true and false respectively. (The GUARD instructions used in Figure 4.1 are actually
GUARDTRUE instructions.) The guard mask encodes the two states for each instruction: not guarded
or guarded. Therefore, we can use a unary encoding for the guard mask, in which the ith bit specifies
whether the ith instruction following the GUARD instruction is guarded by the specified condition.

In many common cases such as if-then-else statements, we need to guard some instructions on
the condition being true and some on the condition being false. Using only GUARDTRUE and GUARD-
FALSE instructions, we need two GUARD instructions for what intuitively is a single action. To achieve
guarding both paths with a single instruction, we can introduce a GUARDBOTH instruction. The guard
mask of a GUARDBOTH instruction must specify three states for each instruction: not guarded, guarded
on true and guarded on false. Clearly, being able to specify guarding on both true and false conditions
in a single instruction will reduce the number of GUARD instructions executed in a program. However,
the encoding of three states for each instruction requires more bits in the guard mask, and for a fixed-
size mask it would restrict the scope of the GUARDBOTH compared to the scope of the GUARDTRUE

and GUARDFALSE instructions. The simplest way to encode the guarding state in the mask is to use
2 bits per guarded instruction. Alternatively, we can take advantage of the unused fourth state, and re-
duce the guard mask bit requirements. For example, the number of possible guarding states for three
instructions are ��� (27); all these states can be encoded using 5 instead of 6 bits. This encoding in-
creases the scope of the guard mask by at least 16% but requires a (relatively simple) decoding step
before the guard mask can be used.

For a MIPS-like instruction format outlined in Figure 2.4, the opcode field is 6 bits, and one
register specifier field is 5 bits, leaving up to 21 bits that can be used as the guard mask. With this
mask size, a GUARDTRUE (or GUARDFALSE) instruction can guard up to 21 instructions. A single
GUARDBOTH instruction using the compact encoding can guard up to 12 instructions (4 sets of 5 bits,
each specifying the guarding state of 3 instructions) from both paths of a single branch. When the
guard distance is larger than the mask, the compiler can insert additional GUARD instructions in the
code. This can be easily done by extending the lifetime of the guard register and introducing additional
GUARD instructions later in the code. An alternative to extending the lifetime of the guard register is to
use a GUARDUPPER instruction, which specifies that the mask is first shifted by ' bits, where ' is the
width of the GUARD mask in instructions. For example, if we only have a 5-bit mask, the instruction:

GUARDTRUE cond, 0011010100

can be expressed using the following instruction sequence (assuming that the GUARDUPPER mask will
be shifted right):

GUARDTRUE cond, 00110
GUARDUPPERTRUE cond, 10100

For the assumed MIPS-like format, ' would be 21 for GUARDUPPERTRUE and GUARDUPPERFALSE

and 12 for GUARDUPPERBOTH.
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We can also allow GUARD instructions to perform more powerful tests, for example compare
if two operands are equal, etc. As described in Chapter 2, Section 2.2.2, allowing a more powerful
condition specification will further reduce the number of set instructions required for guarding the code,
but it will also reduce the size of the mask, reducing in this way the scope of the GUARD instructions.
A more complicated condition might also affect the critical path of GUARD execution, as the condition
evaluation will require more logic levels. For these reasons, in the remaining part of this thesis we only
consider GUARD instructions that perform a simple true or false test on a single operand.

4.2.2 New ISA state

To support GUARD instructions, the processor has to keep track of the set of live and squashed future
instructions. To achieve this, the processor can maintain a scalar mask register (akin to the vector mask
of vector processors). Each bit in the scalar mask has the following meaning: if the



-th bit in the shift

register is 1, the


-th instruction (counting from the current program counter) is to be executed; if the


-th bit is 0, the


-th instruction must be treated as a NOP. For the execution of a GUARD instruction

with mask
� � ���

evaluating condition
� ��� �

, the bits in the scalar mask are updated as follows:

� � ��� � � � ����� 
 � � � �!� �!� � � ��� 
 � � � � � ��� 
 � � ��� � ��� � � ��� 
 �� � � �!� �!� � � ��� 
 � ��� ��� � � � � ��� 
 �
� � � �!� �!� � � ��� 
 � � � ��� � � � � ��� 
 �

(4.1)

The intuition behind Equation 4.1 is that for every GUARD instruction, a set bit in the guard
mask indicates that the instruction is to be executed only if the condition holds. A reset bit in the guard
mask indicates that the state of the instruction is unaffected by this GUARD instruction.

After an instruction is completed, the scalar mask is shifted by one position, with a one being
shifted in. The width (in bits) of the scalar mask register should be as wide as possible, to allow a larger
guarding range for the GUARD instructions. However, as we will describe in Section 4.4.2, the scalar
mask register must be saved and restored on interrupts and exceptions, so it is convenient to define that
it is as wide as the general purpose registers of the architecture, so it can be easily manipulated with
existing instructions. The scalar mask register may also be modified by branch instructions; we will
discuss the interaction of GUARD and branch instructions in Section 4.4.1.

The scalar mask is key in permitting the processor to effectively skip around unnecessary com-
putation. The processor can identify the unnecessary computation by performing a count of the leading
zeros in the scalar mask, and can execute a short branch, changing the fetch address to � ��� � ��� � �	� �
(count gives the offset from the current PC to the next useful instruction). Therefore, instructions that
will dynamically be transformed into NOPs are not even fetched into the pipeline.

Even when it is too late to stop the fetching of unnecessary computation, decoding the instruc-
tions as NOPs has significant advantages, because the decoding logic does not have to be conservative
about possible dependences through guarded code. Consider for example this code sequence:

g add R10 ? R3, R2, R1
sub R5, R3, R1

where R10 is equal to zero. While the guarded add has no effect, it appears to write register R3, so the
following sub instruction will have to wait for the possible result, and the code sequence executes in
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two cycles. However, at decode time, the scalar mask register will indicate that the guarded add should
be decoded as a NOP, and the dependency checking logic can remove the artificial RAW dependence,
allowing this code sequence to execute in a single cycle. Similarly, the scalar mask can be supplied to a
merging or collapsing network [Joh90, CMMP95], which would completely remove from the pipeline
any squashed instructions that have being fetched, before they are even decoded.

The combination of GUARD instructions and the scalar mask register allows an additional opti-
mization. When multiple GUARD instructions list the same instruction in their respective guard masks,
the conditions are implicitly AND-ed in the scalar mask. This feature can reduce the number of logic
manipulation instructions and temporary registers required to evaluate the appropriate guard condi-
tions. For example the sequence

GUARD A, i2,i4
GUARD B, i3,i4

guards instruction

 � on condition � , instruction


 � on condition � and instruction

 � on condition

� ��� .

4.2.3 GUARD instruction use

To illustrate how GUARD instructions are used by the processor, we use the same example used in Fig-
ure 4.1. Figure 4.2(a) shows the same control flow graph and the guard conditions as Figure 4.1(a).
The guard masks corresponding to conditions � and ��� � are shown vertically in Figure 4.2(b). In
these masks, a 1 indicates that the corresponding instruction is guarded by the condition, and a 0 in-
dicates that the instruction is not dependent on the condition. Part (c) shows the MIPS-like assembly
code using the binary masks to specify the guard lists of the GUARD instructions.

Figure 4.3 illustrates the execution of the code of Figure 4.2(c) annotated with the correspond-
ing values of the scalar mask register. In Figure 4.3 we assume that initially condition � is true (i.e.,
register r7 is equal to 1) and condition � is false (i.e., register r5 is 0, and therefore register r3 will be
set to 0). With these assumptions, the instructions in basic block C (i.e., the mov and the sub) must be
squashed during the execution of this code sequence (these instructions are marked with a star in the
assembly code). The initial value of the scalar mask register is assumed to be all ones. We also assume
that the leftmost bit of the scalar mask register is the one determining whether the current instruction
should be executed or squashed. The scalar mask register is not modified by the first GUARD instruc-
tion since its condition (r7) evaluates to true. However, the condition of the second GUARD instruction
evaluates to false, and the scalar mask bits are updated to reflect that the two instructions in the guard
mask of the GUARD instruction should not be executed. The execution continues with the scalar mask
register being shifted one position to the left for each executed instruction. When the execution reaches
the two instructions of basic block C, the leftmost bit of the scalar mask register is zero, indicating that
the corresponding instructions must be squashed.

In the example above, the condition � ��� that guards basic block C was explicitly computed
by the first instruction in the code sequence. Taking advantage of the implicit AND property of GUARD

instructions, the same effect can be achieved by using just two GUARD instructions:

GUARD r7, 0001111100 # Condition �
GUARD r5, 000001100 # Condition �

Note that the bits corresponding to instructions

 � and


 � are set in both masks, indicating that
these instructions should be squashed when any of the conditions � or � is false.



44

(c)

Assembly Code
Using GUARDs

r3,  r7, r5
r7,  0001110000
r3,    000001100
r6,  0(r2)
r1,  r2,  #2
  

r3,  0(r1)
r17, r17, r3
r17, 0(r1)
 

r1,  r3
r6,  r6,  #1

r7,  r7,  1
r5,  r5,  1

       and 
       GUARD
       GUARD
i1:   ld  
i2:   add
  

i3:   ld  
i4:   or  
i5:   sw 
 

i6:   mov
i7:   sub

i8:   add
i9:   add

(b)

GUARD A & BGUARD A

0
0
0

1
1

1

0

0

0

0

0
0
0

1

1

0

0

0
0
0

(a)

Condition

 A

always

always

 A & B

A

D

C

B

T
F

T
F

Figure 4.2: The use of GUARD masks. Part (a) shows the control flow graph and
the guard conditions from Figure 4.1. Part (b) shows the guard mask corresponding
to each condition and part (c) shows the MIPS-like assembly using GUARD instruc-
tions with binary masks.

4.3 GUARD instruction assignment

To effectively use GUARD instructions, the compiler has to (i) insert the necessary GUARD instructions
in the appropriate places in the code, and (ii) determine the guard mask for each of them. (Internally
the compiler uses guard lists in the GUARD instructions; these lists will be converted into masks by the
assembler when the actual instruction arrangement is known. In this section we use the term mask to
denote either the compiler guard lists, or the actual guard masks generated by the assembler, depending
on the context.) One simple solution to both these problems is to run the RK algorithm (described in
Chapter 3) and assign a GUARD instruction for each of the conditions generated by the RK algorithm.
The GUARD instructions can be placed immediately after the definition of the corresponding guard
registers, and the GUARD masks are easily determined, since they contain all the instructions that would
be guarded by that guard register. While this approach would yield correct code, it does not fully exploit
the potential of GUARD instructions. In particular, it would not exploit the implicit AND-ing in the
scalar mask register. To determine a placement of GUARD instructions and a mask assignment that
exploits this property, we developed the following algorithm.
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Code with GUARDs Scalar Mask Register

and r3, r7, r5 1111111111
GUARD r7, 0001110000 1111111111
GUARD r3, 000001100 1111111111
ld r6, 0(r2) 1111100111
add r1, r2, #2 1111001111
ld r3, 0(r1) 1110011111
or r17, r17, r3 1100111111
sw r17, 0(r1) 1001111111
mov r1, r3 * 0011111111
sub r6, r6, #1 * 0111111111
add r7, r7, 1 1111111111
add r5, r5, 1 1111111111

Figure 4.3: The execution of the code of Figure 4.2(c) assuming that the starting
values of register r7 (condition � ) and r5 (condition � ) are 1 and 0 respectively.
The left column lists the value of the scalar mask register when the instruction is
considered for execution. A zero in the leftmost position of the scalar mask register
indicates that the instruction should be squashed (marked with a star).

4.3.1 An algorithm for determining GUARD masks

The intuition behind GUARD instructions is that when an instruction is listed in the guard mask, it must
be squashed if the condition does not evaluate to true. To map this behavior to the original control flow
graph, we observe that it is very similar to the behavior of a conditional branch. In the CFG of a program
before the if-conversion, every conditional branch guarantees that, depending on the branch condition,
but independent of other conditional branches, some instructions will not be executed. Therefore, we
can simulate the branch behavior if we add a GUARD instruction for every conditional branch in the
original code, and we add in the guard mask all the instructions that are guaranteed not to execute when
the branch is taken. We formalize this process for GUARD mask assignment in the algorithm shown in
Figure 4.4.

The algorithm assumes that the input � is a directed acyclic graph with a single entry point.
(Since this algorithm is applied to the same regions as if-conversion would, it is reasonable to assume
that the graph will be loop-free.) The algorithm considers every node � in � with two outgoing arcs
and determines the necessary GUARD instructions and masks. We prove that the GUARD assignment
determination is correct, by showing how the algorithm takes the correct decisions for all possible cases.
To determine whether a node

�
(where

�
is not � ) should be included in the guard mask of the GUARD

instruction in node � , we distinguish three possible cases.

� Case 1: node
�

is not reachable from node � , regardless of the � ’s outcome. Then the execution
of node

�
is determined by other conditionals in � and

�
should not appear in the GUARD

mask in � . Since
�

is not reachable from node � , it will not be added to the guard mask of the
generated GUARD instruction.
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Algorithm guard-assign(G):
Given a rooted, acyclic graph G,

determine the placement and masks of the GUARD instructions
{
(1) for each conditional node N in G {
(2) Treach(N) = reachable(cond(N) == true);
(3) Freach(N) = reachable(cond(N) == false);
(4) Tsquash(N) = Treach(N) - Freach(N);
(5) Fsquash(N) = Freach(N) - Treach(N);
(6) if (Tsquash(N) is not empty)
(7) insert a GUARD cond(N), Tsquash(N) in node N
(8) if (Fsquash(N) is not empty)
(9) insert a GUARD !cond(N), Fsquash(N) in node N

}
}

Figure 4.4: An algorithm for GUARD instruction and mask assignment.

� Case 2: node
�

is reachable from node � both when � ’s branch condition evaluates to true and
when it evaluates to false. Then node

�
is not control dependent on node � , and consequently�

should not appear in the GUARD mask in � . Since
�

is reachable from � when the branch
condition is either true or false, it will be present both in the � � �"� ��� and in the � � ��� ��� sets,
but not in their difference, so it will not be added in the guard mask of the generated GUARD

instruction.

� Case 3: node
�

is reachable only when � ’s branch condition evaluates to true (false). Then, if
node � is executed, and its branch condition evaluates to false (true) node

�
will not execute,

therefore node
�

will appear in the � ’s guard mask for the condition being false (true). The
GUARD assignment algorithm will determine that node

�
is a member of the � � ��� ��� ( � � ��� ��� )

set as well as a member of the � ��� � ��� � ( � ����� � � � ) set, so node
�

will be added to the guard
mask of the generated GUARD instruction for the condition being true (false).

The above algorithm can be easily modified to detect when a GUARDBOTH instruction can be
used (by testing whether both � ����� � � � and � ����� ��� � are not empty) and to generate the appropriate
GUARDBOTH mask by merging the two masks generated in steps 7 and 9 into a single GUARDBOTH

mask. Figure 4.5 shows the modified version of the GUARD mask assignment algorithm, supporting
GUARDBOTH instructions.

4.3.2 An example of GUARD assignment

To illustrate the operation of guard assignment algorithm consider the control flow graph in Figure 4.6.
(This CFG is similar to the examples used by Ferrante et al. [FOW87] and Park and Schlansker [PS91].)
The CFG is annotated with the required GUARD instructions to achieve correct guarded execution as
determined by the algorithm of Figure 4.4. Table 4.1 tabulates the conditions for each of the CFG nodes,
the computed � ����� ��� � and � ����� � � � sets and the generated GUARD instructions for the same CFG.
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Algorithm guard-assign(G):
Given a rooted, acyclic graph G,

determine the placement and masks of the GUARD instructions
{
( 1) for each conditional node N in G {
( 2) Treach(N) = reachable(cond(N) == true);
( 3) Freach(N) = reachable(cond(N) == false);
( 4) Tsquash(N) = Treach(N) - Freach(N);
( 5) Fsquash(N) = Freach(N) - Treach(N);
( 6) if ((Tsquash(N) is not empty) && (Fsquash(N) is not empty) {
( 7) TFsquash(N) = combineTFguardlist(Tsquash(N), Fsquash(N));
( 8) insert a GUARDBOTH cond(N), TFsquash(N) in node N
( 9) } else {
(10) if (Tsquash(N) is not empty)
(11) insert a GUARD cond(N), Tsquash(N) in node N
(12) if (Fsquash(N) is not empty)
(13) insert a GUARD !cond(N), Fsquash(N) in node N

}
}

}

Figure 4.5: An algorithm for GUARD instruction and mask assignment supporting
GUARDBOTH instructions.

Corresponding
Node Condition Tsquash Set Fsquash Set

GUARD Instructions

GUARD t1, 2, 4
1 t1 � 2, 4 � � 3 �

GUARD !t1, 3
GUARD t2, 4

2 t2 � 4 � � 5 �
GUARD !t2, 5

3 t3 � 5, 6 � – GUARD t3, 5, 6

Table 4.1: GUARD instruction assignment determination: for every branch condi-
tion the guard assignment algorithm computes the � ����� � � � and � ��� � ��� � sets and
introduces the corresponding GUARD instruction(s).
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Guard t2, 4
Guard !t2, 5
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Guard !t1, 3
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Figure 4.6: A control flow graph annotated with GUARD instructions. t
�

is the
branch condition for node

�
. The guard lists in the GUARD instructions refer to

node numbers.

For the three conditional nodes in the CFG, a total of five GUARD instructions are required. Fur-
thermore, if the instruction set supports a GUARDBOTH instruction, the total is reduced to just three
instructions. The results of the algorithm are straightforward. For example, node 2 is not executed
when condition

� � is false, so it appears in the guard mask of the GUARD instruction with
� � as a con-

dition. Node 4 is not executed when either of the conditions
� � or

� � are false, and so it appears in the
guard masks of both the GUARD instruction with condition

� � in node 1 and of the GUARD instruction
with condition

� � in node 2.
It is interesting to compare the results of traditional if-conversion as implemented by the RK-

algorithm, with the result of our guard assignment algorithm. Figure 4.7 shows the same CFG as Fig-
ure 4.6, annotated with the results of the RK algorithm. In Figure 4.7, five distinct guard registers are
used, requiring a total of 7 set instructions and one initialization instruction to correctly evaluate all
the guard conditions. In contrast, only five GUARD instructions were required in Figure 4.6, indicating
that the GUARD instructions not only can specify the guarding state of instructions, but can help lower
the overhead of guarding as well.

To understand the differences between the two approaches, consider how the guarding of node
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6 is handled by each one. Node 6 is executed either when
� � is true, or when

� � is false and
� � is true.

To achieve this effect, the RK algorithm generates two sets for
� � . One is in node 1 with condition� � which will take care of the first condition. The other is in node 3 using the condition

� � ; the set
instruction is itself guarded by

� � , which will be true if
� � was false. With GUARD instructions, node

6 simply appears in the guard mask of the GUARD instruction in node 3.

4.4 Hardware considerations for GUARD instructions

The control logic required to execute GUARD instructions is fairly cheap and straightforward. The
processor has to: (i) implement the scalar mask register described in Section 4.2.2, and (ii) include the
circuit required to update the scalar mask register when a GUARD instruction is executed.

The scalar mask register can be implemented using a shift register which will accumulate the
results of the GUARD instructions and determine the execution of future instructions. As described
earlier, a set bit in the scalar mask register indicates that the instruction is to be executed while a reset bit
indicates that the instruction should be squashed in the pipeline. After an instruction is completed, the
scalar mask is shifted by one position, with a “one” being shifted in to indicate that future instructions
are to be executed unless they are explicitly squashed by a GUARD instruction.

Figure 4.8 shows the high level diagram for a 5-stage pipeline of a processor that supports
GUARD instructions. Compared to a ordinary 5-stage pipeline, the only additions are the scalar mask
register and the “cond eval” circuit, which is the hardware realization of Equation 4.1 consisting of just
two levels of logic. In Figure 4.8, the rightmost bit of the scalar mask register corresponds to the cur-
rent instruction. This bit is sent to the forwarding logic which is responsible for the squashing of the
current instruction when the bit is zero. When an instruction needs to be squashed, the pipeline con-
trol has to take two actions: (i) inhibit the write-back of the squashed instruction, and (ii) inhibit the
squashed instruction from forwarding its result to a subsequent instruction. In Figure 4.8 we assume
that both these actions will be performed by the modified forwarding logic.

