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Abstract

Traditionally, improvementsin processormicroarchitecturehave comefrom observingpro-

gramcharacteristicsanddevisingmechanismsto exploit them.This thesispresentsanew phe-

nomenonexhibited by programsand proposesa novel microarchitecturaltechniquefor

exploiting it to improve processorperformance.Thephenomenon,calleddynamic instruction

repetition, is thatinstructionsin programsoftenexecuterepeatedlywith thesameinputvalues

andproducethesameresultsover andover again.Thenew microarchitecturaltechniquepro-

posedin this thesisexploits this phenomenonto reducethework thatneedsto bedonein exe-

cuting programs.This technique,called dynamic instruction reuse, detectsthat instructions

areproducingthesameresultsrepeatedly, andinsteadof re-executingthem,reusestheresults

from the instructions’previousexecutions.This techniqueimprovesperformancebecauseof

severalreasons,oneof which is its ability to collapsedatadependencesby completingdepen-

dent instructions simultaneously.

This thesis makes two main contributions:

1. It studiesthephenomenonof instructionrepetition,presentingnumerouscharacterization

resultsandperformingdetailedanalysesto betterunderstandthecausesof this phenome-

non.

2. It introducesandstudiestheconceptof dynamicinstructionreuse.It presentsfour instruc-

tion reuseschemes.Theseschemesreuseresultsof instructionsfrom a hardware table

calledtheReuse Buffer (RB), wheretheresultsarestoredpreviously. Thevalidity of these
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old resultsis establishedby checkingwhetherthecurrentoperandvaluesarethesameas

thoseusedto calculatethe old results.The thesisalsostudiesthe sizeandassociativity

requirementsfor the storageneededfor saving instructionresults,andpresentsfour new

policiesfor managingthisstorageefficiently. Finally, this thesisstudiestheinteractionsof

instruction reuse with other key microarchitectural features in processors.

The experimentalresultsshow that thereis abundantinstructionrepetitionin programs,

andthatsignificantpercentageof this repetitioncanbereused.Althoughtheresultantperfor-

mance improvements are not commensurately high, they are still significant in many cases.
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Chapter 1

Introduction

Over the past decade, microprocessors have become immensely powerful. This growth in

performance has been made possible not only by improvements in semiconductor technology

(resulting in higher clock frequencies) but also by advancements in the processor microarchi-

tecture (resulting in more work performed per clock cycle). With computers becoming ubiqui-

tous and the way increasingly complex tasks being entrusted upon them, the need for faster

processors is likely to grow unabated in the near future. To satisfy this requirement, it is

important not only to improve the semiconductor technology, but also to innovate in the field

of microarchitecture.

Microarchitectural innovations are often inspired by commonly observed behavior of pro-

grams. Designers have frequently introduced new microarchitectural features for exploiting

patterns in program behavior to improve processor performance. Some examples of common-

place microarchitectural features in modern processors that exploit program behavior are

caches, branch prediction, and the out-of-order execution paradigm. These features exploit

different traits in programs and, hence, improve processor performance in different ways.

Caches exploit locality of memory references, a property exhibited by most programs, to

reduce memory access time. Branch prediction exploits regularity in branching behavior,
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another property exhibited by programs, to streamline instruction-fetch. The out-of-order exe-

cution paradigm exploits the presence of significant amounts of instructions-level parallelism

in programs to hide the latency of long-running operations. Thus, as shown by these example,

the knowledge of program characteristics is central to improving processor microarchitecture.

To further improve processor microarchitecture, we need to seek out new program characteris-

tics and devise mechanisms to exploit them.

In this thesis, we present a new phenomenon exhibited by programs and propose a novel

microarchitectural technique for exploiting this phenomenon to improve processor perfor-

mance. The phenomenon is that in programs, instructions often execute repeatedly with the

same inputs and, therefore, produce the same results over and over again. That is, if an instruc-

tion executes with operand values v1 and v2 and produces an output v3, then during program

execution this instruction may execute with v1 and v2 as inputs and produce v3 as output

many times. We call this phenomenon dynamic instruction repetition, or simply, instruction

repetition.

The microarchitectural technique that we propose exploits this phenomenon to reduce the

amount of work that needs to be done for executing a program. This technique detects that

instructions are producing the same results repeatedly, and instead of re-executing them,

reuses the results from their previous executions. The repetition is detected by ascertaining

that the current operand values of the instructions are the same as those used to compute the

previous results. We call this technique dynamic instruction reuse, or simply, instruction

reuse.

What are the benefits of reusing instructions? There are several. First, a reused instruction

need not be executed. Hence, the pipeline resources (e.g., issue window entry, functional
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units,datacacheports)thatwould have beenusedfor its executioncannow beusedfor pro-

cessingotherwaiting instructions.Second,whenan instructionis reused,its resultsbecome

known earlierthanthey wouldhave throughregularexecution.Thispermitsotherinstructions

thataredependenton theseresultsto executesooner. Third, aswe shall illustrateshortly, this

mechanismallows useful work to be salvagedfrom the work that is discardeddue to mis-

speculationin processors.This helpsalleviate the penaltyof suchmis-speculations.Fourth,

reusecollapsesdata dependences:dependentinstructions,which would normally execute

sequentially, canbe reusedin parallel.Hence,reusehasthe potentialto breakthe dataflow

limits on the execution times of instructions.

In this thesis,we studythephenomenonof instructionrepetitionanddevelopthe instruc-

tion reusetechniquefor exploiting it. We presentanoverview of thecontributionsof this the-

sis in Section1.2.However, beforethat,to developa betterfeel for instructionrepetition,we

illustrate why this phenomenonoccurs,in the next section.In Section1.3, we describethe

relatedwork, andfinally, in Section1.4,we concludethis chapterby presentingtheoutlineof

the rest of the thesis.

1.1  Scenarios for Instruction Repetition and Reuse

Instructionsget repeatedbecauseof two main reasons:(i) speculative execution,and(ii) the

natureof the programitself. We presenttwo scenariosto illustrate thesereasonsbelow. In

eachexample,we alsomentionhow exploiting that form of repetitionmay improve perfor-

mance.
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1.1.1  Scenario 1: Squash Repetition and Reuse

Squash Repetition: In the first scenario, the instructions are repeated because of the specula-

tive execution of programs. When executing instructions speculatively, processors discard

executed instructions on mis-speculations. These discarded instructions are sometimes exe-

cuted again, resulting in repetition. For example, consider the scenario shown in Figure 1.1.

When a branch instruction is encountered, its outcome is predicted, and instructions from the

predicted basic block (block A) are executed speculatively. In addition to executing instruc-

tions from block A, the processor may execute instructions from another block (C), which is

control independent of the branch. If the branch were mispredicted, instructions executed

from both blocks A and C would be discarded, and execution would resume at block B, from

where it would proceed to block C. Instructions in block C that were discarded, but whose

operands are not affected by instructions in either blocks A or B, would end up being

repeated. Since this repetition is engendered by squashes, we term it as squash repetition.
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instruction
stream

branch

(C)

(A)
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predicted

Figure 1.1 Scenario where execution on the (mis)predicted path converges with the execution
on the correct path. In such cases certain instructions from part (C) need not be re-executed
when encountered on the correct path.



5

Squash Reuse:In theabove example,if resultsof the instructionsin block C werebuffered,

thenthey couldbereusedafterdetectingthattheir operandsarethesameasat thetime of the

first execution. Since this reuse is enabled by squash repetition, we call itsquash reuse.

Benefits:This form of reusealleviatesthemis-speculationpenalty, but to understandwhy, we

needto seewhatconstitutesthemis-speculationpenalty. Themis-speculationpenaltyconsists

of two components:(i) thecyclesthatarewastedexecutinginstructionon thewrongpath,and

(ii) the cycles that arespentfilling up the pipelineafter the squash.Squashreusealleviates

boththesecomponentsasfollows.First,sinceit reuseswork thatwasperformedonthewrong

path,not all cyclesusedin executingthediscardedinstructionsarewasted.Second,whenthe

reusetakesplacejust after thesquash,it hidesthepipeline-fill latency for thereusedinstruc-

tions, alleviating the second component.

1.1.2  Scenario 2: General Repetition and Reuse

General Repetition1: In this scenario,repetitionoccursbecauseof the very natureof pro-

grams— i.e., becauseof the way programsarewritten. To understandthis statement,let us

considertwo practicespervasively employed while writing programsandseehow they may

generateinstructionrepetition.First, we write programsto be generic in nature— i.e., we

don’t write themfor fixedinput values;rather, wewrite themsothatthey arecapableof oper-

atingon a varietyof input values.But, if duringexecution,theprogramencountersthesame

1. An anecdote:Our initial purposefor coming up with the instructionreusetechniquewas to reducethe
branchmis-predictionpenalty by recovering useful work from squashes.The fact that instructionsare
repeatedin generalwasdiscovered,quiteserendipitously, while we werestudyingthereusetechniquesfor
theabove purpose.In fact,afterdiscovering thatmany non-squashedinstructionsalsoget repeated,I actu-
ally spentaconsiderableamountof timetrying to filter out these“unwarranted”repetitionto stopthemfrom
clouding the squash reuse results!
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inputsvaluesrepeatedly(e.g.,thesamekeywordsin gcc or thesamelettersin compress) then

it is likely thattheinstructionswithin theprogramwill alsoexecutewith thesameinputvalues

repeatedly. This will result in repetitionof instructions.Second,we expresscomputationin

programsin a concise manner. That is, if we have to performan operationon an array, we

don’t write a separatestatementfor eachelementof the array; instead,we expressthe task

usinga loop, whereeachiterationperformstheoperationon a single(or a small number)of

arrayelements.To allow computationto beexpressedin this manner, we needto includethe

loop-controlinstructions(instructionsthat will “unroll” the computationdynamically)with

each loop. Theseloop-control instructionsmay be repeated(along with other dependent

instructions)whenthe loop is invoked repeatedly. (This repetitionmay occureven whenthe

loop body may be performing a totally different computation).

Weillustratetheabovesituationwith anexampleshown in Figure1.2.In thisexample,the

function func searchesfor a value x in a list of a particular size. The function

main_func callsfunc severaltimes,searchingfor a differentelementin thesamelist with

eachcall. Whenfunc is called,it iteratesthroughthelist, elementby element,searching

for thevalueuntil theendof thelist, andexits whenthevalueis found.Instructionscorre-

spondingto the loop in func areshown in Figure1.2(b).Figure1.2(d) shows the dynamic

instancesof theseinstructionswhich aregeneratedby thefirst call to func. In eachiteration

of the loop, instruction2 is dependentupon the size parameter, instructions3 and 4 are

dependentuponthelist parameter, instruction5 is dependentuponthelist aswell asthe

valuebeingsearchedfor, andinstruction6 is dependenton theinductionvariable.If func is

calledagain (Figure1.2(e))on thesamelist (andsamesize), but with a differentsearch



7

int func(x, list, size) {

int i;

for(i=0; i<size; i++) {

if(x==list[i]) return i;

}

return -1;

}

1 i = 0

2 if(i >= size) jump out

3 p = list + i

4 val = Memory[p]

5 if(x == val) jump found

6 i++

7 jump 2

(a) (b)

main_func(a, b, c) {

...

func(a, list, size);

...

func(b, list, size);

}
(c)

*1 i = 0

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

5 if(a == val) jump found

*6 i++

*7 jump 2

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

 5 if(a == val) jump found

*6 i++

...

*1 i = 0

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

5 if(b == val) jump found

*6 i++

*7 jump 2

*2 if(i >= size) jump out

*3 p = list + i

*4 val = Memory[p]

 5 if(b == val) jump found

*6 i++

...
(d) (e)

Figure 1.2 Example illustrating that often times instructions perform the samecomputation
over and over again. The dynamic instructions marked “*” would perform the same
computation for both the calls to functionfunc shown in the figure.
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key, then all the different dynamic instances of instructions 1-4 and 6 will produce the same

outcomes as they did the previous time the function was called.2 Only the dynamic instances

of instruction 5 produce results that might differ from the previous call to func. This repeti-

tion of the results of the dynamic instances of instructions 1-4 and 6 is directly attributable to

the fact that func was written to be a generic list search function, but in this particular case,

only one of its parameters changed between different calls to it. Even if func was called with

all its parameters being different for each call, the different dynamic instances of the instruc-

tion 6 (i=0, i=1, i=2, ...) in the second call to func would end up producing the same values

as they did in the first call to func, a consequence of using loops to express the desired com-

putation in a concise manner. (Actually, if the size parameter was also different, then only

min(size1,size2) dynamic instances of instruction 6 would produce the same values.).

Since, the form of repetition as exemplified above occurs because of the general nature of

programs, we call it general repetition.

General Reuse:In the above example, if we buffered the (size) dynamic instances of

instructions 1-4 and 6, we will be able to reuse them when they get repeated. This form of

reuse that is enabled by general repetition, we call general reuse.

Benefits:To see how the performance might benefit from general reuse, let us consider the

advantages of reusing instances of instructions 1-4 and 6 in the above example. First, the

dynamic instances of instructions 1-4 and 6 do not have to pass through all the different

phases of execution (ALU, result bus, register write, etc.), thereby reducing the demand for

processor resources. (In the above case, accesses to the data cache are also eliminated — these

2. a total of size dynamic instances of instructions 2-4 and 6
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endup becomingaccessesto thebuffer which holdspreviousinstructionresults.)Second,the

critical pathto carry out the total computationinvolved in func canbe cut down consider-

ably. Without dynamic instruction reuse, the critical path through the computation,as

expressedabove, would besize+3 steps,size stepsto generateall thedynamicinstances

for the inductionvariablei, plus3 stepsto executedinstructions3, 4, and5 of eachiteration

(which form a dependencechain). In otherwords, the heightof the dataflow graphfor the

above computationis size+3 steps.In thebestcase,thecritical path,i.e., theheightof the

dataflow graphthroughthecomputation,is reducedto only 1 stepwith instructionreuse.This

is becausethe outcomesof all the dynamicinstancesof instructions1-4 arealreadyknown,

andall thedynamicinstances,beingindependentof oneanother, couldall executeat thesame

time.Although,in practice,theavailablebuffer spacewouldplacea limit onhow muchof the

computationcanbe collapsed,the above examplegoesto show the potentialthat instruction

reuse has for breaking the dataflow limit “inherent” in programs.

1.2  Thesis Contributions

In this thesis,we make two main contributions:(i) we studythephenomenonof instruc-

tion repetition;and(ii) we introduceandstudytheconceptof dynamicinstructionreuse.Each

of these contributions are elaborated below.

1.2.1  Instruction repetition

We performanelaboratestudyof thephenomenonof instructionrepetition.Thepurpose

is to developa betterunderstandingof thephenomenon,so thatwe canexploit it effectively.
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The study consists of two parts. In the first part, we perform a thorough characterization of the

phenomenon. Here we answer questions such as what percentage of all dynamic instructions

get repeated, what percentage of all static instructions generate repeated instances, what frac-

tion of static and dynamic instructions account for most of the repetition, and so on.

Although the above characterization gives us various statistical facts about the phenome-

non, it does not provide us with much insight into its causes. In the second part of the study,

we perform an empirical analysis of the phenomenon to better understand what may be caus-

ing it. For this purpose, we categorize the instructions in programs based on the type of data

used (e.g., external input, internal data) and the type of work performed (e.g., address calcula-

tions, function prologue and epilogue), and then determine the amount of instruction repeti-

tion arising for each category. This breakdown gives us an idea about the primary sources of

repetition, and thereby, its causes.

We draw numerous observations from our results. Of these, two are especially interesting.

First, we observe that the phenomenon of instruction repetition is pervasive — more that 75%

of dynamic instructions are repeated for several benchmarks. Second, we see that for most

benchmarks, the majority of the repeated instructions use data that originate from within the

program itself rather than from external inputs. This observation suggests that the phenome-

non of instruction repetition may be more a property of the program itself than of input data.

1.2.2  Instruction Reuse

The second and the main contribution of this thesis is the concept of instruction reuse —

i.e., the idea that the previous work by instructions can be non-speculatively reused when they

perform the same work again. The bulk of this thesis is devoted to developing and understand-
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ing this concept. The work on instruction reuse can be divided into three categories: (i) devis-

ing and studying reuse schemes; (ii) studying the storage issues for instruction reuse; and (iii)

investigating the sensitivity of instruction reuse performance to other microarchitectural fea-

tures existent in processors. We elaborate next on each of these categories.

1.2.2.1   Instruction reuse schemes

We present four schemes for implementing instruction reuse. These schemes preserve

results of instructions (along with other information needed to establish their validity at a later

time) in a hardware table called the Reuse Buffer (RB). When an instruction is encountered

again, its results from RB are reused if they are still valid. The validity of the results is estab-

lished by checking whether the current operand values are same as those used to calculate the

results. The four schemes differ in the type of information they use to establish the sameness

of operands. The scheme Sv uses operand values; the scheme Sn uses operand names; and the

schemes Sv+d and Sn+d use the dependence between instructions, along with the operand val-

ues and operand names, respectively. The use of dependence information facilitates the reuse

of dependent chain of instructions.

We evaluate the concept of instruction reuse with extensive simulations. We present

results such as the number of instructions reused and the amount of performance gained by

reuse. We show reuse characteristics such as the reusability of different instruction types and

the contribution of different instruction types to total reuse. We also present a break down of

total reuse into general and squash reuse. Our results show that a significant percentage of

dynamic instructions in programs get reused, with more than 50% of dynamic instructions

getting reused in several cases, and that the performance improvement due to reuse is also sig-
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nificant for several benchmarks, being more than 15% in many cases.

1.2.2.2  Storage issues for instruction reuse

Oneimportantpartof theinstructionreusetechniqueis theRB, whichstorestheresultsof

instructions.To a largeextent,thenumberof instructionsthatcanbereuseddependson how

many valid resultsthe RB can hold. We conducta detailedstudy to betterunderstandthe

requirementsof this structure.This studyis divided into two parts.First, we characterizethe

RB with respectto its threemainparameters:size,associativity, andmanagementpolicies.We

presenthow the amountof instructionsreusedvaries with eachof theseparameters.We

presentthemaximumreuserates,obtainedusingamanagementpolicy similar to theBelady’s

optimalmanagementpolicy, for a rangeof RB sizesandassociativities.Thisoptimalnumbers

giveusanupperboundonthereuseratesfor differentRB sizesandassociativities— or, alter-

natively, tells us theminimumRB sizeandassociativity requiredto capturea certainamount

of reuse.

Thesecondpartof thisstudyis motivatedby theresultsof thefirst part,whichshow thata

significantgap exists betweenthe optimal andthe actualreuserates.This gap indicatesthat

thereis potential to improve the reuserate further by efficient managementof the RB. To

bridge this gap, we devise and study four managementpolicies for managingthe RB effi-

ciently. Two of thesepolices,FnReused andFnReady, attemptto improve RB utilization by

controllinginsertionsin RB — i.e., by insertingonly thelikely reusableinstructions.Thethird

policy, RR, attemptsto improve RB utilization by controlling eviction from RB — i.e., by

evicting thelikely unreusableinstructionsbeforethereusableones.Thefourth policy, a novel

managementpolicy called Farthest in Future (FiF), attemptsto improve RB utilization by



13

managingit along the lines of the Belady’s optimal managementpolicy. This policy deter-

mineshow far in thefutureeachinstructionis likely to getreused.TheRB is thenmanagedby

schedulinginstructionsin it using this distance-to-reuseinformation,giving priority to the

instructionsthathaveshorterdistancevalues.TheFiF is ageneralmanagementpolicy thatcan

alsobeusedfor managingotherformsof storage,e.g.,caches;however, in this thesis,weonly

usetheFiF for managingtheRB, leaving thetaskof evaluatingit for otherstoragestructures

as future work.

Thesuccessof thesenew policiesin improving RB utilization is mixed.For somebench-

marks,we seea significantimprovement(over the existing policies)in reuseratesusingthe

new policies;for othersthe improvementswith the new policiesaresmall (or slightly nega-

tive). Due to its generalnature,the FiF policy performsbetter than other policies in most

cases.However, policiesFnReadyandRR may be comparatively inexpensive to implement,

and, hence, the improvements in reuse rates caused by them may be noteworthy.

1.2.2.3  Sensitivity analysis

It is important to not only study how a new microarchitecturaltechniqueperformsby

itself, but alsoto understandhow it interactswith othermicroarchitecturalfeatures.To culti-

vatesuchanunderstandingfor instructionreuse,westudyits sensitivity to variouskey proces-

sor parameters,suchas(i) instructionwindow size,(ii) pipelinewidth, (iii) pipelinelength,

(iv) branchpredictionaccuracy, (v) memorylatency, and(vi) reuselatency. This studycon-

sistsof two parts.In thefirst part,wefirst presentadetailedqualitativediscussiononhow and

why instruction reusemay be sensitive to eachof the parameters.In the secondpart, we

presentseveralsimulationresultsto provideaquantitativemeasurementof theamountof sen-
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sitivity.

1.3  Related Work

The idea of not having to redo computation is not new — it has been used before in several

different contexts. A technique called memoization [29, 5, 8] has been used for functional and

logic programs [47, 30]. The outcome of a function (or a rule) is saved in a table. If the func-

tion or the rule is encountered again with the same parameters then the result from the table is

used instead of re-evaluation. Memoization is also used to reduce the running time of optimiz-

ing compilers, where the same data dependence test is carried out repeatedly.

The observation that the instructions produce the same results repeatedly and that this phe-

nomenon is widespread in ordinary programs has been made more recently by several

researchers. Lipasti et al. [27, 26] observed that many instructions produce the same values as

their last instance (or last few instances). They termed this recurrence of instruction results as

value locality. Similar results were also reported by Mendelson and Gabbay [18, 19]. The phe-

nomenon of instruction repetition — where not only the results but also the instruction oper-

ands are repeated — was first reported by us [43] (although the phenomenon was not termed

as such in that paper).

Several researchers have studied the repetition of values elaborately. The study that we

will present later in this thesis was first reported in [44]. Calder et al. [12] presented several

statistical results on this phenomenon. Sazeides and Smith [40] tracked the creation, propaga-

tion, and termination of value locality in to better understand its causes.

Many ways of exploiting this phenomenon have also been proposed. Several researchers
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[27, 26, 19, 39, 48] have suggested exploiting this phenomenon for predicting results of

instructions in advance and performing dependent computation in parallel. We propose

exploiting this phenomenon for reducing the amount of work that needs to be performed for

executing instructions using instruction reuse technique. This technique was first reported by

us in [43]. In the software arena, researchers have proposed exploiting this phenomenon using

dynamic software optimizations, such as function memoization and code specializations [6,

17, 21], and static compiler optimizations, such as partial redundancy elimination [32, 10, 9].

Several researchers have performed work [23, 36, 37, 34] that is related to our method of

exploitation. This prior work presents different techniques that obviate re-execution of repeat-

ing instructions by reusing their previous results. However, there are several important differ-

ences between our technique and theirs in terms of, for example, the ability to collapse the

chain of dependent instructions or the type of instructions targeted. However, these differences

and the mechanics of these techniques themselves can be best understood after we discuss the

details of our technique. Hence, we defer the discussion on this subject until the Related Work

section in Chapter 4.

Since our initial publication of the concept of instruction reuse [43], significant amount of

work has been done in this area. The reuse concept has been extended to basic-block level [24]

and trace-level [20]. Molina et al. [31] extended the instruction reuse technique to do compu-

tation reuse, i.e., reuse of work done by other static instructions. Chou et al. [14] studied a dif-

ferent microarchitecture technique for performing squash reuse. Connors and Hwu [16]

studied how compiler assistance can be used for reusing large regions of code. Reusability of

instructions in other application domains, such as multi-media, has also been studied [15].
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1.4  Thesis Outline

The rest of the thesis is laid out as follows. In Chapter 2, we describe our experimental frame-

work. In Chapter 3, we present an empirical analysis of the phenomenon of instruction repeti-

tion. In Chapter 4, we present the instruction reuse technique. In Chapter 5, we present a

characterization of the RB and study policies to manage it efficiently. In Chapter 6, we study

the sensitivity of instruction reuse to other microarchitectural features. Finally, in Chapter 7,

we summarize this thesis and provide directions for future work.
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Chapter 2

Experimental Framework

In this chapter, we describe the experimental framework used in this thesis. All our experi-

ments are performed using two processor simulators. We describe these simulators in the next

section and mention the types of experiments for which they are used. Then, in Section 2.2,

we describe the base processor microarchitecture that we simulate. Finally, in Section 2.3, we

describe our suite of benchmarks and present some of their execution characteristics.

2.1  Simulators

The experiments in this thesis can be divided broadly into two categories: (i) one that studies

program behavior and program structure for understanding instruction repetition (performed

in Chapter 3); and (ii) the other that evaluates and studies the technique of instruction reuse

(performed in Chapters 4 to 6). For each of these categories, we use a different type of simula-

tor: a functional simulator for the former and a timing simulator for the latter. Both of these

simulators are written in C, using several components from a preliminary version of the now

publicly available Simplescalar toolset [11]. These simulators are execution-driven and they

interpret an instruction-set derived from the MIPS-1 ISA [25]. We describe these simulators

and their purpose in greater detail next.
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2.1.1  Functional simulator

The functional simulator only models the architectural behavior of the processor at

instruction level — i.e., it simply reads and executes the instructions from the program binary

(without modelling any microarchitectural details or any execution times).

This simulator is used for several purposes in our studies. As mentioned before, we use it

in Chapter 3 for analyzing the dynamic behavior of programs — collecting various run-time

statistics and tracking different sources of dynamic repetition. We also use the functional sim-

ulator in several other ways, such as, verifying the timing simulator on-the-fly, implementing

perfect branch prediction, and skipping initial parts of the benchmarks during timing simula-

tions; we discuss more about these uses later in this chapter.

2.1.2  Timing simulator

The timing simulator is used to evaluate and study the Instruction Reuse (IR) technique.

This simulator models the microarchitectural behavior of an out-of-order, superscalar proces-

sor (shown in Figure 2.1) at the cycle-by-cycle level.

We developed the simulator for the out-of-order engine and the IR technique. These two

components were then integrated with many other supporting components from the Simples-

calar toolset — e.g., loader, memory-module, cache-module, branch predictors, and syscall-

module — to give us a complete simulator. The design of the out-of-order simulator was influ-

enced by the required support for IR. As we will see in Chapter 4, IR interacts with several

parts of the pipeline. So that we can simulate these interactions faithfully, we model the base

pipeline faithfully: instructions (and values) flow through the pipeline cycle-by-cycle and the

various micro-operations are performed in appropriate pipe-stages (we do not fake them).
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Also, to studysquashreuse,wemodelthespeculativeexecutionandmis-speculationrecovery

faithfully: theprocessoris allowedto executedown themispredictedpathuntil themispredic-

tion is detectedandthentherecovery is madeby squashingthepipeline,just asit wouldbein

a real pipeline.

For someexperimentsin Chapter6, werequireaperfectbranchpredictor— i.e., apredic-

tor that predictsall branchescorrectly. We implementthe perfectbranchpredictorusingthe

functionalsimulator. Thissimulatorexecutesinstructionsbeforethey enterthetiming simula-

tor, generatingtheir results— and, hence,the branchresults(when theseinstructionsare

branches)— in advance.We simulateperfectbranchpredictionby using the branchresult

generated ahead of time as predictions.