An aggressive ILP processor must be able to execute multiple GUARD instructions per cycle.
Although the scalar mask is a centralized resource, the operations performed on it are simple logic
functions. Equation 4.2 extends Equation 4.1 for the concurrent execution of two GUARD instructions
(where M

�
and C

�
are the guard mask and the guard condition of the

�
th GUARD instruction).

� � �!� �!� � ����� 
 � � � ��� � � � � ��� 
 � � ���
� 
 � � � ��� � � 
 � � � ���

� 
 � � � � � � � 
 �� � � ��� � � � � ��� 
 � � � � � � � 
 � � � � � � � � 
 �
� � � ��� � � � � ��� 
 � � � � �

�
� 
 � � � � � �

�
� 
 � (4.2)

Notice also that the parenthesized parts of the equation do not involve the scalar mask register,
and are independent for each GUARD instruction. Taking advantage of this inherent parallelism and of
the associativity of the AND operation, the processor can multiple (ready) GUARD instructions using an
AND-tree to update the scalar mask. As a result, the generalization of the scalar mask update equation
for 4 simultaneous GUARD instructions uses just four, 2-input gate levels. Using gates with higher
fan-in can further reduce the required number of levels.

Figure 4.9 shows the high level diagram for a dual issue pipeline. The complexity of executing
more than one GUARD instructions per cycle is concentrated in the “cond eval” circuit, which, as de-
scribed earlier, uses an AND-tree to combine the results of both GUARD instructions. Figure 4.9 also
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Figure 4.7: Condition register assignment and definitions by the RK algorithm. p
�

is the predicate register, and t
�

is the branch condition for node
�

.
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Figure 4.8: A pipeline supporting GUARD instructions. The shaded portion of the pipeline is the
portion that needs to be added to support the execution of GUARD instructions.
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shows how the scalar mask register can be used to skip around squashed computation. The “skip logic”
circuit performs a leading zero count on the scalar mask register and adds it to the current fetch PC. In
this way, the skip logic injects a short forward branch in the pipeline which bypasses the instructions
that are already squashed by previous GUARD instructions.

The ability to execute multiple GUARD instructions per cycle and the implicit AND property
of the scalar mask register, achieve a result that is very similar to the control-tree height reduction tech-
nique described in Chapter 3, Section 3.3.4. To evaluate an AND-tree, the control-tree height reduc-
tion technique uses multiple pred set instructions that evaluate the parts of the condition and use the
AND action specifier to combine all these parts in the destination register in a single cycle. GUARD

instructions use a hardware AND-tree to achieve the same effect.

4.4.1 Interaction between GUARD and Branch instructions

GUARD instructions are based on the assumption that instructions in a guarded region are contiguous
in memory and are fetched sequentially. Taken branches violate this assumption since they change the
control flow. Therefore, any reset bits in the scalar mask bits after a taken branch would be meaning-
less for the instructions in the target of the branch. However, an architecture that supports GUARD

instructions must define the expected behavior of overlapping branch and GUARD instructions.
To ensure simple semantics and correct execution of programs we have two options:

(a) define a convention which requires that no branches will appear within a single guarded region
(and consequently they will not appear within the range of a GUARD instruction), or

(b) define that the run-time effects of a GUARD instruction will never span past the next taken branch.

The convention of the first option is sufficient to guarantee the correct execution for all correct
programs, but has two disadvantages. First, it imposes strict limitations to the code that the compiler is
allowed to generate. For example, it does not allow Hyperblock-type scheduling where some branches
(which presumably are mostly not-taken) are retained in a guarded region. Second, the behavior of
incorrect programs is not defined, which may cause unexpected behavior for incorrect programs. In
environments were self-modifying code is not allowed, this convention can be enforced at compile
time, by the compiler or by the assembler. However, when self-modifying code is allowed, the user can
easily create (on purpose, or accidentally) incorrect programs, which in turn will exhibit unexpected
behavior. To avoid these problems, the processor must detect any violations of the convention and
report an exception to the user.

The second option, based on the observation that branches that are not taken do not terminate
the guarded region and are therefore safe to execute, provides both simple and flexible semantics to
the compiler. To ensure that the dynamic scope of the GUARD instruction does not extend beyond the
next taken branch, it is sufficient to define that when a branch is taken, it sets all the bits in the scalar
mask register. Assuming for a moment that the processor does not employ branch prediction, when a
branch executed and is determined to be taken, the control logic has ample time to set the scalar mask
register bits for the future instructions during the fetching of the target instructions. Setting the scalar
mask register bits will ensure that when the target instructions are fetched and enter the pipeline, they
will be executed correctly, even if GUARD instructions that preceded the branch may have reset some
of the scalar mask register bits. This definition allows the compiler the flexibility to use any arbitrary
region selection scheme for if-conversion.
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If dynamic branch prediction is employed, a processor that allows branches inside the guarding
regions must handle correctly the interactions between the execution of GUARD instructions and branch
prediction. If a branch within the range of a GUARD instruction is predicted as taken, the scalar mask
bits corresponding to instructions in the taken path should not be affected by the GUARD instruction. If
the branch predicting mechanism is decoupled from the execution of GUARD instructions, the branch
prediction may occur before the (logically) preceeding GUARD instructions are executed. To ensure
correct execution, the taken prediction must be communicated to the GUARD execution logic, which
should restrict the effects of the GUARD instructions to the instructions before the (predicted) taken
branch. Since the prediction may turn out to be incorrect, the current value of the scalar mask register
at the time of the execution of the branch must be kept along with the program counter of the branch
instruction, so that the execution can be correctly restarted from the fall-through path of the branch.

A simpler alternative is to disallow the dynamic prediction for branches that fall within the
range of GUARD instructions. By doing so, the execution unit of the processor is assured that the stream
of instructions will be sequential, until either the region is terminated, or until a branch is executed and
is determined to be taken. The former case poses no complications to the execution of GUARD in-
structions, while the later case can be handled as described earlier for the case of no branch prediction.
To ensure that branches inside the guarding regions are not predicted, the processor must detect them
somehow. One way to detect these branches is to use a different opcode for them. Alternatively, the
processor can detect them at run-time, and store an additional bit in a pre-decoded instruction cache,
which will later indicate to the branch prediction mechanism whether a branch should be predicted or
not. Since the pre-decoding information may be lost due to replacement of cache lines, and to correctly
handle the very first time a branch is encountered, the processor must still track the bounds of the guard-
ing regions and the predictions made by the branch prediction unit. When the processor detects a taken
branch prediction inside the bounds of a guarded region, it can wait to resolve the branch (thus ensuring
the correct execution without any additional hardware support), and update the pre-decode information
for the branch, marking it so it will not be predicted. Table 4.2 summarizes the interactions, advantages
and disadvantages of the branch handling options.

4.4.2 Interrupt handling and GUARD instructions

Since the scalar mask is part of the processor state, it must be saved and restored on interrupts and
context switches. The saved scalar mask, together with the saved program counter value and the archi-
tectural register file(s), provide sufficient information to restart an interrupted process correctly.

A fairly straightforward solution is to expose the scalar mask register to the user and system
software as part of the processor state, and introduce user-level instructions to save and restore the
scalar mask. To ensure that the value of the scalar mask at the time of the interrupt is saved by the
save instruction, the processor must stop shifting the scalar mask as soon as the interrupt is accepted.
As a consequence, the interrupt handler code cannot use GUARD instructions until the scalar mask is
saved. The shifting of the scalar mask register can be enabled by the instruction that restores a value
in it.

Saving and restoring the scalar mask value can be easily achieved if the architecture defines an
Exception Scalar Mask (ESM) register, similar to the Exception Program Counter of the MIPS archi-
tecture [Kan87]. When an interrupt or an exception is taken by the processor, the value of the scalar
mask register is copied into the ESM register, and all the scalar mask bits are set to 1. The exception
handler can proceed using GUARD instructions since the old scalar mask value is safe in the ESM reg-
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Branches inside guarding regions
Do not allow Allow

Advantages Ordinary treatment of branches Flexibly region selection
Disadvantages Restricts region selection Special handling for branches
Not-taken
branch handling

Ordinary Ordinary

Taken branch
handling

Ordinary Set the remaining bit in scalar
mask register

Predict branches
inside guarding
regions

N/A Must save guard mask register
value for recovery

Do not predict
branches in-
side guarding
regions

N/A Must detect which branches are
inside guarding regions (use dif-
ferent opcodes, or detect at run-
time)

Table 4.2: Interactions between guarding regions and branches.

ister. To allow nested exception and interrupts, the exception handler must ensure that the ESM register
is stored in memory before the next interrupt is accepted. The ESM register will be automatically re-
stored into the scalar mask register when a Return From Exception instruction is executed. In this way,
only the ESM register needs to be directly exposed to the user and system software, and no restrictions
are placed on the use of GUARD instructions in the exception handlers.

An alternative to saving and restoring the scalar mask register is to require that interrupts will be
accepted only on PC values that correspond to a “clean” state (i.e., to a scalar mask with all the bits set).
In this case, the PC value and the register file(s) contents are sufficient to fully describe the state of the
processor and to restart the process. In this approach, the handling of traps (which cannot be deferred
until the state of the processor becomes clean) requires that the processor must be able to revert to the
last PC for which the state was clean, in a manner similar to the checkpoint repair of [HP87]. Since
the control of GUARD instructions is in the hands of the compiler or the user, it will be hard or even
impossible to predict how soon the processor state will become clean. For systems that want to ensure
timely service of interrupts, deferring interrupt handling until the processor is in a clean state will be
unacceptable. Also, since the guarding regions can be arbitrarily large, the state that the processor is
required to buffer so that it can revert to a clean state can also be arbitrarily large.

Table 4.3 summarizes the interrupt handling options. Among the options, using an Exception
Scalar Mask register that snapshots the value of the scalar mask on an interrupt or an exception is both
simpler and more flexible, and should be the option of choice.

4.5 Implications of out-of-order execution

When GUARD instructions are used in an out-of-order processor, the guard condition may not be avail-
able at the time the GUARD instruction is issued. The GUARD instructions should be buffered in the
Reorder Update Unit (RUU) [SV87, Soh90] or the equivalent structure, so that they will be executed



56

Interrupt Handling and GUARD Instructions

Option Mechanism Comments
Expose scalar mask
register to the user

Need a mechanism to freeze and
resume the shifting of the scalar
mask register and instructions to
save/restore its value

Flexible and guarantees forward
progress

Introduce an Excep-
tion Scalar Mask
(ESM) register

Scalar mask automatically saved
into ESM on exceptions and re-
stored by RFE instruction

Simple semantics, flexible and
guarantees forward progress

Hide scalar mask
register

On interrupts, H/W must roll-
back to clean state, or postpone
the interrupt (if possible) until the
state becomes clean

Forward progress is hard to guar-
antee with roll-back, and fairness
is hard to guarantee if the inter-
rupts can be postponed

Table 4.3: Interrupt handling options with GUARD instructions.

when its operand becomes available. This out-of-order execution of GUARD instructions makes the
implementation of GUARD instructions in an out-of-order processor more complicated than that in an
in-order processor. In this section we address two problems: (i) how to determine when a particular bit
of the scalar mask is ready and (ii) how can we handle taken branches and branch prediction.

4.5.1 Determining when a scalar mask bit is ready

In order to execute an instruction, an out-of-order processor supporting GUARD instructions has to con-
sult the corresponding scalar mask register bit. However, this bit will not be available if some GUARD

instruction that has been issued in the RUU but not been yet executed lists this bit in its guard mask.
In fact, multiple GUARD instructions may list the same scalar mask bit in their guard masks, and the
processor needs a mechanism to determine when all these instructions have been issued, to determine
whether a scalar mask bit is available or busy.

To determine the set of busy scalar mask bits, the processor can OR all the guard masks of the
outstanding GUARD instructions (appropriately shifted) and subtract any scalar mask bits that are al-
ready zero (a zero in a scalar mask bit means that the instruction is guaranteed to be squashed regardless
of any outstanding GUARD instruction). When a scalar mask bit is busy, the corresponding instruction
in the RUU the instruction should not be allowed to execute; the instruction must be held until all the
outstanding GUARD instructions which have this bit set in their guard masks are executed, or until the
scalar mask bit becomes 0 (in which case the instruction can be immediately squashed).

Guard Mask Buffer

The process just described can be implemented directly in hardware. The processor can keep a copy of
the guard masks of all the outstanding GUARD instructions, in a small buffer, called the Guard Mask
Buffer. An entry in this buffer is allocated for every GUARD instruction that is issued before its operand
is available. Entries in this buffer are freed (and zeroed) as soon as a GUARD instruction is executed.
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Figure 4.10: Support for out-of-order execution of GUARD instructions: Guard Mask Buffer.

To determine the set of busy scalar mask bits. all the entries of the Guard Mask Buffer are OR-ed and
the result is AND-ed with the scalar mask. Figure 4.10 illustrates the structure and operation of a Guard
Mask Buffer with 3 entries. Two of the entries contain the mask of outstanding GUARD instructions
while the third one is free. The masks are OR-ed to compute the “Outstanding Masks”, which is in turn
AND-ed with the scalar mask register to get the final “Busy Mask”. Notice, that despite the fact that
there is an outstanding GUARD instruction guarding instruction slot #2, the corresponding bit in the
scalar mask register is zero, and it is not marked as busy.

Figure 4.11 shows how the Guard Mask Buffer would be connected to the RUU of the proces-
sor. The Guard Mask Buffer is shown to be as wide as the number of RUU entries. In this layout, the
mapping between scalar mask bits and RUU entries is fixed. Instead of shifting the scalar mask register,
we have to rotate the guard masks of all the GUARD instructions to refer to the appropriate RUU entry.
As described earlier, the Guard Mask Buffer produces a busy bit for each of the scalar mask register
bits. The scalar mask bit is stored in the SMi field while the busy bit is inverted and stored into the Vsm
field (which stands for Valid Scalar Mask). The instruction is considered ready when the scalar mask
bit is valid and either it is set and all the source operands are available, or it is false and the old value
of the destination register is available.

A limitation of this method is that it requires that the RUU is managed as a strict circular queue,
so that there is a trivial one-to-one mapping between bits in the scalar mask register and RUU entries.
While the RUU was designed with this management in mind, other alternatives (for example splitting
the RUU into a possibly centralizes set of Reservation Stations coupled with a reorder buffer) can reuse
the entries as soon as they are freed, resulting in a more efficient utilization of the reservation station
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scalar mask register.

entries.

Reference Counts

An alternative way to keep track of the outstanding scalar mask bits, is to associate a Reference Count
with each of the bits of the scalar mask. When a GUARD instruction is issued before its operand is
available, it will increment the reference counts for each of the bits in its guard mask. When a GUARD

instruction is executed, it will decrement the reference counts for each of the bits in its guard mask.
Therefore, for each scalar mask bit, the reference count determines how many GUARD instructions
have this bit set in their guard masks and are outstanding in the RUU. If the count is zero, the corre-
sponding scalar mask bit is available. Figure 4.12 repeats the previous example using reference counts.

The implementation of either a Guard Mask Buffer or of a Reference Count scheme must set a
limit on the maximum number of outstanding GUARD instructions in the processor. This number will
either be the number of entries in the Guard Mask Buffer, or the maximum value of the reference coun-
ters. When this maximum number is exceeded, the processor must cease issuing instructions, either
until one of the outstanding GUARD instructions complete, or until the operand of the current GUARD

instruction becomes available.



59

0 1 2 3 4Instruction Slot

*

0 1 0 11

1 11 0 1

0 1 00 1

Reference
Counts

0 02 1 1

* * * *
Outstanding
Masks

Scalar Mask
Register

Busy Mask

Figure 4.12: Support for out-of-order execution of GUARD instructions: Reference Counts.

4.5.2 Interaction of GUARD instructions and Branch prediction

The handling of branches inside guarding regions is also made more complicated by the asynchronous
nature of an out-of-order processor. As we described earlier, when a branch is taken, it should set all the
bits of the scalar mask register that correspond to the target instructions, to ensure that these instruc-
tions are not affected by a GUARD that precedes the taken branch. In an in-order processor, all pre-
ceeding GUARD instructions would have already been executed by that time, and this action is enough
to guarantee that preceeding GUARD instructions cannot affect the instructions from the taken path.
However, in an out-of-order processor there is no guarantee that the preceeding GUARD instructions
will have been already executed. When these GUARD instructions are executed, they may incorrectly
squash the wrong instructions (as described in Section 4.4.1). Therefore, the processor needs a mech-
anism that will allow the out-of-order execution of GUARD and branch instructions, while at the same
time ensure that the “reach” of a GUARD instruction (that is the range of instructions that the GUARD

instruction can affect) will never exceed the next taken branch.
Our solution to this problem works by renaming the scalar mask register whenever a branch

is taken and by combining the correct parts of the renamed scalar mask registers to obtain the actual
scalar mask register value To achieve both renaming and combining the renamed scalar masks we use a
Scalar Mask Rename Buffer (SMRB). Each entry in the SMRB is a pair of a Renamed Scalar Mask and
a Reach Mask. As the name implies, the Renamed Scalar Mask is a renamed version of the architectural
scalar mask register. The Reach Mask is used to restrict the effects of the Renamed Scalar Mask to the
appropriate instructions (i.e., up to the next taken branch). Our convention is that a reset bit in the Reach
Mask means that the execution of the corresponding instruction is determined by the Renamed Scalar
Mask, and a set bit means that the instruction in outside the reach of this Renamed Scalar Mask. The
Reach Masks are set so that exactly one Renamed Scalar Mask refers refer to a particular RUU entry
at any time (the exact procedure that we use to manage the Reach Masks will be described shortly).
To determine the actual value of the scalar mask, we use a two step process. First, we OR each Reach
Mask with its Renamed Scalar Mask. This operation computes a list of partial squash masks. Since all
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Figure 4.13: The Scalar Mask Rename Buffer. Part (a) shows a simple code se-
quence of a guarded loop containing an exit branch. Part (b) shows the contents
of a two-entry Scalar Mask Rename Buffer assuming that the conditions of both
GUARD instructions evaluate to false and that the exit branch is taken.

the Reach Masks are mutually exclusive, the second step combines the squash masks by simply AND-
ing the partial squash masks to obtain the overall squash mask. This squash mask corresponds to the
value that the architectural scalar mask register would have at this point.

Figure 4.13(a) shows a code sequence that illustrates the operation of the SMRB. It consists
of a guarded loop body that contains an conditional exit in the middle. The code after the Exit label is
itself guarded. In Figure 4.13(a) we assume that both guard conditions evaluate to false and that the first
branch is taken. Under these assumptions, the extent of the first GUARD instruction must be restricted
so it does not affect instructions which come after the taken branch. Figure 4.13(b) shows the state of a
two entry SMRB after all the instructions have been issued in the RUU and the two GUARD instructions
are executed. Renamed Scalar Mask #1 contains two zero entries, and the second one corresponds to
instruction B which is statically but not dynamically after the branch. This zero is masked by Reach
Mask #1. None of the zero bits in the Renamed Scalar Mask #2 are masked since they do not span
across a taken branch instruction.

At this point we should note that the SMRB contains all the information required to allow the
use of dynamic branch prediction for branches within guarded regions. The Renamed Scalar Masks
can accumulate the entire contents of all the GUARD instructions that precede the branch that caused
the renaming. Therefore, if we rename the scalar mask register whenever such a branch is predicted to
be taken, we can allow the prediction of branches inside guarded regions. The renaming and the Reach
Mask will ensure that if the prediction is correct the execution of the instructions from the predicted path
will proceed correctly, while the older Renamed Scalar Masks can be used to recover the correct scalar
mask value is the prediction was incorrect. Note, that the scalar mask register need not be renamed
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when a branch outside a guarding region is predicted as taken (for example, a taken prediction for the
loop-closing branch in Figure 4.13(a) need not rename the scalar mask register). The processor can
detect the branches are within a guarded region by keeping track of the most distant bit that was set in
any of the GUARD instructions that have been already issued and by checking whether the predicted
taken branch precedes or succeeds that instruction. If the processor is able to track this information,
it will rename the scalar mask register more infrequently, reducing the number of the required SMRB
entries.

Management of the Scalar Mask Rename Buffer

As the processor issues and commits instructions to and from the RUU, it has to perform some book-
keeping to maintain the Reach Masks. At any point, one entry of the SMRB is designated as the “cur-
rent” entry. When a GUARD instruction is issued, we assign the current Renamed Scalar Mask as its
destination. Note, that since we rename only on (predicted) taken branches, several GUARD instruc-
tions may write to the same Renamed Scalar Mask register; these instructions are not serialized since
the AND operation that they perform on the scalar mask is associative.

When an instruction is removed from the RUU (because it was committed or because it was
transfered to a Reorder Buffer), the corresponding bit of the Reach Mask of all the older Renamed
Scalar Masks is set to 1, indicating that these older Renamed Scalar Masks do not refer to the future
instruction that will be assigned to this newly freed entry of the RUU. The corresponding bit of the
current Reach Mask is set to 0, to indicate that the current scalar mask will determine the execution of
the instruction that will be assigned there.

When a branch is (predicted) taken, two actions must be taken: (i) the reach of the current scalar
register should be set so that it does not refer to instructions after the taken branch (i.e., the bits cor-
responding to instructions after the branch should be set to 1), and (ii) the scalar mask register should
be renamed by allocating a new Reach Mask/Scalar Mask pair from the SMRB. If a free entry is not
available, the issuing of instructions must stop, until an entry is freed. The Reach Mask of the new en-
try contains zeros for all the entries that are already allocated in the RUU and ones for all the remaining
bits. An SMRB entry can be freed as soon as all the instructions within the reach of the Renamed Scalar
Mask have been removed from the RUU (that is, either they have been committed, or they have been
transfered to a Reorder Buffer or a similar structure). This condition can be detected by comparing the
RUU head pointer with the location of the branch that caused the renaming. It can also be detected by
checking whether all the Reach Mask bits are set to one, indicating that all the instructions within its
reach have been removed from the RUU.

The number of bits in the Reach Mask and Renamed Scalar Masks is the maximum of the scalar
mask register width so that the renamed scalar mask can accumulate the result of all GUARD instruc-
tions, and the number of RUU entries, so that each of the entries has storage for its corresponding scalar
mask bit. A nice feature of the SMRB is that even though a GUARD instruction may refer to instructions
not yet placed in the RUU, the effects of the GUARD instruction can be stored in the renamed scalar
mask. These results will be masked by the Reach Mask until the corresponding (future) instructions
are issued and placed in the appropriate entry of the RUU.

4.6 Summary

GUARD instructions offer an easy and powerful way to accommodate guarded execution in an instruc-
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tion set. With the modest requirements of just a few opcodes, GUARD instructions are sufficient to
provide efficient support for full guarding. Furthermore, with the addition of a scalar mask register in
the architecture, GUARD instructions provide the processor with advance information about the instruc-
tions that will be squashed later in the execution of a program. The processor can take advantage of this
early warning and skip over the squashed computation and allocate the resources to instructions that
contribute to the programs computation. GUARD instructions can also reduce the number of instruc-
tions required to evaluate the guard conditions for an if-converted region of code. Therefore, GUARD

instructions are ideal candidates for inclusion in an instruction set that supports guarding, especially
for existing instruction sets, for which a complete rehaul of the architecture to support guarding in the
traditional way is very hard or impossible. In the next two chapters we quantify the potential of guarded
execution and we compare the performance of guarded execution using a guard operand per instruction
with guarded execution using GUARD instructions.
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Chapter 5
Effects of guarding on the dynamic program characteristics

The previous chapters discussed the use and benefits of guarding, the compilation techniques and one
way to add guarding in instruction sets. In this and in the next chapter we investigate the performance
potential of guarding. This chapter describes our methodology and concentrates on the impact of guard-
ing on the instruction mix and dynamic program characteristics. The next chapter will address the ul-
timate performance metric: the execution time of a program.

5.1 Motivation and metrics

Guarding affects the dynamic program characteristics in many ways. The goal of this chapter is to get
a qualitative, as well as a quantitative feel for each of the ways a program is affected, and be able to
compare and draw conclusions about the effectiveness of guarding for each program. This effectiveness
is largely determined by the extent of instruction set support for guarding. In this chapter we consider
three cases: full guarding using the ordinary encoding of guard operands, restricted guarding using only
conditional moves, and full guarding using GUARD instructions. The metrics we use to measure the
effects of guarding are: overhead in the number of instructions fetched and executed, branch counts,
dynamic branch behavior and guarding region characteristics. Next we define these metrics and explain
how they are affected by guarding.

5.1.1 Guarding overhead

The first metric we use is the dynamic guarding overhead, that is, the amount of additional instructions
that the processor has to fetch and (possibly) execute after a program has been if-converted. As de-
scribed in Chapter 2, guarding reduces the number of executed branches, but introduces instructions
to initialize and set the guard registers, and executes the guarded instructions even when they will be
squashed by their guard conditions. The net result is that the guarded version of a program may exe-
cute more instructions than the original version. The guarding overhead measures the increase in the
processor resources that are consumed during the execution of the programs. Note that in this chapter
we do not distinguish between instructions fetched, decoded and executed. However, as described in
Chapter 4, Section 4.1.2, using GUARD instructions the processor may be able to reduce the number of
guarded instructions that must be fetched and decoded; we will address this issue in the next chapter.

The guarding overhead can be further subdivided into squashed computations, and instructions
required to evaluate guard conditions. The number of squashed instructions indicates how successful
the region selection algorithm is in picking the important nodes in the CFG, and including them in the
guarding regions. If the region selection process is overly aggressive, it will include too much useless
computation, which will be squashed dynamically. The number of condition evaluation instructions is
also important to understand how the overhead of guarding is distributed between actual computation
that has been guarded and support instructions that are introduced by the if-conversion process.
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5.1.2 Branch counts

The effectiveness of guarding can also be measured by how much it reduces the number of branches in
a program. The elimination of branches may improve the performance of a program since the processor
experience fewer changes in the control flow. Also, the number of eliminated branches will determine
the size of the if-converted regions. In general, we want the guarding regions to be as large as possible,
to expose more opportunities for optimizations to the compiler, and consequently to the processor, but
without introducing too much overhead computation. Although if-conversion primarily targets condi-
tional branches, it also eliminates some unconditional branches (for example, an if-then-else structure
contains one conditional and one unconditional branch, while the if-converted code would not con-
tain any branches). However, if-conversion, by itself, does not affect the number of function calls and
returns, or the number of indirect and loop-closing branches. Therefore, the counts of these types of
branches would remain unaffected by the use of guarding.

5.1.3 Dynamic branch behavior

The dynamic behavior of the branches in a program is also very important. When a processor employs a
dynamic branch predictor, the effects of guarding on the prediction accuracy is important. Since guard-
ing eliminates some of the conditional and unconditional branches, it will affect the performance of any
dynamic branch prediction scheme such as a BTB or a dynamic branch predictor. For a BTB, a smaller
number of branches means a lower probability of conflict or capacity misses in the buffer. For a dy-
namic branch predictor, guarding may eliminate branches that are not very predictable, the prediction
accuracy will increase. If however, the eliminated branches were well behaved (i.e., were almost al-
ways predicted correctly), the prediction accuracy might actually decrease. In this chapter we report the
combined prediction accuracy of the branch predictor and the BTB, since a correct prediction would
be meaningless without a predicted target to fetch from.

A better metric to measure the impact of guarding on a dynamic predictor is the total number
of mispredictions experienced by the original and the guarded versions of the program. The number of
mispredictions determines the number of cycles that are wasted while the processor fetches the instruc-
tions from the correct target path. An alternative way of expressing the impact of mispredictions is to
use the dynamic misprediction distance, that is the number of instructions between mispredictions. The
misprediction distance indicates how often the processor has to interrupt the instruction supply due to
an incorrect prediction.

One way to measure the effectiveness of if-conversion in eliminating small basic blocks and
reducing the frequency of taken branches, is to measure the run-length, that is, the number of instruc-
tions between taken branches. This metric is important because the instruction fetch mechanism of a
processor can utilize the high-bandwidth on-chip instruction cache to fetch, decode and issue (if the
dependencies permit) the sequential instructions.

To summarize, our metrics for the dynamic branch behavior are: (i) branch prediction, (ii) num-
ber of mispredictions, (iii) misprediction distance and (iv) run-length.

5.1.4 Guarding region characteristics

To determine the characteristics of our guarding regions we used three metrics: (i) the number of guard
conditions per region, (ii) the guard condition lifetimes, i.e., the distance between the first definition and
the last use of the condition, and (iii) the number of instructions guarded per conditions. The number of
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the guard conditions and the guard condition lifetimes are an indication of the register pressure created
by the if-conversion. Each of the guard conditions has to live in a guard register throughout its lifetime
(spilling the condition into memory is always possible, but introduces additional overhead). Therefore,
a large number of conditions with long lifetimes will consume more registers; if the register pressure
is very high, a separate guard register file may be a necessary addition to the architecture. The number
of instructions guarded per condition measures how often the condition is used during its lifetime and
indicates how many instructions share the cost of evaluating the guard condition.

The three aforementioned metrics are also key in determining the effectiveness of GUARD in-
structions. The number of guard conditions in a guarded region together with the guarding distance
determine the number of GUARD instructions that are required to specify the guard state of the computa-
tion. Each distinct guard condition requires a separate GUARD instruction, which the guarding distance
determines whether the guard mask of a single GUARD instruction is enough to specify the guarding
state of all the instructions that are guarded by the specified condition. The number of instructions that
are guarded by the same guard condition measures the compactness of GUARD instructions. If each
GUARD instruction guards just a few instructions, the overhead will be large; if each GUARD specifies
the guard condition for several instructions, the specification overhead will be relatively small.

5.2 Related work

Several studies have addressed the effects of guarding on the instruction mix and the dynamic branch
behavior of programs [PS94, MHB

�

94, MHM
�

95, CHPC95, Tys94b]. The first study to consider
these effects was done by Pnevmatikatos and Sohi [PS94]. They considered full and restricted guard-
ing (where only ALU instructions were available in a guarded form) and, using binaries compiled for
a MIPS R2000 processor, found that full guarding could eliminate over 30% of the branches and about
the same percentage of mispredictions for the cost of about 33% overhead computation. They also pro-
posed and evaluated the concept of GUARD instructions, reporting an preliminary overhead of about
8%.

Mahlke et al. [MHB
�

94] evaluated the effect of guarding on the branch characteristics of a
program using the IMPACT compiler. The IMPACT compiler uses sophisticated code transformations
guided by profiling information and heuristics to form the Hyperblocks described in Chapter 3. They
found that the number of branches was reduced by 27%, with a corresponding 30% reduction in the
number of mispredictions. In a later paper [MHM

�

95], Mahlke et al. compared the performance of
full guarding to the performance of guarding using conditional move instructions, and found that con-
ditional moves achieved about 50% of the performance of full guarding. However, Mahlke et al. use a
processor model with an infinite number of registers. An infinite number of registers allows the com-
piler to aggressively use optimizations that consume registers, such as unrolling, predicate promotions
etc, which help achieve greater levels of performance for the fully predicated code, and can hide some
of the overhead of synthesizing guarded instructions using conditional moves.

Chang et al. [CHPC95] used branch prediction profiling and hand-coding to if-convert
branches that cause many mispredictions. They found that this profile-based if-conversion can elim-
inate more than 60% of the mispredictions for the programs Compress, Eqntott and Sc and estimated
that it could eliminate 40% of the misprediction for Gcc.

Tyson [Tys94b] considered a form of predication where instructions covered by a short for-
ward branch are transformed into guarded instructions. This transformation can be performed either
statically by the compiler/assembler, or dynamically by the processor. Tyson studied the effectiveness
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of guarding in removing the short forward branches; he also studied the effects of guarding on the pre-
diction accuracies of several predictors. Tyson found that guarding could eliminate up to 30% of the
branches of a program and up to the same amount of the mispredictions for some of the branch predic-
tors.

5.3 Methodology

For the purposes of our evaluation, we use a MIPS-like instruction set architecture. Our ISA, called
SimpleScalar, is similar to the MIPS R2000 ISA with the following modifications: (i) we removed all
the architectural delay slots, (ii) we augmented the instruction set by adding guarded versions for all
instructions and (iii) we added the set of required GUARD instructions, namely GUARDTRUE, GUARD-
FALSE, GUARDBOTH and the GUARDUPPER versions of these instructions.

5.3.1 Compilation techniques

To compile our programs we use the GNU Gcc compiler (version 2.6.0) configured to generate Sim-
pleScalar assembly output. The generated assembly is then scheduled by Titan, our instruction sched-
uler, which performs if-conversion and code scheduling. The scheduled assembly files are assembled
into an object using the GNU assembler gas (version 2.2), modified to accept the modified SimpleScalar
assembly. The object files are linked into an executable using GNU gld (version 2.3). The standard C
libraries were recompiled from the sources that accompany the MIPS compiler version 3.01.

Region Selection

Titan uses no profiling information to select the range of guarding, as we feel that profiling is not an
option in many environments, especially in casual, every-day use of a compiler. Instead, we use the
structural properties of the program to determine the guarding regions of the control flow graph. Our
region selection criteria are similar to the ones used by the Hyperblock [MLC

�

92]. The regions are
required to have a single entry point, and must not contain nested loops. In addition we require that
a function call must terminate the guarding region. This restriction simplifies the register allocation
in guarded regions since the guard registers can be allocated with no cost in any unused callee-save
registers; if the regions spanned across function calls, the guard registers would have to be saved and
restored on each function call. Our region selection algorithm allows multiple exit branches inside an
if-converted region. This flexibility is very important, since common programming structures and prac-
tices generate code in which certain segments are infrequently executed. For example, such segments
handle special input cases, error conditions etc. Other common structures that can generate regions
with multiple exit arcs are loops that contain the C break, continue or return statements. If we
disallow branches inside guarding regions, the bodies of such loops cannot be if-converted. Titan uses
a limited form of the control-tree height reduction technique (described in Chapter 3). When all the
operands of a complex control equation are already available in registers (i.e., when the operand eval-
uation does not require any computation other than comparisons), the control structure is transformed
into a tree.
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If-conversion for full guarding

For full guarding and conditional moves, once the if-conversion regions are identified, we use the
RK algorithm (described in Section 3.2) for if-conversion. The output of the RK algorithm is passed
through a peep-hole optimization step that detects and eliminates multiple complementary conditions
(these conditions are generated for the mutually exclusive paths of if-then-else statements). This mod-
ification reduces the total number of guard registers required for the if-conversion of a region, reduc-
ing at the same time the number of set instructions required to evaluate the guard conditions. The if-
converted code is passed thought a register re-allocation step; this step first identifies the set of unused
and dead registers, and then statically re-assigns temporary registers into these free registers, in order
to eliminate false dependencies and increase the parallelism in the guarded regions.

When we schedule the code for full guarding, we consider both an architecture with a single,
unified guard and general purpose register file and one with a separate guard register file. To schedule
the code for an architecture with a unified register file for both guard registers and general purpose
registers, we perform a register allocation step to allocate the guard registers in unused general purpose
register. This allocation competes with the registers that hold computation results and may introduce
register spills and reloads to free enough general purpose registers. These register spills and reloads are
scheduled along with the original program computation; the overhead of these spills and reloads will
be presented in Table 5.9. When a separate guard register file is available, guard conditions are simply
allocated in the guard register file, greatly simplifying the determination of regions to be guarded.

If-conversion for conditional moves

When we use conditional moves, the region selection process gives preference to basic blocks contain-
ing only safe instructions (instructions that cannot cause exceptions such as integer and logic compu-
tations, and loads from safe locations such as the stack frame or the global variable region of memory).
When a basic block contains unsafe instructions, the scheduler checks whether the inclusion of this ba-
sic block will actually increase the schedule length. If so, the basic block is not included in the guarding
region. Because of these stricter restrictions, the selected guarding regions will be smaller for condi-
tional moves, than for full guarding.

After the guarding regions are identified, we use the RK algorithm for if-conversion and the
peep-hole optimizations to assign the appropriate conditions. Titan expands the fully guarded output of
the if-conversion process using conditional moves according to the instruction sequences in Table 2.3.
Scheduling for conditional moves assumes a single, unified register file. All program variables, guard
conditions, and temporaries for the synthesis of guarded computation are allocated in this unified gen-
eral purpose register file.

If-conversion for GUARD instructions

Since GUARD instructions can specify full guarding, we use the same guarding regions as with full
guarding. The only difference between the two codes is that instead of the usual initialization and set
instructions, we use the GUARD instructions, as generated by the GUARD assignment algorithm de-
scribed in Section 4.3.1. The if-converted code is then passed through the register re-allocation step to
increase the parallelism of the guarded regions.
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5.3.2 Simulation techniques

To measure the effects of guarding on our metrics we use an execution driven functional simulator.
The compilation process generates four executables for each program. The first one is the original,
scheduled but otherwise unmodified executable to be used as the base for all comparisons. The three
remaining executables are one for each type of instruction set support for guarding: full, conditional
moves and GUARD instructions.

Our simulated processor architecture includes a separate guard register file with 32 registers. To
simulate the effects of a unified register file, the executable for full guarding is tagged in every location
where a spill or a reload would have been scheduled; when simulating for a unified register file, the
simulator injects on-the-fly the appropriate load and store instructions.

To evaluate the effects of guarding on the behavior of dynamic branch predictors we simulate
a branch target buffer (BTB) along with a dynamic branch predictor to record the history of branches.
The BTB is direct mapped and contains 1024 entries that record the last taken target of each branch,
including the latest target of indirect branches. For the dynamic branch predictor we use two configu-
rations. The first is a straightforward counter based predictor, using 4096 (4K) 2-bit counters to record
the history of the branches. The second is a 2-level adaptive predictor that uses an 8-bit pattern history
register in the first level and 4K 2-bit counters in the second level; this configuration corresponds to
the Correlation Branch Predictor of Pan et al. [PSR92] or GAp(8) according to the Yeh’s and Patt’s
classification scheme [YP93].

5.3.3 Benchmark programs

For evaluation purposes we use 8 benchmark programs. These are the 6 integer SPEC92 benchmark
programs [SPE91], namely Compress, Eqntott, Espresso, Gcc, Sc and Xlisp, along with Elvis and Wc.
All these programs are integer intensive; we did not use any floating point intensive programs as we
feel that the effectiveness of guarded execution for scientific programs has long being established for
vector and VLIW architectures [RYYT89, DHB89, HT72, Wat72, Rus78].

For the SPEC92 benchmark programs we used the SPEC reference inputs, with the exception of
Xlisp, for which we used a smaller input (we solved the seven queens problem instead of the nine queens
problem specified by the SPEC92 reference input file). For Wc the input is file cccp.c supplied by the
Illinois IMPACT group. Elvis is a vi-compatible full-screen editor performing two regular expression
search-and-substitute operations (in a batch-mode) for the input file unix.c. The same benchmark and
input was also used by Austin et al. [APS95]. Table 5.1 lists all our benchmark programs with their
command line arguments.

5.4 Effects of full guarding

In this section we examine the effects of full guarding on the instruction mix and dynamic behavior of
our benchmark programs. The metrics of interest are the amount of overhead computation (either com-
putation required to evaluate conditions or squashed computation), and the reduction of the number of
branches in the programs. We also evaluate the guard condition characteristics of our guarded regions
and the impact of guarding on the dynamic branch behavior of the program.
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Program Command Line Comments

Compress in-ref reference SPEC92 input
Elvis -b CMDS unix.c input used in [APS95]
Eqntott -s -.ioplte int pri 3.eqn reference SPEC92 input
Espresso -t cps.in one of the SPEC92 reference inputs
Gcc (cc1) -O integrate.i one of the SPEC92 reference inputs
Sc test.start

�
loada1 one of the SPEC92 reference inputs

Xlisp queens7.lsp SPEC92 reference solves 9 queens
Wc cccp.c input file used by the IMPACT Group

Table 5.1: Benchmark programs and their command lines and inputs.