We alsousethefunctionalsimulatorto validatethetiming simulatoron-the-fly. Sincethe

timing simulatoris muchmorecomplex thanthefunctionalsimulator, it is moresusceptibleto

errors than the latter. Sometimes,theseerrorsmay causethe timing simulator to generate

incorrectresults.We detectsucherrorswith the help of the functionalsimulatorasfollows.

Werun thetiming andthefunctionalsimulatorsimultaneously. Every instructionthatemerges

from the timing simulatorpipeline is executedon the functional simulator, and the results

obtainedfrom thetiming simulatorarecomparedwith thoseobtainedfrom thefunctionalsim-

ulator. An error is detected when the two results are different.

The above validationonly verifies the functional correctnessof the timing simulator; it

doesnot verify its timing correctness.Verifying that the timing resultsarecorrectis a hard

problem,andthereis no straightforwardway of doingso.We take severalstepsto ensurethat

the timing results of our simulator are consistent:

• During the processof writing the simulator, we usedseveral self-constructedmicro-
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benchmarksfor testingthebehavior of thepipeline.Most of themicro-benchmarkswere

stringsof 5 to 10 instructions,which weregeneratedmanually, andinjectedinto thepipe-

line. This approachallowedus to verify that theflow of instructionsthroughthepipeline

wasaswould beexpectedfrom thedependencesbetweenthem.This washelpful in vali-

dating the various pipeline interactions.

• In our simulator, we have several independentcountersthatcountdifferenteventsduring

execution(e.g.,thenumberof instructionsexecuted,thenumberof instructionsquashed,

etc.).We placedseveralassertionsin our simulatorsto checkthevariousinvariancesthat

can be derived from these counters, such as,

Theseinvarianceswerechecked every cycle. They helpedlink the differentpartsof the

simulator, and ensuredthat changesmadein one part were consistentwith other parts.

Theseinvarianceswere especiallyuseful in catchinginconsistenciesintroduceddue to

fresh changes to the simulator.

• In our simulator, instructionsactuallyflow throughthe pipeline;we do not fake the pro-

cess.Sucha designhelpsuncover many timing (or interaction)errorssinceit reducesthe

numberof interactionerrorsthat are completelysilent (as may be the caseif we were

doing trace-basedsimulation). An error in pipeline interactionsoften causeswrong

instructionor datato flow throughthepipeline.Thiscaneithercausewrongexecutionthat

getsdetectedby our functionalverifier or causesother forms of errorssuchassegment

1. # instr executed - # executed instr squashed = # instr committed + # executed instr in pipeline

2. # loads from D-cache + # loads satisfied by stores in store-buffer - # executed load squashed

= # loads committed + # executed load in the pipeline
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fault or deadlock, which again can be detected and fixed.

• Instruction reuse technique, for which the timing simulator is used, has a good property

from the point of view of validation. It not only affects the timing but also the functionality

of the simulator. (In this regard, it differs from other performance enhancing techniques,

such as cache or prefetchers, which only affect the timing). If we reuse an instruction

incorrectly, the processor will end up using an incorrect value, leading to incorrect pro-

gram execution. This, again can be detected by either our functional verifier or through

other non-silent ways such as deadlocks or segment faults. The error can then be fixed

accordingly. The fact that all our simulations with IR were functionally correct lends high

confidence to the reuse rate results.

• We implemented several sanity-check routines in our simulator that were called periodi-

cally (every 10,000 cycles) to check the consistency of the simulator data structures. For

example, we check that the number of unresolved branches == number of checkpoints

taken for branch recovery, or depth of the retstack > number of returns in pipeline. These

sanity-check routines helped check the consistency of the data structures, making sure that

the simulation was proceeding correctly.

• Finally, we performed extensive debugging using the debugger, gdb, single-stepping

through every newly written piece of code to verify the timing information it generates.

Next, we describe the microarchitecture and parameters of the simulated processor.

2.2  Processor Microarchitecture

The pipeline and the microarchitecture of the processor that we simulated in our timing
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simulator are shown in Figure 2.1 (a) and (b), respectively. The pipeline consists of six stages:

Fetch, Decode & Rename, Register Read, Issue, Execute, and Commit. All stages except the

Execute stage are a single cycle in length; the Execute stage is of variable length, depending

upon the latency of the executing instruction. In Figure 2.1 (a), we also depict the variable

number of cycles that an instruction may have to wait before being issued. This pipeline struc-

ture is typical of currently available dynamically-scheduled processors (like, Pentium-III, HP-

PA8500).

Next, we describe the various microarchitectural operations performed for processing an

instruction. The Instruction Fetch Unit (IFU) fetches instructions from the I-cache (part of

IFU) and places them in the Instruction Queue (IQ). The IFU also prepares the address of the

Inst.
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Figure 2.1 (a) Stages in the pipeline. (b) Microarchitecture modelled in the simulator.
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next fetch using the branch prediction engine (also part of IFU). The instructions are read

from the IQ by the Decode and Rename (D&R) unit. This unit decodes the instructions and

renames their operands; it also allocates entries for them in the Reorder Buffer (ROB) [42] and

the Issue Window (IW). In the Register Read stage, the register operand values are read from

the architected register file or from the ROB, whichever contains the latest version of the reg-

ister. The instructions and the operand values are placed in the pre-allocated IW entries; if an

operand value is not ready, a tag (ROB index) identifying its producer is stored instead. This

tag is used to snoop the value when it is broadcast after the producer finishes execution. The

instructions are also placed in the pre-allocated ROB entries, where they await in-order retire-

ment. The issue logic selects and dispatches ready instructions (i.e., instructions whose all

operand values are available) from the IW to Function Units (FU) for execution. Load instruc-

tions are issued to the data cache only when there are no store instructions with unknown

addresses ahead in the pipeline. If a load address matches the address of a store ahead in the

pipeline, the store value is bypassed to the load (and the data cache access for the load is obvi-

ated). After an instruction completes execution, its results are written back into its ROB entry

and are also broadcast to the IW entries where they are snooped by the instructions awaiting

these results. Instructions are retired when they become the head of the ROB and the architec-

tural state of the machine (register file and memory) are updated with their results.

The baseline configuration of the timing simulator is shown in Table 2.1
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2.3  Benchmarks

2.3.1  Description

The benchmarksuitewe usein this thesisconsistsof 21 programs:8 SPEC‘95 integer

programs[4], 10 SPEC‘95 floating-pointprograms,and 3 self-picked graphicsprograms.

Table2.2shows thenamesandinputsfor all thebenchmarks.Sincethethreegraphicsbench-

marks—Viewperf+Mesa, MPEG-2 decoder, andPOV-Ray — arenot aswell-known asother

benchmarks,wedescribethemfurtherhere.Viewperf, abenchmarkdevelopedby SPECopcsm

[2], measurestheperformanceof graphicssystemsthat implementtheOpenGL API [1] by

Instruction fetch
4 instspercycle.Only onetakenbranchpercycle.Cannotfetchacrosscache
line boundaries in the same cycle.

L1 Instruction
cache

64K bytes, 2-way set assoc., 32 byte line, 6 cycles miss latency.

Branch predictor
Gshare [28], with 10-bit history register and 16K entry counter table. Return
Stack with 64 entries.

Out-of-Order
execution mecha-
nism

Issue of 4 operations/cycle, 64 entry RUU (which is the ROB and the IW
combined)[46], 64 entry load/store queue. Max of 16 unresolved branches.
Loads executed only after all preceding store addresses are known. Values
bypassed to loads from matching stores ahead in the load/store queue.

Architected
registers

32 integer, hi, lo, 32 floating point, fcc.

Functional units
(FU)

4-integer ALUs, 2 load/store units, 2-FP adders, 1-Integer MULT/DIV, 1-FP
MULT/DIV.

FU latency
(total/issue)

int alu-1/1, load/store 1/1, int mult 3/1, int div 20/19, fp adder 2/1, fp mult 4/
1, fp div 12/12, fp sqrt 24/24.

L1 Data cache
64K bytes, 2-way set assoc., 32 byte line, 6 cycles miss latency. Dual ported,
non-blocking.

L2 cache Perfect (all accesses hit)

Table 2.1  Base simulator parameters
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Benchmarks Inputs
Total

dynamic
inst.

#dynamic
inst.

simulated

# initial
dynamic

inst.
skipped

SpecInt ‘95

go null.in (ref) 35.7B 1B 500M

m88ksim ctl.in (ref) 38.8B 1B 500M

ijpeg vigo.ppm (train) 1.44B 944M 500M

perl scrabbl.pl, scrabbl.in (train) 556M 556M -

vortex vortex.in (train) 2.67B 1B 500M

li au.lsp puzzle0.lsp xit.lsp 10.2B 1B 500M

gcc reload.i 921M 921M -

compress bigtest.in (ref) 42.3B 1B 2.5B

SpecFP ‘95

tomcatv train input with ITER = 50 2.44B 1B 500M

swim train input with X=10, Y=10 849M 849M -

su2cor train input with LSIZE= 8 8 8 8 4.6B 1B 500M

hydro2d train input with ISTEP=10 4.67B 1B 500M

mgrid train input with NTIMES=1 368M 368M -

applu train input 642M 642M -

turb3d train input with nsteps=4 6.4B 1B 500M

apsi train input 2.67B 1B 500M

fpppp train input 499M 499M -

wave5 train input 3.54B 1B 500M

Graphics

Viewperf+Mesa Viewset: AWadvs-02 2.58B 1B 500M

Mpeg-2 decoder hhilong.m2v 1.80B 1B 500M

POV-Ray swirlbox.pov 1.08B 1.08B -

Table 2.2  Benchmarks
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renderingand manipulating3D imagesusing this API. Mesa [35] is a publicly available

implementationof the OpenGL API that we usedwith Viewperf. MPEG-2 decoder [33]

decodesandplaysa movie encodedin MPEG-2videoformat.POV-Ray [3] is a scenerender-

ing applicationthatcreates3-D images,with realisticlighting effects,usinga renderingtech-

nique called ray-tracing.

Some benchmarkshave commandline parametersother than the inputs specifiedin

Table2.2. These parameters are listed in Table2.3.

2.3.2  Compilation

All C benchmarkswerecross-compiledto theSimplescalarISA usinggcc (version2.6.3)

with thefollowing optimizationflags:-O3, -funroll-loops,and-finline-functions.Theassem-

bler andthelinker usedweregas (version2.5.2)andgld (version2.5), respectively. TheFor-

tranbenchmarkswerefirst convertedto C usingAT&T’ s f2c programandthencompiledusing

Benchmarks Command line parameters

m88ksim -c

ijpeg
-compression.quality 90 -compression.optimize_coding 0 -compres-
sion.smoothing_factor 90 -difference.image 1 -difference.x_stride 10 -
difference.y_stride 10 -verbose 1 -GO.findoptcomp

gcc
-quiet -funroll-loops -fforce-mem -fcse-follow-jumps -fcse-skip-blocks -
fexpensive-optimizations -fstrength-reduce -fpeephole -fschedule-insns -
finline-functions -fschedule-insns2 -O

viewperf+mesa
-pgDYN -rm POLYGON -nf 10-cpFRAME -zb-nll 2 -bf -tx advs2.mtv
-magf LINEAR -minf LINEAR_MIPMAP_LINEAR -te MODULATE -
xws 720 -yws 720 -grab grab1.scr

MPEG-2 decoder -f -o0 rec%d

POV-Ray -W320 -H200 -F +D -Q4

Table 2.3  Additional command line parameters for some benchmarks
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theC compiler. To allow for graphicsdisplay, we cross-compiledandlinked theX11 library

with the graphics benchmarks.

Sincewe usedthef2c translatorit is likely that theFortranbenchmarkswerenot asopti-

mizedasthey would have beenhadthey beencompiledusinga Fortrancompiler. This can

affectour resultsis someways.Dueto (probable)inefficientcompilation,theseprogramsmay

containredundancies.Thismayincreasetheamountof repetitionwesee.Moreover, thetrans-

lationmayaddmany “support” instructionsin thebinary, whichmayalsoincreasetheamount

of repetitionwe observe. Consequently, the amountof reusewe capturemay alsobe more

thanwhatwe would seefor Fortranbenchmarkscompiledwith a Fortrancomplier. However,

moreinstructionsin the translatedcodecanalsohurt reuserate,becausewith moreinstruc-

tions therewill be morecontentionin the RB andthe reusableinstructionsmay be evicted

beforebeingreused.Unfortunately, we have no way of discerningtheamountof inefficiency

inducedby using f2c. However, the pointsdiscussedabove shouldbe bornein mind while

interpreting the floating point results in this thesis.

2.3.3  Execution

In thissection,wedescribehow werunoursimulations.In Table2.2,weshow thenumber

of dynamicinstructionspresentin a completerun of eachbenchmark(for the input shown in

column2). To finish thesimulationswithin a reasonableperiod,weonly simulateapartof the

completerun for benchmarkswith large dynamicinstructioncounts.The actualnumberof

instructionssimulatedis shown in column4 (# instructionssimulated).To ensurethatoursim-

ulatedportionof thebenchmarkdoesnot entirelyconsistof the initialization phase,we skip

thefirst 500Minstructions(for mostbenchmarks),executingthemonafastfunctionalsimula-
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tor, before simulating the 1B instructions. In Column 5, we show the number of instructions

skipped for each benchmark. In the case of compress, we skip the first 2.5 billion instructions

since compress has an unusually long initialization phase in which it internally generates the

input file.

In Table 2.4, we present five baseline results for all benchmarks to show their relative

characteristics. These results are base IPC (instructions per cycle), I- and D-cache miss rates,

branch prediction rate, and the return stack hit rate (number of returns predicted correctly).

These results were obtained using the base processor described in this chapter with the config-

uration shown in Table 2.1. Overall, most benchmarks have an IPC between 2 and 3. The I-

cache misses are low for most benchmarks, except for fpppp. The D-cache misses are low for

SpecInt ‘95 and graphics benchmarks (except for compress), but are relatively high for the

SpecFP ‘95 benchmarks. The branch prediction rates and the return stack hit rates are high for

most benchmarks, except for go and ijpeg.

In Table 2.5, we show the second set of inputs for our benchmarks. We use these inputs in

Chapter 3 to investigate the sensitivity of the phenomenon of instruction repetition to program

inputs.
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Benchmarks Base IPC
Cache Misses Branch

Prediction
Rate

Return
Stack Hit

RateI-Cache D-cache

SpecInt ‘95

go 1.74 0.13% 0.89% 76% 100%

m88ksim 2.43 0.00% 0.01% 95% 100%

ijpeg 2.69 0.00% 0.63% 88% 99.9%

perl 2.46 0.00% 0.98% 96% 99.8%

vortex 2.78 0.19% 1.07% 98% 100%

li 2.30 0.00% 1.28% 96% 99.8%

gcc 2.05 0.29% 0.17% 91% 100%

compress 2.28 0.00% 9.56% 91% 100%

SpecFP ‘95

tomcatv 2.87 0.00% 4.89% 98% 99.9%

swim 2.56 0.00% 5.97% 98% 100%

su2cor 2.34 0.00% 7.45% 94% 100%

hydro2d 2.40 0.00% 10.03% 99% 99.3%

mgrid 2.41 0.00% 2.23% 96% 100%

applu 2.69 0.00% 3.78% 93% 100%

turb3d 2.77 0.00% 1.74% 94% 100%

apsi 2.11 0.01% 1.11% 96% 100%

fpppp 1.63 4.04% 0.05% 94% 100%

wave5 2.21 0.00% 2.75% 97% 100%

Graphics

Viewperf+Mesa 2.10 0.32% 0.97% 94% 100%

Mpeg-2 decoder 2.87 0.00% 0.76% 94% 100%

POV-Ray 2.16 0.59% 0.46% 94% 100%

Table 2.4 Base IPC, I- and D-cache misses, branch prediction rates, and the return stack hit
rates, for all benchmarks. Cache misses are percentages over total cache accesses. Branch
prediction rates are percentages over total number of dynamic conditional branches. Return
stack hit rate are percentages over number of dynamic returns
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SpecInt ‘95 Second set of inputs SpecFP ‘95 Second set of inputs

go 2stone9.in tomcatv ref input

m88ksim train.in swim ref input with X= 100, Y= 100

ijpeg specmun.ppm su2cor test input

perl primes.pl, primes.in hydro2d test input with MPROW = 200

vortex vortex.in (ref) mgrid test input

li au.lsp tak2.lsp xit.lsp applu test input

gcc amptjp.i turb3d test input with itest = 0

compress test.in (train) apsi train input with x = 32, z = 8

Graphics Second set of inputs fpppp test input

Viewperf+Mesa Viewset: CDRS-04
wave5

test input with grid 625x20
particle dist 2500 50Mpeg-2 decoder mei16v2.m2v

POV-Ray mist.pov

Table 2.5  Second set of input for the benchmarks
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Chapter 3

An Empirical

Analysis of Instruction Repetition

In Chapter 1, we described the phenomenon of instruction repetition. Before we can dis-

cuss the methods for exploiting this phenomenon, we need to develop a better understanding

of the phenomenon itself. We not only need to be aware of its various characteristics — such

as percent of total dynamic instructions repeated, or groups of instructions generating most

repetition — but we also need to understand the underlying causes that give rise to this phe-

nomenon. Only after gaining such an understanding will we be able to exploit this phenome-

non effectively.

To achieve this goal we perform two main tasks in this chapter: (i) we supply various char-

acteristics regarding the phenomenon of repetition and (ii) we present an empirical analysis of

instruction repetition to better explain what may be giving rise to this phenomenon. We begin

by, first, qualitatively describing the causes of repetition and then introducing the different

types of analyses we perform in this chapter.
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3.1  Qualitative Description of Causes of Repetition

What causesinstructionrepetition?In Chapter1, we briefly addressedthis questionand

statedthatinstructionrepetitionoccursbecauseof therepeatingnatureof inputvaluesandthe

structureof programsthemselves. In this chapter, we elaboratefurther. To understandwhy

programinputsandstructuremay causerepetition,let us considerhow a typical programis

written. In Figure3.1,we show a pieceof code:a function,func, thatsearchesfor anelement

x in anarraylist of sizesize (sameasthecodeexampleusedin Section1.1.2).Thestructureof

this programrevealsthe following characteristicsaboutthe way we write programs:(i) we

write programsto begeneric in nature:i.e., weoftendon’t write themfor particularinput val-

uesonly; insteadwe write themto becapableof handlinga varietyof input values(e.g.,dif-

ferentvaluesof x or list in the above function); (ii) we expresscomputationconcisely using

loops— e.g.,in the above case,we did not write a uniquestatementfor checkingeachele-

mentof the list; instead,we wrote onestaticcheckstatementanduseda loop to apply it to

every elementon the list; and,(iii) we breakour programsinto separatemodules,like func-

int func(x, list, size) {

int i;

for(i=0; i<size; i++) {

if(x==list[i]) return i;

}

return -1;

}

Figure 3.1 A code fragment to exemplify the typical structure of a program. This example
also occurs in Figure 1.2 of Chapter 1.
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tions, to simplify a complex task. Another commonfeaturein programs(not exemplified

explicitly in the above example)is datastructures:we normally organizethe programdata,

basedon their logical grouping,into arrays,structs,lists,etc.For supportingsuchmannersof

programming,thereexistsseveral“extra” instructionsin a programapartfrom the“computa-

tion” instructionswhich performtheactualtaskof theprogram.For supportingloopsin pro-

grams,we have instructionsthat“run” theloop andhelpgeneratethedynamicprogramfrom

theconciserepresentation.To supporttheuseof functionsin programs,we have instructions

thatsave andrestoreregisterstatewhenenteringandexiting a function.Similarly, to support

complex data-structures,we needa fair amountof computation(and,hence,instructions)to

access the individual elements in these data-structures.

How do theseprogramcharacteristicsengenderrepetition?We describefive ways.First,a

programoftenencountersthesameinput datavaluesrepeatedly, causingthecodewhich was

written to begenericin natureto performthesamecomputationagain.For example,programs

thatscanthroughtext files (like gcc, compress andgrep) mayencounterrepeatedoccurrences

of thesameitemssuchaswords,spaces,andcharacters.In theexampleshown in Figure3.1,

the functionmaybecalledrepeatedlyto searchfor differentelementsin thesamelist, which

mayresultin instructionsoperatingon thelist valueto performthesamecomputationrepeat-

edly. Second,the loop-control instructions,which perform the task of unravelling the con-

ciselyexpressedcomputation,mayget repeatedwhenthe job of unravelling thecomputation

is performedrepeatedlyfor differentinvocationsof thesamepieceof code(e.g.,theloopcon-

trol instructionswould get repeatedwhenthesameloop is invokedagain). Theseinstruction

would get repeatedevenif thecomputationperformedis entirelynew. Third, the instructions

devoted to accessingthe elementsof a complex data-structuremay get repeatedwhen the
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same elements are accessed repeatedly, even if the value being accessed is different. Fourth,

the register save-restore code of a function may get repeated if the registers do not change

between two calls to the function. Finally, many instructions in programs have immediate val-

ues as operands, e.g., simple initialization instructions or groups of instructions loading a

large constant in a register. These instructions (and instructions dependent on them) get

repeated on re-execution since their operands are constants.

3.2  Quantitative Analyses: Introduction and Rationale

After identifying the causes of repetition qualitatively, we are now ready to analyze the

phenomenon quantitatively. But, at this point, we are faced with the dilemma as to what sort

of analysis should we conduct. What sort of investigation would satisfyingly reveal the nature

of the phenomenon? Unfortunately, a direct answer to this question in not possible, at least not

at present, and we make no attempt to obtain such an answer. Instead, we perform several dif-

ferent types of analyses, each providing a different way of looking at the phenomenon, and,

hopefully, all together providing a better understanding about the nature of the phenomenon.

These analyses fall into two broad categories: a category that attempts to characterize the phe-

nomenon and a category that attempts to isolate the contribution of different “parts” of pro-

grams to the phenomenon.

To characterize instruction repetition, we carry out analyses similar to what others [12, 39]

have carried out for related phenomenon: we analyze the instructions of a program as a whole.

We call this a statistical analysis. Here we ask questions of the form: how much repeatability

exists? how many static instructions account for a certain fraction of the repeatability? etc.
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While a statistical analysis allows us to characterize the phenomenon, it fails to give us

insight into the causes of instruction repetition. Answers to questions of the form: how much

of the repeatability is due to repeated inputs? how much can be attributed to instructions that

unwind the dynamic computation? etc. are not available. To answer these questions, we need

to categorize both the instructions that are executed as well as the instructions that are

repeated, into different classes (e.g., instructions that operate upon external inputs, or those

that operate upon global variables).

Categorizing instructions into different classes requires us to capture dynamic slices of

instructions, that is, dynamic paths through programs traced by the flow of data (e.g., a slice of

instructions executed in a function that depends upon its first argument). In capturing slices of

computation, we are faced with the question of whether to consider data dependences, control

dependences, or both. Control dependences determine which static instructions are entered

into the dynamic instruction stream, and data dependences determine the outcome of those

instructions. Since our purpose is to understand the repetitive behavior of instructions that are

present in the dynamic instruction stream and not with how static instructions are entered into

the dynamic instruction stream, we do not consider control dependences when dividing the

dynamic instruction stream into dynamic slices. We base our decisions and analysis solely on

data dependence relationships (in fact, the notion of a control dependence is somewhat mean-

ingless in a dynamic instruction stream).

In the next section, we formally define the various terms used in the remainder of the the-

sis. Then, in Section 3.4, we briefly describe the experimental setup that is specific to the

experiments performed in this chapter. In Section 3.5, we characterize instruction repetition,

and in Section 3.6 we analyze the sources of repetition. In Section 3.7, we discuss and further
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investigatesomeof theresultspresentedin this chapter, and,finally, we summarizeandcon-

clude this chapter in Section3.8.

3.3  Definitions

In thissection,wedefinethreetermsthatweusein this thesis:dynamic instruction repetition,

static instruction repetition, andunique repeatable instance. First we definetheminformally

and then follow it with more formal definition.

We startout by definingdynamic instruction repetition. Repetitionoccurswhendifferent

dynamicinstancesof thesamestaticinstructionhave repeatedoutcomes.An instructioncan

generatea repeatedoutcomeif its operandsare repeated(the commoncase).However, the

outcomeof an instructioncanberepeatedevenif its operandsarenot repeated(e.g.,theout-

comeof acompareinstructioncanbethesamewith vastlydifferentinputs).In somecases,the

resultof an instructionmaynot be repeatedeven if its operandsarerepeated,becauseof the

side effects of other instructions(e.g., a load instructionreadingdifferent valuesfrom the

samememoryaddress).In this thesis,we say that (a dynamicinstanceof) an instructionis

repeated if boththe inputsandtheoutputsof the instructionarerepeated;i.e., the instruction

producesthesameoutputsfor thesamesetof inputsasa previousinstanceof theinstruction.

At placesin this thesis,we usethetermrepeatability to meanthephenomenonof instruction

repetition.

We furtherclarify theconceptof repetition.First, consideraninstruction‘I’ thatexecutes

with operandvaluesv1 and v2 and producesv3. Then a later (not necessarilythe next)

instanceof ‘I’ will be consideredrepeatedif that instancealsoexecutesusingv1 andv2 as
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inputs and produces v3 as output. Second, a load (like any other instruction), is considered

repeated when its operand values (which are used to compute the load address) and the result

(the value loaded from memory) are the same as some earlier instance of the load. Finally, a

store is considered repeated when its operand values (which are used to compute the store

address) and it store value (the value that will be stored to memory) are both the same as in

some earlier instance of the store.

The above definitions explain what is meant by a repeated dynamic instruction. Now, we

state the meaning of a repeated static instruction. A static instruction is said to be repeated if

it generates at least one repeated dynamic instruction.

Next, we define a unique repeatable instance. A unique repeatable instance is the basic

dynamic instance (of a static instruction) that gets repeated. For example in Figure 3.2 the

static instruction (I) generates seven instances. The instances I2 and I4 are the first (hence

unique) occurrence of the instance that gets repeated subsequently as I3, I5, I6, I7. We call I2

and I4 unique repeatable instances. Note that I1 does not fall in this category (although it is

static instruction (I): r1 ← r2 + r3

Dynamic Inputs Output
r2 r3 r1Instances

2         0
2         1
2         1
2         2
2         1
2         2
2         2

I1
I2
I3
I4
I5
I6
I7

2
3
3
4
3
4
4

unique repeatablerepeated
instructions instance

Figure 3.2 Unique repeatable instances —basic dynamic instances which get repeated.
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unique) because it does not get repeated.

Finally, we restate the above definitions more formally using the following notations. Let

I(PC) stand for a static instruction at the address PC, and let Ii(PC) stand for the ith dynamic

instance of that static instruction. A dynamic instance of a static instruction can also be repre-

sented with the following, more detailed, notation: Ii(PC, op1i, op2i, resi), where i denotes the

ith instance of I; op1i and op2i stand for the operand values and resi stands for the result value.

If Ii(PC) and Ij (PC) are two dynamic instances and i < j then it means that Ii(PC) occurs ear-

lier in program order than Ij(PC). Two dynamic instances are said to be equal, i.e., Ii(PC, op1i,

op2i, resi) == Ik(PC, op1k, op2k, resk), if they are instances of same static instruction and op1i

== op1k, op2i == op2k, resi == resk. With these notations, the three definitions presented ear-

lier in this section can be restated more formally as follows:

Dynamic instruction repetition:

A dynamic instruction Ij(PC) is said to be repeated if  | i < j and Ii(PC) == Ij(PC)

Static instruction repetition:

A static instruction I(PC) is said to be repeated if  and  | Ii(PC) == Ij(PC)

Unique repeatable instance:

A dynamic instruction Ii(PC) is said to be a unique repeatable instance

if  | i < j and Ii(PC) == Ij(PC), but  | h < i and Ih(PC) == Ii(PC)

3.4  Experimental Setup

The experimental setup used for this study is described in Chapter 2. We use our func-

tional simulator to execute the benchmark program and perform the analysis during execution.

i∃

i∃ j∃

j∃ h∃
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To track instruction repetition, we buffer each new instance of a static instruction that is gener-

ated during the course of execution. An instance is considered repeated if it uses the same

operand values and produces the same result as one of the previously buffered instances of the

same instruction. We buffer up to 2000 unique instances (i.e., instances that use different input

values or produce different output value) per static instruction for each benchmark and per-

form LRU replacement when additional unique instances are encountered.1

In Table 3.1, we show the number of dynamic instructions executed (column 2), the num-

ber of static instructions present (column 4), and the percentage of static instructions executed

(column 5) for each benchmark (other columns in this table are discussed in the next section).

Since the analysis was performed only on a portion of a program, it is likely that the

results of the analysis are not representative of the whole program run. To address this issue,

we simulated the programs for 10 billion instructions2 (or until completion) and collected the

statistics on overall local analysis. (We discuss what this analysis is and its purpose later in the

chapter.) The statistics from the long simulations tallied with those obtained (and presented

later) from the short simulations. Although this verification does not necessarily imply that the

results of the analysis are representative of the complete run, they serve to give us more confi-

dence in our results.

Since the phenomenon we are analyzing is dependent on the properties of data, it is rea-

sonable to suspect that the results may be sensitive to the program inputs chosen. As men-

1. A version of this work presented earlier at ASPLOS ‘98 [44] did not use any replacement policy. It only
buffered the first 2000 unique instances and ignored all unique instances thereafter. This difference causes
some results in the two studies to differ slightly (e.g., percentage of instructions repeated, number of unique
repeatable instances observed, etc.), with the results in [44] generally being a more conservative evaluation
of the phenomenon than those presented here.

2. We didn’t have to track repetition for these experiments, and hence both the time and memory requirements
were small.
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tioned in Chapter 2, we ran similar experiments using other program inputs (shown in

Table 2.5) and found similar trends with the second set of inputs. (Some results for the second

set of inputs is shown in Appendix A.) In this chapter we present results only for the inputs

shown in Table 2.2.

3.5  Statistical Analysis: Characterizing Instruction
Repetition

In this section, we attempt to get a feel for the characteristics of repeatability in the pro-

gram as a whole (statistical analysis). In our first set of data, we try to get a feel for how much

instruction repetition exists and how many program instructions contribute to repetition.

Table 3.1 shows the repetition results for all benchmarks. The second column (Total) shows

the number of instructions that were executed dynamically, and the third column (Repeat)

shows the percentage of dynamic instructions that were classified as repeated. In general, we

see that a significant percentage of dynamic instructions get repeated, especially for the inte-

ger and graphics benchmarks, where the dynamic repetition rate is greater than 70% for all

benchmarks, except for compress (where the repetition rate is 57%). For the floating-point

benchmarks the repetition rates are comparatively lower, ranging between 40-70%, except for

mgrid (19%), fpppp (37%), and turb3d (90%).

The remaining columns of Table 3.1 deal with static instructions. In the fourth column we

show the number of static instructions present in each program. In the last two columns, we

present the percentage of static instructions that get executed (% of Total) and the percentage

of executed static instructions that show repetition (% of Exec). We observe that only a small



41

Benchmarks

Dynamic Instructions Static Instructions

Total
(millions)

Repeat (%) Total
Executed Repeated

% of Total % of Exec

SpecInt ‘95

go 1000 93.8 84,552 62.9 93.4

m88ksim 1000 98.8 37,824 4.5 97.7

ijpeg 942.2 79.8 58,894 25.4 98.1

perl 555.6 85.1 73,850 22.3 65.7

vortex 1000 96.6 125,018 28.3 93.5

li 1000 89.9 23,026 8.4 99.8

gcc 421.4 88.2 299,988 39.5 87.7

compress 1000 57.7 13,798 13.1 66.3

SpecFp ‘95

tomcatv 1000 56.2 20,926 17.1 89.1

swim 849 49.2 22,154 42.3 74.8

su2cor 1000 49.5 36,872 39.9 89.6

hydro2d 1000 43.9 32,084 24.0 98.0

mgrid 368 19.3 23,264 44.0 75.9

applu 642 60.9 34,130 60.4 70.8

turb3d 1000 90.0 35,904 16.9 80.7

apsi 1000 65.9 63,134 30.9 90.9

fpppp 499 36.6 44,170 65.6 83.5

wave5 1000 61.0 65,448 12.1 57.0

Graphics

Viewperf+Mesa 1000 77.4 775,758 1.0 93.3

Mpeg-2 decoder 1000 73.1 22,902 23.0 94.3

POV-Ray 1081 82.5 263,148 17.1 56.5

Table 3.1 Table shows the benchmark programs, the total dynamic instructions executed and
the percentage of dynamic instructions repeated. It also shows the total static instructions in
each program, and the percentage executed and repeated.
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fraction of the total static instructions get executed dynamically but a large fraction of those

executed are repeated. This trend is true for all the benchmark programs. Thus, repetition is

not a phenomenon which is exhibited by only a small fraction of the static instructions that are

executed. However, a few static instructions might be accounting for a large number of

repeated instructions, and we study that next.

In Figure 3.3, we show the percentage of the repeated static instructions which account for

a certain fraction of the total dynamic repetition. We observe that for all but five benchmarks

less than 20% of the repeated static instructions account for more than 90% of the dynamic

repetition. The exceptions are m88ksim (56%), applu (22%), fpppp (29%), wave5 (27%), and

viewperf (35%). For m88ksim, wave5, and viewperf, although the corresponding percentages

of the repeated static instructions are higher, the absolute number of repeated static instruc-

tions in these cases is small to begin with.

Table 3.1 and Figure 3.3 suggest that many instructions are repeated but do not tell us how

many different values generated by the instructions contribute to the repeatability. We measure

this next. In Figure 3.4, we show for all three benchmark groups the contribution of instruc-

tions with a certain number of unique repeatable instances (defined in Section 3.3) to the

overall dynamic repeatability. For example, in go, 25% of the dynamic repeatability is due to

instructions with 1 unique repeatable instance and another 12% is due to instructions that have

2-10 unique repeatable instances. We observe that repetition is not limited to instructions pro-

ducing few unique repeatable instances only. Instructions which produce many unique repeat-

able instances also account for a sizeable amount of the dynamic repetition (except in

tomcatv). For example, instructions producing between 101 and 1000 unique instances

account for 47% of the repetition in ijpeg, 28% in li, 55% in hydro2d, and 18% in pov-ray.
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Figure 3.3 Static instructions coverage of dynamic repetition. This graph shows that very
few (less than 20% for most cases) of the static instructions which get repeated generate most
(more than 90%) of the repetition observed dynamically.
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This suggests that we need to track multiple repeatable instances of instructions in order to

capture a large fraction of the repeatability in a program.

To get a feel for the total number of instruction instances we need to track in order to cap-

ture a certain fraction of the repeatability, we turn to the data in Table 3.2 and Figure 3.5. In

Table 3.2, we show the number of unique repeatable instances (column count) in the program

(the sum of all the unique repeatable instances of all instructions that are repeated). We also

show the average number of times that a repeatable instance is repeated (column Avg.

Repeats). The numbers show that all the observed repetition is generated by relatively few

unique repeatable instances and that a unique repeatable instance gets repeated several times

on average.3 In Figure 3.5, we show the fraction of the unique repeatable instances that

3. The number of unique repeatable instances reported here are higher than what the actual count would be.
This is because instances get evicted from the 2000-entry repetition-tracking buffer. An evicted instance
when re encountered is again counted as a unique repeatable instance.

SpecInt
Benchs

Unique Repeatable
Instances SpecFP

Benchs

Unique Repeatable
Instances Graphics

Bench

Unique Repeatable
Instances

Count
Avg.

Repeats
Count

Avg.
Repeats

Count
Avg.

Repeats

go 22,595,020 42 tomcatv 1,041,603 539 Viewperf 45,471,952 17

m88ksim 103,354 9555 swim 5,886,407 71 Mpeg-2 17,036,206 43

ijpeg 24,278,066 31 su2cor 21,012,330 24 POV-Ray 27,305,631 32

perl 2,209,087 214 hydro2d 734,890 597

vortex 7,476,760 129 mgrid 1,380,997 51

li 8,805,941 102 applu 20,142,921 19

gcc 17,749,001 21 turb3d 11,884,880 76

compress 18,498,014 31 apsi 19,483,424 34

fpppp 7,003,833 26

wave5 35,175,001 17

Table 3.2 Number of unique repeatable instances and average number of repetitions for each.
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Figure 3.5 Coverage of repeatability by the unique repeatable instances shown in Table 3.2.
For example, in most cases 80% of the repeatability is generated by less than 20% of the
instances shown in column 2 of Table 3.2.
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account for a certain fraction of the dynamic repetition. We observe that in most of the cases,

less than 20% of all the repeatable instances account for more than 80% of the dynamic repe-

tition.4

3.6  Analysis to Understand the Causes of Repetition

Having performed the statistical analysis, we now address the second purpose of the chap-

ter: to understand the causes of repetition. Ideally, we would like to identify the repeatability

due to a particular program function, e.g., which instructions in the dynamic execution of a

program correspond to addressing a particular data structure, and how many of these instruc-

tions are repeated? But, what is the best way to breakdown programs for our analysis pur-

poses? To overcome this dilemma, we analyze the programs at three different levels —global

(whole program), function-level, and local (within functions). At each level we divide the pro-

grams into categories that intuitively seem to provide useful information at that level.

3.6.1  Global Analysis

At the global level, we can classify program instructions into three broad categories: (i)

instructions whose inputs are influenced by external program input, or external input instruc-

tions, (ii) instructions whose inputs are influenced by initialized global variables, or global init

4. The dynamic repetition coverage numbers from specint’95 programs presented here differ from those pre-
sented in [44]. The difference stems from the way the dynamic instance were sorted before determining the
coverage. In [44] we used an approximate method: we determined the number of repeated and number of
unique instances generated by each static instruction. Then we calculated the average repetition per unique
instance for each static instruction. We then sorted the list based on this average before accumulating the
coverage. In this thesis, on the other hand, we employ a more accurate method. We keep track of the number
of repeated instances generated by each unique dynamic instance during simulation, and use this number to
sort the list of unique repeatable instances. In any case, this difference does not change the basic conclusion
drawn from the result — i.e., very few unique repeatable instances generate most of the observed repetition.
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data instructions, or (iii) instructions whose inputs are influenced solely by program internals.

(Instructions classified as program internal either operate upon immediate values, or [transi-

tively] operate upon values generated by instructions that operate upon immediate values.)

Sometimes instructions use uninitialized registers: for example, when an uninitialized callee-

saved register is saved on a function entry. We classify such instructions in a separate (fourth)

category called uninit.

To perform the analysis, we trace the flow of data through the program during execution.

We tag each data item with the category name to which it belongs and propagate these tags

along with the data to the dependent instructions. This propagation traces slices of instructions

for each source category. The category of an instruction is determined by the categories of its

input operands. We use a supersede rule, external input >s global init data >s program inter-

nal >s uninit, to determine the category of an instruction where two slices with different cate-

gories meet. In this rule, A >s B (A supersedes B) implies that if slices of A and B meet, the

resultant slice will be that of A. We chose this rule to assign higher priority to a source that is

likely to be “less repeatable”.

We present the results of this analysis in Table 3.3, which consists of three tables, one for

each of the benchmark groups — integer, floating-point, and graphics. For each benchmark

group, we show three types of results: overall, repeated, and propensity. The overall results

show the percentage of all dynamic instructions in each of the categories; the repeated results

show the percentage of all repeated dynamic instructions in each of the categories; the propen-

sity results show the percentage of dynamic instructions belonging to each category that got

repeated (i.e., amenability or propensity of each category to repetition, hence the name). More

precisely, the propensity value of a particular category is
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(# of repeated instructions in the category)*100/(# of total dynamic inst. in the category),

where the numerator is obtained from the repeated results and the denominator is obtained

from the overall result.

Overall Results: In general, the results are different for the different groups. For integer

benchmarks, we see that for most of the instructions (more than 50% in all benchmarks except

perl) the inputs come from slices which originate from program internals (e.g., initialization

statements). About 12% to 30% instructions inputs come from slices which originate from

global initialized data. Also, for most integer programs, less than 20% of the dynamic instruc-

tions use values that come from slices which originate from external input. This shows that

most of the computation performed in the program is on the data internal (or “hardwired”) to

the program. This should not come as a surprise: in addition to the “computation” instructions

themselves that operate on data values, programs contain a lot of “overhead” instructions,

such as instructions that perform addressing and program control. This observation also serves

as a basis for decoupled architectures that divide the instruction stream into an addressing

stream and a computation stream [41].

In contrast to integer benchmarks, floating-point and graphics benchmarks have a much

larger percentage of dynamic instructions that use values coming from slices which originate

from external inputs. Except for mgrid and turb3d, in all floating-point benchmarks most

dynamic instructions obtain their inputs from external inputs slices (e.g., 84% for apsi, 79%

for fpppp, 57% for applu). The same is true for the two graphics benchmarks, viewperf and

pov-ray, with 59% and 48% of dynamic instructions in this category, respectively. However,

even for these two benchmark groups, the data “hardwired” in programs (internals+global init
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Categories go m88k ijpeg perl vortex li gcc comp

Overall % of all dynamic instructions

internals 86.3 54.6 63.2 46.1 53.6 47.0 59.8 68.5

global init data 13.8 26.3 20.3 18.8 28.5 12.4 25.1 29.5

external input 0.0 19.0 16.5 33.6 17.9 39.8 15.1 2.0

uninit 0.0 0.1 0.0 0.5 0.0 0.8 0.1 0.0

Repeated % of all repeated dynamic instructions

internals 86.2 54.4 60.5 51.6 54.3 48.1 63.1 77.1

global init data 13.8 26.2 22.4 22.1 28.8 13.8 27.2 22.9

external input 0.0 19.3 17.2 25.8 16.9 37.3 9.6 0.0

uninit 0.0 0.1 0.0 0.6 0.0 0.9 0.1 0.0

Propensity % of all dynamic instructions in each category

internals 93.7 98.5 76.4 94.2 97.8 92.0 42.6 65.0

global init data 94.4 98.3 87.9 98.8 97.8 99.6 43.8 44.7

external input 97.1 99.9 83.3 64.5 90.8 84.3 25.9 0.0

uninit 98.7 100.0 99.3 99.0 99.0 100.0 43.6 60.6

Categories tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

Overall % of all dynamic instructions

internals 36.7 33.1 16.8 44.2 4.1 24.9 12.9 7.8 8.4 21.9

global init data 26.1 10.8 32.5 10.0 95.9 18.1 87.1 8.0 12.9 30.9

external input 37.2 55.8 50.7 45.8 0.0 57.1 0.0 84.0 78.7 47.2

uninit 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0

Repeated % of all repeated dynamic instructions

internals 58.9 35.0 33.0 36.7 13.8 38.8 13.6 11.9 22.9 34.7

global init data 31.8 21.9 43.4 19.6 86.2 23.9 86.4 12.1 35.2 25.5

external input 9.3 42.4 23.7 43.7 0.0 37.3 0.0 75.8 41.9 39.9

uninit 0.0 0.8 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0

Propensity % of all dynamic instructions in each category

internals 90.1 52.1 97.0 36.4 65.8 94.9 94.8 99.9 99.8 96.6

global init data 68.3 99.9 65.9 86.0 17.3 80.5 89.2 99.5 99.6 50.3

external input 14 37.4 23.1 41.9 86.0 39.8 99.7 59.5 19.5 51.5

uninit 99.9 99.9 97.2 56.3 76.8 96.1 99.9 99.9 63.2 0.0

Table 3.3 Breakdown in terms of sources of input: program internals (constants), global init
data, external input, and uninit. Overall shows the breakdown of the complete program.
Repeated shows the break down of the repeated instructions. Propensity shows the percentage
of dynamic instruction in each category that got repeated.

(SpecInt)

(SpecFP)

(Graphics bench on the next page)
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data) provide inputs to significant percentage of dynamic instructions. For example, in five

floating-point benchmarks (tomcatv, hydro2d, mgrid, turb3d, and wave5) and in all graphics

benchmarks, the categories internals and the global init data taken together constitute the big-

gest source of input data for dynamic instructions, corroborating our earlier observation that a

significant portion of the total computation takes place on data that is internal to the programs.

Repeated Results: The distribution of the repeated results across the global categories is sim-

ilar to that of the overall results: i.e., the amount of repetition seen in a particular category is

commensurate with the amount of computation in that category.

For integer benchmarks, most repetition comes from the “hardwired” part of the program,

i.e., most of the instructions which get repeated operate on the data that is internal to the pro-

gram. This suggests that repeatability may be a phenomenon inherent to the way programs are

expressed and less sensitive to the external input. (As mentioned earlier, we have observed

Categories viewperf mpeg-2 povray

Overall % of all dynamic instructions

internals 24.6 67.5 29.8

global init data 15.1 13.0 20.2

external input 58.8 19.5 47.7

uninit 1.5 0.0 2.3

Repeated % of all repeated dynamic instructions

internals 31.7 69.3 33.7

global init data 18.9 15.0 24.9

external input 47.4 15.8 38.6

uninit 2.0 0.1 2.9

Propensity % of all dynamic instructions in each category

internals 99.6 75.0 91.3

global init data 97.0 84.3 99.7

external input 62.4 59.2 65.3

uninit 100.0 100.0 99.4

(Graphics)

Table 3.3 (continued) Breakdown in terms sources of inputs for graphics benchmarks.
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similar results using different input files for the programs.) This is also true for floating-point

and graphics programs, but in these cases the external input category also contributes signifi-

cantly to the total repetition (e.g., apsi, hydro2d, viewperf, pov-ray). Since much of the repeti-

tion occurs because of the “hardwired” part of the program, it would appear that compiler

should have eliminated this “redundancy” in the first place. We defer the discussion on this

issue until Section 3.7.

Propensity Results: We see a significant percentage of dynamic instructions in each category

get repeated. As expected, both internals and global init data show a high propensity for repe-

tition (greater than 80% for most cases). The external input category in general shows a com-

paratively low propensity for repetition (for most floating-point programs, it is less than 50%).

However, in a few cases — e.g., m88ksim (99%), vortex (86%), and pov-ray (65%) — a sig-

nificant percentage of instructions in the external input category get repeated. Although some

benchmarks such as go, compress, mgrid, and turb3d, show a high propensity for repetition in

the external input category, we point out that there are very few instructions in this category

for these benchmarks. Similarly, even though the percentages for uninit are high, we again

note that this category has very few instructions (compared to the other categories).

3.6.2  Function Level Analysis

Functions (or procedures) are a common way of expressing a computation that gets

invoked repeatedly. Often they are written to be general purpose (parameterized by argu-

ments), and a specific task is performed by invoking them with argument values appropriate

for that task. One reason why repetition occurs is because functions often get invoked repeat-

edly with the same argument values (argument repetition). Accordingly, we measure the repe-
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tition in function arguments and present the results in Table 3.4. The second column shows the

number of static functions called, and the third column shows the number of dynamic calls to

these functions. The fourth column shows the percentage of all dynamic calls in which all the

arguments were repeated argument values (i.e., these functions had been called earlier with

the exact same set of argument values), and the fifth column shows the percentage of dynamic

calls in which no arguments were repeated (i.e., none of the argument values in these function

calls have occurred earlier as arguments). A strikingly large number of times the functions

show all-argument repetition: for every benchmark, except wave5, more than 50% of dynamic

function calls show all-argument repetition, with many of them — such as go, ijpeg, viewperf,

and mpeg-2 — having more than 75% of their dynamic functions with all-argument repetition.

On the contrary, the functions seldom show no-argument repetition. Except for a few floating-

point benchmarks (e.g., wave5, apsi, fpppp, and su2cor), for most benchmarks the percentage

for no-argument repetition is less than 2%.

Do the above results suggest that large numbers of function calls are redundant? Not nec-

essarily since not all of the computation in a function depends solely on its arguments. We will

revisit this issue in Section 3.7 when we investigate some of the results of this chapter further.

Nonetheless, the repeatability of all or some of the arguments of functions suggests an impor-

tant source of repetition in instruction execution. (The percentage of calls with some argu-

ments repeated can be calculated from the data in Table 3.4. We have also seen that argument

repetition is not limited to single argument functions.)
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Benchs No. of
funcs

No. of dynamic
calls

Dynamic calls with
ALL args repeated

Dynamic calls with
NO args repeated

SpecInt ‘95
go 481 11M 78% 0.49%

m88ksim 390 17M 83% 0.03%
ijpeg 528 1.5M 98% 0.01%
perl 477 6.4M 76% 1.36%

vortex 1,077 21M 67% 0.07%
li 473 30M 97% 0.31%

gcc 2,027 5.6M 59% 9.00%
compress 131 28M 66% 1.14%

SpecFP ‘95
tomcatv 218 0.43M 55% 0.01%

swim 229 10M 76% 0.00%
su2cor 259 7.0M 86% 10.9%

hydro2d 267 307 56% 6.51%
mgrid 232 21,264 88% 1.92%
applu 236 8,690 67% 4.93%
turb3d 249 3.5M 74% 0.00%
apsi 326 5.0M 57% 21.6%

fpppp 268 0.29M 65% 19.2%
wave5 329 11M 16% 60.0%

Graphics
viewperf 3,282 12M 89% 0.37%
mpeg-2 217 17M 94% 1.36%
pov-ray 2,228 17M 66% 1.81%

Table 3.4 Function Level Analysis. For each benchmark we show the number of functions,
number of function calls encountered during execution, the percentage of function calls with
all-argument repetition, and the percentage of function calls with no-argument repetition.
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3.6.3  Local Analysis

To further our understanding of instruction repetition, we continue our analysis within

each function — we call this local analysis. We divide dynamic instructions into different cat-

egories using two broad classification criteria: (i) the source of input data used by instructions

and (ii) the specific task performed by groups of instructions.

In general, the data used within a function come from one of the following sources: (i)

arguments, (ii) global data, (iii) returned values, and (iv) function internals. Arguments are the

values explicitly passed to functions at the time of their invocation. Global data are the values

which are global to the program (they either reside in the data segment or on the heap) and

were not passed as arguments. Returned values are the values explicitly returned from other

function calls. Function internals, like program internals in our global analysis, operate on

immediate constants. Thus, using the first criterion for division, we will classify a slice of

computation, for example, as arguments if it originates by operating on function arguments.

We identify the following categories for instructions based on the task performed: (i) pro-

logue, (ii) epilogue, (iii) global address calculation, (iv) function returns, and (v) operations

on stack pointer (SP). Prologue and epilogue represent the overhead incurred for calling a

function. They perform, respectively, save and restore of callee-saved registers on entry and

exit to functions. Just as addressing and loop control are “overhead” for a generic and compact

representation of a computation, function prologue and epilogue are overheads associated

with a modular programming style. Global address calculation is comprised of sequences of

instructions which calculate the address of a global variable either using immediate values or

using global pointer register, gp (a special register provided in MIPS architecture that points to
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the data segment). Since these instructions perform a very specific task, we group them sepa-

rately from function internals (even though they operate on immediate values). Returns is

comprised of function returns. The category SP consists of operations on stack pointer (e.g.,

adding an offset to stack pointer to form an address of a variable on the stack). We keep

returns and SP separate from the other categories because their repeatability depends (partly)

upon the present depth of the stack, and we wish to analyze the repeatability due to this influ-

ence separately.

We realize that the two broad classification criteria that we have chosen are not completely

disjoint and also that the categories within them may not be the best possible way of dividing

a function, but we believe that this division is a good first step in understanding the causes of

instruction repetition.

As in global analysis, we categorize the instructions dynamically while executing the pro-

gram on our simulator. We tag the data values with their appropriate source category, e.g., data

loaded from the data segment are tagged as global, and we use function calling conventions to

identify arguments and return values. The category in which an instruction is binned depends

upon the categories of its input data. As in global analysis, an instruction with inputs from two

different categories is categorized using the supersede rule argument >s return value >s (glo-

bal, heap) >s function internal. The reason is to give preference to categories that may show

more variability and less repeatability. Identifying the task-based categories such as global

address calculation, function returns, and operations on SP, is straightforward. The prologue

and epilogue are identified as follows. On entry into a function, we mark all registers as unint

(except those used for passing the arguments). Store instructions that save unint registers are

categorized as prologue whereas load instructions that load these saved values are categorized
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as epilogue. Instructions that allocate or deallocate space on the stack are also categorized,

accordingly, as prologue or epilogue.

3.6.3.1  Overall Results

We show the percentage of total dynamic instructions within each category (overall analy-

sis) in Tables 3.5, 3.8, and 3.11 (overall) for integer, floating-point and graphics benchmarks,

respectively. The results vary from benchmark group to benchmark group (and also from pro-

gram to program). However, in general, we glean the following from these results. Prologue

and epilogue constitute a significant fraction of the dynamic program for integer and graphics

benchmarks (e.g., as many as 24% of the dynamic instructions in vortex, 19% in li, 15% in

pov-ray, and 12% in viewperf). But, they are not very prominent for the floating-point bench-

marks where most benchmarks have less than 5% of dynamic instructions in these categories.

Although in global analysis we saw that most of the instructions for integer programs fell

on slices originating from immediate values (program internals), in local analysis (Table 3.5)

we see relatively fewer instructions derive their input values from immediate values (function

internals and global address calculations). This is because several program internal slices

span across functions and the information that they are internal slices (and that they might

possibly be operating upon a compile time constant) gets hidden when these program internal

slices cross function boundaries. These slices then show up as part of global, heap, or argu-

ment slices. This observation is also true for the graphics programs (Table 3.11). But, for the

floating-point programs, we see that the program internals category in global analysis and the

sum of the function internals and global address calculation categories in local analysis

(Table 3.8) are comparable in value. This implies that in floating-point programs (unlike in
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SpecInt ‘95

Categories go m88k ijpeg perl vort li gcc comp

prologue 3.12 4.93 1.16 7.33 12.40 12.08 8.48 1.90

epilogue 3.12 4.93 1.16 7.32 12.40 12.06 8.47 1.90

function internals 9.22 17.21 8.81 8.94 9.80 8.72 14.13 5.41

glb_addr_calc 15.66 14.77 0.44 4.47 3.35 0.54 2.95 10.27

return 1.12 1.75 0.16 1.13 2.10 3.04 1.29 2.79

SP 1.30 0.17 0.63 1.06 4.07 3.01 2.37 0.00

return values 1.77 4.46 4.29 2.54 2.90 3.69 2.88 16.72

arguments 12.46 15.65 34.30 22.53 36.62 8.69 19.33 5.02

global 52.24 26.94 2.05 9.20 5.41 11.72 16.77 55.98

heap 0.00 9.21 47.00 34.48 10.94 36.46 23.34 0.00

Table 3.5  Overall: Distribution of all dynamic instructions (% of all dynamic instructions).