5.4.1 Guarding overhead

We begin the evaluation by addressing the impact of guarding on the instruction mix of our bench-
mark programs. Table 5.2 shows the instruction counts for the original and the guarded versions of our
benchmark programs and the guarding overhead as a percentage of the original instruction count. In
Table 5.2 we see that there is a consistent overhead involved in guarded execution. The smallest over-
head is 15% for Elvis while the largest is 37% for Gcc. The average guarding overhead (all averages
in this chapter are calculated assuming that all programs will run for the same number of instructions)
is about 19%.

Program
Total Instructions Guarding

Original Guarded Overhead (%)
Compress 81,972 94,678 15.50
Elvis 18,482 21,257 15.02
Eqntott 1,164,352 1,346,355 15.63
Espresso 522,085 651,770 24.84
Gcc 71,803 98,371 37.00
Sc 402,133 481,388 19.71
Wc 2,176 2,633 20.99
Xlisp 228,708 276,200 20.77
Total/Average 2,491,711 2,972,652 19.23

Table 5.2: Instruction counts for the original and guarded benchmarks (in thou-
sands) and overhead (percentage) of guarding.

The guarding overhead can be attributed to: (i) initialization and sets of guard registers and (ii)
guarded computation that is dynamically squashed and therefore does not contribute to the useful pro-
gram computation. Table 5.3 quantifies the overhead according to these categories. In Table 5.3, Inits
and Sets are the counts of instructions needed to initialize (clear) and set the guard registers as generated
by the RK algorithm for if-conversion, and Rest include all the remaining computation (including both
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useful and squashed computation). The Squashed column lists the number of guarded instructions that
are dynamically squashed, and the Squashed % column shows the same number as a percentage of the
total instruction count of the program. In Table 5.3 we can see that the number of initializations and
sets of guard registers represent a significant fraction of the overall instruction count. The amount of
squashed computation, however, is not very large, with a maximum of 18.6% for Wc and an average of
about 8.5%, indicating that our region selection algorithm is not overly aggressive, and that non-useful
computation will not overwhelm the processor resources.

Program Inits Sets Rest Squashed Squashed (%)

Compress 4,003 8,052 82,621 5,734 6.06
Elvis 991 2,002 18,263 1,454 6.84
Eqntott 15,484 259,673 1,071,196 81,010 6.02
Espresso 28,969 45,575 577,224 84,306 12.93
Gcc 6,503 10,062 81,805 16,176 16.44
Sc 19,404 35,201 426,782 51,327 10.66
Wc 105 210 2,317 489 18.60
Xlisp 12,468 23,815 239,916 22,168 8.03
Total/Average 87,927 384,590 2,500,124 262,664 8.56

Table 5.3: Instruction mix for the guarded benchmark programs.

5.4.2 Branch counts

Next, we turn our attention to the effects of guarding on the branch statistics of our benchmark pro-
grams. Table 5.4 presents the number of calls, returns, indirect and loop-closing branches for all the
benchmarks. It also lists the average number of instructions between branches. Figure 5.1 presents
the same numbers, as well as the number of remaining conditional and unconditional branches as a
percentage of all the branches in each program. Observing Table 5.4 and Figure 5.1 it is easy to get a
qualitative feel of the nature of these benchmarks. Most benchmarks are loop dominated, with Eqn-
tott being the most prominent in this category. However, Sc and Xlisp perform a large fraction of their
computation using function calls, suggesting that if-conversion may not be as effective for these two
as for the rest of the programs.

Table 5.5 presents the number of conditional and unconditional branches for both the original
and the guarded version of the programs; it also shows the percentage of the reduction in the branch
count for conditional and unconditional branches. In Table 5.5 we see that the reduction in the number
of conditional branches ranges widely, from an impressive high of 99.9%, to a low of about 13%. with
a corresponding range of 3% up to 99.9% for unconditional branches. The best case occurs for Wc,
which has a simple control structure: a single loop with several conditional and unconditional branches
dominates the entire program. If-conversion was able to eliminate all the branches inside the loop body,
eliminating almost all the conditional and unconditional branches in the program (excluding, of course,
the loop closing branches). In contrast, if-conversion had a much smaller effect on the branch counts
of Sc. The reason is that Sc has a more complicated and larger control flow graph: it uses numerous
nested statements in its computations but it also uses frequent function calls and returns which limit the
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Instructions
Program Calls Returns Indirect Loop

per Branch

Compress 251,961 251,958 0 3,109,665 5.6
Elvis 56,707 56,704 14,358 2,795,743 3.7
Eqntott 4,012,205 4,012,202 318,927 89,438,385 3.3
Espresso 1,903,273 1,903,270 1,710 32,380,849 5.7
Gcc 694,040 694,037 285,775 4,849,735 5.1
Sc 5,286,492 5,265,772 851,636 17,966,589 4.2
Wc 81 78 10 105,326 3.1
Xlisp 6,769,493 6,694,400 918,293 9,292,560 4.6

Table 5.4: Dynamic call, return, indirect, loop-back branch counts and average
number of instructions between branches for our benchmark programs.

effectiveness of if-conversion.

Program
Original Guarded Reduction (%)

Cond. Uncond. Cond. Uncond. Cond. Uncond.

Compress 9,608,893 1,470,477 5,993,460 630 37.63 99.96
Elvis 2,049,003 38,358 624,471 27,345 69.52 28.71
Eqntott 250,605,253 5,323,008 94,032,938 2,569,882 62.48 51.72
Espresso 52,486,176 2,162,454 32,919,494 771,701 37.28 64.31
Gcc 6,986,908 673,838 4,508,646 297,886 35.47 55.79
Sc 62,136,131 3,190,986 54,068,197 3,105,803 12.98 2.67
Wc 543,254 43,796 351 39 99.94 99.91
Xlisp 23,424,087 2,791,589 18,184,506 1,969,861 22.37 29.44
Total/Average 407,839,705 15,694,506 210,332,063 8,743,147 46.58 67.65

Table 5.5: Dynamic conditional and unconditional branch counts for the original
and guarded benchmark programs, and the corresponding percent reduction. These
counts exclude call, return, indirect and loop branches.

If-conversion is also effective in eliminating the unconditional branches in the programs. For
more than half of our benchmarks, more (sometimes significantly more) than half of all the uncondi-
tional branches were eliminated. For all programs except Sc, if-conversion eliminated at least 28% of
the unconditional branches. For Sc however, guarding eliminated less than 3% of the unconditional
branches, for the same reasons as in the case of conditional branches. In absolute numbers, the reduc-
tion in the number of unconditional branches is always less than the reduction in conditional branches.
This behavior is expected, since the unconditional branches are only eliminated by if-conversion if they
are part of a reconverging nested structure, in which case there would be at least on conditional branch
eliminated for each unconditional branch.
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Figure 5.1: Breakdown of branches according to branch type.

5.4.3 Effects on dynamic branch behavior

Next, we turn our attention to the effect of guarding on the dynamic branch behavior of programs. To
quantify the effects of guarding on the prediction accuracies of dynamic branch predictors we simulated
a counter and a correlation based predictors, as described in Section 5.3.2. The prediction accuracies
are obtained assuming that the actual outcome of a conditional branch is available immediately after
the branch prediction is made. Therefore, our predictors always record the correct branch history, even
when the prediction was incorrect. A real superscalar processor may perform multiple predictions be-
fore the branch outcomes are known; these predictions will be based on either old, or speculatively
updated (and therefore possibly incorrect) branch history. However, using a timing simulator (which
may predict based on the speculative branch history), we found that the actual prediction accuracies
are very close (within 1%) to the accuracies obtained using perfect branch history. Other researchers
have also reported that predicting based on speculative branch history usually has a small impact on
the prediction accuracy [TYS

�

94a, HCP94].
Table 5.6 lists the dynamic prediction accuracies and the absolute number of mispredictions for

the original and guarded version of the benchmark programs for a counter based predictor with 1024
2-bit counters. Guarding increases the prediction accuracies for all the programs except Elvis. The
magnitude of the increase however ranges from less that 0.2 percentage points for Sc up to almost 16
percentage points for Eqntott. Eqntott is dominated by a single loop that contains two unpredictable
branches; guarding eliminates both these branches and all the mispredictions that they cause, achieving
a prediction accuracy of 97.76%. The small effect of guarding on the prediction accuracy of Sc are
expected, given that if-conversion had a limited effect on the branch mix of this benchmark. On the
average, the prediction accuracies increases from 88 to almost 93%.
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Program
Prediction Accuracy Number of Mispredictions
Original Guarded Original Guarded % Difference

Compress 89.77 90.01 1,503,363 1,008,594 32.91
Elvis 97.19 96.70 140,646 117,962 16.13
Eqntott 82.23 97.98 62,862,530 3,929,601 93.75
Espresso 88.82 89.30 10,156,622 7,609,463 25.08
Gcc 82.55 83.76 2,475,821 1,906,174 23.01
Sc 92.65 92.81 6,964,077 6,400,942 8.09
Wc 89.97 99.72 69,435 300 99.57
Xlisp 81.77 83.37 9,097,109 7,807,901 14.17
Total/Average 88.25 92.73 93,269,603 28,780,937 44.45

Table 5.6: Effects of guarding on the misprediction statistics for a counter-based predictor.

Guarding has a larger effect on the absolute number of mispredictions than on the prediction
accuracy. From the last column of Table 5.6 we see that, with the exception of Sc, all the programs
show a significant reduction in the number of mispredictions. Wc and Eqntott show an impressive re-
duction of more that 93%. Sc shows a small improvement of about 8% which is expected given the
small effect of guarding in the number of conditional branches shown in Table 5.5. On the average,
guarding reduces the number of mispredictions by 44%.

Table 5.7 lists the dynamic prediction accuracies and the absolute number of mispredictions for
the original and guarded version of the benchmark programs for a correlation based predictor. Qual-
itatively, the results follow the same trends as in the case of a counter based predictor. However, the
magnitude of the improvement is smaller than in the case of the counter based predictor, because the
2-level adaptive predictor achieves higher prediction accuracies for the base case. Guarding can ac-
tually reduce the prediction accuracy, as shown in the case of Elvis. Comparing prediction accuracies
we see that guarding reduces the prediction accuracy from 97.86% to 97.72%; however, comparing
the corresponding number of mispredictions for the original and guarded versions of Elvis, we see that
the actual number of mispredicted branches is reduced by almost 24%. In essence, for Elvis guard-
ing eliminates slightly more well-behaved branches than badly-behaved branches, resulting in a lower
prediction accuracy but fewer mispredictions. As in the case of the counter based predictor, guarding
has little effect on Sc. The prediction accuracy is increased by less than 0.3 percentage points and the
number of mispredictions is reduced by about 9%. On the average, guarding increases the prediction
accuracy from 92.14% to 94.17% and reduces the number of mispredictions by 46%.

An interesting anomaly occurs on Wc. The number of mispredictions for the correlation-based
predictor is larger than for a counter-based predictor (302 versus 300). The reason for this (small) dif-
ference is that a 2-level adaptive predictor uses both the branch address and the last ' past branch
outcomes to determine which counter to use to predict a branch; since more than one counters may
be used for a single static branch, the cold-start effects are larger for an adaptive predictor than for a
counter based. Since Wc has a very simple control structure, the steady state of the counter and the
correlation-based predictors are the same (i.e., they both predict taken the loop-back branch), and the
longer cold-start period of the correlation based predictor results in a larger number of mispredictions.

The prediction accuracies in Table 5.7 at first glance may appear low for a 2-level adaptive
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Program
Prediction Accuracy Number of Mispredictions
Original Guarded Original Guarded % Difference

Compress 90.92 91.09 1,333,424 899,982 32.51
Elvis 97.86 97.72 107,071 81,590 23.80
Eqntott 93.52 98.58 22,909,099 2,760,576 87.95
Espresso 93.71 94.30 5,714,557 4,055,780 29.03
Gcc 82.90 84.80 2,425,284 1,784,309 26.43
Sc 93.05 93.30 6,579,131 5,960,121 9.41
Wc 95.74 99.71 29,529 302 98.98
Xlisp 85.03 87.37 7,467,367 5,931,761 20.56
Total/Average 92.14 94.17 46,565,462 21,474,421 46.09

Table 5.7: Effects of guarding on the misprediction statistics for a correlation-based predictor.

predictor. The reason is that these accuracies represent the combined prediction accuracy of the branch
predictor and the BTB hit rate. When the branch prediction mechanism predicts a branch as taken but
the branch misses in the BTB, the branch target is unknown and the prediction defaults to a not-taken
prediction.

Figure 5.2 plots the cumulative number of run-lengths for our benchmark programs. In the plots
of Figure 5.2, the top curve corresponds to the original benchmark and the lower curve corresponds
to the guarded version of the benchmark. Both curves are scaled to the number of run-lengths of the
original program. (Note that the curve for the guarded program will not reach 1, since the absolute
number of taken branches, and therefore run-lengths, is smaller than in the original program.) The
difference between the two curves shows the effectiveness of guarding to eliminated taken branches and
to coalesce many small basic blocks into larger sequences of straight-line code. The most impressive
change occurs in Wc: before guarding more than 70% of the run-lengths were less than 5 instructions,
while after guarding almost all run-lengths are 25 instructions long. The behavior of Eqntott is very
similar to the behavior of Wc, but with a smaller magnitude: the majority of the run-lengths are about
13 instructions long. Guarding has a uniform effect on Compress, Espresso, Elvis and Xlisp reducing
the number of all run-length sizes by about the same amount; however, guarding has a very small effect
Sc: the number of run-lengths smaller that 5 instructions is almost unaffected by guarding. The effect
of guarding on Gcc is small for short runs, but more noticeable for larger ones.

Table 5.8 summarizes the dynamic branch behavior of our benchmarks, listing the average basic
block size, the average run-length and the average misprediction distance. For the guarded programs
we list the effective sizes, that is, we subtract the guarding overhead from the actual value of the corre-
sponding metric. The effective sizes permit a direct comparison between the original and guarded sizes.
In Table 5.8 we see that guarding increases the average basic block size from 4.4 to 7.9 instructions,
while at the same time increasing the average run-lengths from 7.1 to 10.8 instructions. The effects of
guarding are more pronounced on the average misprediction distance. For the counter-based predictor,
the distance increased from 49 to 1314 instructions, while for the correlation-based, it increased from
70 to 1344 instructions. For the guarded version of Wc, the misprediction distance actually decreased
by the use of the correlation based prediction, due to the cold-start reasons described earlier.
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Figure 5.2: Run-length (number of instructions between taken branches) distribu-
tions for the original and guarded versions of our benchmark programs.



76

Program
Misprediction Distance

Basic Block Run-Length
Original Guarded

Original Guarded Original Guarded Counter 2-Level Counter 2-Level

Compress 5.6 8.5 9.4 11.4 54 61 80 91
Elvis 3.7 5.1 4.9 5.9 131 172 156 226
Eqntott 3.3 5.9 7.6 11.2 18 50 295 421
Espresso 5.7 7.4 9.2 12.3 51 91 68 128
Gcc 5.1 6.2 6.8 8.8 29 29 37 40
Sc 4.2 4.7 6.8 7.7 57 61 62 66
Wc 3.1 20.6 5.1 20.6 31 73 7,253 7,205
Xlisp 4.6 5.1 7.0 8.7 25 30 28 38
Average 4.4 7.9 7.1 10.8 49 70 1,314 1,345

Table 5.8: Average basic block, run-length and misprediction distance for a counter
and a 2-level adaptive predictor. The sizes for the guarded versions are the effective
sizes, computed by removing the guard overhead computation.

5.4.4 Guarding region characteristics

Table 5.9 lists the average number of guard registers, the average number of instructions guarded by
the same condition and the average guard register lifetimes for our benchmark programs. In Table 5.9
we distinguish between static and dynamic averages, where static is computed giving the same weight
to each guarded region, and dynamic assigned the execution frequency for weight.

In Table 5.9 we see that the static average number of guard registers needed is quite small, below
3 for all programs. However, the static average may be skewed by the infrequently executed guarded
region statistics. The dynamic averages reveal this skew, increasing slightly the averages to more that 2
for most programs and showing a maximum of about 3 for Gcc. Table 5.9 also lists the average number
of instructions guarded by the same condition. This number is relatively small, ranging from about 3
to about 5.3. Across all benchmarks, the static number of instructions guarded by the same condition is
about 4. Dynamically however, the number of instructions guarded by the same condition ranges more
widely, from a low of 1.5 to a high of 6.54 instructions per condition.

Statically, the guard register lifetimes are between 9 and 19 instructions. Dynamically, this
number increases for most programs; the exceptions are Espresso, Eqntott and Wc for which the guard
register lifetimes decrease significantly to a dynamic average of 8.5, 4.22 and 12 instructions respec-
tively. The largest guard register lifetimes occur for Espresso with a value of 22 instructions between
definition and use.

The results in Table 5.9 suggest that a separate register file may not be required to support
guarded execution, as the required number of guard registers is relatively small. Indeed, the “spill over-
head” column in Table 5.9 shows that, for our benchmarks, the allocation of guard registers in a unified
register file has little or no impact no the instruction count; the scheduler is able to allocate the guard
conditions into unused registers with no extra cost. The highest spill overhead occurred for Espresso
for which the instruction count was increased by about 2% due to the extra loads and stores. How-
ever, the relatively long guard register lifetimes indicate that if aggressive loop unrolling is used, the
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Program
Guard Conditions Guarded Instructions Guard Register Spill

per Region per Condition Lifetimes Overhead
Static Dynamic Static Dynamic Static Dynamic (%)

Compress 1.98 1.85 5.28 6.54 16.75 18.17 0.0
Elvis 2.08 2.08 3.86 3.47 13.09 8.51 0.1
Eqntott 1.77 2.84 3.99 2.32 12.06 4.22 0.0
Espresso 1.43 2.61 3.92 4.88 9.16 22.35 2.1
Gcc 2.51 3.03 4.03 4.42 17.58 20.72 0.2
Sc 1.87 2.84 3.81 3.91 12.54 19.74 1.2
Wc 2.75 2.00 4.21 1.50 19.39 12.00 0.0
Xlisp 1.94 1.93 2.93 3.13 10.22 11.04 0.3

Table 5.9: Static and dynamic guarding statistics: average number of guard condi-
tions per guarded region, number of instructions guarded with the same condition,
guard register lifetimes and spill overhead (as a percentage of the total instructions)
due to register spill and reload for a unified register file.

requirements for guard registers will be increased dramatically. These transformations create multiple,
overlapping copies of the code; the resulting code will contain more instances of these registers and the
lifetimes will be lengthened, increasing the register requirements.

The results in Table 5.9 also verify the observations we made in Chapter 4 about the spatial lo-
cality of guarded computation. The small number of guard conditions per if-converted region indicates
that the number of GUARD instructions required to guard an if-converted region would be small, while
the reasonable guard register lifetimes indicate that instructions guarded with the same condition are
in close proximity, within the reach of a guard mask of reasonable size.

5.5 Effects of Conditional Moves

Next, we examine the potential of using only conditional moves to support guarding and if-conversion.
As described in Chapter 3, conditional move instructions can be used to synthesize other guarded in-
structions using a sequence of ordinary instructions that computes the result in a temporary register,
and a conditional move to commit (according to the guard condition) the result in the actual destination
register. As in the case of full guarding, the metrics of interest are the amount of overhead computa-
tion (the temporary computation instructions, the conditional moves, either squashed or committed),
the reduction in the number of branches and the improvement in the dynamic branch behavior of the
program.

5.5.1 Conditional Move guarding overhead

Table 5.10 shows the instruction counts for the original and the guarded versions of our benchmark
programs; it also shows the guarding overhead as a percentage of the original instruction count, the
number of conditional moves executed in the guarded program, and the percentage of the squashed
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Program
Total Instructions Overhead Total Squashed

Original Guarded (%) Cmoves Cmoves (%)
Compress 81,972 87,292 6.49 2,817 26.62
Elvis 18,482 20,241 9.52 833 68.24
Eqntott 1,164,352 1,228,358 5.50 173,068 29.88
Espresso 522,085 573,330 9.82 22,393 16.90
Gcc 71,803 82,460 14.84 3,890 45.40
Sc 402,133 486,781 21.05 31,794 71.36
Wc 2,176 3,053 40.32 631 66.49
Xlisp 228,708 245,700 7.43 4,740 46.57
Total/Average 2,491,716 2,727,220 14.37 240,170 52.46

Table 5.10: Instruction counts for the original and guarded benchmarks (in thou-
sands) and overhead (percentage) of conditional moves.

conditional moves (that is the percentage of conditional moves that did not commit their results due to
a false condition).

The overhead of guarding is relatively small, less than 10% for most benchmarks, compared
to an average overhead of about 20% for full guarding. The reason for the smaller overhead is that
the guarding regions are smaller in the conditional move case, compared to the guarding regions for
full guarding. Our region selection process has to ensure that unsafe instructions are either avoided or
properly handled, and that all the synthesized sequences can be scheduled so that they do not increase
the critical path of the computation. These restrictions force the selection of smaller guarding regions,
resulting in smaller overhead,

The major exception is Eqntott which uses conditional moves for the majority of the guarded
instructions. Even if the instruction set supports just conditional moves, it can still achieve almost the
same effects as with full guarding with less overhead. The Wc case is also interesting: the main loop
of Wc evaluates a number of conditions and depending on their values increments the word and line
counters. This type of computation is safe, and can be easily if-converted using just conditional moves.
The overhead of these conditional moves however is a substantial 40%, which is twice as much as the
overhead required for if-conversion when the instruction set supports all the instructions in a guarded
form.

The absolute number of conditional moves is not very high, in most cases less than 10% of
the instruction count. However, the percentage of conditional moves that are squashed dynamically is
fairly high at about 14.3% compared to the 8.5% of squashed computation for full guarding. This dif-
ference indicates that the guarding regions that are possible using conditional moves are less effective
in capturing the useful computation than the guarding regions for full guarding.

5.5.2 Conditional Move branch counts

The effects of conditional moves on the branch counts is shown in Table 5.11. In general, the results
are positive but not impressive in magnitude, with the exception of Eqntott and Wc and an average of
40%. This average is quite close to the average reduction for full guarding which is 48%. However, for
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unconditional branches conditional moves are much less effective. Across the benchmarks, conditional
moves eliminated 27% of the unconditional branches compared to the 67% for full guarding.

Program
Original Guarded Reduction (%)

Cond. Uncond. Cond. Uncond. Cond. Uncond.

Compress 9,608,893 1,470,477 7,216,292 1,470,476 24.90 0.00
Elvis 2,049,003 38,358 1,436,936 28,266 29.87 26.31
Eqntott 250,605,253 5,323,008 98,267,877 4,280,255 60.79 19.59
Espresso 52,486,176 2,162,454 47,635,506 1,314,368 9.24 39.22
Gcc 6,986,908 673,838 6,438,863 541,956 7.84 19.57
Sc 62,136,131 3,190,986 60,741,752 3,145,459 2.24 1.43
Wc 543,254 43,796 351 39 99.94 99.91
Xlisp 23,424,087 2,791,589 21,499,892 2,703,806 8.21 3.14
Total/Average 407,839,705 15,694,506 243,237,469 13,484,625 33.9 27.13

Table 5.11: Dynamic conditional and unconditional branch counts for the original
and guarded benchmark programs, and the corresponding percent reduction. These
counts exclude call, return, indirect and loop branches.

5.5.3 Effects of Conditional Moves on dynamic branch behavior

The impact of guarding using conditional moves on the dynamic branch behavior is shown in the next
two tables. Table 5.12 lists the prediction accuracies for the original and guarded version of the pro-
gram, the number of mispredictions for the original and guarded versions of each program and the per-
centage reduction in the number of mispredictions, for the counter-based dynamic predictor. Table 5.13
shows the same statistics but for the correlation-based dynamic branch predictor.

For the counter-based predictor, the effects of conditional moves is a general improvement on
both the prediction accuracy and the number of mispredictions. The magnitude of the improvement
depends on the program. As expected, Eqntott and Wc show the same dramatic improvement as they
did with full guarding. The remaining of the programs however how a much smaller improvement.
Overall, the use of conditional moves improves the average prediction accuracy from 88 to 92% and
reduces the number of mispredictions by 36%.

For a correlation-based predictor, the effects of guarding using conditional moves are similar.
The branch prediction accuracy improves for all programs except Espresso, and the average prediction
accuracy increases from 92 to almost 93.7%. The number of mispredictions is reduced for all programs,
but the magnitude of the reduction is less than 10% for half of the benchmarks; the average reduction
is about 34% compared to a corresponding average of about 46% for full guarding.

Table 5.14 summarizes the effects of conditional moves on the dynamic branch behavior of our
benchmarks, listing the average basic block size, the average run-length and the average misprediction
distance. As in the case of the Full guarding, we list the effective number of instructions for the pro-
grams that are guarded using conditional moves. In this table we see that conditional moves increase
the average basic block size from 4.4 to 7.1 instructions, while at the same time increasing the average
run-lengths from 7.1 to 9.8 instructions. Guarding using conditional moves increased the average mis-
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Program
Prediction Accuracy Number of Mispredictions
Original Guarded Original Guarded % Difference

Compress 89.77 91.37 1,503,363 1,061,563 29.39
Elvis 97.19 96.92 140,646 135,382 3.74
Eqntott 82.23 96.16 62,862,530 7,690,198 87.77
Espresso 88.82 88.57 10,156,622 9,858,350 2.94
Gcc 82.55 83.09 2,475,821 2,314,224 6.53
Sc 92.65 92.64 6,964,077 6,777,381 2.68
Wc 89.97 99.72 69,435 300 99.57
Xlisp 81.77 82.78 9,097,109 8,525,128 6.29
Total/Average 88.25 92.38 93,269,603 36,362,526 36.07

Table 5.12: Effects of conditional moves on the misprediction statistics of a
counter-based predictor.

Program
Prediction Accuracy Number of Mispredictions
Original Guarded Original Guarded % Difference

Compress 90.92 92.01 1,333,424 982,285 26.33
Elvis 97.86 97.65 107,071 103,194 3.62
Eqntott 93.52 96.91 22,909,099 6,198,466 72.94
Espresso 93.71 93.63 5,714,557 5,495,650 3.83
Gcc 82.90 83.70 2,425,284 2,231,038 8.01
Sc 93.05 93.19 6,579,131 6,498,139 1.23
Wc 95.74 99.71 29,529 302 98.98
Xlisp 85.03 86.99 7,467,367 6,438,858 13.77
Total/Average 92.14 93.74 46,565,462 27,947,932 34.20

Table 5.13: Effects of conditional moves on the misprediction statistics of a
correlation-based predictor.
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Program
Misprediction Distance

Basic Block Run-Length
Original Guarded

Original Guarded Original Guarded Counter 2-Level Counter 2-Level

Compress 5.6 6.6 9.4 10.4 54 61 77 82
Elvis 3.7 4.2 4.9 5.8 131 172 129 178
Eqntott 3.3 5.7 7.6 10.5 18 50 150 187
Espresso 5.7 6.0 9.2 9.9 51 91 52 94
Gcc 5.1 5.2 6.8 7.4 29 29 30 31
Sc 4.2 4.2 6.8 7.1 57 61 58 61
Wc 3.1 20.5 5.1 20.5 31 73 7,254 7,206
Xlisp 4.6 4.6 7.0 7.0 25 30 26 35
Average 4.4 7.1 7.1 9.8 49 70 1,284 1,295

Table 5.14: Average basic block, run-length and misprediction distance for a
counter and a 2-level adaptive predictor using conditional moves. The sizes for the
guarded versions are the effective sizes, computed by removing the guard overhead
computation.

prediction distance from 49 to 1,284 instructions for the counter-based predictor, and from 70 to 1,295
instructions for the correlation-based predictor.

Conditional moves are easy to add to an instruction set, and appear to achieve effects very close
to these of full guarding. However, the effects of conditional moves vary greatly from program to pro-
gram. For programs with simple computations and regular control structure such as Eqntott and Wc,
conditional moves are sufficient to achieve most if not all the benefits of guarding. For the rest of the
programs however, the impact of guarding was severely reduced when limited to conditional moves,
suggesting that support for full guarding is needed to exploit the potential of if-conversion.

5.6 Evaluation of GUARD support

In this section we evaluate the effects of GUARD instructions on the instruction mix of the programs.
For the evaluation we use the same guarding regions the we used for the full guarding, with the only
difference that we use GUARD instead of set instructions to evaluate the guard conditions. Since the
guarding regions are the same as with full guarding, the branch and computation instruction counts and
behavior will also the same. The branch prediction accuracy and number of mispredictions would also
remain unaffected for infinite size prediction tables and BTBs; for finite size structures, the difference
in the location of branches may change (either increase or decrease) the number of conflict misses in
the BTB and prediction structures. This difference is random in nature and usually is quite small, so we
do not address it in this thesis. The two main parameters that determine the effectiveness of GUARD

instructions are: (i) the extent of ISA support for different types of GUARD instructions, and (ii) the
width of the guard mask.

To evaluate the impact of the instruction set support for GUARD instructions we use two con-
figurations. The first, uses only GUARDTRUE and GUARDFALSE instructions, which guard the in-
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structions in their guard mask on the condition being true and false respectively. The second uses adds
the GUARDBOTH instruction which can be used to to guard both paths of an if-then-else structure.
Both configurations include a GUARDUPPER version of all GUARD instructions which specifies that
the mask is first shifted by ' bits, where ' is the width of the guard mask in instructions. The total
opcode requirements are 4 distinct opcodes for the first configuration, and 6 distinct opcodes for the
second one. All the GUARD instructions use simple true-or-false comparisons of a single register as
their guard condition.

Another important parameter that affects the efficiency of GUARD instructions is the guard
mask size. A larger mask gives a larger scope to a GUARD instruction, allowing it to guard instruc-
tions that are farther away in the static program representation. In this section we evaluate two mask
sizes: infinite, which means that the scope of a GUARD instruction will always reach up to the end of
the guarded regions, and 21-bits, which is a realistic assumption for the MIPS-like instruction set that
we use. While an infinite mask size is clearly impractical, it will gives us a lower bound to the total
number of GUARD instructions required to guard a program.

When the mask size is limited to 21 bits, the scope of a GUARDTRUE or a GUARDFALSE in-
structions are 21 instructions. For the GUARDBOTH instructions we use the compact guard mask en-
coding described in Section 4.2.1, which results in a scope of 10 instructions. When a guard distance is
larger that the actual mask size, a single GUARD instruction is not enough, and the simulator induces a
sequence of GUARDUPPER instructions to guard the instructions outside the scope of the first GUARD

instruction.

5.6.1 GUARD region characteristics

First we examine the guarded region characteristics that determine how effective are GUARD instruc-
tions in capturing the guarding state of the computation. The metric we use here are: (i) the number
of instructions that are guarded by a single condition, (ii) the average guarding distance, i.e., how far
from the GUARD instruction is the last guarded instruction, and (iii) the number of guard instructions
required to guard the region.

Table 5.15 presents the average value for these metrics for our benchmark programs; the
left half of the table lists the results when the instruction sets supports only GUARDTRUE and
GUARDFALSE instructions while the right half lists the results when the instruction set supports the
GUARDTRUE, GUARDFALSE and the GUARDBOTH instructions. For each of these instruction set
configurations, Table 5.15 also lists the increase in the number of GUARD instructions caused by the
use of a limited size mask.

Examining Table 5.15 we can identify some basic trends. First, we can see that the average
guarding distance for our benchmarks varies from a low of 2.67 to a high of about 12.5 instructions,
with an average of a little over 7 instructions, regardless of the combination of GUARD instruction
available in the instruction set. The relatively small average distances indicate that a guard mask will
not require an enormous number of bits to cover the entire guarding region. Another observation we
can make from Table 5.15 is that the average number of instructions guarded per GUARD instruction is
greater that 3 for most benchmarks, and it is more than 7 for half of the benchmarks. The average value
is about 5.6 when the ISA supports only GUARDTRUE and GUARDFALSE instructions and about 6.2
instructions per GUARD when the ISA that supports GUARDBOTH instructions as well.

When the instruction set supports a GUARDBOTH in addition to the GUARDTRUE and
GUARDFALSE instructions, the total number of GUARD instructions is expected to be reduced, since
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Program

GUARD TRUE/FALSE GUARD TRUE/FALSE/BOTH

# Instrs # GUARDs # Instrs # GUARDs
per Distance Infinite 21-bit per Distance Infinite 21-bit

GUARD mask mask GUARD mask mask

Compress 7.30 9.43 2.20 +0.35 8.46 9.19 1.85 +0.46
Elvis 4.81 6.06 2.13 +0.07 5.01 5.78 2.02 +0.11
Eqntott 2.52 3.85 2.86 +0.01 2.61 3.64 2.77 +0.02
Espresso 7.62 9.10 2.32 +0.40 8.03 8.84 2.17 +0.48
Gcc 9.28 12.47 3.20 +0.78 10.35 12.26 2.79 +0.85
Sc 8.01 8.97 2.99 +0.16 8.45 9.04 2.81 +0.29
Wc 1.50 2.67 6.00 +0.00 2.25 2.75 4.00 +0.00
Xlisp 4.09 5.40 1.49 +0.02 4.20 5.34 1.44 +0.03
Average 5.64 7.24 2.90 +0.22 6.17 7.11 2.48 +0.28

Table 5.15: Dynamic GUARD Statistics: average number of instructions guarded
per GUARD, guarding distance, number of GUARD instructions per guarded region
for an infinite size mask, and the increment in this number when the mask is re-
stricted to 21-bit. In the left half of the table, the instruction set supports only the
GUARDTRUE and the GUARDFALSE instructions, while in the right half it supports
the GUARDBOTH instruction as well.

the scheduler can replace a GUARDTRUE and a GUARDFALSE instructions that use the same guard
register with a single GUARDBOTH instruction (if the guard distances are small enough to fit in the
smaller scope of the GUARDBOTH instruction). This expectation is verified by comparing the two
columns labeled “infinite mask” for the two instruction set configurations. When only GUARDTRUE

and GUARDFALSE instructions are available, the required number of GUARD instructions ranges from
1.5 to 3.2, with an average of about 2.9. If we add the GUARDBOTH instruction, the range is between
1.44 and 2.81 instructions, with an average of about 2.5 GUARD instructions per guarded region.

The effects of a finite mask with 21 bits on the number of GUARD instructions are shown
in the two columns labeled “21-bit mask” to be relatively small. When the instruction set supports
GUARDTRUE and GUARDFALSE instructions, the largest increase occurs for Gcc: 0.78 additional
GUARD instructions are needed per guarded region, corresponding to an increase of about 24% in the
number of GUARD instructions. However, the change is much smaller for the rest of the benchmarks,
with a magnitude less that 0.02 instructions for three of the benchmarks, while the average increase is
0.22 instructions. When we add the GUARDBOTH instruction, the largest increase occurs again for Gcc
with a magnitude of 0.85 instructions or a 30% increase, and the average increase is 0.28 instructions.

5.6.2 Overhead of GUARD instructions

While the guarding region characteristics give insight about the efficiency of the GUARD instructions,
an important metric is the GUARD Overhead, i.e., the number of GUARD instructions that the processor
has to execute. This overhead depends on the guard mask size and on the type of the GUARD instruc-
tions that are supported in the ISA.
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Original
Instructions

Computation
Instructions

GUARD Overhead (% Computation) Inits&Sets
Program Unlimited Mask 21-bit Mask Avoided

All three GT/GF All three GT/GF (% Comp.)

Compress 81,972 82,562 9.52 11.30 11.91 13.12 14.60
Elvis 18,482 18,257 10.33 10.91 10.90 11.26 16.37
Eqntott 1,164,352 1,299,869 19.61 20.27 19.74 20.37 3.50
Espresso 522,085 577,177 8.32 8.90 10.18 10.45 13.94
Gcc 71,803 81,737 10.12 11.61 13.22 14.46 20.28
Sc 402,133 426,757 6.39 6.80 7.06 7.17 12.79
Wc 2,176 2,317 18.16 27.24 18.16 27.24 13.62
Xlisp 228,708 237,880 8.37 8.69 8.53 8.82 13.69
Total 2,491,716 2,726,560 11.35 13.21 12.46 14.11 13.60

Table 5.16: Overhead of GUARD instructions. The first two columns list the ref-
erence instruction count of the unmodified program, and the count of computa-
tion instructions in the if-converted program. The four overhead columns show
the GUARD overhead as the percentage increase on the computation instruction
counts for infinite and 21-bit masks and for instructions set that supports either the
GUARDTRUE and GUARDFALSE instructions only, or the GUARDBOTH instruc-
tion as well. The last columns lists the amount of set and initialization instructions
that is avoided by the use of GUARD instructions.

Table 5.16 lists the instruction count of the original, non-if-converted program, and the number
of computation (non-GUARD) instructions in the guarded program. It also lists the GUARD overhead as
a percentage of the computation instructions, for both an unlimited and a 21-bit guard mask sizes and for
two ISAs: one that support the GUARDTRUE and GUARDFALSE instructions only (labeled “GT/GF”),
and one that supports the GUARDBOTH instruction as well (labeled “All three”). To compute the actual
instruction count for a program and for a given instruction set support and mask size, one can take the
number of computation instructions, and add to it the GUARD overhead for that ISA support and mask
size configuration. For example, the instruction count for Compress using all three GUARD instructions
and a 21-bit guard mask would be: 82,562 * (1 + 11.91%) which comes out to 92,395 instructions.

In Table 5.16 we see that for most benchmarks, and for all combinations of guard mask size
and ISA support, the overhead of GUARD instructions is less than 12%. Adding the GUARDBOTH

instruction in the instruction set reduces the overhead by less than 1%. Similarly, the impact of going
from an infinite size to a 21-bit guard mask increases the overhead by less than 1%. Averaging across
the benchmarks, the smallest overhead is 11.35% for an unlimited size mask and for an ISA supporting
all three flavors of GUARD instructions, while the largest overhead is 14.11% for a 21-bit guard mask
and for an ISA supporting only the GUARDTRUE and GUARDFALSE instructions.

The two notable exceptions from these trends are Eqntott and Wc which require an overhead of
almost 20%; furthermore, removing the support for a GUARDBOTH instruction increases the GUARD

overhead from 18% to 27% for Wc.
Table 5.16 also list the number of set and initialization instructions that would have been needed

had we used full guarding, again as a percentage of the computation instructions. These initializations
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and sets are are obviated by the use of GUARD instructions. Therefore, for a fair comparison of GUARD

instructions and ordinary guarding, one should compare the GUARD overhead to the amount of set
and initialization that are avoided. For example, comparing the last two columns of the table, we see
that for most programs, the guard overhead is actually less than the amount of initializations and sets
that are eliminated; this means that the instruction count will actually be smaller when we use GUARD

instructions instead of ordinary guarding.
Eqntott and Wc are again exceptions to that observation: their GUARD overhead is substantially

more than the overhead of condition manipulation instructions in full guarding. The explanation for this
phenomenon is that GUARD instructions are able to eliminate sets when the guard conditions are nested;
both Eqntott and Wc have relatively simple control structures with very few nested control structures,
eliminating that potential benefit of GUARD instructions. The net GUARD overhead is less than 1%
of the program computation over the instruction count of the program using ordinary guarding with
explicit guard operands per instruction.