Categories go m88k ijpeg perl vort li gcc comp

prologue 3.29 4.99 1.44 7.90 12.56 12.27 8.34 2.79

epilogue 3.29 4.99 1.44 7.88 12.56 12.24 8.34 2.79

functional internals 9.83 17.43 11.03 10.60 10.15 9.70 15.98 9.36

glb_addr_calc 16.69 14.96 0.55 5.30 3.46 0.59 3.46 17.79

return 1.19 1.77 0.20 1.34 2.18 3.38 1.51 4.83

SP 1.38 0.17 0.78 1.26 4.21 3.29 2.57 0.00

return values 1.83 4.51 4.60 1.10 2.86 3.78 2.54 8.50

arguments 12.28 15.62 30.99 22.21 35.84 8.77 17.48 4.18

global 50.22 26.24 2.52 8.43 5.42 12.77 17.74 49.75

heap 0.00 9.32 46.45 33.97 10.75 33.21 22.04 0.00

Table 3.6  Repeated: Distribution of all repeated instructions (% of all repeated dynamic instructions).

Categories go m88k ijpeg perl vort li gcc comp

prologue 99.03 99.99 98.49 90.66 97.81 91.35 39.71 84.55

epilogue 99.03 99.99 98.49 90.63 97.82 91.28 39.71 84.55

function internals 99.98 100.00 99.97 99.73 99.95 100.0 45.65 100.00

glb_addr_calc 99.98 100.00 99.98 99.99 99.99 98.26 47.43 100.00

return 99.99 100.00 99.97 99.99 99.99 99.99 47.21 100.00

SP 99.69 100.00 99.88 99.94 99.89 98.30 43.78 74.45

return values 96.95 99.99 85.69 36.39 94.97 92.13 35.62 29.38

arguments 92.43 98.59 72.12 82.94 94.53 90.76 36.50 48.08

global 90.15 96.22 98.56 77.09 96.64 97.99 42.69 51.30

heap 0.00 99.97 78.90 82.89 94.95 81.92 38.09 0.00

Table 3.7 Propensity: Percent of instructions in each category that get repeated (% of all dynamic instructions in
each category).
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Categories tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

prologue 0.16 3.10 1.84 0.00 0.02 0.01 1.04 2.60 0.23 2.51

epilogue 0.16 3.10 1.84 0.00 0.02 0.01 1.04 2.60 0.23 2.51

function internals 34.39 8.51 8.48 17.08 1.17 14.07 6.69 5.22 0.75 4.74

glb_addr_calc 0.06 22.70 1.62 13.81 0.01 7.51 0.45 0.58 6.14 5.47

return 0.04 1.19 0.71 0.00 0.01 0.00 0.36 0.50 0.06 1.07

SP 26.37 0.00 4.80 0.36 0.02 2.55 0.30 0.46 0.41 0.09

return values 37.03 4.23 12.34 0.00 0.03 0.01 18.34 2.03 6.89 5.80

arguments 0.55 9.50 42.63 4.25 32.04 5.57 58.53 51.69 1.78 10.13

global 1.13 47.66 25.76 64.49 66.70 70.29 13.27 34.31 83.51 67.66

heap 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Categories tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

prologue 0.28 5.92 3.27 0.00 0.09 0.01 1.15 3.62 0.47 2.55

epilogue 0.28 5.92 3.27 0.00 0.09 0.01 1.15 3.62 0.47 2.55

function internals 54.81 13.02 16.33 17.43 6.06 23.02 7.43 7.83 2.01 7.20

glb_addr_calc 0.11 18.70 3.27 4.38 0.04 12.19 0.50 0.88 16.78 8.61

return 0.08 2.42 1.43 0.00 0.03 0.00 0.40 0.76 0.16 1.76

SP 32.22 0.00 9.44 0.83 0.08 4.18 0.34 0.70 1.11 0.14

return values 9.16 8.09 5.32 0.00 0.14 0.00 20.19 1.83 4.55 3.15

arguments 0.96 19.29 28.47 0.38 53.84 4.67 57.18 59.24 3.63 9.85

global 2.00 26.64 29.21 76.99 39.64 55.91 11.66 21.54 70.82 64.20

heap 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Categories tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

prologue 98.60 94.14 87.86 77.22 95.59 91.03 99.91 91.68 73.97 61.82

epilogue 98.60 94.13 87.86 77.06 95.64 91.11 99.91 91.68 73.95 61.82

function internals 89.50 75.29 95.28 44.76 99.90 99.60 99.99 98.74 98.10 92.64

glb_addr_calc 99.99 40.57 99.99 13.92 96.40 98.75 99.99 99.99 99.93 95.99

return 99.99 100.00 100.00 69.61 98.45 95.98 100.00 99.99 99.90 100.00

SP 68.62 75.63 97.25 99.94 97.73 99.98 99.96 99.96 99.12 99.82

return values 13.89 94.09 21.31 49.88 93.67 35.13 99.04 59.17 24.14 33.18

arguments 96.87 99.95 33.03 3.87 32.42 51.08 87.90 75.52 74.35 59.34

global 99.99 27.52 56.09 52.35 11.47 48.41 79.07 41.36 31.01 57.91

heap 49.82 40.26 0.00 0.00 64.31 65.85 0.00 62.40 41.30 33.02

Table 3.10 Propensity: Percent of instructions in each category that get repeated (% of all dynamic instructions in
each category).

SpecFP ‘95

Table 3.9  Repeated: Distribution of all repeated instructions (% of all repeated dynamic instructions)

Table 3.8  Overall: Distribution of all dynamic instructions (% of all dynamic instructions).
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integer and graphics programs) most slices which derive inputs from the immediate values do

not cross function boundaries (and, hence, may be recognizable and exploitable statically).

In general, most of the dynamic instructions fall on global, heap or argument slices. A sig-

nificant portion of the dynamic program is devoted to calculating the addresses of global vari-

ables, e.g., 16% for go, 15% for m88ksim, 23% for swim, and 14% for hydro2d. Categories SP

and returns constitute few dynamic instructions (less than 2% in most cases). Return value

slices also comprise few dynamic instructions (less than 5%) for all integer benchmarks,

except for compress where they comprise 17% of dynamic instructions. This category is more

Categories viewperf mpeg2 povray

prologue 5.95 4.78 7.28

epilogue 5.95 4.78 7.28

function internals 8.37 5.69 6.44

glb_addr_calc 0.51 2.26 1.72

return 1.21 1.70 1.60

SP 1.08 0.09 1.63

return values 6.15 1.65 7.38

arguments 26.17 19.13 32.09

global 4.48 42.75 11.98

heap 40.11 17.17 22.60

Categories viewperf mpeg2 povray

prologue 7.09 6.24 8.84

epilogue 7.09 6.24 8.84

function internals 10.82 7.78 7.78

glb_addr_calc 0.66 3.09 2.01

return 1.56 2.33 1.97

SP 1.40 0.12 1.99

return values 5.67 2.00 5.58

arguments 21.91 14.31 27.38

global 5.79 46.33 11.38

heap 38.00 11.55 24.23

Categories viewperf mpeg2 povray

prologue 92.14 95.43 98.07

epilogue 92.14 95.43 98.10

function internals 100.00 100.00 97.62

glb_addr_calc 100.00 100.00 94.45

return 100.00 100.00 99.55

SP 100.00 99.98 98.12

return values 71.22 88.58 61.09

arguments 64.76 54.69 68.95

global 100.00 79.23 76.72

heap 73.29 49.20 86.64

Table 3.11 Local Analysis results for Graphics
benchmarks. “Ov erall” shows the numbers are % of
all dynamic instructions. “Repeated” shows
Contrib ution of each category to total repetition (the
numbers are % of all repeateddynamic instructions).
“Pr opensity” shows the propensityof eachcategory to
repetition (the numbers are % of all dynamic
instructions in that category).

Overall Repetition

Propensity

Graphics
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prominent in floating-point and graphics benchmarks where it comprises of 37% dynamic

instructions in tomcatv, 18% in turb3d, 12% in su2cor, and 7% in pov-ray.

3.6.3.2  Repetition Breakdown

We show the percentage of total repeated instructions for each category in Tables 3.6, 3.9

and 3.11 (repeated) for integer, floating-point, and graphics benchmarks, respectively. The

amount of repetition that each category accounts for varies with the benchmark. But, in gen-

eral, most of the repetition is accounted for by arguments, global (or heap), and function inter-

nals. Prologue and epilogue also contribute significantly to repetition, for integer and graphics

benchmarks.

We show the propensity of each category to repetition — i.e., the percentage of dynamic

instructions in each category that got repeated — in Tables 3.7, 3.10, and 3.11 for integer,

floating-point and graphics benchmarks, respectively. In general, we see that every category is

amenable to repetition, especially for integer and graphics benchmarks (greater than 90% pro-

pensity for most cases). The propensity is especially high (as would be expected) for function

internals and global address calculations. The percentages are high for return and SP as well,

but we note that these categories have very few instructions (compared to the other catego-

ries). The propensities are lower (less than 50% in many cases) for return values, global (or

heap), and argument categories.

Next we discuss the results and describe why each category may be getting repeated. (All

percentage values presented below are from Tables 3.6, 3.9, and 3.11, unless specified other-

wise.)

Global and Heap Values: For most benchmarks, between 20% and 70% of repeated instruc-
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tions fall on slices originating from load instructions that read global values. This repetition

can occur for several reasons. The runtime switches (which are mostly set using parameters

that are input to a program) are often stored in global variables. These switches get initialized

when the program begins execution and remain constant for the remainder of the execution.

Often other program parameters, which remain constant for a given execution, are stored in

global data structures (e.g., a table of frequencies for all letters used in Huffman encoding, or

machine descriptions like function unit latency in a processor simulator). These data struc-

tures get initialized once per program execution (either at compile time or runtime) and

remain unchanged thereafter. For some global variables, e.g., positions on a chess or a go

board, the values may change infrequently or the variables may assume only a small set of val-

ues, causing the same values to flow down to the dependent instructions and hence resulting in

repetition.

Function Prologue and Epilogue: These two categories comprise a significant percentage of

total repetition for integer and graphics benchmarks (e.g., 15% for perl, 24% for vortex, 13%

for gcc, 17% for pov-ray, and 14% for viewperf). This repetition occurs because functions

often save and restore the same values of callee-saved registers from the same stack locations.

Such a situation may happen, for example, when functions get called from the same call site

repeatedly (hence the save and restore code accesses the same locations in the stack) and the

values of callee-saved registers are the same as before (because, for instance, if they are not

used in the caller function at all).

Function Arguments: A significant percentage of repeated instructions fall on argument

slices (e.g., 26% for ijpeg, 22% for vortex, 59% for apsi, 57% for turb3d, and 27% for pov-
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ray). As shown earlier in Table 3.4, many times functions are called repeatedly with some or

all of their arguments having the same values as before. In such cases, the instructions which

operate on these arguments may perform the same computation repeatedly. However, repeti-

tion of an argument doesn’t necessarily result in repetition of its complete slice; the values

coming from other slices (e.g., global slices) that merge with argument slices may change and

hence prevent repetition. For example, in ijpeg only 77% of the instructions from this function

arguments category (propensity results in Table 3.7) are repeated even though 98% of its

dynamic functions are called with all-argument repetition5 (the function-level analysis results

are found in Table 3.4).

Function Return Value: Often, the value returned by function calls belongs to a small set of

possible values (e.g., true or false). In such cases, the computation in the caller function which

uses this return value may perform the same task repeatedly. Although repetition due to this

category is generally low, it is significant in some cases: e.g., it is 9.3% for compress, 20% for

turb3d, 9.2% for tomcatv, 5.7% for viewperf, and 5.6% for pov-ray.

Function Internals: Since these slices originate from instructions operating on immediate

values, the different execution of these slices generate the same results (provided the govern-

ing control flow resolves in the same way for each execution). The percentage contribution to

repetition for some of the benchmarks are 19% for vortex, 19% for gcc, 54% for tomcatv, 16%

for su2cor, and 11% for viewperf.

Global Address Calculation: Instructions in this category either operate on immediate val-

ues or on register gp (which is a runtime constant). Hence they perform the same task every

5. In ijpeg, several functions are called with pointers to global arrays as arguments. Although the pointer values
remain the same, the contents of the array change.
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time they are executed. The percentage contribution of this category to repetition for some of

the benchmarks are 18% for go, 15% for m88ksim, 19% for swim, and 12% for applu.

SP and Returns: The computation involving SP, such as adding an immediate to form an

address of a variable, generates the same result if the value in SP is the same, which is the case

when the same function is called from the same call depth repeatedly (e.g., a function called

from the same call site repeatedly). The percentage contribution of SP to repetition is in gen-

eral low (less than 5%) for most benchmarks, except for tomcatv (32%) and su2cor (9%).

Returns get repeated when a function returns to the same call site repeatedly. The percentage

contribution of returns to repetition is also low in general, except for a few integer bench-

marks where the contributions are measurably high (e.g., 4.9% for compress and 3.3% for li).

In most cases, the contribution of returns to repetition is less than 2%.

We make another observation from the repetition results similar to the observation made

for the overall results. Although the results from global analysis for integer and graphics

benchmarks show that most of the repeated instructions are part of program internal slices

(Table 3.3, under repetition), in local analysis we see comparatively fewer repetitions fall on

slices that originate from immediate values — i.e., function internal and global address calcu-

lation slices. This indicates that much of the invariance flows into a function via arguments

and global values and that this invariance may not be obvious (statically) inside the function.

However, in the case of floating-point benchmarks the global and local results are comparable

in this respect, which implies that such invariances may be easy to track statically for these

benchmarks.
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3.7  Discussion and Further Investigations

In the last few sections, several characteristics of sources of instruction repetition have sur-

faced. Many of these characteristics are striking. For instance, most of the repetition in pro-

grams fall on instruction slices originating from the hardwired values in programs, most of the

dynamic functions exhibit all-argument repetition, and significant repetition is generated from

function prologues and epilogues. These characteristics raise several questions. Why does

such a behavior exists in programs? Why wasn’t repetition eliminated at compile time? Can

repetition be easily tracked for the purposes of exploitation (in software or hardware)? We

don’t yet know the conclusive answers to these questions, which can be both yes and no; the

answers can only be found after much further research, which is beyond the scope of this the-

sis. However, attempting to address these questions, even partially, is still important as it will

likely help develop a better grasp on the nature of the phenomenon (and, possibly, on appro-

priate methods for its exploitation). Consequently, in this section, we discuss and investigate

further several of the results discovered in previous analyses to address some of the above

questions. This section consists of three subsections: one devoted to discussing results from

each of the three analyses — global, function-level, and local. We begin with the global analy-

sis.

3.7.1  Global Analysis

Global analysis (Table 3.3) shows that most of the dynamic instructions and the repetition

fall on the program internal slices and global initialized slices. These slices originate from

immediate values and statically initialized data respectively, both of which are known at com-



66

pile time. This information suggests that we may be able to optimize code statically to elimi-

nate this source repetition. However, there may be some challenges in doing so, which we

discuss below:

• The dynamic path through the program may not be known statically. Although the same

definition of a value may reach a use repeatedly, this invariance may not be obvious at

compile time.

• To ensure correctness, a compiler needs to assume dependences conservatively. On several

occasions, global variables cannot be register allocated in the presence of pointers or func-

tion calls. Dynamically, loads of global variables may read the same value repeatedly.

• It may not be obvious within the body of a function, without sophisticated inter-procedural

analysis, that a value is statically known if the value was passed to the function as an argu-

ment.

• Much instruction repetition is a result of code executed to dynamically recreate a compu-

tation from its static image. Exploiting this repetition statically may involve “unrolling”

the dynamic computation statically, perhaps affecting the generality of the computation as

well as the code size.

• Some instruction repetition is due to features of the instruction set and cannot be elimi-

nated by optimizations such as constant propagation. For example, the number of bits in

the immediate field of an instruction format limits the size of the immediate value that can

be handled by an instruction. In such cases, larger constants are manipulated using a

sequence of instructions, all of which would perform the same computation when exe-

cuted repeatedly.

• In some situations, a loop invariant computation may not be register allocated, because of
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the resultant increase in register pressure which might cause spills inside the loop.

3.7.2  Function Level Analysis

Function analysis (Table 3.4) shows that most of the functions are called with repeated

arguments (all-argument repetition). This result immediately brings to mind a question: how

many of these functions can be memoized (dynamically or statically)? We investigate this

result further.

Memoization can be hindered if a function has side effects such as external input/output or

stores to a global address or if it has implicit inputs through global variables. In Table 3.12, we

show the percent of functions called with all-argument repetition that do not have any side

effects or implicit inputs (hence may be candidates for memoization). We see different results

for different benchmark groups. In integer benchmarks, almost every function has side effects

or implicit inputs and may defy memoization (unless the side effects and other inputs them-

selves have a repeated pattern that can be detected statically). On the other hand, in most float-

ing-point benchmarks and in two graphics benchmarks (viewperf, and pov-ray), a significant

percentage of functions that are called with all-argument repetition lack both side-effects

(external i/o or store to a global variable) and implicit inputs (e.g., load values from a global

variable). These functions may be good candidates for memoization.

Another aspect of the repeatability of function arguments is the number of different values

with which this repetition takes place. This aspect is important because it determines the trac-

tability of this program behavior in hardware or software. To get an idea of this aspect, we

determine for each function the most frequently occurring argument-set, the second most fre-
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Benchmarks

Dynamic Functions w/o side effects or implicit
inputs

% of all funcs
% of funcs with all-arg

repetition

SpecInt ‘95

go 0.0% 0.0%

m88ksim 7.8% 9.3%

ijpeg 0.3% 0.2%

perl 0.0% 0.0%

vortex 0.0% 0.0%

li 0.1% 0.0%

gcc 0.6% 0.9%

compress 0.0% 0.0%

SpecFP ‘95

tomcatv 32.7 55.3

swim 79.2 86.4

su2cor 85.5 87.5

hydro2d 0.0 0.0

mgrid 1.0 0.0

applu 2.2 2.1

turb3d 37.1 42.4

apsi 56.7 51.6

fpppp 42.1 44.4

wave5 54.0 78.2

Graphics

viewperf 22.4 25.2

mpeg-2 0.0 0.0

pov-ray 23.3 32.2

Table 3.12 Functions which do not have any side effects or any implicit input. The numbers
are percentages of all dynamic functions (column 2) and percentages of functions with all-
argument repetition (column 3).
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quently occurring argument-set, and so on. Then we determine what percentage of the total

all-argument repetition (shown in column 4 of Table 3.4) is because of the most occurring

argument-set, the second most occurring argument-set, and so on. We show these numbers in

Figure 3.6 for up to five most frequently occurring sets of arguments. These results show, for

example, if we track for every function in viewperf the most frequently occurring argument-

set (using, say, a direct-mapped hardware table) then we would capture 25% of the function

calls with all-argument repetition, 37% if we track the top two frequently occurring argument-

sets (using, say, a 2-way associative hardware table). We see that for integer benchmarks the

coverage attained by the five most frequently occurring combination of argument values is not

very high: in all but one case, even tracking all five most frequent sets of argument values does

not allow us to cover more than 50% of functions with all-argument repetition. Whereas, for

floating-point benchmarks, the coverage is considerably higher: the most frequently occurring

set of argument values itself covers most of the all-argument repetition in many cases (e.g., in

tomcatv, apsi, applu, and wave5). In graphics benchmarks, although the coverage is higher

than in most integer benchmarks, there is significant all-argument repetition beyond the top

five argument sets.

3.7.3  Local Analysis

Local analysis (Tables 3.5-3.11) shows that function prologue and epilogue are a signifi-

cant contributor to both the number of instructions executed dynamically as well as to instruc-

tion repetition (especially in integer and graphics benchmarks). This overhead and repetition

can potentially be optimized if the compiler had global information and could inline the func-
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tion at the call site. From this point of view, it is interesting to find out how many static func-

tions contribute to most of the prologue+epilogue repetition and to determine their sizes (since

increase in code size is one of the issues in function inlining). In Table 3.13, we show the sizes

(in number of static instructions) of the functions that are the top five contributors to the pro-

logue+epilogue, as well as the fraction of all prologue and epilogue repetition accounted for

by these five functions (coverage column) for the benchmarks. We observe that in all three

benchmark groups most functions are greater than 50 instructions in size and may be consid-

ered large for inlining purposes.6 Among the three benchmark sets, the floating point bench-

mark set has the greatest number of small functions (< 50 instructions in size) as major

contributors to prologue+epilogue repetition (hence, these benchmarks may lend themselves

well to function inlining). From the percent coverage values, we can also deduce that a consid-

erable amount, greater than 40%, of prologue+epilogue repetition remains for many bench-

marks even after considering the top five functions. Thus, simply focusing on a few big

contributors may not eliminate most of the prologue+epilogue repetition.

Local analysis also identifies other sources of instruction repetition, such as global slices,

function internal slices, and instructions that compute global addresses. Another important

aspect of the global slice repetition is the number of different values with which the repetition

takes place. (Since function internal slices and slices that compute global addresses begin

from constant values, they get repeated with a single value every time they are executed). As

in the case of function argument (discussed in Section 3.7.2), the number of different values

for global slices determines its tractability (whether in hardware or software) with fewer val-

6. Because the dynamic path length through a function can be smaller than the static instruction count, the pro-
logue/epilogue can still be a significant contributor to the dynamic instruction count even for large functions.
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Bench. 1 2 3 4 5 coverage

SpecInt ‘95

go
addlist getefflibs lupdate ldndate livesordies

40%
113 558 683 683 799

m88ksim
Data_path execute display_trace Pc test_issue

66%
143 883 150 149 56

ijpeg
emit_bits encode_one_block fill_bit_buffer jpeg_idct_islow memcpy

81%
97 103 93 643 55

perl
eval memmove malloc str_nset str_sset

59%
6639 97 304 76 142

vortex
Mem_GetWord TmFetchCoreDb Chunk_ChkGetChunk Mem_GetAddr TmGetObject

49%
53 125 50 49 49

li
mark xlobgetvalue xlsave livecar newnode

62%
67 88 40 46 26

gcc
reg_scan_mark_refs mark_set_resources canon_reg mark_jump_label copy_rtx_if_shared

17%
262 309 162 259 271

compress
getcode output readbytes

100%
86 142 85

SpecFP ‘95

tomcatv
x_getc pow __finite ldexp pow_P

42%
47 118 19 119 92

swim
__drem __finite sin cos

100%
176 19 126 119

su2cor
log ldexp __finite __logb __drem

95%
158 119 19 48 176

hydro2d
fct_ artdif_ filter_ t2_ b2_

67%
824 401 1394 141 189

mgrid
memcpy __mpn_divmod x_putc __mpn_mul_1 do_fio

43%
55 360 35 18 219

applu
exact_ x_putc memcpy __mpn_divmod ne_d

69%
156 35 55 360 412

turb3d
fftz2_ __drem fftz1_ cfft_ __finite

88%
257 176 148 363 19

apsi
ekmlay_ pow __finite radb4_ ldexp

54%
134 118 19 432 119

fpppp
ldexp fmtgen_ exp d_int floor

74%
119 414 91 16 29

wave5
__drem __finite ldexp log cos

86%
176 19 119 158 119

Graphics

viewperf
sample_2d_linear floor sample_lambda_2d gl_shade_rgba log

44%
728 29 329 486 158

mpeg-2
putbyte Flush_Buffer Get_Bits

form_component
_prediction

form_prediction
91%

21 365 14 679 117

pov-ray
Ray_In_Bound Intersect_Box Point_In_Clip

priority_queue_in
sert

All_Box_Intersecti
ons 28%

120 528 56 117 207

Table 3.13 We show names of five functions which are 5-top contributors to
prologue+epiloguerepetition. For eachfunction we show its sizein number of instructions. We
also show the amount of prologue+epilogue repetition covered by these five functions.
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ues meaning easily tractable and vice versa. To obtain this number of different values, we

determine for each global load the most frequently occurring value, the second most fre-

quently occurring value, and so on. (We consider global loads because they initiate the global

slices). Then we determine what percentage of total global load repetition can be accounted

for by the most frequently occurring values, the second most frequently occurring value, and

so on. We show these results in Figure 3.7 for up to five most frequently occurring values.

These results can be interpreted as follows: we will able to track about 40% of repeated load

values that start the global slice if we track the most frequently load value (using a direct

mapped hardware table, for instance) for all global loads in gcc, for example, and about 55%

of repeated load values is we track top 2 most frequently occurring values for each load (using

a 2-way associative hardware table, for instance). We see that in the floating-point bench-

marks, the coverage attained by the most frequently seen load values is considerably higher

than in the integer or graphics benchmarks — e.g., for tomcatv, swim, and applu, the most fre-

quently seen value itself accounts for more that 80% of repetition on global slice. For integer

and graphics benchmarks, global slices may need to be tracked for several possible values to

capture more of the global repetition.

3.8  Summary and Conclusions

In this chapter, we empirically analyzed instruction repetition, which is the phenomenon

that instructions operate on the same operand values and produce the same result repeatedly.

We analyzed the SPEC ‘95 integer and floating-point benchmarks and graphics programs to

understand the underlying characteristics of programs that give rise to this phenomenon.
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We first characterized instruction repetition. We found that most of the dynamic instruc-

tions in programs are repeated (e.g., 99% for m88ksim, 93% for vortex, and 82% for pov-ray).

We also found that although almost all of the executed static instructions contribute to repeti-

tion, for most benchmarks less than 20% of the repeated static instructions account for more

than 90% of the dynamic repetition. However, instruction repetition is not limited to instruc-

tions producing a few instances dynamically; as much as 42% of the repetition in ijpeg, and

28% in li is due to instructions that produce between 101 to 1000 distinct values.

To better understand this phenomenon, we further analyzed the dynamic execution of

these programs at three levels: (i) global, (ii) function, and (iii) local (inside functions). In glo-

bal analysis, we tracked the data usage pattern of the program as a whole and determined the

sources of repeated instructions (external input, global initialized data, or program internals).

We saw that most of the instruction repetition fall on instruction slices originating from pro-

gram internals values (such as immediate values) and global initialized data. We saw similar

results when running the benchmarks with other inputs although we did not report these

results in this chapter (they are reported in Appendix A). This suggests that repetition as a

phenomenon is more a property of the way computation is expressed in a program than a

property of input data (especially for the integer benchmarks).

In the function analysis, we saw that very functions often get invoked repeatedly with

exactly the same set of arguments values (e.g., 98% of function call in ijpeg, 83% in m88ksim,

78% in go). In contrast, only a few function calls have no repeated arguments values (less than

2% for several benchmarks).

In the local analysis, we tracked the source of repetition. We classified the instructions of a

function into different categories based on the source of data values used (e.g., function argu-
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ments) and the specific task performed (e.g., save and restore registers). We found that most

of the repeated instructions fall either on global value or argument value slices. Instructions on

function internals slices also get repeated frequently. Significant repetition is also seen due to

function prologue and epilogue. For some benchmarks, the sequences of instructions that cal-

culate the addresses of global variables also get repeated significantly.

Finally, we discussed and further investigated some of the results of the three analyses. We

showed that most functions exhibiting all-argument repetition had side effects or other

implicit inputs (hence may not be easy candidates for memoization). We presented number of

different values with which the function arguments are repeated. For local analysis results, we

identified functions that contribute the most to the function prologue and epilogue repetition

and showed the number of different values with which load slices get repeated.
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Chapter 4

Dynamic Instruction Reuse

In the previous chapter we discussed the phenomenon of instruction repetition. We presented

its various characteristics and analyzed various programs to expose its various sources. In this

chapter we are concerned with how to use this phenomenon to our advantage — i.e., how to

exploit it.

Ideally, on the matter of exploitation we would like to ask questions such as, “What are the

different ways of exploiting repetition?” or “How best can we exploit instruction repetition?”

However, instruction repetition is a phenomenon that was discovered fairly recently and,

hence, the depth of understanding required to answer such questions is not yet available. In

addition, how we exploit this phenomenon will also depend on what we wish to gain from it:

if the goal is to make the processor run fast, then there may be one way of utilizing this oppor-

tunity; but if the goal is something else — say, to reduce the power consumption in processor

— then the approach can be entirely different (and may be still unknown). The different uses

of this phenomenon will only become apparent after we understand what aspects of it are

exploitable and what are not, and this understanding can only be developed by actually under-

going the process of exploiting this phenomenon.

Thus, in this chapter, instead of attempting to explore the topic of exploitation comprehen-
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sively, we pursue one particular purpose for exploiting this phenomenon — a purpose that is

somewhat self-suggestive from the nature of the phenomenon itself: i.e., reducing the amount

of work that needs to be done to execute a program. If the instructions are producing the same

results repeatedly, then why execute them over and over again? Instead, reuse results from

their previous executions and avoid their repeated executions. The topic of our study in this

chapter is dynamic instruction reuse, the name we call the technique employed for accom-

plishing the above result.

4.1  Instruction Reuse

Instruction reuse (IR) is a non-speculative, hardware technique that dynamically detects that

certain instructions are producing the same results repeatedly and reuses the earlier results of

these instructions instead of re-executing them. This technique works in the following manner.

As instructions execute, their results are stored in a hardware table called the Reuse Buffer

(RB). When an instruction enters the pipeline, the RB is queried to see if a valid result for that

instruction is available; if so, that result is reused from the RB and the execution of the instruc-

tion is complete. A reused instruction “skips” the remaining pipe stages and becomes ready

for retirement. However, if a valid result for the instruction is not found in the RB, the instruc-

tion moves through the pipeline and get executed as usual.

IR is non-speculative because only valid results, i.e., results which are guaranteed to be

correct, are reused. The validity of a result is confirmed by establishing that the operand val-

ues that were used to calculate that result are the same as the current values of the operands.

Based on how we perform this validity check, which we term the reuse test, we obtain differ-
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ent schemes for reusing instructions (which is described later in this chapter).

There are several benefits of exploiting repetition in this manner. First, since a reused

instruction is not required to be executed, it does not occupy resources (e.g., issue window

entry, functional units, data cache ports) in a pipeline, making these resources available for

other instructions to use. Second, through reuse, instruction results become known earlier in

the pipeline than they are through execution. This permits dependent instructions to execute

earlier. Third, reuse breaks the serialization due to data dependences, and hence, has the

potential to exceed the dataflow limit. For example, reusing a chain of dependent instructions,

in effect, completes the individual instructions together, which would not be possible if the

chain is executed.

The layout for the rest chapter is as follows. In the next section, we describe the Reuse

Buffer, the hardware table used in IR. Thereafter, in Section 4.3, we present the different

schemes for IR; in Section 4.4, we describe how IR may integrate with a generic pipeline; in

Section 4.6, we discuss certain implementation issues of IR; in Section 4.7, we perform a

quantitative evaluation of IR; in Section 4.8, we discuss the various related work, and finally,

in Section 4.9, we summarize and provide conclusions.

4.2  Reuse Buffer

All reuse schemes, which we will describe in the next section, employ a Reuse Buffer

(RB) for storing and maintaining the previous results of instructions. A generic structure of an

RB is shown in (Figure 4.1). Each entry of the RB stores information pertaining to a single

instruction. The exact contents of the RB entries is decided by the particular scheme chosen to
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implement instruction reuse. Three more issues need to be dealt with: (i) how the information

in the RB is accessed, (ii) how we know that the accessed RB entry (or entries) has reusable

information, and (iii) how the buffer is managed.

The first issue is easily dealt with: the program counter (PC) of the instruction provides a

convenient index for searching the RB. There are other ways of indexing in an RB, some of

which we discuss in Section 4.5.3. One advantage of using the PC as an index is that it is

available before any other information about the instruction; hence, RB access can begin early

in the pipeline, enabling early reuse of instructions (or, permitting the use of a bigger, thus

slower, RB). To accommodate multiple instances of a static instruction, the RB can be orga-

nized with any degree of associativity; the larger the associativity, the larger the number of

dynamic instances of an instruction that can be held in the RB at a given time.

To deal with the second issue, we need to develop a reuse test which checks information

accessed from the RB to see if there is a reusable result. Details of the test depend upon the

reuse scheme, as we describe shortly.

o

o

o

entries

Invali-
date

Events

reuse test

Reuse Buffer

Reused inst.

Index
PC
Other
info

Figure 4.1 Generic Reuse Buffer. It is indexed by the PC (possibly combined with other
information as discussed in Section 4.5.3), and it has mechanisms for selectively invalidating
entries based on some event.
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There are two aspects to RB management: (i) deciding which instructions get placed in the

buffer and (ii) maintaining the consistency of the buffer. The decision as to what to place in

the buffer can range from a naive policy, i.e., place all recently executed instructions in this

buffer (if they aren’t already present), to a more judicious policy that filters out instructions

that aren’t likely to be reused. This aspect of buffer management is dealt which in the next

chapter; in this chapter we adopt the naive policy approach. Maintaining the consistency of

information in the RB depends upon the reuse scheme, as we will see shortly.

4.3  Schemes for Instruction Reuse

In this section, we describe four hardware schemes to implement dynamic instruction

reuse. These schemes mainly differ in the way in which reusable results are identified. The

first scheme (Sv) tracks operand values for each instruction, the second scheme (Sn) tracks

only operand names (register identifiers), and the third (Sn+d) and the fourth scheme (Sv+d)

extend the first two schemes by the use of dependence relationships among the instructions for

tracking reuse. For each scheme, we discuss the following issues:

• What information is stored in the RB?

• How is the reuse test performed?

• How is the information in the RB updated/invalidated?

4.3.1  Scheme Sv: Reuse based upon operand values

Scheme Sv is a straightforward implementation of the reuse concept. The operand values

of an instruction are stored along with its result. Since the reuse test is based on operand val-
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ues, as we will see shortly, we call this scheme Sv, where ‘v’ stands for value.

When an instruction is decoded, its current operand values are compared with those stored

in the RB. If they are the same, the result stored in the RB is reused. Loads, being a two-oper-

ation instruction, need special handling. Address-calculation can be reused if the operands for

the address calculation did not change. However, the actual outcome of the load can only be

reused if the addressed memory location was not written into by a store instruction. Informa-

tion in the RB has to distinguish between the two. Likewise, stores are also special. While

reusing the address calculation part of a store presents no problems (we treat it no differently

from the address calculation for a load) we make no attempt to reuse the actual memory write

— the memory write could have side effects outside the domain of the processing node. (Sim-

ilar restrictions would apply to other instructions with side effects, e.g., loads in the I/O

space.)

RB entry: An entry in the RB for this scheme is shown in Figure 4.2(a). The tag field stores

part of the PC. The result, operand value1, and operand value2 store the result and the oper-

and values of the instruction. These fields are used to identify the instruction (or address cal-

tag
operand1

value
operand2

value
address result mem

valid

tag operand1
reg name

operand2
reg name

address result result
valid

mem
valid

memresultresultaddresstag
operand1

src-index reg name src-index reg name
operand2

vaildvaild

(a)

(b)

(c)

resultaddresstag
src-index

operand2operand1
src-indexreg value reg value

vaildmem

Figure 4.2 RB entry (a) Scheme Sv (b) Scheme Sn (c) Scheme Sn+d (d) Scheme Sv+d.

(d)
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culation in the case of a load/store) that can be reused. The memvalid bit and the address field

are used to determine if the actual memory access for a load instruction can be reused; the

memvalid bit indicates whether the value loaded from memory (present in the result field) is

valid, and the address field stores the memory address (i.e., the outcome of the address calcu-

lation).

Reuse test: For testing reuse, the operands of an instruction are compared with the values in

the operand value fields of the RB entry. A match indicates that result is valid (for non-load/

store instructions) or address is valid (for loads and stores). For loads, in addition to testing

the validity of the address bits, we also need to test the memvalid bit to see if the outcome of

the load (in the result field) can be reused. If the operand values are not known at the time of

the reuse test, then the instruction is not reused.

Invalidation: For non-load operations, the reuse test works because the operands uniquely

determine the result; therefore invalidations are not needed to maintain the integrity of the test.

For loads, a store to the same address invalidates the value in the result field. Accordingly, on

a store, the address field of each RB entry is searched for a matching address, and the mem-

valid bit reset for matching entries.

4.3.2  Scheme Sn: Reuse based upon register names

In scheme Sn, we attempt to trivialize the reuse test (and also to reduce the size of each RB

entry). Rather than store operand values, we store operand (architectural) register identifiers in

the RB. When an instruction writes into a register, all instructions with a matching (source)

register identifier in the RB are invalidated. Only the valid instructions are reused from the
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RB. The advantage of this reuse test is that it can be done much earlier in the pipeline than the

reuse test in scheme Sv since it does not require the operand values. Since the reuse test is

based on operand names (and not value), we call this scheme Sn, where ‘n’ stands for name.

The remaining details are as follows:

RB entry : An RB entry for this scheme is shown in Figure 4.2(b). Differences from scheme

Sv are: (i) the operand1 and operand2 fields contain register names of the operands instead of

actual operand values, (ii) there is a resultvalid bit, which indicates whether the result is valid.

(This bit was not required in scheme Sv because the reuse test detected the stale results.) This

bit is set when an entry is first inserted into the RB.

Reuse test: The reuse test is as simple as testing the state of resultvalid and memvalid bits.

Address calculation for load/store instructions and results for all other instructions can be

reused if the resultvalid bit is set; the result of a load instruction can be reused if both

resultvalid and memvalid are set. (Since different instances of the same static instruction will

have the same operand names,1 we do not need to compare the operand names explicitly for

reuse.) As mentioned above, since this reuse test does not require operand values, it can be

potentially done earlier in the pipeline; this may result in the reuse being more beneficial.

Invalidations : As before, stores invalidate the loads from the same address (memvalid bit is

reset). Moreover, when a register is written, the RB is searched for entries whose operand field

matches the name of the register. The entries that match are marked invalid (resultvalid bit is

reset).

1. This may not necessarily be the case for self-modifying code. Hence, for architectures that support self-
modifying code, we will need to invalidate instructions in the RB when they get modified.
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4.3.3  Scheme Sn+d: Reuse using register names and dependence chains

Scheme Sn+d extends scheme Sn by attempting to establish chains of dependent instruc-

tions, and to track the reuse status of such instruction chains. Since the reuse status of an

instruction in the RB is established based on its operand names and/or its dependence infor-

mation in this scheme, we call it scheme Sn+d (the letters ‘n’ and ‘d’ stand for name and

dependence respectively).

Figure 4.3(a) motivates scheme Sn+d. The figure shows a dynamic stream of instructions

on the left and the contents of the RB at different point in time on the right. I, J, K is a chain of

dependent instructions; I1, J1, K1 and I2, J2, K2 are the dynamic instances of this instruction

chain. With scheme Sn, only instruction I2 could reuse the result of I1 because results of J1 and

K1 are invalidated by instruction R. Scheme Sn+d instead tries to establish the fact that instruc-

tion J2 (J1) depends solely upon instruction I2 (I1), and instruction K2 (K1) depends solely

upon instructions I2 and J2 (I1 and J1) (Figure 4.3(b)). If instruction I2 can be reused, so can

instructions J2 and K2. Furthermore, if I2, J2, and K2 are all fetched simultaneously from the

RB, the reuse status of all three instructions could be established simply by establishing the
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reuse status of I2, and verifying the dependence relationship (as we elaborate below). This is

tantamount to obtaining the result(s) of chains of dependent operations in a single cycle.

Scheme Sv, which does not maintain instruction dependence relationships, can’t establish the

reuse status of a dependence chain as easily. In our example, the reuse status of I2 would have

to be established; the result of I2 would be needed to establish the reuse status of J2, and J2’s

result would be needed to establish the reuse status of K2.

For the ensuing discussions, we define the following terms (illustrated in Figure 4.4).

Instructions that produce values used by other instructions in the chain are called source

instructions (e.g., A and B in the figure). Instructions whose source instructions are not in the

chain, which implies that their data dependence information is not available, are called inde-

pendent instructions (e.g., A). Finally, instructions whose source instructions are in the chain

are called dependent instructions (e.g., B and C).

Dependence chains are created as entries are inserted into the RB. To facilitate this pro-

cess, we use a mapping table called a Register Source Table (RST). The RST has an entry for

each architectural register; it tracks the RB entry which has (or will have) the latest result for

that register. When an entry is reserved in the RB for an instruction, the RST entry for its des-

tination register is updated to point to the reserved entry. If, however, an entry could not be

A

B

C

r1 0

r2 r1 + 4

r3 r1 + r2

Independent

Dependent

Source

Figure 4.4 Instructions with data dependence links. The arrows point from the instruction
using the value to the instruction producing the value.
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reserved, then the RST entry for the destination register is set to invalid (since the latest pro-

ducer of that register will not be in the RB). When an instruction is reused, the RST entry for

its destination register is updated to point to the reused RB entry. The RST is similar in spirit

to the rename map used in register renaming. In essence, the RST is used to link a consumer

instruction to the latest producer instruction by pointing to the “physical register” (RB entry)

of the producer. Accordingly, another way of looking at scheme Sn+d is to consider it as a

“physical register” version of scheme Sn, which tracks dependences using architectural regis-

ters. We next present details of this scheme’s operation and then illustrate it with an example.

RB entry: An RB entry (shown in Figure 4.2(c)) is similar to the one in scheme Sn, except for

the addition of a src-index field. The dependence links are created by storing the RB index of

the source instructions in this field. An invalid value is inserted in this field if the source

doesn’t exist in the RB.

Reuse test: The reuse status of independent instructions is established as it was in scheme Sn

(resultvalid bit is set; memvalid is set in the case of load instructions). A dependent instruction

is reused if its source instructions (in the RB), as indicated by the src-index field of its oper-

ands, are indeed the latest producers for its operands. This fact is established with the help of

the RST, as we shall illustrate below with the help of an example (Figure 4.5).

State updates: As in schemes Sv and Sn, stores invalidate loads to the same address (mem-

valid is reset). As in scheme Sn, independent instructions are invalidated when their operands

registers are overwritten (resultvalid is reset). Dependent instructions need not be invalidated

on operand overwrites because their reuse status can be established using their dependence

information. Instead, they are invalidated when their source instructions are evicted from the
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RB, i.e., when the dependence information is lost.1 To perform this operation the RB needs to

be searched for entries whose src-index field matches the index (in the RB) of the source

instruction being evicted. The entries which result in a match are invalidated (resultvalid bit is

reset).

Example: We illustrate the working of this scheme using the example shown in Figure 4.5

with the same dynamic stream of instructions as in Figure 4.3. Figure 4.5(a) shows the state of

the RB and RST at the time when I2 is encountered in the dynamic instruction stream. At this

time, the results of instructions I1, J1 and K1 are present in the RB with appropriate data

dependence information (indicated by the links in the RB and the index values in the src-index

1. An optimization to this approach is to check whether the source instruction is the current producer for its
destination register (this can be done using the RST). If so, then the dependent instructions are not invali-
dated; instead they are treated as independent instruction thereafter. In our simulations, we implemented this
optimization.
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field). Since instructions J1 and K1 are stored in the RB as dependent instructions, their results

are not invalidated by instruction R (unlike scheme Sn). Instruction I2 reuses the result of I1

(since it is independent and valid), and the RST entry for r1 is updated to point to the RB entry

10 (the latest producer for r1)(Figure 4.5 (b)). To establish the reusability of J2, the src-index

field for r1 is compared with the RST entry for r1 (Figure 4.5 (b)). A match indicates that the

source for r1 in the dependence chain (which is I1) is also the current producer for r1; hence

the result is reusable. Instruction K2 gets reused in a similar fashion (Figure 4.5 (c)). The

instructions I2, J2, and K2 can be reused simultaneously if encountered in the same cycle.

While performing the reuse test on each instruction, interdependence among them needs to be

considered. The interdependence check resembles what is done while renaming registers for

multiple dependent instructions in the same cycle.

4.3.4  Scheme Sv+d: Reuse using register values and dependence chains

Although the scheme Sv is the most accurate in detecting the reusable instructions among

the three schemes presented so far, it is not very well suited for reusing chains of dependent

instructions in a single cycle. For example, reusing two instructions, I and J, with J being

dependent on I, would require that we first reuse I and then using the reused result of I we per-

form the reuse test for J. This whole operation may be difficult to do in a single cycle, espe-

cially for long dependence chains. To facilitate the reuse of dependent instructions, we

augment the scheme Sv with the dependence-tracking ability of scheme Sn+d, giving us the

scheme Sv+d.

As in scheme Sn+d, instructions in this scheme are stored in the RB with pointers to the RB

entries containing their source instructions. The dependency chains are constructed using an
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RST in the same way as they are constructed in scheme Sn+d. Most of the operations per-

formed in this scheme are borrowed from scheme Sv or scheme Sn+d, as we describe below. In

the following discussion, we use the terms dependent and independent instruction, which

were define in Section 4.3.3. Next, we describe the various details of scheme Sv+d.

RB entry: An RB entry (shown in Figure 4.2(d)) is similar to the one in scheme Sv, except for

the addition of a src-index field. Just like in scheme Sn+d, the dependence links are created by

storing the RB index of the source instructions in this field. An invalid value is inserted in this

field if the source doesn’t exist in the RB.

Reuse test: The reuse status of independent instructions is established as in scheme Sv: the

operand values are compared with the current values of those registers and the memvalid bit is

used to determine the validity of loads. As in scheme Sn+d, a dependent instruction is reused

by confirming that its source instructions (in the RB), as indicated by the src-index field of its

operands, are indeed the latest producers for its operands. This fact is established with the help

of the RST, as illustrated earlier in Figure 4.5.

State updates: As in other schemes, stores invalidate the loads to the same address (mem-

valid is reset). As in scheme Sn+d, the state of dependent instructions is updated when their

source instructions are evicted from the RB, i.e., when their dependence information is lost.

The state can be updated in two ways: either (i) the dependent instructions can be marked

invalid, or (ii) their src-index fields, pointing to the evicted source, are annulled (and thereaf-

ter, they are treated like independent instructions — i.e., their validity is determined by value

comparison). The first option is simple but conservative since it invalidates potentially useful

instructions. The second option, on the other hand, retains the dependent instructions, but it
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requires additional space in RB entries since the operand values need to stored for the depen-

dent instructions as well (so that value comparison can be performed if the dependent instruc-

tions become independent). Nevertheless, both update operations require that the RB be

searched for the entries whose src-index field matches the RB index of the source instruction

being evicted. These matching entries are either invalidated or converted into independent

entries.

4.3.5  Summary of schemes

The four reuse schemes, which we presented in the preceding sections, mainly differed in

the way the reuse tests were performed and the RB was kept consistent. Several mechanisms

for implementing these two operations were presented. In this section, we summarize these

mechanisms for each reuse scheme.

In Table 4.1, we show a check list of various mechanisms employed by each reuse

scheme. We presented four mechanisms for performing reuse test. In scheme Sv, value com-

parison between the current operand values and those stored in the RB was used to reuse

instruction. In scheme Sv+d, value comparison was used for reusing independent instructions.

In scheme Sn, the valid bit check, which indicated validity of the operand values in the RB,

was used to reuse instructions. This check was also used by scheme Sn+d, but only for reusing

the independent instructions. The remaining two reuse test mechanisms were for reusing

dependent instructions. In scheme Sv, the dependent instructions were reused by comparing

the values in RB with those forwarded from the source instructions (Value forwarding). In

schemes Sn+d and Sv+d, the dependent instructions were reuse by tracking and checking the
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dependence between instructions (Dependence check). As illustrated earlier in Figure 4.3,

scheme Sn cannot not reuse dependent instructions (hence we had no corresponding mecha-

nism for it).

Three types of invalidations were used for keeping the RB consistent. Load invalidation,

which marked the load instructions in the RB as stale when their memory locations were over-

written, was used by all four reuse schemes. Non-load invalidation was used in schemes Sn

and Sn+d to invalidate instructions (independent instructions in scheme Sn+d) when their oper-

ands were overwritten. Dependent instruction invalidation was used in schemes Sn+d and Sv+d

when instructions were evicted from the RB. Its purpose was to invalidate the instructions

immediately following the evicting instruction in the dependent chain, and thereby avoid hav-

ing dangling dependence pointers in the RB.

Later in this chapter (in Section 4.6), we discuss various issues with supporting invalida-

Mechanisms
Schemes

Sv Sn Sn+d Sv+d

Reuse
Test

Value comparison ✔ ✔

Valid bit check ✔ ✔

Dependent
instruction

reuse

Value forwarding ✔

Dependence check ✔ ✔

Maintaining
consistency in RB

Load
invalidation

✔ ✔ ✔ ✔

Non-load
invalidation

✔ ✔

Dependent
instruction invalidation

✔ ✔

Table 4.1  Various mechanisms for implementing different reuse schemes.
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tions in the RB and suggest some ways of dealing with these issues.

4.4  Microarchitecture with a Reuse Buffer

Figure 4.6 shows how an RB could be integrated with a generic microarchitectural pipe-

line. Figure 4.6 (a) shows the position of RB-specific operations — RB access, Reuse test, RB

insert, and RB invalidations — in our simulated pipeline; and Figure 4.6 (b) shows the RB’s

position in the microarchitecture datapath. We next describe the working of the microarchitec-

ture with the RB and then discuss the different issues involved in integrating the RB in a pipe-

line.

The Instruction Fetch Unit fetches and places the instructions in the Instruction Queue.

Instruction decode and register renaming is done in the Decode and Rename Unit. In the Reg-

ister Read stage, the operand values for the instruction are read either from the register file or

from the Reorder Buffer (ROB) [42]. The RB access can be pipelined and can begin at the

same time as the instruction fetch. At the Register Read stage the reuse test is performed on

the entries read from the RB to see if their results are reusable. If a reusable result is found, the

instruction does not need to be operated upon any further; it bypasses the Issue Window (IW),

and proceeds directly to the ROB, where it is queued for retirement. Loads bypass the IW only

if both micro-operations, address calculation and the actual memory operation, are reused. For

some of the reuse schemes — e.g., scheme Sv — the reuse test may require more than one

cycle to complete, as depicted by the extra Reuse test stage in Figure 4.6 (a). Multiple cycle

reuse takes place as follows. The instruction is placed in the IW, while its reuse test is taking

place. If the instruction is still not executed when the reuse test completes, the result obtained
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Figure 4.6 (a) Position in the pipeline of RB-specific operations. (b) Generic
microarchitecture with an RB. The additional data-path due to RB is shown in bold lines. The
control lines (e.g., for access, invalidation etc.) are not shown.
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from the RB is used and the instruction is not issued for execution. If, however, the instruction

completes execution before its reuse test completes, then the reused result is ignored.

In both single- or multiple-cycle reuse, if a reusable result is not found in the RB, an entry

is reserved in the RB where the result of the instruction will be placed after it is executed, set-

ting it up for future reuse (in schemes Sn+d and Sv+d, the RST has to be updated accordingly).

Once in the IW, instructions proceed as they would in any generic superscalar processor. After

an instruction has executed, its results are stored in the reserved RB entry. In scheme Sv, the

operand values are also stored in the entry at this time. When an instruction commits, depend-

ing on the reuse scheme, it invalidates appropriate results (or make other forms of state

updates) in the RB.

Since one of the purposes of IR is to recover useful work from squashes (as discussed in

Chapter 1), we allow speculative instructions to get inserted in the RB. However, we must take

steps to ensure that the RB contents remain consistent and that no incorrect value is reused.

What steps needs to be taken depends on the reuse test (and hence the reuse scheme)

employed for performing reuse. For schemes Sv and Sv+d, nothing special needs to be done —

the value-comparison based reuse test ensures that correct results are reused. For schemes Sn

and Sn+d, however, the reuse test itself is not enough to sift out incorrect results — additional

constraints needs to be enforced. We describe these constraints (and why are they needed)

later, in Section 4.5.2. Schemes Sn+d and Sv+d use the structure RST, which like the rename

table keeps track of the instructions in the RB which are the latest producers of registers. Since

this table controls the reusability of instructions, it needs to be repaired accordingly after

every misprediction. We do so by taking a checkpoint of the RST at every point where a spec-

ulative decision is made and restoring the RST appropriately on misprediction.
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The RB contents also need to be maintained consistently in presence of context-switches

and multiprocessor environment. Both these issues can be handled fairly easily. The issue of

context switches can be handled in the same way as it is handled for virtual caches. The RB

can either be invalidated on context switches or its entries can be augmented with process

identifiers so that only entries from the current process can be reused. In multiprocessor envi-

ronment, the loads in the RB of one processor will need to be kept coherent with the stores in

other processors. This situation can be handled in the same way as is done for the L1-cache.

The RB can maintain inclusion with the L2-cache, so that it is shielded from the external

events. When a line in the L2-cache is replaced or invalidated (due to external events), the

loads in the RB from that line can be invalidated.

Though we assumed that RB access takes a single cycle in our previous discussions, there

is no need for this timing constraint since accesses may be pipelined. For example, the access

can begin in the fetch stage of the pipeline after the PC of the instruction is available (since

only the PC is required for indexing the RB, RB access can begin as early as the fetch stage, as

illustrated in Figure 4.6 (a)). Other operations, such as invalidations, evicting entries to make

way for new instructions etc., can be pipelined as well. For example, when the RB gets full,

entries can be freed for future inserts. This will ensure that the free RB entries are always

available, eliminating the search for a victim entry from the critical path. We will discuss more

about RB invalidations in Section 4.6.
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4.5  Reuse Schemes: Optimizations, Constraints
and Variations

In the descriptions of the reuse schemes earlier in the chapter we focussed mainly on the basic

operations necessary to understand the concept of reuse. In this section, we go a level deeper.

We talk about some optimizations we can make to improve reuse rate; we discuss various con-

straints that need to be imposed upon the RB insertion and reuse policy to ensure that incor-

rect values are not reused; and we present other ways of performing certain operations in reuse

scheme (like indexing the RB) and discuss their trade-offs. We begin by describing some opti-

mizations we can make to the reuse schemes.

4.5.1  Optimizations

Preventing unnecessary invalidations: Reuse schemes use invalidations to mark instructions

in the RB as stale whose invalidity (due to changes in the processor state) will not be other-

wise detected by the reuse schemes. All schemes invalidate load instructions in the RB when

stores write to matching memory addresses. Schemes Sn and Sn+d use invalidations to ascer-

tain the reusability of the non-load instructions as well: these schemes invalidate instructions

(independent instructions in case of scheme Sn+d) when their operand registers are overwritten

during the course of execution. Many times these invalidations are unnecessary as the new

value being written is the same as the old value; hence the instruction results in the RB would

still be valid. We can prevent these unnecessary invalidations by comparing the new and the

old values before invalidation and by only invalidating an instruction when the two values are

different. Thus, in the case of load instructions in the RB, before invalidating a particular load
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we compare the store value with the load value, and if they are the same then the load is not

invalidated. In schemes Sn and Sn+d, to prevent the invalidations of the non-load instructions

we compare the old and the new operand values, allowing invalidation when the values are

different.