5.7 Summary

In this chapter we performed an evaluation of the impact of guarding on the instruction characteristics
and the dynamic branch behavior of our benchmarks. For full guarding and for our evaluation assump-
tions, we found that: (i) the amount of the overhead computation in a guarded program is not very high
at about 20%, and the amount of squashed computation is about 8.5%. (ii) the effectiveness of guard-
ing in eliminating branches varies heavily with each program, from an unimpressive 13% to a stunning
99%, (iii) the number of conditions per guarded region is small, but the lifetimes of the guard registers
are in most cases more than 10 instructions. (v) the effect of guarding on the dynamic branch prediction
is correlated with the effectiveness of branch elimination; overall guarding eliminates close to half of
the mispredictions for both counter- and correlation-based predictors.

It is hard to draw conclusions about the effectiveness of synthesizing guarding using condi-
tional moves. Conditional moves perform extremely well for two benchmarks, Eqntott and Wc; for the
remaining of benchmarks the impact of conditional moves on our metrics was limited. Overall, the av-
erage values of our metrics suggest that conditional moves are successful in capturing more than half
of the potential of full guarding.

We found the overhead of GUARD instructions, under realistic assumptions, to be small: the
instruction count with GUARD instructions is less than 1% larger than the instruction count using ordi-
nary guarding. Furthermore, for many programs, GUARD instructions actually reduced the instruction
count compared to ordinary guarding. The overhead of GUARD instructions is not very sensitive to the
mask length: when we limiting the mask size from infinite to 21 bits introduces less than 1% overhead
in the total instruction count of the program. Finally, we found that the support for GUARDBOTH in-
struction is not crucial to the performance of GUARD instructions. However, adding the GUARDBOTH

instruction reduces the GUARD overhead for Wc considerably.
These results show that guarding has indeed the potential to improve performance, even under

our conservative assumptions, and without any profiling information. However, these results are just
hints of the expected performance of guarding. Without supporting results using timing simulations,
these results are of little value. In the next chapter we will address this limitation, and evaluate the real
performance benefits of guarding using timing simulations of realistic processor configurations.
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Chapter 6
Effects of guarding on execution time

In the previous chapter, we evaluated the impact of guarding on the program characteristics, such as
the number of branches in the program, the branch prediction accuracy, etc. However, these metrics
are just indicative of the performance potential; an improvement in any of these metrics may, or may
not, translate into faster program execution. The ultimate performance metric for any evaluation is
the execution time of a program. In this chapter we evaluate the performance of guarding using the
execution time of the programs as our metric. To do so, we use detailed cycle-by-cycle simulations to
determine the execution time (in cycles) of each of our benchmarks.

The performance of the guarded programs depends on many parameters. In this chapter, we
concentrate on four major parameters: (i) the processor’s issue model, which can be either in-order or
out-of-order, (ii) the issue width, i.e., how many instructions the processor can issue per cycle, (iii) the
structure of the dynamic predictor, and (iv) the branch misprediction penalty. We measure the effects
of these parameters for each of the three levels of ISA support for guarding we used in Chapter 5: full
guarding, conditional moves, and GUARD instructions.

This chapter is organized as follows. Section 6.1 describes in detail our simulation assumptions
and methodology. Section 6.2 investigates the performance potential of guarding in the context of an in-
order issue processor. Section 6.3 measures the impact of the misprediction penalty on the performance
of guarding. Section 6.4 evaluates the performance of guarding on an out-of-order issue processor and
Section 6.5 summarizes this chapter.

6.1 Simulation Methodology

For our evaluation we use the SimpleScalar timing simulation tools. The benchmark programs were
compiled into binaries using the compilation methodology described in Chapter 5, and then fed into
the SimpleScalar in-order and out-of-order timing simulators. These simulators are execution driven,
and model all aspects of the pipeline, functional units, caches, etc. Both the in-order and the out-of-
order processors support dynamic branch prediction and speculative execution of instructions. We use
the same predictors we used in Chapter 5. The processors can perform a single prediction per cycle,
but can execute multiple branch branches per cycle, since the only necessary action is the verification
of the corresponding predictions. Next, we describe the parameters of our in-order and out-of-order
processor models, and the latencies we assume for each of the processor components.

6.1.1 In-order execution model

Our in-order issue execution model is a symmetric superscalar of degree ' . It supports speculative
execution and allows the out-of-order completion of instructions via a score-boarding mechanism. The
processor pipeline is assumed to be a simple, 5-stage pipeline, with a base branch misprediction cost
of 1 cycle.
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The memory systems is assumed to be multi-ported by replication, and it can support up to '
loads or a single store per cycle. Loads and stores are executed in program order. For all the simulations,
we use a 16Kbyte, non-blocking, direct-mapped cache. The cache uses a write-allocate policy and the
block size of 16 bytes. To decouple the execution of loads and stores, the processor implements a 16-
entry, non-merging write buffer. for our simulations we assume a perfect instruction cache with 100%
hit ratio.

The integer multiplier, the floating point adder and floating point multiplier functional units
are fully pipelined and can support a completion rate of one result per cycle. The integer as well as the
floating point dividers are not pipelined.

When the processor decodes a guarded instruction, it evaluates the guard condition in the de-
code stage of the pipeline, and if the condition is false, the instruction is transformed into a NOP. How-
ever, the squashed instruction consumes the instruction fetch bandwidth, inhibiting in this way the ex-
ecution of other instructions.

The processor supports GUARD instructions, as described in Chapter 4; the GUARD masks have
either an infinite size, or they are 21 bits wide. When an instruction enters the decode stage of the
pipeline, the corresponding bit of the scalar mask register is checked; if it is zero, the instruction is
converted into a NOP. The instruction decoder detects sequences of GUARD instructions immediately
followed by their guarded computation and short-circuits the guard condition in the computation in-
struction, allowing both the GUARD instruction, and the instructions it guards to be issued in the same
cycle. The guarded computation will be squashed (if needed) by the guard condition by the end of the
decode stage.

6.1.2 Out-of-order execution model

Our out-of-order processor uses a Reorder Update Unit (RUU) [SV87, Soh90] to achieve instruction
buffering and register renaming. Guarded instructions are squashed during the decode stage if the guard
condition is available. When the guard condition is not available, the guarded instructions are treated
as selects between the old value and the (potential) new value of the destination register (as described
in Section 2.3.3) and are issued in the RUU. These select statements are considered ready when, either
the guard condition is false and the old value of the destination register is valid, or when the guard
condition is true and all the operands of the instruction are valid. To allow the out-of-order execution
of GUARD instructions, the processor uses the Guard Mask Buffer described in Section 4.5. Our out-
of-order processor model uses the same memory system configuration as our in-order processor model.

6.1.3 Functional unit latencies

For our evaluation we use a realistic processor configuration. Table 6.1 shows the functional unit la-
tencies. For all our simulations we use a cache miss latency is six cycles, assuming a perfect hit ratio in
the second level cache. We use a branch misprediction penalty of one cycle from the time the branch
in resolved. This misprediction penalty is quite low, corresponding to a very aggressive and very short
pipeline. A larger misprediction penalty would boost the results of guarding and its effects. To evalu-
ate this impact, in Section 6.3 we will present the simulation results for misprediction penalties of two,
three, and eight cycles.
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Functional Unit Latency (Cycles) Pipelined?

Integer ALU 1 N/A
Integer Multiplication 4 Yes
Integer Division 12 No
Floating Point Addition 2 Yes
Floating Point Multiplication 4 Yes
Floating Point Division 12 No
Floating Point Square Root 24 No

Table 6.1: Functional Unit Latencies.

6.1.4 Metrics

In this Chapter we use three metrics: (i) Execution Time, (ii) Instruction Per Cycle (IPC) completion
rate and (iii) Speedup. The execution time is self-explanatory and includes all cycles spend for execu-
tion of useful instructions, data cache miss latencies etc. The IPC completion rates are just the number
of instructions divided by the execution time. However, for guarded programs we distinguish two types
of IPC rates: the Effective IPC, which is computed by dividing the number of instruction in the original
program by the execution time of the guarded program, and the Actual IPC which is computed by di-
viding the number of instructions (including all the squashed computation and guarding overhead) by
the execution time. (The actual IPC can be computed from the Effective IPC of a program by adding
the guarding overhead shown in Table 5.2 in Chapter 5.) The speedup metric is straightforward, and is
computed by dividing the Effective IPC of the guarded program by the IPC of the original program for
the same processor configuration and subtracting one. The resulting speedup is reported as a percent-
age. To compute the average IPC, we just compute the harmonic mean of the IPCs of all the programs.
To compute the average speedup, we first compute the average IPCs and then we use the speedup cal-
culation on the average IPC values.

6.2 Performance of guarding for an in-order issue processor

First, we investigate the performance potential of guarding in the context of an in-order issue processor.
We consider the three levels of ISA support for guarding, full guarding, conditional moves, and GUARD

instructions, in this order. For each of these levels of ISA support for guarding, we simulate the bench-
marks for two processor configurations, one that can issue 4 and another that can issue 8 instructions
per cycle. Similarly, to determine the effects of the dynamic branch predictor on the performance of
guarding we simulated the counter- and correlation-based dynamic predictors described in Chapter 5,
Section 5.3.2.

6.2.1 Performance of full guarding

We begin our evaluation by examining the performance of full guarding. Table 6.2 lists the execution
times for the original and guarded version of the benchmarks for a 4-issue processor using a counter-
based predictor. It also shows the instruction completion rate (IPC) and the speedup that guarding
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Program
Execution Time IPC Speedup

Original Guarded Original Effective Actual (%)

Compress 83,067 80,257 0.99 1.02 1.18 3.5
Elvis 12,429 11,540 1.49 1.60 1.84 7.7
Eqntott 855,862 695,257 1.36 1.67 1.94 23.1
Espresso 448,670 424,474 1.16 1.23 1.54 5.7
Gcc 56,991 54,033 1.26 1.33 1.82 5.5
Sc 347,252 333,255 1.16 1.21 1.44 4.2
Wc 1,188 881 1.83 2.47 2.99 34.9
Xlisp 197,275 187,167 1.16 1.22 1.48 5.4
Total/Average 2,002,738 1,786,867 1.26 1.37 1.66 9.1

Table 6.2: Execution time (in thousand cycles) and IPC for the original and the
fully guarded programs on a 4-issue processor using a counter-based predictor.

achieves as a percentage. Table 6.2 lists all three IPC values: Original, which is the IPC of the original,
unmodified program, Effective and Actual.

In Table 6.2 we find two striking results. First, two of the programs (namely Eqntott and Wc)
perform very well with guarding, showing a speedup of about 23% and 35% in their execution time
on a 4-issue processor. The second result is that for the rest of the benchmarks, guarding has a modest
effect on the execution time, ranging from a 3.5 to a 7.7% speedup. Modest results may have been ex-
pected for Sc, given the small effect of guarding and if-conversion on the control structure. The poor
performance of Compress is also explained by its sequential nature: the main computation of Compress
is a recurrence on the input file, leaving few opportunities for gains through scheduling; furthermore,
the working set size of compress is several times larger than the data cache, causing a large number
cache misses that dominate the execution time. The instruction completion rate is modest for all pro-
grams except Wc: the IPC values range from 0.99 to 1.49 for the unmodified program; Wc achieves an
effective IPC of 1.83. Table 6.2 also lists the average IPC and speedup. For the original program the
average IPC is 1.26; full guarding increases this average to 1.37, or by 9%. To achieve this effective
IPC rate, the processor executes 1.66 instructions per cycle.

Table 6.3 shows the same statistics for an 8-issue processor. For the unmodified programs, a
wider issue improves the execution time by a marginal amount, indicating that a 4-issue processor has
sufficient resources to exploit the instruction level parallelism of the original program (as scheduled by
the compiler). On the average, the 8-issue processor increases the IPC of the original programs from
1.26 to 1.28.

The plentiful processor resources have a larger impact of the performance of the guarded pro-
gram. One of the factors that limit the performance of the guarded version of the programs is the bursty-
ness of the guard condition evaluation (as described in Section 2.2.1). In many cases, multiple guard
conditions need to be set before we execute the guarded computation, and these instructions can (tem-
porarily) deplete the issuing capacity of a 4-issue processor. Similarly, squashed computation, even if
it is not executed, depletes the issue bandwidth of the processor, excluding other instructions from ex-
ecuting. A wider-issue processor is better able to smooth out this bursty behavior, and provide better
speedups. A good example of this situation is Wc which has more that 20% overhead computation (see
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Program
Execution Time IPC Speedup

Original Guarded Original Effective Actual (%)

Compress 82,593 78,810 0.99 1.04 1.20 4.8
Elvis 12,294 11,362 1.50 1.63 1.87 8.2
Eqntott 847,490 690,984 1.37 1.69 1.95 22.6
Espresso 447,064 404,949 1.17 1.29 1.61 10.4
Gcc 55,283 51,582 1.30 1.39 1.91 7.2
Sc 341,731 320,872 1.18 1.25 1.50 6.5
Wc 1,107 776 1.97 2.80 3.39 42.7
Xlisp 194,157 180,275 1.18 1.27 1.53 7.7
Total/Average 1,981,722 1,739,612 1.28 1.43 1.72 11.2

Table 6.3: Execution time (in thousand cycles) and IPC for the original and the
fully guarded programs on a 8-issue processor using a counter-based predictor.

Table 5.2 in Chapter 5); the 8-issue processor increased the effective IPC by 13%, from 2.47 to 2.80.
However, the execution time speedups for the rest of the benchmarks are low, less than 10% for more
than half of our benchmarks, and the average speedup is 11%. The corresponding effective IPC is 1.43,
and the actual IPC is 1.72 instructions per cycle.

Next we consider the effects of a correlation-based predictor. In general, a better branch pre-
diction mechanism reduces the processor stalls due to incorrect predictions, and allows the original
program to sustain better baseline performance, thus reducing the performance potential of guarding.
Table 6.4 lists the execution times and IPCs for the original and guarded version of the benchmarks for
a 4-issue processors using a correlation-based predictor.

When the misprediction rate is small, the only benefits of guarding are due to (a) better static
instruction schedules and (b) more efficient sequential fetch of the instructions in the guarded regions
(that is, fewer taken branches to disrupt instruction fetching). Considering the prediction accuracies
in Tables 5.6 and 5.7 of Chapter 5, we see that the correlation-based predictor achieves much better
prediction accuracies than the counter-based predictor for the original (non-if-converted) programs.
As expected, the better prediction accuracy reduces the effects of guarding: for the 4-issue processor,
Eqntott and Wc perform the best with a speedup of 10 and 22% in their execution times.The remaining
programs, however, show only small speedups in the range of 3 to 8.4%. The overall average speedup
is 6.5%, while the average effective IPC achieved by guarding is 1.39.

As in the case of a counter-based predictor, increasing the issue width of the processor from 4 to
8 helps the guarded version of the program more than the original, resulting in slightly better speedups.
Table 6.5 shows the execution time statistics for an 8-issue processor using correlation-based predic-
tion. All programs except Wc show speedups of less that 9%. Overall, guarding achieves a average
speedup of 7.8% over the original program execution times.

Comparing the tables for counter- and correlation based prediction, can draw some interesting
conclusions. First, the combination of full guarding and a counter based predictor gives shorter execu-
tion times than that of the original programs running on a processor with correlation-based prediction.
For example, with guarding, the effective IPC for a 4-issue processor using a counter-based predictor is
1.37, compared to the 1.31 IPC for a processor using correlation-based prediction but no guarding; for
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Program
Execution Time IPC Speedup

Original Guarded Original Effective Actual (%)

Compress 82,594 80,158 0.99 1.02 1.18 3.0
Elvis 12,374 11,418 1.49 1.62 1.86 8.4
Eqntott 739,473 670,419 1.57 1.74 2.01 10.3
Espresso 436,110 414,978 1.20 1.26 1.57 5.1
Gcc 56,198 53,427 1.28 1.34 1.84 5.2
Sc 340,629 327,851 1.18 1.23 1.47 3.9
Wc 1,077 881 2.02 2.47 2.99 22.2
Xlisp 193,146 185,554 1.18 1.23 1.49 4.1
Total/Average 1,861,604 1,744,690 1.31 1.39 1.68 6.5

Table 6.4: Execution time (in thousand cycles) and IPCs for the original and the
fully guarded programs on a 4-issue processor using a correlation-based predictor.

an 8-issue processor the corresponding IPCs are 1.43 and 1.33. Second, a correlation-based predictor
cuts the guarding speedups by about 30% (from 9 to 6.5%, and from 11.2 to 7.8%).

6.2.2 Performance of guarding using conditional moves

Next we turn out attention to the performance of conditional move instructions as a way to implement
guarding. As described in Chapter 2, arbitrary guarded instructions can be synthesized using ordinary
computation into temporary registers, followed by a conditional move to commit the result in the ac-
tual destination register when the condition evaluates to true. However, these instruction sequences
lengthen the dependence paths thought the code compared with full guarding. Therefore, conditional
moves are expected to show smaller speedups than full guarding.

Table 6.6 shows the execution time, IPCs and speedup using conditional moves on a 4-issue
processor using a counter-based branch predictor. The table also includes the effective and the ac-
tual IPC and the corresponding percent speedup. For comparison purposes the table also includes the
speedups using full guarding on the same processor configuration. In Table 6.6 we see that the speedups
that conditional moves are able to show substantial speedup for the benchmarks Eqntott and Wc: 21
and 20% respectively, compared to the 23.7 and 35% of full guarding. The speedups for the rest of
the programs are smaller than 4.2%. On the average, for a 4-issue processor, conditional moves give a
6.3% speedup, or about 70% of the speedup of full guarding (9.1%). That speedup increases the aver-
age IPC of the programs from 1.26 to 1.34, while the actual processor IPC (including all overheads) is
1.51.

Table 6.7 shows the execution time statistics for an 8-issue processor using a counter-based
predictor. The longer computation paths due to the extra conditional moves limit the performance of
conditional moves for wider issue processors. Comparing Tables 6.6 and 6.7 we see that the impact
of wide issue processor is smaller on the IPCs for conditional moves than it is for full guarding. For
most programs the effective IPCs change only slightly. The only exceptions are Eqntott and Wc which
exhibit an increase of more than 20% in their IPCs. Overall, for an 8-issue processor, conditional moves
increase the average IPC from 1.28 to 1.37. The average speedup is 7.1%, compared to 11.2% for full
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Program
Execution Time IPC Speedup

Original Guarded Original Effective Actual (%)

Compress 82,052 78,721 1.00 1.04 1.20 4.2
Elvis 12,235 11,326 1.51 1.63 1.88 8.0
Eqntott 726,353 666,990 1.60 1.75 2.02 8.9
Espresso 434,388 398,876 1.20 1.31 1.63 8.9
Gcc 54,391 51,441 1.32 1.40 1.91 5.7
Sc 338,027 318,544 1.19 1.26 1.51 6.1
Wc 973 776 2.24 2.80 3.39 25.4
Xlisp 189,988 179,596 1.20 1.27 1.54 5.8
Total/Average 1,838,410 1,706,274 1.33 1.44 1.74 7.8

Table 6.5: Execution time (in thousand cycles) and IPCs for the original and the
fully guarded programs on a 8-issue processor using a correlation-based predictor.