Implementing this optimization for the non-load instructions (and for the address calcula-

tion part of the load instructions) in schemes Sn and Sn+d may require changes in the RB entry.

This is because we do not store the operand values in the RB entry by default in these two

schemes. To prevent invalidations, we may need to store them (so that the earlier values can be

compared with the new operand values before invalidations), which will increase the size of

the RB entries. However, an alternative solution is possible. Instead of storing the operand val-

ues in RB entries and comparing the newly created values of registers with their values stored

in the RB, we can compare new values of registers with their old values in the register file. If

the two values are the same, the invalidation signal is not sent to the RB at all (thereby, pre-

venting the invalidation of the RB entries). Otherwise, invalidations are performed as usual.

This approach avoids increasing the size of RB entries; however, it may require extra ports in

the register file for reading the old values.

In the case of loads, however, performing this one-point check may not be feasible since

reading the memory locations before writing them may not be possible. To implement invali-

dation-prevention, the store values will need to be compared with the load results stored in the

RB. However, since the load values are stored in the RB anyway, doing so may not increase

the RB entry size.

Resurrecting invalid instructions: Once the logic network for performing the RB invalida-
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tions is in place, we can use it to perform the opposite task as well — i.e., resurrection or re-

validation of the previously invalidated instructions in the RB. For example, while a store is

invalidating loads in the RB, if it finds a load (with a matching address) that is invalid but has

the same result as the store value then that load can be made valid again (i.e., its memvalid can

be set to true again). In schemes Sn and Sn+d, the invalid non-load instructions in the RB can

be resurrected in a similar manner.

However, unlike in the case of the previous optimization, for resurrection, we will need to

also store the operand register values in the RB for schemes Sn and Sn+d (which otherwise are

not required to be stored). Hence, for non-load instructions, the size of the RB entry will

increase for implementing this optimization.

We use both of the above optimizations in the schemes that we evaluate later in the chap-

ter. We also show how important these optimizations are by comparing the results with and

without these optimizations.

4.5.2  Constraints

Insertion constraints in scheme Sn: We mentioned earlier that we may want to insert specu-

lative instructions in the RB so that we can recover useful work from control squashes. When

allowing speculative instructions to enter in the RB, the insertion policy can no longer remain

naive (i.e., insert every instruction): certain conditions need to be checked to ensure that the

instruction to be inserted will not lead to an incorrect reuse in the future.

How can speculative instructions cause wrong reuse? They can do so if the pipeline

squash that takes place after they are inserted in the RB makes their results in the RB illegal

and the reuse scheme employed has no mechanism for detecting this problem. We illustrate
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this with an example. Consider a piece of code shown in Figure 4.7. The code depicts a case

where there are two statements defining the value of r1 (I1 and I3) and which of these two

reach the use of r1 at I4 is decided by a branch at I2: if the branch is taken then the definition

reaching I4 is I1 (r1 <- 0); otherwise it is I3 (r1 <- 1). First let us consider a scenario of wrong

reuse with scheme Sn. Suppose I1 is executed and committed. The branch at I2 is initially pre-

dicted “not-taken”, and instructions I3 and I4 are executed and inserted in the RB. Now, the

branch is found to have been mispredicted, instructions are squashed, and the “taken” path is

fetched. On the restart, instruction I4 is encountered on the “taken” path. The version of this

instruction that was executed on the wrong path is still present in the RB in a valid state (since

no intervening instruction overwrote the value of r1), and hence, it will get reused when the

new instance of I4 is encountered. This will be an incorrect reuse because the version of I4 in

the RB executed with a value of 1 for r1, while the current value of r1 is 0. So, what went

wrong? The problem was that we inserted an “incorrect” execution of I4 (an execution that

would have never occurred in a legal execution of the program) and had no way of detecting

this problem before reusing the instruction. What we need to do is to insert only those specu-

lative instructions in the RB whose results either remain valid even after they are squashed, or,

if not then their results inserted in the RB should be made unreusable. To ensure this, we place

I1: r1 ← 1

I2: branch I4

I3: r1 ← 0

I4: r2 ← r1 + 4

Figure 4.7 A code sequence to illustrate the possibility of incorrect
reuse when speculative instructions are inserted in the RB.
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the following condition on the insertion of an instruction when using scheme Sn: a speculative

instruction is inserted in the RB only if its source instruction is non-speculative. With this con-

dition in place, the scenario of wrong reuse described above will not occur since the specula-

tive execution of I4 will not get inserted in the RB because its source instruction (I3) is also

speculative.

Insertion constraint for scheme Sn+d: Now, let us consider the same scenario for scheme

Sn+d. In this case when instructions I3 and I4 are inserted in the RB, there will be a link point-

ing from I4 to I3. Because of this link, the speculatively executed I4 will not get reused (and

correctly so) when I4 is encountered on the correct path since the producer of r1 will be I1 and

not I3 (hence the dependency check will fail). However, the same problem that occurred in

scheme Sn will arise if I4 were to be inserted as an independent instruction (for example, if for

some reason I3 is not inserted in the RB). Thus, the condition for insertion of instructions in

the RB for scheme Sn+d is insert a speculative instruction in the RB only if either its source

instruction is non-speculative (just like for Sn) or if all its source instructions are present in the

RB (and hence this instruction will get inserted in the RB as a dependent instruction).

Notice that no special conditions need to be enforced in the cases of schemes Sv and Sv+d

as the reuse test based on value comparison unambiguously detects whether a result is valid.

Reuse constraints: Certain constraints need to be obeyed when performing instruction reuse

in a pipelined processor. If the reuse status of a particular instruction cannot be definitely

determined because of unresolved instructions ahead in the pipeline, then that instruction can-

not be reused. For example, in all four schemes, load values are not reused if there is a store

with unknown address or matching address ahead in the pipeline (only load addresses are
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reused in these cases). In schemes Sv and Sv+d, an instruction (an independent instruction in

the case of Sv+d) is not reused if its current operand values are not available for comparison —

i.e., if the latest producer of its operand registers has not executed yet. Since schemes Sn and

Sn+d do not use value comparison, they need to be more restrictive. If the source instruction of

an instruction operand (an independent instruction operand in the case of scheme Sn+d) is

present ahead in the pipeline (whether executed or not), the schemes Sn and Sn+d need conser-

vatively assume that this source instruction will change the operand value, and hence, they

don’t reuse the instruction.

Having discussed the various constraints necessary to ensure correctness, we move on to

the second topic of this section: we discuss the various options available for performing the

different functions of the reuse mechanism.

4.5.3  Variations

Inserting instructions in the RB: Instructions can be inserted in the RB at different stages of

the pipeline. In Section 4.4, we described one strategy for inserting instructions in the RB:

allocate RB entries when instructions are decoded and populate these entries with values after

the instructions have executed. Here we provide the rationale for adopting this policy and dis-

cuss other ways (and their trade-offs) for inserting instructions in the RB.

Another place in the pipeline where instructions can be inserted in the RB is the commit

stage. This simplifies the maintenance of the RB state: nothing special needs to be done to

ensure the correctness of the information in the RB or in the RST since wrong path instruc-

tions do not get inserted in the RB. However, inserting instructions here has a negative point

too: since the speculative instructions do not get inserted in the RB, we may not be able to
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recover useful work from squashes (unless the squashed instructions were already present in

the RB from their earlier execution).

Another option is to insert the instructions into the RB at the execute stage. Although this

scheme allows reusing squashed instructions, it works only for schemes Sv and Sn. In schemes

Sn+d and Sv+d, the dependence-links needs to be created between instructions that get inserted

in the RB, and this requires that the insertion policy see the correct ordering between these

instructions. This ordering information is not available at the execute stage of an out-of-order

processor.

This leads us to the insert policy that we have already described in Section 4.4. We reserve

the entries in the RB for the instructions at the decode stage, creating links between these

entries based on the dependence relations that are visible at this stage. The index of these

entries are then passed along with the instructions down the pipeline. After execution, the

results of the instructions are written into their reserved RB entries using these indices.

Although this will allow reusing squashed instructions, it makes the reuse scheme more com-

plex: now the RST needs to be fixed after branch misprediction. This can be done by main-

taining checkpoints of the RST at each branch (just like would be done for a rename table) and

reverting the RST state to the checkpoint at the mis-predicted branch. Thus this solution

requires extra hardware state for RST checkpointing.

Indexing RB: Earlier we presented one way of indexing into the RB, the way we employ in

this thesis, by using the PC. There are other ways of accessing data in the RB; we describe

some of them here. One approach is to use the operand values to form an index into the RB.

The advantage of this approach is that it will map instances of an instruction that execute with
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different values to different RB locations, and thereby reduce collisions between such

instances. This will allow capturing more reuse from instructions that execute with many dif-

ferent values. But the problem with this approach is that it serializes the indexing process for

dependent chains of instructions: two instructions, if one is dependent on the other, cannot

access the RB simultaneously since the result of the source instruction will be needed to form

the index of the dependent instruction. This will prevent the reuse of the dependent chain of

instructions in the same cycle.

Another approach can be to use the instruction itself as an index into the RB. This

approach alleviates the problem inherent in the using operand values for indexing and allows

dependent instructions to access the RB simultaneously. It has another advantage: it allows

computation reuse — i.e., it allows results computed by one static instruction to get reused by

an instance of another static instruction, provided both static instructions have the same

instruction word (i.e., same opcode and same registers). The disadvantage of this approach is

that it requires the instruction word itself to index into the RB, and hence, unlike the PC based

approach it will not be able to overlap the RB access with the I-cache access.

Other information can be used along with the PC to reduce the collision between different

instances of the static instruction. One such piece of information is the branch history register.

The branch history is indicative of the path that program took to arrive at the current point. If

an instruction executes with operand values different from the ones with which it executed

earlier, then it is possible that sometimes this may be due to a different path followed by the

program. Hence, using the branch history information in conjunction with the PC may allow

us to map different instances of a static instruction to different sets in the RB, and hence,

reduce the conflicts among them. In this thesis, however, we use just the PC for indexing in
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the RB and leave the evaluation of the above variations to future work.

RB organization: Until now we have only considered monolithic RBs. Other ways of orga-

nizing the RB are possible. We note that the address and the memvalid fields in an RB entry

(along with the associative search for invalidations) are required only to maintain the integrity

of the load values. The RB can be split into two buffers: one for storing load values, called the

load RB, and the other for storing everything else (including entries for load addresses), called

the main RB. Figure 4.8 shows a load entry for unified and partitioned RB. This RB organiza-

tion has two advantages: first, the address and memvalid fields need not be maintained for

entries storing non-load instructions, reducing the overall storage required for the reuse

scheme; second, the main RB need not have the load invalidation logic as this logic would

only be present in the load RB, which probably would be much smaller than the main RB.

(The main RB will still have the invalidation logic for non-load instructions in scheme Sn and

Sn+d.)

One disadvantage of this organization is that it may make the reuse process more complex.

For example, now a pointer will need to be kept for loads from their load RB entry to their

main RB entry (as shown in Figure 4.8) to ensure correct load value reuse; this pointer will

also need to be checked for validity during the reuse test.

In this thesis, however, we assume a unified RB, and leave the task of evaluating different

RB organizations for future work.

4.6  Invalidations in RB: Issues and Alternatives

To maintain the RB consistent with the rest of the processor state, we employ three differ-
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ent types of invalidations (shown in Table 4.1). Since these invalidations require CAM [49]

accesses into the RB, supporting them may make the RB design complex. In this section, we

present various issues in supporting invalidations in the RB and discuss some ways of address-

ing these issues.

Some of the issues are as follows. The CAM accesses are likely to be slow for large RBs

since they require full access paths through the RBs. The latency of these accesses, and hence

that of invalidations, may limit the size of an RB. CAM ports may be expensive to implement,

making the support for multiple of them in an RB difficult. This may be an issue for scheme

Sn and Sn+d which may require to perform several invalidations per cycle. Finally, significant

power may be expended if invalidations are frequent, since invalidation operations drive inval-

idation lines that may carry large capacitive loads.

We discuss some of the ways in which the above issues may be addressed. The latency of

the CAM logic can be reduced by partitioning the RB. Each partition will have fewer RB

entries, making it feasible to provide fast invalidation paths. In most practical implementa-
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Figure 4.8 Load entries for scheme Sv in unified and partitioned RB.
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tions, the RB would be partitioned anyway for other reasons (e.g., for reducing the decoder

latency); the CAM logic can benefit from this partitioning. Other ways of RB partitioning are

also possible; for example, we have already discussed one type RB partitioning for reducing

the cost and latency of load invalidations in Section 4.5.3 (under RB organizations).

Although partitioning the RB may alleviate the invalidation latency, it may not solve other

issues due to CAM logic — namely difficulties in providing multiple ports and power con-

sumption. These issues may be especially problematic for the invalidations that occur fre-

quently, such as non-load and the dependent instruction invalidations (load invalidations are

caused only by stores and hence are relatively infrequent). One way to solve these issues is to

use invalidations as a fall-back mechanism, instead of as a primary mechanism, for maintain-

ing RB consistency. As a fall-back mechanism, it will be invoked infrequently, only when the

alternative (and possibly less expensive) primary mechanism is unable to maintain consis-

tency in the RB. Hence, the invalidation paths may not have to be as aggressively optimized,

higher invalidation latencies may be tolerated, and fewer CAM ports in the RB may be suffi-

cient. In the next two sections, we describe how we can reduce the frequency of non-load and

dependent instruction invalidations.

4.6.1  Non-load invalidations

These invalidations are performed in schemes Sn and Sn+d for preventing the reuse of stale

instruction instances. Their frequency can be reduced in several ways.

Exploiting existing reuse constraints: As mentioned in section Section 4.5.2 (under Reuse

constraints), schemes Sn and Sn+d do not reuse instructions (independent instructions in case

of Sn+d) if their source instructions (i.e., instructions writing their operand registers) are
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present ahead in the pipeline. We can exploit this constraint to reduce the number of invalida-

tions. Since the purpose of invalidations is to prevent the reuse of instructions whose operand

registers have changed, we will only need to invalidate instructions in the RB when there is a

danger of such an incorrect reuse. With the reuse constraint mentioned above, this danger will

exist only when there is no source instruction for that register in the pipeline. Thus, we only

need to invalidate instructions in the RB that use, for example, register r if the instruction

being committed is the last source of that register in the pipeline. If there are other sources of

register r in the pipeline, they will prevent the reuse of instructions that use register r (unless

the instructions using r are linked to them through dependence pointers), thereby also prevent

any incorrect reuse. The information whether there are more sources of a particular register in

the pipeline can be obtained from the rename table.

Version number for registers: We can also reduce the number of invalidations by using ver-

sion numbers for registers, instead of invalidations, for detecting stale instruction instances in

the RB. A version number counter can be associated with every architectural register, which

can be incremented every time a new value is written into its corresponding register. The ver-

sion numbers for the operand registers can be stored in the operand field in the RB entry. The

reuse test can then be changed from checking the valid bit to matching the operand register

version numbers in the RB with the current ones. With this arrangement, the non-load invali-

dations will only be needed when version number counters overflow.

The above two mechanism may help reduce the number of invalidations significantly. This

decrease can help reduce the number of CAM ports required in the RB for non-load invalida-

tions and may also decrease the power consumption in the RB. However, if we reduce the
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number of CAM ports in the RB, we may need a small buffer to save the extra invalidations

for times when there are more invalidations than the number of ports. The saved invalidations

can be performed at a later time when the CAM ports are available. This buffer will have to be

checked during the reuse test to see whether any outstanding invalidations exist for the oper-

ands of the instruction being tested for reuse (in which case, the instruction should not be

reused). Although these mechanism are likely to reduce the RB complexity, they have one dis-

advantage: they will reduce the frequency of invalid-instruction resurrection, one of the reuse

scheme optimizations discussed in Section 4.5.1.

4.6.2  Dependent instruction invalidations

These invalidations are performed in schemes Sn+d and Sv+d when instructions are evicted

from the RB. The purpose of these invalidations is to clean up the dangling dependence point-

ers in the instructions immediately following the evicting instruction in the different depen-

dent chains (note that the whole chains are not traversed). The frequency of these invalidations

can also be reduced by using version numbers, instead of invalidations, to detect dangling

dependence links. A version number counter can be maintained for each RB entry. This

counter can be incremented every time a new instruction instance is inserted in its correspond-

ing RB entry. When dependence links are made in the RB, the version number of the source

RB entry can also be stored in the dependent RB entry. The reuse test for dependent instruc-

tions can then be changed from just checking the RB indices for establishing dependence to

also checking the version numbers of the source instructions with the version numbers stored

in the dependent instructions. The dependent instructions are not reused if there is a version

number mismatch. With this mechanism in place, the dependence instruction invalidations
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will only need to be performed when a version number counter overflows.

In this thesis, however, we maintain consistency in the RB using the three types of invali-

dations. Further investigation of the various alternative mechanisms presented in this section

are left as future work.

4.7  Experimental Evaluation

The description of our simulator along with the parameters for the base configuration were

presented in Chapter 2. We extended this base simulator to incorporate the RB and the four

instruction reuse schemes described earlier. The RB is integrated with the processor pipeline

as described in section 4.4.

In our simulations, the RB is capable of supporting 4 reads, 4 writes, and 4 independent

invalidations simultaneously. We assume that all RB accesses — read, write or invalidate —

complete in one cycle, and that all schemes can reuse instructions in a single cycle (i.e., in the

Register Read stage). We also assume that schemes Sv, Sn+d, and Sv+d can reuse multiple

dependent results in a single cycle. (The impact of multiple-cycle reuse test is investigated

later, in Chapter 6.) The maximum length of a dependence chain reused in a cycle is equal to

the read bandwidth of the RB, which is 4 in the simulated configuration. In our reuse schemes

we employed the optimization of invalidation prevention and resurrection as described in

Section 4.5.1. These optimizations were used for loads in all schemes and for non-load

instructions in schemes Sn and Sn+d. In this chapter, we evaluate IR with one set of experimen-

tal parameters. The study of its sensitivity to some of these parameters (e.g., window size,

issue width, pipeline length, and reuse latency) is conducted later, in Chapter 6.



111

4.7.1  Experiments and Results

In subsequent sections, we present the results of several experiments we conducted to

evaluate the concept of dynamic instruction reuse. We first show the percentage of total

dynamic instructions that are reused and present the impact of this reuse on the performance

of the baseline processor. We then present what types of instructions get reused and how much

contribution does each instruction type make to total reuse. Then, we categorize the total

instruction reuse into squash reuse and general reuse, and show the contribution of either cate-

gory to total speedup. We evaluate the importance of the various optimizations we described

in Section 4.5.1, and then present statistics on the lengths of instruction chains reused. Finally,

we perform a brief evaluation of the impact of RB associativity on percentage instructions

reused and speedups (a more thorough evaluation of RB associativity is performed in

Chapter 5).

For most of our experiments we use fully-associative RBs of three different sizes: 256,

1024, and 4096 entries with LRU replacement policy. As mentioned earlier, we make no

attempt to be selective about what instructions get inserted into the RB; that will be the subject

of investigation in Chapter 5.

4.7.1.1  Instructions Reused

In this section we present the percentage of total dynamic instructions reused for the four

different schemes, with 3 different RB sizes for each scheme. Integer and graphics bench-

marks are presented in Figure 4.9, while FP benchmarks are found in Figure 4.10. We see that

all the analyzed benchmarks exhibit significant instruction reuse, especially for the larger

buffer sizes. For example, scheme Sv with 4096 entries reuses 76% of dynamic instructions
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for m88ksim and vortex, 67% for perl, 48% for gcc, 48% for viewperf, and 37% for povray.

Even for small RB sizes, the percentage of instructions reused are significant for several

benchmarks (24% for li, 19% for gcc, 26% for mpeg, and 16% for go).

From the figure we can make several observations about how effective the reuse schemes

are in reusing instructions, what impact increasing the RB size has on the reuse rate for differ-

ent schemes, and how much reusability is exhibited by different benchmarks. We present sev-

eral such observations below.

Comparing the four schemes with each other, we see that, in general, scheme Sv reuses the

most number of instructions. This is because the reuse test in this scheme is based on direct

value-comparison, and hence is the most accurate of all the reuse tests. (In some cases, other

schemes work better; we describe the reasons when discussing those schemes below)

Scheme Sn reuses the least number of instructions (in general). This should be expected

since it is the simplest and, hence, the most conservative of all schemes. Invalidations occur

very frequently in this scheme (being done every time a register or memory location is writ-

ten). Also, it does not reuse instructions if the sources of their operand registers are present

ahead in the pipeline. Because of these restrictions the number of instructions that are avail-

able for this scheme to reuse are small, hence this scheme does not benefit from the increase in

the RB size. However, frequent invalidations have one advantage: they help utilize small size

RBs (256 entries) better by only retaining more likely instructions in the RB. In fact, scheme

Sn performs better than scheme Sv for with a 256-entry RB for some benchmarks, like

m88ksim, perl, and viewperf. Since the number of invalidations in scheme Sv are small,

instructions that are not likely to be reused remain in the RB; hence the RB is not utilized as
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efficiently. On average scheme Sn performs as good as scheme Sv with 256-entry RBs.

Scheme Sn+d has lower frequency of invalidations than scheme Sn (since only independent

instructions are invalidated) and has the ability to reuse dependent chain of instructions. Con-

sequently, it is able to reuse more instructions than scheme Sn, and it benefits when the RB

size is increased to 1024 entries. However, invalidations and the fact that it does not reuse

independent instructions if sources of their operand registers are ahead in the pipeline (and

thereby does not start a chain) restrict the amount of instructions that can be reused; hence it

does not benefit as much from the 4096-entry large RBs for most benchmarks (except li, pov-

ray, applu, and fpppp). (We study the sensitivity of this restriction of IR to changes in underly-

ing microarchitecture in Chapter 6).

The amount of reuse captured by scheme Sv+d is comparable to that captured by scheme

Sv. This shows that restricting the value-comparison to independent instructions and using

dependence information for reusing the dependent instructions does not sacrifice the reuse

rate appreciably. Using the dependence information for reusing the dependent instructions,

facilitates collapsing chains of dependent instructions in a cycle.

In FP benchmarks, on average less amount of reuse is captured as compared to integer and

graphics benchmarks (24% in FP versus 48% in integer for the 4096-entry RB with scheme

Sv). Also, we observe that for many FP benchmarks increasing the RB size does not improve

the reuse rate, indicating that the capacity misses in the RB are very high for these bench-

marks and that the increase in the RB size up to 4096 entries is unable to eliminate them.

Finally, it may seem counter-intuitive that even with resurrection, schemes Sn and Sn+d do

not perform as well as scheme Sv. It would be expected that if scheme Sv is able to reuse an

instruction then that instruction should get resurrected (and hence reused) in schemes Sn and



116

Sn+d. The reason for this apparent mismatch is that the resurrection takes place at the commit

stage and, hence, does not help if the instructions that would have reused the resurrected

entries have already gone past the reuse stage in the pipeline.

4.7.1.2  Speedups

Figures 4.11 and 4.12 show percentage speedups ( (IPCwithRB-IPCwithoutRB)*100/IPCwith-

outRB) obtained with the different reuse schemes for varying the RB sizes. The speedups are

not as impressive as the percentage of instructions reused, however, they are still significant in

many cases; they range from 1% to 7% for a 256-entry RB, from 4% to 12% for a 1024-entry

RB, and from 11% to 19% for a 4096-entry RB.

Comparing the percent instruction reuse results in Figures 4.9 and 4.10 with the speedup

results, we see the speedup results in general follow the same trend as the reuse results: in

cases where more instructions are reused, more speedup is observed. Scheme Sv and Sv+d

show the highest speedups, specially for the large RBs, with Sv averaging 13% for integer,

12% for graphics, and 10% for FP benchmarks with the 4096-entry RBs. Although Sn and

Sn+d don’t show large speedups on average (with averages less than 6% and 10% respec-

tively), they still show significant speedups for some benchmarks, such as tomcatv (8% and

19%), mgrid (12% for both), applu (10% and 19%), and povray (6% and 7%).

4.7.1.3  Reuse Characteristics

To study the reuse characteristics of different instruction types, we divide the instructions

into the following broad categories: loads, address calculations, control and integer. The cate-

gory address calculations consists of loads and stores for which only the address calculation
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part is reused. (As noted earlier, for stores we reuse only the address calculation and not the

actual memory operation). The integer instructions are further divided into three subcategories

based on the type of operands: two reg operands, one reg operands and immediate.

Reuse rates of different instruction categories: Table 4.2 shows the percentage of instruc-

tions reused from each category using a 4096 entry RB. The numbers are shown for integer,

Instruction Categories
Instruction Reused (%)

 Sv  Sn  Sn+d Sv+d

SpecInt ‘95

Loads (value) 31.6 8.1 12.3 30.3

Address Calculations 41.0 16.4 21.5 40.2

Control 45.4 2.4 16.5 42.0

Integer

two reg operands 43.8 15.2 24.8 41.2

one reg operand 54.2 20.1 34.5 52.2

immediate 91.2 98.7 98.7 91.0

Floating Point 8.2 0.0 5.3 6.9

SpecFP ‘95

Load (value) 27.5 18.8 25.2 28.2

Address Calculations 19.9 11.3 15.1 19.3

Control 44.2 1.2 22.3 41.8

Integer

two reg operands 19.9 5.4 15.8 19.5

one reg operand 38.9 10.8 31.9 38.7

immediate 77.1 79.1 79.0 74.3

Floating Point 6.1 0.2 2.1 5.0

Graphics

Load (value) 36.9 18.7 23.0 35.3

Address Calculations 36.7 16.4 21.6 33.9

Control 39.2 3.1 15.1 35.9

Integer

two reg operands 34.0 10.5 18.5 29.0

one reg operand 45.6 19.3 30.3 41.9

immediate 74.3 99.2 99.1 74.1

Floating Point 6.6 0.3 1.5 4.6

Table 4.2  Percent reuse per instruction category for a 4096 entry RB
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floating-point, and graphics benchmarks (averaged over the respective benchmark set). Thus

the numbers in the table should read as, for example, 43.8% of all integer instructions with

two register operands in integer benchmarks are reused with scheme Sv. As expected, most

computation involving immediate constants is reused. Likewise, reuse of address calculation

is also not very surprising. Somewhat surprising is that a large number of load instructions

could be reused (an average of 21.2% for scheme Sv). This reduces the demand for data cache

bandwidth, which can possibly be exploited by reducing the number of data cache ports.