Conditional Moves Full
Program Execution IPC Speedup Guarding

Time Original Effective Actual (%) Speedup (%)

Compress 81,367 0.99 1.01 1.07 2.1 3.5
Elvis 11,929 1.49 1.55 1.70 4.2 7.7
Eqntott 705,862 1.36 1.65 1.74 21.3 23.1
Espresso 432,670 1.16 1.21 1.33 3.7 5.7
Gcc 55,254 1.26 1.30 1.49 3.1 5.5
Sc 337,952 1.16 1.19 1.44 2.8 4.2
Wc 986 1.83 2.21 3.10 20.5 34.9
Xlisp 190,275 1.16 1.20 1.29 3.7 5.4
Total/Average 1,816,298 1.26 1.34 1.51 6.3 9.1

Table 6.6: IPCs and speedup achieved by conditional move instructions for an 4-
issue in-order processor using a counter-based predictor.
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Conditional Moves Full
Program Execution IPC Speedup Guarding

Time Original Effective Actual (%) Speedup (%)

Compress 80,967 0.99 1.01 1.08 2.0 4.8
Elvis 11,635 1.50 1.59 1.74 5.7 8.2
Eqntott 700,862 1.37 1.66 1.75 20.9 22.6
Espresso 421,760 1.17 1.24 1.36 6.0 10.4
Gcc 54,019 1.30 1.33 1.53 2.3 7.2
Sc 331,552 1.18 1.21 1.47 3.1 6.5
Wc 881 1.97 2.47 3.46 25.6 42.7
Xlisp 185,775 1.18 1.23 1.32 4.5 7.7
Total/Average 1,787,454 1.28 1.37 1.54 7.1 11.2

Table 6.7: IPCs and speedup achieved by conditional move instructions for an 8-
issue in-order processor using a counter-based predictor.

guarding.
Qualitatively, the relative performance of conditional moves and full guarding remains unaf-

fected by the choice of dynamic branch predictor. Tables 6.8 and 6.9 present the execution time statis-
tics for conditional moves using a correlation-based predictor for a 4- and an 8-issue processor respec-
tively. As expected, the more accurate predictor reduces the speedups achieved by conditional moves.
For more than half of the programs, the speedup over the original program is less than 3%, regardless
of the issue width of the processor. The only program that shows a speedup greater than 10% is Wc,
and requires an 8-issue issue to achieve it. On the average, conditional moves achieve a speedup of 3.2
and 3.5% for a 4- and an 8-issue issue processor respectively, compared to the 6.5 and 7.8% speedups
with full guarding.

6.2.3 Performance of GUARD instructions

Next, we evaluate the performance of GUARD instructions. As described in Chapter 5, when we com-
pile the programs with GUARD instructions, we use the same guarding regions as in the case of full
guarding; therefore, the performance of GUARD instructions is expected to be comparable with – if not
better than – the performance of full guarding. In fact, we expect it to be better, since, as we showed in
Chapter 5, Section 5.6.2, GUARD instructions are able to reduce, in most cases, the instruction count of
the guarded program, and, as described in Chapter 4, Section 4.4, GUARD instructions allow the early
squashing of guarded computation.

To examine the impact of limited size guard masks on the execution time of the programs, we
simulated all four of the configurations that we used in Chapter 5, namely, two guard mask sizes: in-
finite and 21 bits, and two instruction set support levels for GUARD instructions: GUARDTRUE and
GUARDFALSE only, or GUARDTRUE GUARDFALSE and GUARDBOTH. Lastly, we evaluate the ef-
fectiveness of “early squashing”, that is the ability of a processor that supports GUARD instructions
to squash instructions before they are even fetched (using the skip capability described in Chapter 4,
Section 4.2.2.
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Conditional Moves Full
Program Execution IPC Speedup Guarding

Time Original Effective Actual (%) Speedup (%)

Compress 81,567 0.99 1.00 1.07 1.3 3.0
Elvis 11,859 1.49 1.56 1.71 4.3 8.4
Eqntott 706,312 1.57 1.65 1.74 4.7 10.3
Espresso 426,670 1.20 1.22 1.34 2.2 5.1
Gcc 54,491 1.28 1.32 1.51 3.1 5.2
Sc 334,252 1.18 1.20 1.46 1.9 3.9
Wc 986 2.02 2.21 3.10 9.2 22.2
Xlisp 188,475 1.18 1.21 1.30 2.5 4.1
Total/Average 1,804,617 1.31 1.35 1.52 3.2 6.5

Table 6.8: IPCs and speedup achieved by conditional move instructions for an 4-
issue in-order processor using a correlation-based predictor.

Conditional Moves Full
Program Execution IPC Speedup Guarding

Time Original Effective Actual (%) Speedup (%)

Compress 81,067 1.00 1.01 1.08 1.2 4.2
Elvis 11,672 1.51 1.58 1.73 4.8 8.0
Eqntott 694,741 1.60 1.68 1.77 4.6 8.9
Espresso 421,481 1.20 1.24 1.36 3.1 8.9
Gcc 52,991 1.32 1.36 1.56 2.6 5.7
Sc 327,252 1.19 1.23 1.49 3.3 6.1
Wc 881 2.24 2.47 3.46 10.4 25.4
Xlisp 185,575 1.20 1.23 1.32 2.4 5.8
Total/Average 1,775,664 1.33 1.38 1.55 3.5 7.8

Table 6.9: IPCs and speedup achieved by conditional move instructions for an 8-
issue in-order processor using a correlation-based predictor.
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Table 6.10 shows the speedups obtained using the four possible combinations of GUARD in-
structions for a 4- and an 8-issue issue processor using a counter-based predictor. For comparison pur-
poses, the table also lists the speedups obtained using full guarding. Comparing the speedups for the
four GUARD support combinations we see that the impact of either a limited size guard mask or of
adding the GUARDBOTH instruction, is negligible for all programs except Gcc; for Gcc and an in-
struction set supporting GUARDBOTH instructions, reducing the guard mask size from infinite to 21
bits reduces the speedup by 0.6 and 1 percentage points for a 4- and an 8-issue processor respectively.
Comparing the performance of GUARD instructions to that of full guarding we see that GUARD always
performs better; for a 4-issue processor, GUARD instructions achieve a speedup of more than 13% com-
pared to the 9.1% speedup of full guarding. For an 8-issue processor these averages are about 15 ver-
sus 11.2%. It is also important to note that even for a 4-issue processor, GUARD instructions achieve
speedups of more than 10% for more than half of the programs.

The impact of a correlation-based predictor on the performance of GUARD instructions is simi-
lar to that on full guarding. Table 6.11 shows the speedups obtained using GUARD instructions for a 4-
and an 8-issue issue processor, along with the speedups for full guarding. As expected, the magnitude
of the speedups is reduced, and GUARD instructions achieve a speedup of about 10% for both 4- and
8-issue processors, compared to 6.5 and 7.8% for full guarding.

Considering the result in Tables 6.10 and 6.11, we see that GUARD instructions perform con-
sistently better that full guarding. This is a result of the shorter (both in number of instructions, and
in dependence path) condition evaluation sequences that are possible using our GUARD assignment
algorithm.

Another way in which GUARD instructions can improve the performance of a program, is by
allowing the processor to squash some computation before it is even fetched. This ability requires the
”skip-logic” circuit described in Chapter 4, Section 4.4. Early squashes will only happen for GUARD

instructions with a false condition, and then, only when their guarded computation has not already been
fetched from the instruction cache. For example, for a 4-issue processor using a 5-stage pipeline, when
the GUARD instruction is decoded and executed, it may be the first in a parcel of four instructions.
While the GUARD instruction is being decoded and executed, the fetching of the next parcel of four
instructions is already underway in the I-fetch stage of the pipeline. Therefore, the processor can avoid
fetching the squashed computation only if the computation is 8 instructions away from the GUARD

instruction. This distance increases when the issue width of the processor is increased, or when the
distance (in pipeline stages) between the execution stage of GUARD instructions and instruction fetch
stage is increased.

Table 6.12 evaluates the ability of a processor supporting GUARD instructions to squash some
of the guarded computation early. The table lists the instruction count of each program when compiled
using 21-bit guard masks and all three flavors of GUARD instructions, The four rightmost columns of
the table show the number of instructions that are squashed early for a 4- and an 8-issue processor. The
number of early squashes is shown in two ways: (i) as a percentage of all the squashed instructions
(in the two columns labeled “% squashed”) and (ii) as a percentage of the total instruction count of the
program (in the columns labeled “% instructions”).

As a percentage of all the squashed instructions, early squashes happen frequently on a 4-issue
processor. For example, for Wc, 40% of the squashed computation is bypassed by the early squashing
mechanism. Gcc shows the smallest percentage of early squashes, with less than 10% of the squashed
computation being squashed early. On the average, 28% of all the squashed instructions in the programs
are squashed early. As expected, a wider issue processor reduces this percentage substantially. For an
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Program

4-Issue Speedups (%) 8-Issue Speedups (%)
Unlimited Mask 21-bit Mask Unlimited Mask 21-bit Mask

Full
All All

Full
All All

Guard
three

GT/GF
three

GT/GF Guard
three

GT/GF
three

GT/GF

Compress 3.5 5.8 5.8 5.8 5.8 4.8 6.0 6.0 6.0 6.0
Elvis 7.7 11.8 11.8 11.8 11.8 8.2 12.6 12.6 12.6 12.5
Eqntott 23.1 23.2 23.2 23.2 23.2 22.6 23.1 23.1 23.1 23.1
Espresso 5.7 12.1 12.1 12.1 12.1 10.4 12.3 12.3 12.3 12.3
Gcc 5.5 9.9 9.5 9.3 8.8 7.2 10.7 10.2 9.7 9.5
Sc 4.2 8.6 8.5 8.5 8.3 6.5 10.8 10.8 10.8 10.7
Wc 34.9 34.9 34.9 34.9 34.9 42.7 42.7 42.7 42.7 42.7
Xlisp 5.4 10.1 10.1 10.1 10.1 7.7 9.3 9.3 9.3 9.3
Average 9.1 13.9 13.8 13.8 13.7 11.2 15.0 14.9 14.9 14.8

Table 6.10: GUARD speedups compared to the speedups obtained using explicit
guard conditions, for the counter-based predictor.
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Program

4-Issue Speedups (%) 8-Issue Speedups (%)
Unlimited Mask 21-bit Mask Unlimited Mask 21-bit Mask

Full
All All

Full
All All

Guard
three

GT/GF
three

GT/GF Guard
three

GT/GF
three

GT/GF

Compress 3.0 5.5 5.5 5.5 5.5 4.2 5.9 5.9 5.9 5.9
Elvis 8.4 11.6 11.6 11.6 11.4 8.0 12.5 12.5 12.5 12.5
Eqntott 10.3 10.5 10.4 10.5 10.3 8.9 8.9 8.9 8.9 8.8
Espresso 5.1 9.1 9.1 9.3 9.3 8.9 9.7 9.7 9.7 9.7
Gcc 5.2 8.9 8.6 8.6 8.5 5.7 10.2 9.7 9.6 9.3
Sc 3.9 7.0 6.9 7.0 6.9 6.1 10.0 9.8 9.8 9.8
Wc 22.2 22.2 22.2 22.2 22.2 25.4 25.4 25.4 25.4 25.4
Xlisp 4.1 7.8 7.8 7.8 7.8 5.8 8.2 8.2 8.2 8.2
Average 6.5 10.1 10.1 10.1 10.0 7.8 11.1 11.0 11.0 10.9

Table 6.11: GUARD speedups compared to the speedups obtained using explicit
guard conditions, for the correlation-based predictor.
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Early Squashes
Program Instructions

Squashed
% squashed % instructions

Instructions
4-issue 8-issue 4-issue 8-issue

Compress 92,395 5,285 36.9 21.8 2.1 1.2
Elvis 20,248 1,338 41.1 12.3 2.7 0.8
Eqntott 1,556,456 92,453 29.3 9.8 1.7 0.6
Espresso 635,907 80,060 19.5 9.3 2.5 1.2
Gcc 92,543 15,898 9.5 6.6 1.6 1.1
Sc 456,879 48,155 26.8 14.4 2.8 1.5
Wc 2,738 521 40.4 9.7 7.7 1.8
Xlisp 258,182 20,680 28.1 1.7 2.3 0.1
Total/Average 3,115,351 264,393 28.1 10.4 2.9 1.0

Table 6.12: Percent of instructions that can be squashed before they are fetched.

8-issue processor, only about 10% of the squashed computation is squashed early.
However, if we compare the number of early squashes with the instruction count of the pro-

gram, we see that a very small percentage of the instructions are squashed early. Even for the 4-issue
processor, less than 3% of all the instructions in most of our benchmarks are squashed early. On the
average early squashing accounts for about 3% of instruction count when the program is run on a 4-
issue processor; an 8-issue processor reduces this percentage to 1%. These results are not surprising
if we consider the relatively low percentage of overhead computation in our guarding regions. From
Table 5.3 in Chapter 5) we can see that, on the average, only about 9% of all the instruction in our
programs were squashed.

Overall, for our evaluation context, the value of early squashing is limited. Early squashing
may be more useful in a context where the amount of squashed computation becomes more signifi-
cant. For example, aggressive loop-unrolling and software-pipelining can increase both the number of
squashed instructions, and the guarding distance, exposing more opportunities for early squashes.

6.3 Impact of misprediction penalty

One of the factors that limits the performance potential of guarding is the low misprediction penalty we
used. A larger misprediction penalty, increases the number of stall cycles due to branches. Since the
guarded programs execute fewer branches, they experience fewer mispredictions, and therefore will
suffer fewer stalls than the original programs. In this section we evaluate the impact of misprediction
penalties of 2, 3 and 8 cycles on the performance of guarding, on each of the three guarding methods:
full guarding, conditional moves and GUARD instructions. For the GUARD instructions we use the
most powerful but still realistic configuration, which allows all three flavors of GUARD instructions
with a 21-bit mask.

Table 6.13 lists the execution time speedups for our benchmarks for a 4-issue processor us-
ing a counter-based predictor, and for misprediction penalties of 2, 3 and 8 cycles. When guarding is
successful in eliminating the branch mispredictions, a larger misprediction penalty will have a smaller
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Misprediction Penalty
Program 2 cycles 3 cycles 8 cycles

Guard Cmov GUARD Guard Cmov GUARD Guard Cmov GUARD

Compress 4.1 2.6 6.4 4.6 3.1 6.9 13.8 12.1 16.2
Elvis 7.8 4.2 11.9 7.9 4.2 11.9 13.9 9.9 18.1
Eqntott 31.4 28.8 31.5 39.6 36.1 39.7 84.3 79.7 84.4
Espresso 6.2 3.7 12.5 6.7 3.7 12.9 18.2 14.9 25.1
Gcc 6.3 3.3 10.0 7.1 3.4 10.7 28.5 24.1 32.8
Sc 4.3 2.8 8.5 4.4 2.8 8.5 14.4 12.7 19.0
Wc 42.7 27.5 42.7 50.5 34.5 50.5 89.9 69.6 89.9
Xlisp 5.8 3.8 10.4 6.3 3.9 10.6 28.7 25.9 34.0
Average 12.1 8.6 15.6 13.7 9.9 17.2 31.1 26.9 35.2

Table 6.13: Effect of misprediction penalty on the guarding speedups for a 4-issue
processor using a counter-based branch predictor.

effect. For example, from Chapter 5, Table 5.6, we see that guarding eliminates more than 90% of all
the misprediction in Eqntott and Wc, but has a smaller impact on Elvis and Xlisp and an almost negli-
gible impact on Sc. These expectations are confirmed in Table 6.13: for Sc for example, increasing the
misprediction penalty from 2 to 3 cycles increases the speedup for full guarding from 4.3 to only 4.4.
The same increase in the misprediction penalty increases the speedup for Eqntott, from 31.4 to 39.6%.
The effects of a larger misprediction penalty become more noticeable as the misprediction penalty in-
creases; for an 8-cycle misprediction penalty, Sc shows a 14.4% speedup.

On the average, for a 2-cycle misprediction penalty, full guarding gives a speedup of 12% com-
pared with 8.6 and 15.6% for conditional moves and GUARD instructions. For a 3-cycle misprediction
penalty, the corresponding speedups are 13.7, 9.9 and 17%, and for an 8-cycle misprediction penalty
they are 31, 27 and 35.2%. With the misprediction penalty of 2 or 3 cycles, conditional moves achieve
speedups of less than about 4%, for all our benchmarks except Eqntott and Wc. A misprediction penalty
of 8 cycles increases all the speedups to about 10% or more. Comparing full guarding and GUARD in-
structions, we see that GUARD instructions perform better for all programs except Eqntott and Wc; for
these two programs the performance is about equal.

Table 6.14 shows the effects of misprediction penalty for an 8-issue processor. Since a wider-
issue processor generally achieves higher instruction completion rates, the more-or-less fixed overhead
caused by mispredictions will become a relatively larger part of the execution time of a program, al-
lowing guarding to achieve better speedups. In Table 6.14 we see that speedups are generally higher.
The average speedup for a 2-cycle misprediction penalty is 14.5% for full guarding, 9.6% for condi-
tional moves, and 16.7% for GUARD instructions. For a 3-cycle misprediction penalty is the average
speedups rise to 16.1, 11, and 18.4%, and for an 8-cycle misprediction penalty the speedups are 34,
28.4 and 37%.

Table 6.15 lists the execution time speedups for our benchmarks for a 4-issue processor using a
correlation-based predictor. Since the correlation-based predictor achieves better prediction accuracies
for the original programs, the impact of a larger misprediction penalty will be more even for the original
and the guarded versions of the program, and the change in the speedups will be smaller. For a 2-cycle
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Misprediction Penalty
Program 2 cycles 3 cycles 8 cycles

Guard Cmov GUARD Guard Cmov GUARD Guard Cmov GUARD

Compress 5.4 2.5 6.6 5.9 3.0 7.1 15.2 12.1 16.5
Elvis 8.3 5.6 12.6 8.4 5.6 12.7 14.5 11.5 19.0
Eqntott 31.0 28.5 31.5 39.3 35.9 39.8 84.2 79.8 85.0
Espresso 10.8 5.9 12.7 11.2 5.9 13.1 23.3 17.4 25.4
Gcc 8.0 2.5 10.5 8.7 2.7 11.2 31.1 23.8 34.0
Sc 6.5 3.1 10.7 6.6 3.1 10.7 17.0 13.1 21.5
Wc 51.5 33.5 51.5 60.4 41.3 60.4 105.1 80.7 105.1
Xlisp 8.1 4.6 9.6 8.4 4.7 9.9 31.6 27.1 33.4
Average 14.5 9.6 16.7 16.1 11.0 18.4 34.2 28.4 36.9

Table 6.14: Effect of misprediction penalty on the guarding speedups for an 8-issue
processor using a counter-based branch predictor.

misprediction penalty, full guarding gives speedups of 8.5% compared with the 4.3% and 11.1% for
conditional moves and GUARD instructions respectively. For a 3-cycle misprediction penalty, the cor-
responding speedups are 9.5%, 5.1% and 12.1% and for an 8-cycle misprediction penalty the speedups
are 22, 17 and 25%.

The trends are similar for an 8-issue processor using correlation-based predictor. Table 6.16
lists the execution time speedups for our benchmark programs. The average speedups for a 2-cycle
misprediction penalty are 9.9, 4.8, and 12.1% for full guarding, conditional moves and GUARD in-
structions respectively. For a 3-cycle misprediction penalty, the average speedups are 10.9, 5.5, and
13.1% and for an 8-cycle misprediction penalty the speedups are about 24, 18 and 26%.

6.4 Evaluation of guarding on an out-of-order execution model

Guarding is usually used and studied in the context of an in-order issue processor model in which the
conditions are always available when guarded instructions are about to be executed. An out-of-order
processor runs ahead of the execution of instructions, buffering them in some local storage (a reorder
buffer, register update unit, or reservation stations), until their operands are ready. Instructions are ex-
ecuted when they become ready, achieving a dynamic instruction schedule, reducing the importance of
a good static instruction schedule, and therefore reducing the importance of guarding. In this section
we evaluate the performance of guarding using an realistic and cost-effective out-of-order processor
configuration. Our processor can issue up to four instructions per cycle and uses a 32-entry RUU and
a 16-entry load/store queue which buffers stores and disambiguates the memory access addresses. We
chose this configuration because it is powerful but still effective. Given that our IPCs are all much less
than four instructions per cycle, an 8-issue out-of-order processor would have been an overkill. Also,
the introduction of a correlation-based (or some other configuration of 2-level adaptive predictor) are
a cost-effective way to improve the processors performance. Here we use a correlation-based branch
predictor and a misprediction penalty of 3 cycles.
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Misprediction Penalty
Program 2 cycles 3 cycles 8 cycles

Guard Cmov GUARD Guard Cmov GUARD Guard Cmov GUARD

Compress 3.5 1.7 6.0 4.0 2.1 6.5 12.2 10.1 14.8
Elvis 8.5 4.3 11.8 8.7 4.3 11.9 13.3 8.8 16.7
Eqntott 13.3 7.0 13.4 16.2 9.3 16.4 33.1 25.2 33.3
Espresso 5.4 2.2 9.6 5.8 2.3 9.9 12.5 8.8 16.9
Gcc 6.2 3.4 9.5 7.1 3.6 10.4 28.4 24.1 32.3
Sc 4.0 1.9 7.0 4.1 1.9 7.1 13.8 11.4 17.0
Wc 25.5 12.1 25.5 28.8 15.1 28.8 45.6 30.0 45.6
Xlisp 4.8 2.9 8.4 5.4 3.3 9.0 24.3 21.9 28.5
Average 8.5 4.3 11.1 9.5 5.1 12.1 21.9 17.0 24.8

Table 6.15: Effect of misprediction penalty on the guarding speedups for a 4-issue
processor using a correlation-based branch predictor.