Another observation we can make from the results presented in the table is that very few

floating point instructions are reused (e.g., even for FP benchmarks only 6% of the FP instruc-

tions were reused by the most aggressive reuse scheme). This should not come as a big sur-

prise. There are two reasons for low reusability of FP instructions. First, the FP instructions

often operate on large amounts of data: operating on big matrices, or arrays. To capture signif-

icant amount of floating point repetition, the RB may need to be able to buffer many instances

of the same instructions. For an RB of a limited size this may not be possible, hence the reuse

rate for the FP instructions are low. Second, as mentioned in Chapter 3, much of the repetition

in the programs is often due to instructions that perform overhead work — like accessing

complex data-structure elements, calculating memory addresses, function prologue and epi-

logue, etc. Floating point instructions are seldom used for performing these overhead work

and are mostly used to perform the “actual computation” on the data input to the program. As

shown in the last chapter, less repeatability falls on instruction slices originating from the pro-

gram input data, hence floating point instructions are a less repeatable category to begin with.

Contribution of different instruction categories to total reuse: Figure 4.13 shows the con-
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tribution of each instruction category to the total instruction reuse for 3 different RB sizes for

each reuse scheme. The figure shows three plots, one for each benchmark set, and each plot is

an average over all programs in that benchmark set. We observe that each instruction category

makes a measurable contribution to the total instruction reuse; reuse is not limited to some

particular instruction type. However, some categories make more contributions than the oth-

ers. For example, it is worth noting that almost 40-50% of the reuse comes from the load

instructions (about 15%) and address calculations (25-35%). Also, the FP instructions make a

very small contribution to the total reuse (most contribution being ~7% in the case of FP

benchmarks for scheme Sv with a 4k-entry RB). This would be expected from our previous

observation that FP instructions are not as amenable to reuse as integer instructions.

4.7.1.4  Lengths of reused dependence chains

As mentioned several times in this thesis, IR can reuse chains of dependent instructions in

a same cycle. In Table 4.3, we show the length distribution and the average lengths of such

reused chains. The distribution numbers, which are averages over all benchmarks programs,

show percentages of all chains of instructions that are 1-instruction long, 2-instruction long,

and so on. The maximum length in this distribution is 4 because we can reuse at the most 4

instructions per cycle, since our base machine is 4-way superscalar. From the table, we see

that overall most of the reused chains are 1-instruction long. However, significant amount of

2- and 3-instruction chains are also reused. For example, in scheme Sn+d for integer bench-

marks, on average, 17.7% of the dependent chains are 2 instruction long, 4.98% are 3 instruc-

tion long, and so on. We also see that the average lengths of the dependent chains of
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instructions that get reused in a cycle to be typically between 1.30 and 1.45.

4.7.1.5  Squash Reuse vs. General Reuse

As we have described in Chapter 1, instructions reuse can occur due to squash reuse or

general reuse (both illustrated in Figure 1.1 and Figure 1.2 of Chapter 1, respectively). In this

section we present the relative contribution of these two types of reuse to the total number of

instructions reused and the overall performance improvement. First, we describe how we sep-

arate out the contribution of the general and squash reuse. To do so, we simulate each bench-

mark twice. The first simulation is the usual simulation, like that done for other results in this

chapter; this gives us the overall reuse rates and speedups. In the second simulation, we do

everything exactly as in the first simulation except that we only reuse those instructions that

Schemes
Dependent Chain Length Distribution (%)

Average Length
1 2 3 4

SpecInt ‘95

Sv 70.83 19.96 5.72 3.49 1.43

Sn+d 75.66 17.70 4.98 1.65 1.33

Sv+d 70.10 21.86 5.29 2.74 1.41

SpecFP ‘95

Sv 63.07 30.49 4.64 1.78 1.45

Sn+d 62.07 32.78 3.77 1.37 1.45

Sv+d 64.38 30.03 4.00 1.59 1.43

Graphics

Sv 67.40 25.49 4.83 1.27 1.42

Sn+d 69.62 26.00 3.30 1.07 1.36

Sv+d 68.07 26.35 3.93 1.64 1.39

Table 4.3 Percentage of dependent chains that are of lengths 1, 2, 3, and 4. The number are
averages over programs in each benchmark suite. Average chain lengths are also shown. The
numbers are not shown for scheme Sn, since it does not reuse dependent chain of instructions.
All numbers are for a full-associative 4096-entry RB.
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were entered in the RB speculatively and were later squashed. To recognize such instructions

in our simulator, at the time of squash recovery, for each executed instruction that we throw

away we set a flag in the RB entry of that instruction. Only those RB entries which have this

flag set are considered for reused. This flag is reset after first reuse. The reuse rates and speed-

ups obtained in this manner give us the contributions of the squash reuse to these two metrics.

The remaining portion in the overall reuse rates and overall performance is attributed to gen-

eral reuse.

In Figure 4.14(a), we present a break down of the number of instructions reused into

squash reuse and general reuse. In this figure we show the information for integer and graph-

ics benchmarks for all three RB sizes (256-, 1024-, and 4096-entry) with scheme Sn+d (break-

downs for other schemes and for floating point benchmarks are shown in Appendix A). We

observe that the relative contribution of squash reuse to total reuse decreases as the RB size

increases. For a 256-entry RB, the amount of reuse due to squashes is, in general, within the

range of 10-30% (with some exceptions); for a 4096-entry RB this range is typically 5-10%.

The squash reuse contributions are more for small RBs because, small RBs are less effective

in performing general reuse since for that instructions often need to be buffered for a long

period of time. Many squashed instructions, however, are re-encountered in a short while after

the squash, and hence can be reused by a small RB. As the size of RB is increased, it become

more effective in performing general reuse, and given massive amounts of instruction repeat-

ability present in most programs, the contributions to total reuse of general reuse increases,

and accordingly the contribution of squash reuse decreases.

Figure 4.14 (b) separates the performance obtained by squash reuse from that obtained by

general reuse. As was the case in Figure 4.14 (a), we observe that the contribution of squash
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reuse to overall performance decreases with the increase in the RB size. Barring a few excep-

tions (e.g., m88ksim and vortex) the typical contribution of squash reuse to total performance

improvement is between 5-25%. We also observe that for several benchmarks (e.g., m88ksim,

vortex, and gcc) the fraction of the speedup attributed to squash reuse is greater than the con-

tribution of squash reuse to the total number of instructions reused (compare with Figure 4.14

(a)). This suggests that squash reuse is more time critical than general reuse — the squash
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penalty impacts the bottom line more than the latency of an instruction (or a set of instruc-

tions), especially in a dynamically scheduled processor.

4.7.1.6  Impact of reuse scheme optimizations

Until now all experiments that we performed used the two reuse optimizations presented

in Section 4.5.1: the invalidation prevention and the invalid instruction resurrection. In this

section, we show the number of times these optimizations were applied in prior experiments

and the amount of impact they had on the percentage instructions reused and speedups gained.

To show how often these optimizations were applied, we present in Table 4.4 the percent-

Schemes

Load invalidations Non-load invalidations

Prevented
(% of total
invalidation
attempts)

Resurrected
(% of total
successful

invalidations)

Prevented
(% of total
invalidation
attempts)

Resurrected
(% of total
successful

invalidations)

SpecInt ‘95

Scheme Sv 41 29

Scheme Sv+d 41 30

Scheme Sn 55 42 22 20

Scheme Sn+d 44 20 35 44

SpecFP ‘95

Scheme Sv 41 24

Scheme Sv+d 36 20

Scheme Sn 44 26 37 41

Scheme Sn+d 38 23 56 34

Graphics

Scheme Sv 36 28

Scheme Sv+d 28 45

Scheme Sn 36 47 47 37

Scheme Sn+d 25 42 19 40

Table 4.4 Invalidation prevention and resurrection rates for different reuse schemes. The
numbers are averages over all benchmark programs for 1024-entry RB.
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age of invalidations that were prevented and the percentage of invalid instructions that were

resurrected for different reuse schemes. The numbers presented are the arithmetic averages

over the benchmark programs and are for a 1024-entry RB. We see that a significant percent-

age of invalidations, both load and non-load, were prevented and resurrected. For example, for

integer benchmarks, 44% of load invalidations were prevented and 20% of invalid loads were

resurrected on average when using scheme Sn+d. The corresponding numbers for non-load

invalidations were 35% and 44%, respectively. In general, the percentages of invalidation pre-

ventions and resurrections were between 20 to 40% (with some exceptions).

To show the impact of these optimizations on the reuse results, we present in Figures 4.15

and 4.16 the average percentage instructions reused and the average speedup gained with and

without these optimizations. From these figures, we see that schemes Sn and Sn+d are affected

more significantly by these optimizations than the other two schemes. For example, for

scheme Sn+d with a 4096-entry RB, the average reuse decreases from 25% to 18% for integer

benchmarks and from 23% to 14% for graphics benchmarks when not using these optimiza-

tions (Figure 4.15); the corresponding decrease for scheme Sv is from 48% to 46% and from

40% to 39%, respectively. Similar trends are also seen for the speedup results (Figure 4.16).

This difference in impact is expected, since schemes Sn and Sn+d are more dependent on inval-

idations than schemes Sv and Sv+d. We also note from the results that without the optimiza-

tions scheme Sn+d is less likely to benefit from increasing the RB size, since it becomes more

encumbered with invalidations.

4.7.1.7  Set Associative RB

Until now we have used fully associative RBs in our experiments. In this section, we
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briefly show how a set-associative RB compares with a fully-associative RB. A more thorough

evaluation of RB associativity and RB size) is conducted in Chapter 5.

Apart from eliminating the conflict misses between different instructions, a fully-associa-

tive RB allows buffering several instances per instruction, and hence permits the reuse of

instructions that produce several different instances. A set-associative RB, on the other hand,
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can only buffer as many instances per instructions as its set size (assuming the only PC is used

for indexing the RB). Hence, a set-associative RB may be unable to capture the reuse of

instructions that produce a large number of different instances.

Keeping this explanation in mind, we see the results in Figure 4.17. In this figure, we

present the (a) reuse rates and the (b) speedups for a 4-way set-associative and a fully associa-

tive RB with 4096 entries. The results are shown for integer and graphics benchmarks and are

obtained using the scheme Sv. We observe that for most benchmarks the reuse rates and the

resultant speedups for 4-way associative RBs are comparable to the fully-associative ones

(e.g., for go, viewperf, povray, compress). But for benchmarks, like perl, vortex, ijpeg and gcc,

fully associative RBs perform far better than 4-way associative RBs. The reason for this dif-

ference is, as explained above, due to the ability of the fully-associative RB to retain many dif-

ferent instances per instruction. We will look at the size and associativity requirements more

thoroughly in Chapter 5.

4.8  Related Work and Discussion

Harbison in [23, 22] proposes a stack-oriented architecture, the Tree Machine, which uses

a hardware mechanism, the value cache, for eliminating common sub-expressions and loop

invariant expressions. He keeps the result of a computation (called a phrase) in the value

cache. A bit vector, called a dependency set, is associated with each result in the value cache

to indicate the variables used in computing the result; the bit positions are determined by the

address of the variables. When an address is overwritten, all the results in the value cache

which have the bit set for that address are invalidated. If a phrase is encountered again, recom-
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putation is avoided by reading the result from the value cache. This approach is similar to our

second reuse scheme, scheme Sn. Both perform reuse based on the architectural names of the

operands (scheme Sn uses the register specifier, while the value cache uses the memory

address). The differences are highlighted later in this section.

Richardson [36, 37] introduces the notion of redundant computation, which is computa-

tion that produces the same result repeatedly because it gets the same value for its operands. In

this work, the results of floating point operations are stored in a cache, called the result cache.

The index of the cache is obtained by hashing the operand values. The result cache is accessed

in parallel with executing an floating point operation. If the result is found in the result cache

then the operation is halted.

Oberman and Flynn [34], propose the use of division caches and reciprocal caches for

capturing the redundancy in the division and square root computation. The division caches are

similar to Richardson’s result cache, but for divisions only. The reciprocal caches hold the

reciprocals of the divisors. They help convert the high latency division operation to a relatively

low latency multiply operation. These caches are accessed using the bits from the mantissa of

the operands.

There are several differences between our work and the work mentioned above. First, the

above techniques are more special purpose. The value cache [22, 23] approach is tailored for

an architecture which expresses computation in the form of parse trees (Tree Machine). The

result caches [36], and the division and reciprocal caches [34] target only floating point opera-

tions. Our approach is general purpose in that it does not assume any special architecture, and

it captures reuse of any type of instruction (except stores). Second, the techniques referred to

above access their respective result buffers (value cache in [23], result cache in [36] and divi-
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sion and reciprocal caches in [34]) by using either the operand address [23] or operand values

[36, 34], which are only available later in the pipeline. Thus, the result buffer access is delayed

until the execute stage, which restricts the usefulness of these techniques only to instructions

which have multi-cycle latency ([36] uses it for floating point instruction, while [34] uses it for

floating point divides only). In contrast, the reuse schemes presented in this thesis access the

RB using the instruction address, and hence reuse occurs while the instruction is still in the

decode stage. This has two advantages: first, even single cycle instructions benefit from reuse;

second, the reused instruction need not flow down the pipeline, which frees machine resources

for other instructions to use. The third difference is, since other techniques use operand values

for indexing in the result buffer, unlike our schemes, they cannot reuse multiple dependent

instructions simultaneously (the result of one instruction would be needed to form the index

for the dependent instruction)

One of the benefits of instruction reuse is that it collapses true dependencies. Other tech-

niques based on value prediction have been proposed to achieve the same effect [27, 26]. The

fundamental difference from our schemes is that these approaches are speculative. The

instructions still must execute to generate result for later verification. Our schemes are non-

speculative, and the reused result is guaranteed to be correct. For a more elaborate comparison

of the similarities and differences of these two techniques, the readers are referred to [45].

4.9  Summary and Conclusions

In this chapter, we introduced and studied the concept of dynamic instruction reuse. We

presented four schemes for exploiting the phenomenon. All four schemes buffer the outcome
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of an instruction in a reuse buffer from where future instructions can access it (if the operands

match). The schemes differ in the way that they track the reuse status of an instruction:

scheme Sv uses operand values, scheme Sn uses operand names, scheme Sn+d uses operand

names as well as dependence information, and scheme Sv+d uses operand values and the

dependence information. By dynamically reusing instruction results, we are able to (i) cut

down on the resources required to execute the instructions, and (ii) cut down on the time that it

takes to know the outcomes of sequences of dependent instructions, i.e., reduce the length of

critical paths of computation.

We evaluated the effectiveness of the proposed schemes using 3 different buffer sizes: 256,

1024, and 4096 entries. Significant instruction reuse was found in many cases (e.g., 76% for

vortex and m88ksim, 48% for gcc, viewperf and tomcatv), with as many as 76% instructions

reused in two cases. Comparing the four schemes, we see that scheme Sv, being the most

aggressive scheme, reused the most instructions (average reuse over SPEC ‘95 integer, SPEC

‘95 floating point, and graphics benchmarks were 48%, 24%, and 40%, respectively, for the

4096-entry RB). Scheme Sn, being the most conservative scheme, reused the least number of

instructions (average reuse rates for integer, floating point and graphics benchmarks were

16%, 15%, and 12%, respectively, for 4096-entry RB). Scheme Sn+d improved upon scheme

Sn by allowing the reuse of the dependent instructions, and consequently performed better

than Sn (average reuse for the three benchmark sets were 25%, 19%, and 23%, respectively).

Finally, scheme Sv+d augmented scheme Sv by reusing dependent instructions in the same

cycle only through the dependence information (and not through values). This scheme not

only facilitated the reuse of dependent instructions in a value-based scheme, but it also

attained the reuse rates close to scheme Sv (averages for the three benchmarks sets were 45%,
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23%, and 36%, respectively).

We presented other reuse characteristics, such as, the reusability of different instruction

types and the contribution of each instruction type to total reuse. These results showed that

most of the instruction categories were amenable to reuse; a significant number of instructions

were reused from all the broad categories of instructions considered (e.g., 31% of loads were

reused, 44% of 2-register operand integer instructions were reused). We saw that although

most instruction categories are amenable to reuse, loads and address calculation contribute the

most to the overall reuse (nearly 50% or more of total reuse came from these two categories).

We also measured the resulting speedup in the program execution time. We saw that

speedups follow the trend in the reuse rates, i.e., an increase in reuse rates almost always

engenders a corresponding increase in speedups over base case. However, in absolute terms

the speedups obtained were small in many cases, specially for scheme Sn and Sn+d (they are

less than 5% in many cases). However, for schemes Sv and Sv+d we saw significant improve-

ment in performance with more than 10% speedups in many cases.
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Chapter 5

Reuse Buffer

Characterization and Management

As may be obvious from the previous chapter, the Reuse Buffer (RB) is the hardware

structure central to the instruction reuse (IR) technique. It provides space for preserving the

state of instructions and, depending on the reuse scheme, has mechanisms for ensuring the

consistency of these instructions when the state of the machine changes.

The RB is a complex structure with its CAM (content addressable memory) [49] search

logic for selectively invalidating instructions and multiple ports. We would like to keep this

structure small so as to keep it implementable. Yet we would also want to achieve high reuse

rates. We can cater to both requirements by having a small RB and managing it efficiently —

i.e., by judiciously deciding which instructions get to reside in the RB so that the reuse rate is

maximized. In this chapter, we study the topic of RB management. We present four ways for

managing the RB efficiently to improve reuse rate. Three of these policies are enhancements

to existing policies (such as LRU) and the fourth is a novel management policy that attempts

to tackle the problem of buffer management at a more fundamental level.

Before exploring the management policies for the RB, we attempt to better understand the
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behavior of the RB itself. For this purpose, we characterize the RB with respect to its three

main parameters — size, associativity, and current management policies — showing how the

reuse rates change when each of these parameters are varied. We also present the limit reuse

rates for different RB sizes and associativities to ascertain the best reuse rate we can hope to

achieve for different RB configurations. Aside from characterizing the RB, this study — espe-

cially the comparison between the limit and the real reuse rates — exposes the inefficient use

of the RB, and hence sets the stage for the RB management studies which follow.

This chapter is laid out as follows. In the next section, we present the experimental setup

specific to this chapter. Thereafter, in Sections 5.2 and 5.3, we characterize, respectively, the

size and associativity of an RB. In Section 5.4, we describe four new RB management poli-

cies, presenting the rationale behind using them and discussing their advantages and disadvan-

tages. In Section 5.5, we experimentally evaluate these policies. And, finally, we summarize

this chapter and provide conclusions in Section 5.6.

5.1  Experimental Setup

The experiments in this chapter are performed using the timing simulator described in

Chapter 2. The processor model used is the same as the one described in Section 4.4, with one

exception: in these experiments, we insert instructions in the RB at the commit stage of the

pipeline. We do so to study the RB characteristics arising because of the actual program rather

than because of speculation. The instruction reuse is implemented using scheme Sv, the most

aggressive reuse scheme.

To obtain the maximum reuse rates achievable by different RB sizes, we use a RB man-
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agement policy similar to the Belady’s optimal management policy [7]. In this policy, we use

the oracle information about when each instruction is going to be reused in the future to

decide which instructions to keep in the RB. However, there is a slight difference between our

and Belady’s algorithm: the original Belady’s algorithm only controlled the replacements

from a storage, whereas our algorithm controls both storage replacements and insertions.

More specifically, the Belady’s algorithm replaces those items from a storage which will be

needed farthest in the future, but it always inserts the incoming item in the storage, even if the

incoming item will be needed further away in the future than the item that it replaces. In our

algorithm, we not only evict those items from the storage which will be needed farthest in the

future (like Belady), but we also do not insert an incoming item if it is going to be needed fur-

ther away in the future than the item that it will replace. Although, intuitively, it appears that

our algorithm should be optimal (and the experiments show that it performs better than the

original Belady’s algorithm), we do not yet have a formal proof for it’s optimality. Hence, in

spite of our conjecture that this algorithm is optimal, we restrain ourselves from naming it as

such in this thesis; instead, we call it a limit policy. However, the reuse rates from this policy

are taken to be the upper bounds on the reuse rates achievable by different RB sizes.1

To keep the simulation requirements manageable, we only use the SPEC’95 integer pro-

grams for the studies in this chapter.

1. Even if these reuse rates were not true optimal, they will still be quite high, and since it is inconceivable that
these high reuse rates can be attained by any practical policy, they will still serve as a useful upper bound.
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5.2  Characterizing RB: Size

In this section, we determine how the reuse rates — i.e., percentages of dynamic instructions

reused — vary with the RB size. The results of this characterization are presented in

Figure 5.1. The reuse rates are obtained for 4-way associative RBs ranging in size from 256-

to 64k-entries (sizes are shown in log2 of number of RB entries). We show results for three

commonly used replacement policies — LRU, FIFO, and Random — and for the limit policy

(labelled as limit:4way). On this graph, we also include the reuse rates for full-associative RB

managed using the limit policy (limit:full). This curve is meant to provide the absolute upper

bound on the reuse rate for every RB size.

Next, we present the different ways we can interpret the graphs in Figure 5.1 and also

present several observation we can make from it.

• First, for most benchmarks, we see that the reuse rate increases steadily with the size of

the RB. This result confirms what would be expected given that there is a significant

amount of repetition in programs.

• In Chapter 3, we had seen what fraction of a program gets repeated (Table 3.1). Analo-

gously, in Figure 5.1, we show what fraction of a program gets reused. This result is pro-

vided by the highest point on the limit:full curve, which shows the maximum number of

instructions that can be reused in programs. Comparing this result with the results in

Table 3.1, we see that most of the repetition present in programs can be reused; the non-

speculative (and, hence, conservative) nature of IR does not fundamentally limit the

amount of repetition it can capture.

• Further the limit:full curve also indicates the minimum number of RB entries required to
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attain a certain level of the reuse rate. For example, to attain a reuse rate of 50% in vortex

we need an RB with at least 512 entries. We also note from the limit:full curve that a sig-

nificant amount of reuse can be captured with small number of RB entries —e.g., more

than 50% of dynamic instructions can be reused for most benchmarks with less than 2K

RB entries.

• For most benchmarks (except ijpeg and li), the limit:4way curve closely follows the

limit:full curve, suggesting that an associativity of 4 may be sufficient to attain the reuse

rates close to the absolute limit. However, for ijpeg and li, higher associativity may be

required. (Associativity is more thoroughly investigated in the next section.)

• We see that there is a significant gap between the limit:4way and the LRU:4way curves.

For several benchmarks (e.g., perl, go, gcc), the limit policy achieves the same level of

reuse as the LRU with an RB nearly 8 times smaller. The RB size needed by the limit pol-

icy is at least 2 times smaller than the LRU for the same level of reuse in all cases. This

gap indicates that there is significant room for improving the reuse rate of an RB — or,

alternatively, reducing the size of an RB keeping the same reuse rate — by better manage-

ment of RB space.

• Finally, we note that the reuse rates obtained by LRU, FIFO, and Random replacement

policies are comparable, and that FIFO and Random policies are unable to bridge the gap

between the limit and LRU policies. The inability of these commonly used policies to

solve the problem (we discuss the reasons later in Section 5.4) provides further motivation

for investigating better RB management policies.
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5.3  Characterizing RB: Associativity

Before we move on to the topic of RB management, we also characterize the RB with respect

to its associativity. In an RB, associativity helps in two ways: (i) by allowing multiple instruc-

tions to reside in the same set, hence reducing the conflict misses (as in caches), and (ii) by

permitting the storage of multiple instances of instructions in the RB, thus enabling the reuse

of instructions whose repetitions are interspersed with their other (non-matching) instances

(this is unique to IR). In this section, we first determine how interspersed the reuse is in gen-

eral and thereby ascertain an upper bound on the amount of reuse that can be captured by an

RB of a certain degree of associativity. After that, we present the overall effect of RB associa-

tivity on the reuse rates.

5.3.1  Effect of storing multiple instances in RB on reuse rates

As mentioned above, an instruction may get repeated after several other of its instances

have been encountered. If every dynamic instruction is inserted in the RB, the reuse of such an

instruction is possible only when the RB associativity is large enough to store the instruction

and all its intermediate instances. The amount of reuse, for example, that a 4-way associative

RB can capture is limited by the amount of reuse that exists at a distance of up to 4 instances

away. That is, a reuse that occurs after 3 instances may be captured by a 4-way RB, while the

one that occurs after 7 instances will not be. In this section, we try to get a feel for the upper

bound on the amount of reuse for different RB associativity — or, alternatively, the least

degree of associativity needed to capture a certain amount of reuse.

In Table 5.1, we show what percent of total reuse is present at which reuse distance. The
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total reuse is defined as the reuse that can be captured using an infinite size (very large) RB

(this total reuse is shown by the highest point on the limit:full curve in Figure 5.1). The reuse

distance is defined as the number of instances after which an instruction gets reused — for

example, if an instruction is reused after 7 of its other (non-matching) instances are encoun-

tered, then the reuse distance is considered to be 8. The greater the reuse distance, the more

instances need to be saved to capture the reuse, and, hence, the higher is the required associa-

tivity. In the table, we show the reuse distances from 1 to 4096 (at increments of a power of 2)

and the fraction of total reuse that exists within that distance. From the table we can make the

Reuse
Distances

% of Total Reuse in Programs

go m88k ijpeg perl vort li gcc comp

1 57 62 35 56 58 49 51 73

2 63 74 37 66 64 55 59 76

4 71 85 41 86 73 61 69 84

8 77 88 50 90 83 70 75 92

16 82 90 52 95 91 78 81 94

32 87 92 61 98 94 84 85 95

64 90 93 69 99 95 86 89 96

128 92 95 74 99 96 87 91 96

256 94 95 78 99 97 88 95 97

512 97 100 86 100 98 88 98 98

1024 98 100 95 100 98 93 99 99

2048 99 100 98 100 99 98 100 100

4096 99 100 99 100 99 99 100 100

Table 5.1 Percentage of total reuse in programs at different reuse distances (see text for
definition). The reuse distances are in terms of the number of instances of the same
instruction. Thus, 77% of reuse at the distance of 8 in go means that 77% of total reuse present
in the program is encountered within 8 instances of the same instruction.
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following observations:

• For all benchmarks, except ijpeg and li, more than 50% of total reuse present in programs

exists at a distance of 1 — meaning, we can capture more than 50% of available reuse by

only buffering the last instance of instructions, i.e., 1-way associativity is sufficient. In

general, more than 70% of total reuse exists within the distance of 4, meaning we only

need to buffer the last four instances to capture this fraction of reuse. Thus, we note that

for most programs we don’t need to look beyond a large number of instances for reuse; the

majority of reuse exists “near-by”. Thus, a high associativity may not be essential for cap-

turing high amounts of reuse.

• For, ijpeg and li, the reuse distances are longer. For example, to capture 62% of total reuse

in ijpeg we need to be able capture reuse that occurs up to the distance of 32. Thus, to cap-

ture large amounts of reuse, many instances need to be saved for these benchmarks,

requiring a highly associative RB. In Section 5.2, we had stated for ijpeg and li, based on

the divergence between the limit:4way and limit:full curves, that these programs may

require a higher associativity; the results here corroborate this statement.

5.3.2  Overall effect of associativity on reuse rates

In this section, we show how the reuse rates vary with associativity. In Figure 5.2, we

show the reuse rates for RBs with associativities 1, 2, 4, and 8, and sizes varying from 256- to

64k-entries. The numbers are presented for LRU and limit management policies. We can

make the following observations from this figure:

• The associativity becomes important mainly for large buffers. For small buffers, the reuse
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rates are comparable for all four associativities. The advantages of increasing the associa-

tivity are small for small buffers because, generally, the accesses are uniformly distributed

over all entries. Thus, increasing the associativity does not reduce the contention. In fact, it

may sometimes increase contention — e.g., when a set merges with another set with a

high amount of contention after the associativity is increased — causing a degradation in

the reuse rate (e.g., in m88ksim, for a 512-entry RB).