Misprediction Penalty
Program 2 cycles 3 cycles 8 cycles

Guard Cmov GUARD Guard Cmov GUARD Guard Cmov GUARD

Compress 4.7 1.6 6.4 5.2 2.0 6.9 13.5 10.1 15.3
Elvis 8.2 4.8 12.7 8.4 4.8 12.8 13.0 9.3 17.7
Eqntott 11.9 6.9 11.9 14.8 9.2 14.8 31.9 25.4 31.8
Espresso 9.2 3.1 10.0 9.5 3.1 10.3 16.6 9.7 17.4
Gcc 6.7 2.9 10.5 7.7 3.1 11.4 29.7 24.2 34.2
Sc 6.2 3.3 9.8 6.3 3.2 9.8 16.2 12.9 20.1
Wc 29.2 13.7 29.2 32.9 17.0 32.9 51.9 33.8 52.0
Xlisp 6.4 2.8 8.7 7.0 3.3 9.3 26.5 22.1 29.2
Average 9.9 4.8 12.1 10.9 5.5 13.1 23.8 17.8 26.2

Table 6.16: Effect of misprediction penalty on the guarding speedups for a 8-issue
processor using a correlation-based branch predictor.
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Program
Original IPC Speedup (%)
Cycles Orig. Guard Cmov GUARD Guard Cmov GUARD

Compress 55,112 1.49 1.57 1.46 1.62 5.4 -1.7 8.3
Elvis 7,931 2.33 2.49 2.40 2.52 6.3 2.8 7.6
Eqntott 632,239 1.84 2.01 1.97 2.03 8.2 6.5 9.3
Espresso 301,673 1.73 1.99 1.85 2.05 13.2 6.6 15.7
Gcc 44,276 1.62 1.67 1.64 1.68 2.7 1.1 3.5
Sc 235,269 1.71 1.82 1.68 1.84 6.0 -1.6 7.0
Wc 862 2.52 2.68 2.63 2.69 5.7 3.9 6.1
Xlisp 140,451 1.63 1.85 1.71 1.89 11.9 4.6 14.1
Total/Average 1,417,813 1.80 1.95 1.85 1.98 7.3 2.7 8.8

Table 6.17: Execution time and IPCs for the original and guarded programs and on
a 4-issue, out-of-order issue processor.

Table 6.17 shows the execution time for the original program and the speedups for full guarding,
conditional moves and GUARD instructions, for this processor. In this table we see that the dynamic
scheduling ability of the processor eliminates much of the potential of guarding. A surprising result
is that for Espresso and Xlisp, the speedups in the out-of-order issue processor are actually larger than
the corresponding speedups on an in-order issue processor for all types of guarding. The reason for
this behavior for Espresso is that our scheduler had exhausted all the registers and could not statically
rename many of the registers in the guarded regions. The register renaming of the out-of-order issue
eliminated the false dependencies in these guarded regions allowing the guarded code to show larger
speedup than in the in-order issue processor. A similar effect takes place for Xlisp; due to frequent the
function calls, the few registers are used frequently; dynamic register renaming eliminates all the false
dependencies, allowing for better speedups.

For full guarding, the speedup for Eqntott is reduced by about 40% by the out-of-order abilities
of the processor showing only an 8.2% speedup. The most impressive change occurs for Wc, for which
the speedup for full guarding dropped from 25% to 5.7%. Overall, the average speedups using full
guarding is 7.3%.

The impact of out-of-order execution on the performance of conditional moves is even smaller,
due to the increased dependence paths through the code. The longer dependence paths result in a small
slow-down instead of a speed-up for Compress and Sc. The average speedup using conditional moves
drops to an average of 2.7%.

GUARD instructions also suffer reduced speedups out-of-order issuing ability of the processor.
with an average speedup of about 8.8%; the minimum speedup is 3.5% for Gcc.

6.4.1 Impact of limited size reference counters

One issue regarding the out-of-order execution of GUARD instructions is the type and extent of hard-
ware support for the out-of-order execution of GUARD instructions. As described in section 4.5, an
out-of-order processor has to track the guard masks of all the outstanding GUARD instructions, and
should not issue any of the instructions that are marked in these masks until the GUARD instruction is
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Figure 6.1: Dynamic cumulative distribution of GUARD reference counts for
guarded instructions. The X-axis is the reference count and the Y-axis is the ratio
of guarded instructions with at most that reference count.

executed. Given limited resources (either a limited size Guard Mask Buffer or a reference counter with
fixed counting capacity), the processor must stall when these resources are exhausted. First we address
the case where a reference count is attached to each RUU entry.

Figure 6.1 plots the distribution of reference counts for the guarded instructions in the program.
To generate this plot, we computed the static GUARD reference count for each instruction in the pro-
gram, i.e., for each instruction we counted how many GUARD instructions have it marked in their guard
mask; we then incremented the corresponding reference-count bin by the execution frequency of the
instruction. Note, that this scenario corresponds to the worst case, where all the GUARD instructions
for a particular instruction are outstanding. The plot in Figure 6.1 shows that the GUARD reference
count did not exceed 7 for 99% of all the guarded instructions. Therefore a 3-bit counter per instruc-
tion would be sufficient to allow the processor to continue issuing instructions most of the time, even
with the pessimistic assumption that all GUARD instructions are outstanding. In reality however, the
processor will have time to execute some of these GUARD instructions, and the run-time maximum
reference-count values will be smaller. Here we should point out that since an overflow in a reference
count will cause the processor to stall issuing all other instructions, it is important to design for the
worst case rather than for the average. For example, a 2-bit reference counter will perform adequately
for most benchmarks, but may overflow for up to 10% of the guarded instructions in Gcc and Sc.

6.4.2 Impact of a limited size Guard Mask Buffer

Next, we consider the effects of the size of the Guard Mask Buffer (GMB) on the performance of an out-
of-order issue processor. To evaluate this impact, we first explore the upper bound using conservative
assumptions, and then we perform simulation of five GMB sizes and measure the actual impact on the
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Figure 6.2: Cumulative distribution of time versus Guard Mask Buffer occupancy.

execution time of our benchmarks.
To get an upper bound on the impact of the GMB size on the execution time, we profiled the

GMB occupancy during the execution of a program, assuming a perfect instruction fetch mechanism
(which would keep all the 32 entries in the RUU filled with instructions), and an in-order completion of
all instructions. This scenario corresponds to the worst case, where all the GUARD instructions in the
processor are outstanding. Figure 6.2 plots the cumulative fraction of the execution time versus the size
of GUARD instructions in the system. The left graph corresponds to an instructions set supporting only
the GUARDTRUE and GUARDFALSE instructions, while the right plot corresponds to an instructions
set supporting the GUARDBOTH instruction as well. In both graphs we see that the majority of the
cycles are spent with less than 8 GUARD instructions outstanding. Comparing the two graphs we see
that the introduction of the GUARDBOTH instruction affects only a few programs noticeably, which is
expected considering the relatively small difference between the GUARD overheads with and without
the GUARDBOTH instruction in Table 5.16, Chapter 5.

The plots in Figure 6.2 are pessimistic for two reasons: (i) the RUU of a real processor will
not be full all the time, and (ii) some of the GUARD instructions in the RUU will find their operand
available, and will be executed, releasing the corresponding entry in the GMB. To measure the real
impact of the GMB size on the performance, we simulated a GMB of 4, 6, 8, 12 and 16 entries. Ta-
ble 6.18 lists the corresponding slow-downs as a percentage of the total execution time of the program.
For an instruction set supporting GUARDTRUE and GUARDFALSE instructions only, we see that a 4
entry buffer is not large enough to hold the number of outstanding GUARD masks, and that the GMB
overflows have a significant impact on the performance of most benchmarks. A 6-entry GMB is large
enough to handle the outstanding GUARD instructions, showing small slow-downs of less than 2% for
most of our benchmarks; however, the slowdown for Gcc is 7%, which would negate the 3.5% speedup
shown in Table 6.17. The 8 entry GMB shows less than 0.7% slow-downs for most programs, but still
shows a 3.8% slowdown for Gcc. A 12 entry GMB gives almost never overflows for most programs
and shows only a 1.5% slowdown for Gcc, for a net speedup of about 2%. Increasing the GMB size to
16 entries reduces the slowdown for Gcc to 0.3%.

A GUARDBOTH instruction can have a significant impact on the performance, but only for the
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Program
GUARD TRUE/FALSE GUARD TRUE/FALSE/BOTH

4 6 8 12 16 4 6 8 12 16

Compress 0.41 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00
Elvis 23.84 1.93 0.74 0.00 0.00 23.56 1.36 0.32 0.00 0.00
Eqntott 39.03 0.24 0.00 0.00 0.00 34.48 0.04 0.00 0.00 0.00
Espresso 7.33 1.26 0.27 0.06 0.00 6.84 1.18 0.24 0.02 0.00
Gcc 16.65 7.24 3.87 1.49 0.03 13.96 6.17 2.99 0.71 0.02
Sc 9.46 1.39 0.27 0.03 0.00 9.14 1.17 0.10 0.00 0.00
Wc 53.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Xlisp 2.80 0.89 0.35 0.04 0.00 1.79 0.58 0.25 0.04 0.00

Table 6.18: Impact of the Guard Mask Buffer size on the execution time (percent
slow-down) for Guard Mask Buffers of 4, 6, 8, 12 and 16 entries, and for instruc-
tion sets supporting the GUARDTRUE and GUARDFALSE instructions only, or the
GUARDBOTH instruction as well.

smaller GMBs. For Wc for example, the slowdown for a 4 entry GMB drops from 53% to 0.0% when
the GUARDBOTH instruction is introduced, since the number of GUARD instructions is reduced, re-
quiring fewer GMB entries. However, as soon as the buffer becomes sufficiently large, the difference
diminishes. For a GMB with 12 entries, the introduction of GUARDBOTH instructions has a significant
impact only on Gcc, reducing the slowdown from 1.5% to 0.7%.

The size of the Guard Mask Buffer is related to the number of RUU entries; if a processor im-
plements a larger RUU, the number of the GMB entries should be increased accordingly, to ensure that
the GMB will overflow only infrequently (if at all) and allow the processor to keep issuing instructions.
The interpretation of the results in Table 6.18 should be that the GMB should have between one fourth
and one half of the total entries of the RUU to minimize the issue stalls.

6.5 Summary

In this chapter we examined the impact of guarding on the execution time of our benchmarks. For our
evaluation context, we found that this impact varies widely with the benchmark. Two of our bench-
marks, namely Eqntott and Wc, have a very simple control and computation structure. All forms of
guarding (full, conditional moves or GUARD instructions) were able if-convert these two programs ef-
fectively, and show significant improvements in the execution time. For the rest of the programs how-
ever, the impact of guarding is smaller.

For an 8-issue in-order processor using counter-based branch and a misprediction penalty of
one cycle, full guarding achieves an average speedup of 11%. For the same configuration, conditional
moves achieve an average speedup of 7.1%, and GUARD instructions achieve a speedup of 14.8%. A
misprediction penalty of three cycles boosts these speedups to 16%, 11% and 18.4% respectively, while
a misprediction penalty of eight brings them to 34, 28 and 37%.

On first glance, conditional moves appear to be a viable way to achieve most of the benefits of
guarding. However, if we exclude Eqntott and Wc, the average speedup of conditional moves drops to
less than 4%, even for a misprediction penalty of 3 cycles.
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A better branch predictor reduces the potential of guarding. When we used the correlation based
predictor, the speedups for full guarding, conditional moves and GUARD instructions dropped to 7.8%,
3.5 and about 11% respectively. A misprediction penalty of three cycles restores some of the potential,
increasing these speedups to 10%, 5.5% and 13% respectively. A misprediction penalty of eight cycles
increases the speedups to 23, 18, and 26%.

Finally, an out-of-order execution processor limits the potential of guarding. For a 4-issue pro-
cessor the average speedups for full guarding, conditional moves and GUARD instructions are 7.3, 2.7
and 8.8% respectively, while for Compress and Sc conditional moves gave negative speedups (i.e.,
slowdown). However, the better out-of-order speedup of GUARD instructions come with a cost: to
allow the out-of-order execution of GUARD instructions, the processor has to either implement a 3-bit
reference count per RUU entry. If a processor implements a Guard Mask Buffer, it should have about
one third of the number of RUU entries in order to keep the amount of issue stalls small.
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Chapter 7
Conclusions

The commercial acceptance of guarded execution largely depends both on its incorporation in the ex-
isting instruction sets, and on its potential to improve the execution time of general program workloads.
In this thesis we have defined the GUARD instructions, that allow the incremental extension of existing
instruction sets to include guarded execution. The main idea of GUARD instructions is to use a forward
specification scheme, where the processor is informed about the status of instructions later in the dy-
namic instruction stream. Guarding using GUARD instructions performs better than ordinary guarding
using explicit operands for two reasons: (i) GUARD instructions allow more efficient guard condition
evaluation, reducing the instruction count in many cases and (ii) they allow the processor to squash
computation before it even enters in the pipeline.

In addition, GUARD instructions do not require the additional register file read port that ordinary
guarding requires; the rest of the hardware required to implement GUARD instructions in an in-order
processor is simple: a shift-register for the scalar mask register, and a simple 3-level logic circuit to
evaluate the condition and update the scalar mask register. The implementation of GUARD instructions
in an out-of-order issue processor requires the addition of either a Scalar Mask Buffer, or of a reference
count per RUU entry, to keep track of the dependencies through the guard masks.

We evaluated the performance of GUARD and we compared it to the performance of full guard-
ing and that of using conditional move instructions to synthesize guarded execution. Our evaluation
was performed in what we believe is an every-day environment; in particular, we did not assume that
profiling information was available. We found that for in-order processor using counter-based branch
prediction, the execution time can be reduced by up to 16% for full guarding, and 11% for conditional
moves; a better predictor reduced these speedups to 11% and 5.5%, respectively. GUARD instructions
were able to surpass the performance of full guarding showing a improvement of 18.4% for a simple
counter based predictor and 13% for the correlation predictor. We also found that out-of-order exe-
cution reduced the guarding potential to 7.3% for full guarding and 2.7% conditional moves, while
GUARD instructions sustained a speedup of 8.8%.

Our results indicate that even in a conservative environment, guarded execution can improve
the performance of ordinary, integer intensive programs; if the programs have a regular structure, the
potential of guarded execution increases dramatically.

However, guarding comes at some implementation cost. For in-order processors, the complex-
ity is concentrated in the register file read ports, and the forwarding control logic and paths. For an
out-of-order processor, the RUU or reservation station entries have to be wider. The implementation
of GUARD instructions in an out-of-order processor also introduce additional complexity, since the pro-
cessor should include a Guard Mask Buffer and a Scalar Mask Rename Buffer to allow the issue mech-
anism to issue GUARD and branch instructions without stalling. In this thesis we merely outlined the
hardware cost in a high level pipeline design. To determine whether the hardware cost of guarding is
justified by the performance improvement is provides, one should perform a more detailed cost analy-
sis.
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7.1 Comparison with the IMPACT work

The results presented in this thesis show that guarding does improve the performance but by a relatively
small amount. The IMPACT group publications show guarding to provide speedups over a base case
in the range of 3 to 8 [HMG

�

95]. Much of the difference can be attributed to different assumptions
made in our and their work about the base case, the execution model and the compilation environment.

First, our processor models are radically different: in this work we used processors that support
speculative execution of instructions; it is unclear whether IMPACT’s base case allows speculation. We
assumed that the memory is multi-ported by replication, which limits the number of stores that can be
executed per cycle to just one; the IMPACT work on the other hand assumes a memory system that
allows any mix of ' (where ' is the issue width of the processor) loads and stores (presumable inde-
pendent) can be executed per cycle. The IMPACT work also uses a larger (sometimes infinite) number
of registers. In addition, the IMPACT compiler uses profile information to guide the of the control
flow graph transformations described in Chapter 3. The profiling information allows the compiler to
determine the best transformation to use in each case. However, it is unclear how these transformations
would perform in the absence of the profiling information.

Another reason for the difference in performance is that the IMPACT work assumes a very
simple branch handling mechanism. They use a counter based predictor and they usually allow only a
single branch to be executed per cycle. Predicting and traversing multiple branches per cycle is indeed
complicated, but if the branches are predicted one at a time, executing more than one branch per cycle
(that is, verifying the corresponding predictions) is not very hard. Other research in VLIW embraces
the execution of multiple branches per cycle [KSR94, SK95]. For example, the PlayDoh instruction
set allows the execution of multiple branches per cycle, under the constraint that the compiler must
guarantee that at most one of them can be taken. When the execution of multiple branches per cycle
is coupled with an accurate dynamic branch predictor, the performance of the base case will improve;
the performance of the guarded code may also improve but by a smaller amount, since the base case
is much more branch limited than the guarded case. Thus, a better branch handling mechanism will
reduce the benefits of guarding.

However, the biggest difference can be attributed to the execution model. The IMPACT work
assumes a VLIW type architecture, where a good compiler schedule is crucial to the performance. To
achieve a good schedule, the IMPACT compiler uses software pipelining, unrolling and other profile-
based transformations of the control flow graph of the programs. Our in-order processor model is simi-
lar but uses speculative execution and out-of-order completion of instructions to overcome some of the
scheduling limitations. Also, as our results indicate, an out-of-order processor with a reasonable num-
ber of RUU (or reservation station) entries, coupled with a fairly accurate (2-level adaptive) dynamic
branch predictor will dynamically unwind the code and expose the instruction level parallelism to the
execution engine. A good run-time schedule will improve the performance of the original program,
depleting in this way the performance potential of guarding.

7.2 Future work

Although we have addressed some of the key properties of GUARD instructions, there are several ways
the work in this thesis can be extended. First, we used a scheduler to do the guarding region selection, if-
conversion and scheduling, and we used the same guarding regions both for full guarding and GUARD

instructions. An integrated compiler has the potential to improve the quality of the generated code. For
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GUARD instructions, the compiler could customize the guarding region selection to explore the implicit
AND-ing property of the scalar mask; it could also attempt to schedule the GUARD instructions, so as
to fit all the guarded instructions in the guard mask of a single GUARD instruction, reducing the number
of the required GUARDUPPER instructions.

Another feature of GUARD instructions that was not exploited in this work, is the early-out
feature. For our guarding regions we found that early-out is not very frequent, because the guarding
distances are relatively short. If the code structure is regular, the compiler can use aggressive unrolling,
which would increase the guarding distances, and rely on the early squashing abilities of the processor
to filter out the squashed computation.

The out-of-order execution of GUARD instructions requires hardware to detects when all the
guard dependencies of each instruction have been resolved. Since the guard dependencies are con-
verted control dependencies, the same hardware can be extended to allow the on-the-fly conversion of
code with branches into branchless code inside the RUU. Furthermore, the dependency resolution hard-
ware opens up the possibility for speculative execution of guarded instructions, in which the guarded
instruction can be speculative executed immediately, and verified later, when the guard condition be-
comes available. This approach would be similar to the Predicate State Buffering [ANHN95], but it
would be a micro-architecture feature, rather than being explicit in the instruction set architecture as in
the case of Predicate State Buffering.
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