• Comparing the limit and LRU curves, we notice that higher associativity reduces the gap

between the two management policies — e.g., the gap between 8-way limit and LRU

curves is, in general, smaller than that between the 4-way curves. However, there is still a

significant gap between the two management policies, especially for small RB sizes (e.g.,

for m88ksim, perl, vortex, and go). Thus, increasing the associativity by itself does not

solve the problem of less than optimal buffer usage; we need to develop better manage-

ment policies for that purpose.

5.4  RB Management

Next, we discuss RB management, by which we mean deciding how the space in the RB is

used, i.e., which instructions get to reside in the RB. Until now, we have only used regular

replacement policies, such as LRU, FIFO, and Random, for managing the RB, without using

any special enhancements for improving the reuse rates. As we can see from Figure 5.1, these

regular policies perform far below the limit level, and that we need better ways of managing

the RB to utilize it more efficiently.

Intuitively, the reason for the sub-limit performance of the regular policies is that often
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they evict reusable instructions, instead of unreusable instructions, from the RB. Thus, if we

are to develop a new management policy to improve RB utilization then this new policy

should prevent such non-optimal evictions from taking place. There are two broad

approaches: (i) by controlling insertion, i.e., by reducing the traffic into the RB (only inserting

instructions that are likely to be reused) and hence reducing the chances of (reusable) instruc-

tions in the RB getting evicted; and (ii) by controlling replacement, i.e., by not evicting

instructions that are likely to be reused. However, there can be many ways of implementing

these two approaches. In this thesis, our purpose is not to perform an exhaustive study of vari-

ous buffer management strategies. Instead, we wish to focus on and understand the main

causes of poor buffer management; therefore, we develop and study a small group of policies

that attack what we believe are the main reasons for sub-limit RB usage. By learning about

why these policies work (or don’t work), we can gain insight into how to design more effec-

tive management policies for the RB.

We study four management policies. Two of these are insertion policies, i.e., they identify

instructions that are not likely to get reused and don’t insert them in RB. The third is a replace-

ment policy, which identifies instructions that are likely to get reused and does not evict them

from the RB. The fourth — unlike the other three, which are simple enhancements to the reg-

ular management policies — is a novel management policy. It performs both selective inser-

tion and selective replacement, and is designed along the lines of the limit policy. This policy

determines the expected distance to reuse for instructions and uses this distance to schedule

them in the RB, always giving priority to instructions whose reuse is nearer (like the limit pol-

icy).

Next, we describe these policies along with the rationale for using them.
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5.4.1  Insertion Policy

5.4.1.1  Filter instructions that do not get reused (FnReused)

As mentioned above, the regular policies perform below limit level because they evict

reusable instruction from the RB when they should not have. We have seen that many times

these reusable instructions are evicted by instructions that themselves do not get reused. We

can prevent such evictions from taking place if we can filter out the unreusable instructions

from the insertion stream.

One way of detecting the unreusable instructions is to track their history: if they were not

reused in the past they are unlikely to get reused in the future. In the FnReused (Filter not

Reused) policy, we use such a method to detect unreusable instructions.

In this policy, we employ a table of counters indexed by the PC. Every time an instruction

is evicted from the RB without being reused, the counter for this instruction in this table is

incremented. If the counter reaches a pre-defined threshold value, then a bit is set in that table

entry indicating that the instruction is “unreusable”. If, however, the instruction gets reused

before the threshold value is reached then the counter is reset back to 0. This table is consulted

at the time instructions are inserted in the RB; if an instruction is found to be tagged “unreus-

able” then it is not inserted in the RB. Note that the counter table is separate from the RB and

that its each entry is much smaller than an RB entry. Hence, it can potentially buffer state for a

much larger number of instructions than the RB.

Although we have described the policy using a separate table (and we also evaluate it this

way later), another place for storing the counters and the reusable/unreusable bits can be the I-

cache. The counters and the bits can be maintained per instruction (or per couple of instruc-
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tions) in the I-cache. The advantage of this design is that we do not have to manage another

table structure; the counters and the bits are managed as part of I-cache itself. The disadvan-

tage is that it make the I-cache design more complex.

The threshold value needs to be chosen so that it not only minimizes the number of times

potentially reusable instructions are tagged as “unreusable” (which may happen when the

threshold value is too small), but it also minimizes the number of times the actually unreus-

able instructions escape untagged (which may happen when the threshold value too high). The

threshold value may also be dictated by the hardware cost of implementing the counters since

the counter width is determined by it.

Finally, one issue with this policy is that it does not have a self-correction mechanism —

i.e., once it tags an instruction as unreusable, it cannot reset the tag if the instruction becomes

reusable (e.g., due to a different program phase). We will see the impact of this limitation in

the evaluation section.

5.4.1.2  Filter instructions that are “Not-Ready” (FnReady)

One of the reasons why some instructions don’t get reused is that their operands are not

available (i.e., ready)2 at the time they are checked for reuse. In this policy, called FnReady

(Filter not Ready), we filter out such instructions from the RB insertion stream (and, hence,

prevent the possible eviction of reusable instructions from the RB). In terms of coverage, this

policy is a subset of the FnReused policy since it only filters one “type” of unreusable instruc-

2. Though actual values are required for the reuse test only in the case of scheme Sv (and, for independent
instruction in scheme Sv+d), the information whether instruction operands are ready or not is used for deter-
mining reuse by other reuse schemes as well; in schemes Sn and Sn+d also, instructions do not get reused if
their operands are not ready. Thus using readiness of operand values for categorizing reusable and unreus-
able instructions is not something specific to scheme Sv only.
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tions. However, it may be significantly cheaper to implement since, as we describe next, it

does not need a table for storing its meta-state. Also, unlike the FnReused policy, this policy is

self-correcting, as we will explain later. In the ensuing discussion, we refer to an instruction

that does not have its operands ready at the time of reuse as a not-ready instruction, and the

one that has as a ready instruction.

Conceivably, we can implement this policy along the lines of the FnReused policy: that is,

track the history of instruction ready/not-ready information in a table; tag instructions that are

repeatedly not-ready; and prevent insertion of tagged instructions in the RB. But, it is possible

to implement the FnReady policy in a simpler way, without requiring a separate table. The

operand ready/not-ready behavior is reasonably stable from one incarnation of an instruction

to the next; if an instruction is not-ready in its current incarnation, it will likely be not-ready in

the next one. So we do not need to accumulate counters to detect the not-ready instructions.

Based on whether an instruction is ready or not-ready in the current incarnation, we can insert

or not-insert the instruction in the RB.

This policy is implemented as follows. With each instruction in the instruction window we

associate a “ready-at-reuse” bit. We set this bit on two conditions: (i) if the instruction has its

operands ready at Register Read stage (the stage in which the reuse test is done), or (ii) if the

instruction’s source instructions, ahead in the pipeline have their “ready-at-reuse” bit set (the

reason for this condition is explained below). Only instructions with their “ready-at-reuse” bit

set are inserted in the RB. As mentioned above, apart from not requiring a separate table, this

policy has another advantage over FnReused: it has a natural self-correction mechanism. If a

not-ready instruction starts having its operands ready, it will automatically start getting

inserted in the RB. This advantage over FnReused arises because, unlike reused/not-reused
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information, the generation of ready/not-ready information does not depend on whether or not

the instruction is in the RB.

The second condition for setting the “ready-at-reuse” bit mentioned above, needs explan-

ing. This condition is used to avoid obstructing the reuse of a dependent sequence of instruc-

tions. For most dependent instructions, the operand values become ready because their source

instructions are reused (otherwise, the operand value may not be ready at the register-read

stage). Without the second condition, a dependent chain of instructions of length ‘n’ will have

to get encountered ‘n’ times to get fully inserted in the RB (since it will get inserted one

instruction per encounter). This might severely hamper the reuse of such chains. To avoid this,

we check in the first pass itself if the source instructions will get entered in the RB (because

their “ready-at-reuse” bits are set), and if so we enter the dependent instruction as well (set its

“ready-at-reuse” bit).

5.4.2  Replacement Policy

5.4.2.1  Retain Reused Instructions (RR)

Until now we have used a standard LRU policy to do the replacement from the RB. This

policy does not consider whether the victim instruction is likely to be reused or not, and hence

it often ends up evicting a reusable instruction even when there are unreusable instructions in

the RB. Reuse rate can be improved if such evictions can be prevented. In this RR (retain

reused) policy, we attempt to do this. We mark instructions in the RB as likely- reusable and

likely-unreusable. The instructions marked likely-reusable are then given a privileged status in

the RB: they are selected for eviction only when there are no likely-unreusable instructions

available for replacement. Although several heuristics are possible for selecting likely-reus-
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able instructions, we employ a simple one in this policy. We consider an instruction to be

likely-reusable if it has gotten reused in the past. This is based on our finding that instructions

that get reused often do so multiple times.3 We describe the implementation of this policy

next.

With each entry in the RB we attach a small counter. When an instruction is reused, the

counter in its entry is set to a pre-defined value, indicating that the instruction is likely-reus-

able. The replacement algorithm selects the likely-unreusable instructions (those with a zero

counter value) for eviction before the reusable instructions. The counter value of a likely-reus-

able instruction is decremented every time it is picked for replacement, but is not replaced.

When the counter value becomes zero, the instruction loses its privileged status and, thereaf-

ter, it is chosen for replacement as usual. If, however, the instruction is reused again, its

counter value is reset to the pre-defined value. The purpose of using the counter rather than a

static tag for marking the instructions as likely-reusable is that it limits the duration of the

privileged status and, hence, prevents a reusable instruction from residing in the RB forever

(even when it is no longer reusable).

When a likely-reusable instruction is evicted, we have two options: (i) either we can save

the information that it is likely-reusable in some another table and initialize the counter appro-

priately when the instruction is inserted in the RB the next time; or (ii) we do not save any

information on eviction, and on the next insert the instructions starts like an ordinary instruc-

tion (with counter value 0). While the first option may be more profitable (since it will be able

to retain more reusable instructions), the second will entail less hardware cost since it does not

require an extra table. In this thesis, we evaluate the second option.

3. We have shown in Table 3.2 that unique repeatable instances get repeated many times on average.
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5.4.3  FiF: Farthest in Future Replacement Policy

All policies presented so far are enhancements to existing management policies, such as

LRU. Also, they are somewhat ad-hoc in nature, attacking specific aspects of the buffer man-

agement problem rather than the whole problem in general. In this section, we look at a new

management policy that attempts to solve the RB management problem at a more fundamen-

tal level.

Before presenting the new policy, let us see what needs to be done to manage the RB effi-

ciently. The key lies in the criterion for selecting which instructions are inserted in the RB and

which are replaced from the RB. Intuitively, the criterion that will result in the best RB utiliza-

tion is the likelihood of reuse — i.e., how likely an instruction is to get reused. The reason

being, that’s the only piece of information that precisely quantifies the importance of keeping

an instruction in RB. Also, asymptotically — with 100% accurate likelihood information — a

policy based on likelihood of reuse will perform exactly like the limit policy. This assures us

that this line of approach is the right one, in the sense that, it (unlike other policies) has the

potential to lead us all the way to the best RB utilization. With this approach, we also know

the knob that needs to be tuned for improving performance, namely the likelihood to reuse.

More accurate we can make the estimate of likelihood of reuse, the better will this policy be

able to utilize the RB. Under this criterion, the RB will be managed as follows: at the time of

replacement, an instruction that is least likely to get reused will be evicted; at the time of

insertion, an instruction will be inserted in the RB only if it is more likely to get reused than

the instruction it will replace.

But, how do we ascertain the likelihood of reuse for instructions? There may be several
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ways. We describe one such way next, along with the rationale behind it. After that, we

describe the FiF (Farthestin Future)policy, where we show how this information can be used

to perform buffer management.

5.4.3.1  Obtaining “likelihood of reuse” information

We know from the results of Chapter 3 that most instructions in programs get repeated

(more than 75% of dynamic instructions get repeated in many cases). One of the main reasons

why we cannot reuse all these instructions is because we are unable to retain them in the RB

until the time they are needed for reuse. Said another way, these instructions do not get reused

because they get evicted from the RB. Thus, we can calculate the likelihood of reuse in terms

of the likelihood of eviction — i.e., we can say that an instruction is more likely to get reused

if it is less likely to get evicted from the RB, and vice versa. We describe how we calculate the

likelihood of eviction next.

The likelihood that an instruction will get evicted before reuse depends on how many

other instructions map to the same RB set during the time the instruction is resident in the RB.

For example, suppose that an instruction gets inserted in the RB at time t1 and will get reused

at time t2. To get reused it needs to reside in RB until time t2. The likelihood that it will get

replaced before t2 depends on how many other instructions contend for space in the same RB

set between time t1 and t2. If the number of “collisions” — which we define as the number of

instructions mapping to the same RB set — during the time interval is small, then the likeli-

hood that the instruction will be evicted will be small. Conversely, if there are many collisions

in the time interval, then the likelihood of eviction will be large. In other words, an instruction

is more likely to get evicted if it encounters more collisions from other instructions during the
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time period it needs to be in the RB to get reused.

To summarize, we ascertain the likelihood of reuse for an instruction by estimating the

number of collisions it will see during the time period it needs to be present in the RB for get-

ting reused: the more the number of collisions, the more likely the instructions will get

evicted, and hence the less likely that they will get reused.

5.4.3.2  Description of the policy

The FiF policy uses the likelihood of reuse information, calculated in terms of the number

of collisions (as mentioned above), to perform buffer management. The number of collisions

an instruction is likely to experience before it gets reused can also be interpreted as its dis-

tance to reuse — the greater the number of collisions, the “further away” is the reuse, and vice

versa. It is this interpretation that gives the FiF policy its name. Based on this interpretation,

we can describe the working of the FiF policy as follows. We try to keep the instructions

which have the shortest distances in the RB: choosing the instructions with the largest distance

to reuse for replacements, and inserting new instructions in the RB only if their distance to

reuse is smaller than those of the instructions they will replace (how distance is maintained in

RB is described shortly).

Next, we describe the various hardware structures needed to implement this policy. Then

we describe how we calculate the distances. Lastly, we describe the policy operation in detail.

Hardware structures: We need the following hardware structures for the FiF policy:

• A collision counter per RB set, which counts the number of collisions to the set.

• A PC-indexed Distance Table (DT), which is used for calculating and storing distances.

An entry in this table is shown below in Figure 5.3. It consists of three fields: last encoun-
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ter count (LEC), distance, and confidence counter. As we will describe later, we calculate

the distance between two instances by taking the difference of the collision counter values

at those two instances; the LEC field stores the first collision counter value. It is used for

calculating the distances for the unreused instructions. The confidence counter is used for

lending confidence to the distance value stored in the distance (d) field.

• Each entry in the RB is augmented with two additional fields: (i) the last encounter count

(LEC) field and (ii) the current distance to reuse (CDR) field. The LEC field, like the LEC

field in the DT, stores the first collision counter value. However, unlike the other field, this

value is used for calculating the distances for the reused instances. The CDR field main-

tains the current distance to reuse for the instruction resident in the entry — i.e., the

remaining number of collisions it is expected to experience before reuse. On every colli-

sion to a set, the CDR value of every RB entry in that set is decremented by 1.

Calculating the distances: Next, we present how we calculate the distances — the process

that is the heart of this policy. We present the whole process of distance calculation in

Figure 5.4 using a pseudocode. For the purposes of clear exposition, we have divided the pro-

cess into two parts: one part deals with the case when an instruction is first encountered and

the other deals with the case when the instruction is re-encountered. The second case is again

divided into two parts: one for the case when the instruction is reused and other when it is not.

last encounter
count (LEC) distance (d) confidence

counter

Figure 5.3 An entry in the Distance Table (DT).
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RBent: RB entry; RBset: RB set; DT: Distance Table; DT [LEC]: LEC field in DT

Instruction First Encountered

Instruction Re-encountered

RBset [collision counter] ++
Reserve entry in DT

DT [LEC] <— RBset [collision counter]

If Reused

RBent [CDR] <— RBset [collision counter] - RBent [LEC]

Attempt insertion in RB
if yes

RBent [CDR] <— DT [distance]

RBent [LEC] <— RBset [collision counter]

DT [distance] <— 0

RBent [LEC] <— RBset [collision counter]

DT[LEC] <— RBset [collision counter]
DT[distance] <— RBent [CDR]

If Not Reused

RBent [LEC] <— RBset [collision counter]

DT [LEC] <— RBset [collision counter]

DT [distance] <— DT [distance] + (RBset [collision counter] - DT [LEC])
RBset [collision counter] ++

Attempt insertion in RB
if yes

RBent [CDR] <— DT [distance]

(see text for explanation)

Figure 5.4 Pseudocode depicting the distance-calculation process in the FiF policy.
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We describe the process in this order. The collision counter for an RB set is incremented on

every collision to the set. We define collision to a set as an instruction insertion attempt made

to the set, successful or otherwise.

When an instruction is first encountered, we create an entry for it in the DT and store the

current value of the collision counter from its RB set in the LEC field. The distance field in the

DT is set to 0. If this instruction gets inserted in the RB, the value of the collision counter is

also stored in the LEC field in the RB entry. The CDR field is set to the distance value from

the DT.

The distance value for an instruction is calculated when it gets re-encountered. But, how

exactly we calculate the distance value depends on whether the instruction is reused or not.

We describe the two processes separately. If an instruction is reused when re-encountered, we

calculate its distance value by subtracting the current value of its RB set collision counter with

the value in the LEC field of the RB entry. This gives us the exact distance value between the

original instruction instance and its reuse, and this is the reuse distance that we want in this

policy. This distance value is then stored in the DT and in the CDR field of the RB entry. If a

different distance value already exists in the DT entry then it is replaced if the confidence

count is less than some threshold (not shown in Figure 5.4); otherwise, we decrement the con-

fidence count. If, on the other hand, the prior distance value is same as the current one then we

increment the confidence value. The current collision counter value is also stored in the LEC

fields in both the RB entry and the DT.

On the other hand, if the instruction is not reused when re-encountered, we calculate its

distance value as follows. Since in this case we do not have the exact LEC value for this

instruction (because the instruction is not in the RB), we use the LEC value from the DT. This
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gives us the LEC value for the last instance of the same static instance. We subtract this LEC

value from the current value of the instruction’s RB set collision counter, and cumulate with

the previous distance value for the instruction. We explain the reason for this shortly. The cur-

rent value of the collision counter and the distance value are stored in the DT. If the instruction

gets inserted in the RB, these values are also stored in the LEC and CDR fields in the RB

entry.

Now, we explain the reason for cumulating the distance values for unreused instructions.

As mentioned earlier, the distance value that we really desire is the one between the two recur-

rences of the same instruction instance — i.e., between an instance and its repetition. For

instructions that don’t get reused, we cannot calculate this distance because the collision

counter value of the previous instance is not known (since that instance is not in the RB).

Thus, we need to come up with a way to approximate the distance values for unreused instruc-

tions. One option is to use the distances between the two consecutive occurrences of the static

instruction. In the DT, we store the collision counter for the last occurrences of static instruc-

tions. We can calculate the distances between the two consecutive occurrences of a static

instruction by simply subtracting the LEC value in the DT with the current collision counter

value (RBset [collision counter] - DT [LEC], as shown in Figure 5.4). But, the distance

between two consecutive occurrences of static instructions can be significantly smaller than

the distance between an instance and its repetition; thus, using that as approximation for dis-

tance may give an unduly high priority to unreused instructions. We would like to give such

instructions low priority, i.e., high distance values. Thus, instead of using the distances

between the consecutive occurrences of static instructions per se, we cumulate these distance

values — i.e., we add the currently calculated distance to the previous value present in the DT.
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This way, instructions that are not reused repeatedly get their distance values increased pro-

gressively, and thereby, become of lower and lower priority, which makes it harder for them to

secure a place in the RB (which should be the case). Cumulating the distance values is also

consistent with the philosophy of the algorithm: if an instruction is not reused, and the previ-

ous and the current distance values are ‘d’ and ‘d1’, respectively, then we know that the

repeating instance that we are trying to calculate the distance from existed at least ‘d + d1’ dis-

tance behind. Hence, in the absence of better knowledge the distance value for the instruction

must be at least that much.

Policy Operations: Once the distance is calculated, the policy works as follows. When an

instruction is to be inserted in the RB, we read its distance value (d) from the DT. This incom-

ing instruction is not inserted in RB if the instructions present in its RB set have distances (in

their CDR field) smaller than ‘d’ (which means they are more likely to get reused than the

incoming instruction). However, if the incoming instruction is found qualified for insertion,

then the instruction in the RB set that has the largest CDR value is chosen for replacement

(since this is the least likely reusable instruction of all).

At the time of insertion, the distance ‘d’ is stored in the CDR field of the RB entry. This

value is decremented on every collision to that set. Decreasing the CDR value — which signi-

fies coming close to the time of reuse — increases the importance of instructions and makes

them more difficult to replace (as should be the case, intuitively). However, if the CDR value

gets decremented all the way to 0 and the instruction is not reused, then the instruction loses

its importance and, thereafter, is considered for replacement ahead of other instructions in the

set. If, however, the instruction gets reuse, then its CDR value is replenished with the current
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distance value from the DT.

5.5  Evaluation of Management Policies

In this section, we evaluate the management policies discussed in the previous section. These

policies have parameters that control their behavior: e.g., the threshold value in FnReused, the

counter value in RR, the table sizes of FnReused and FiF. Ideally, we would like to vary all the

parameters and perform a thorough evaluation of these policies. However, that would be

digressing from the main focus of the thesis which is the instruction reuse technique and not

buffer management. For this purpose, we select the parameter values as follows. For the

threshold and counter values in FnReused and RR, respectively, we conducted short simula-

tion studies to determine with what parameter values the policies performed better, in general,

and selected those values as the parameter values for the rest of our simulations. The tables

used in policies FnReused and FiF are conflict-free — i.e., every static instruction gets a sepa-

rate table entry. We do so to evaluate the algorithm of the policies, independent of the imple-

mentation effects. The configurations that we simulate are shown in Table 5.2. The threshold

value selected for the FnReused policy (by the above the method) is 16, which means that an

instruction has to get evicted from the RB without getting reused 16 consecutive times to be

Policies Configuration

FnReused Threshold = 16; conflict-free table.

RR Counter value = 8

FiF conflict-free DT

Table 5.2  Configurations of different policies that are studied.
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classified as unreusable. The counter value selected for the RR policy is 8, which means that a

reused instruction has 8 “lives” in the RB.

We present the following results in this section. First, we show the amount of reduction

achieved by these policies in the number of instructions that get inserted in the RB or the num-

ber of likely-reusable instructions that get evicted from the RB. These results give us a direct

measure of how successful the new policies are at selective insertion or eviction. After this, we

present the stability of the distance values in programs, which is an important factor that deter-

mines the effectiveness of the FiF policy. Finally, we show the overall impact of these policies

on the reuse rates and bottomline performance (IPC).

5.5.1  Direct measures of policy operation

In Figure 5.5, we show the effectiveness of the three policies — FnReused, FnReady, and

FiF — which perform selective insertion, in cutting down the number of instructions inserted

in the RB. Thus, 80% on this figure means that 80% fewer instructions were inserted in the

RB than in the case of the LRU policy. The numbers are shown for a 4096-entry, 4-way asso-
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ciative RB (which is representative of the numbers for other RB sizes).

We see that there is a significant reduction overall in the number of instruction inserted in

the RB. Both FnReused and FiF cut down the insertion traffic by more than 80% in all cases

(except for perl where FnReused cuts down by 72%). In general, FnReused filters slightly

more number of instructions than FiF. On the other hand, the reduction caused by the

FnReady policy in comparison is much smaller (as would be expected from the discussion in

Section 5.4.1.2), but it is still very significant, being close to 50% in most cases. However, it is

understood that these reductions may not necessarily translate into improvement in reuse rates

or into speedups. Those numbers we will see shortly in Section 5.5.3 and 5.5.4.

One particular interpretation of these results may be interesting. As we shall see later, for

several benchmarks, the impact of these policies on the reuse rates and speedups results are

small — i.e., the values for these metrics are not much different with and without the new pol-

icies. In that light, the results in Figure 5.5 show that we can obtain the same amount of reuse

rates and performance with much less RB activity — between 50% to 80% less activity. Since

the RB is a large structure, this reduction in activity may result in significant decrease in

power consumption. However, power saving is not a topic of consideration in this thesis, and,

hence, we do not follow this line of investigation any further.

Next, we address the policy RR. RR, as described earlier, attempts to prevent the eviction

from the RB of the likely reusable instructions, which it defines as instructions that have been

reused in the past. In Figure 5.6, we show the percentage by which RR is able to reduce the

eviction of the likely-reusable instructions (the percentages are over the LRU case). We show

the numbers for three RB sizes: 256-, 4k-, and 64k-entries. As we can see from the figure, the
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amount of reduction varies widely with the RB size and even the trend is not consistent. An

increase in RB size decreases the contention in the RB; this can both decrease or increase the

percentage reduction in eviction. The contention can decrease because with less contention

fewer reused instructions get evicted in the first place. The decrease in the contention can also

increase the impact of RR because while earlier the policy was unable to retain instruction in

RB due to high contention, it is able to do so now that the contention has reduced. In any case,

we see that the reduction in reused instruction eviction is significant in several cases. Overall,

RR is able to cut down the eviction of likely-reusable instructions by 30-40% (with some

exceptions) for large RBs (4k- and 64k-entries) and it is able to do so by 10-30% (with some

exceptions) for the small RB.

5.5.2  Stability of distances in FiF

Before we present the reuse rates and speedups results, we briefly study an important

property of programs — the stability of the distances between instruction instances. The effec-

tiveness of the FiF policy is closely tied to the accuracy of the distance estimates. And, the

0

10

20

30

40

50

60

70

80

90

100

go m88k ijpeg perl vort li gcc comp

%
 R

ed
uc

ti
on

 in
 #

 e
vi

ct
io

ns
 o

f 
re

us
ed

 in
st

.

RB entries: 256

RB entries: 4K

RB entries: 64K

Figure 5.6 Reduction in the number of reused instructions due to the RR policy. Note that in
this graph larger numbers mean more reduction.



165

accuracy of distance estimates, depend not only on the distance-calculating mechanisms but

also on the inherent nature of the programs — i.e, whether the instructions actually do recur at

stable and, hence, predictable distances. In this section, we measure this inherent stability of

distances in programs.

One measure of stability is how distances differ between the two consecutive repetition of

an instruction instance. We explain this with an illustration. Suppose I1 is a dynamic instance

of the static instruction I. Also, suppose, I1 has three repetition I11, I1
2, I1

3 , which occur in the

program as shown in Figure 5.7. Let the distance between I1
2 and I1

1 be d1 and between I1
3

and I1
2 be d2. Then the stability can be measured in terms of how d2 is different from d1: if d2

is the same as or close to d1, we can consider the distances as stable (predictable from the pre-

vious distance), otherwise not.4 In Figure 5.8, we present this measure of stability: the bar

labelled “exact” shows the percentage of all distances that are exactly same as the last one,

i.e., d2 = d1; and those labelled ±1, ±4, ±8, and ±16, show the percentage of distances that dif-

fer from the previous one by the amounts 1, 4, 8, and 16, respectively. The distances are mea-

sured as described in Section 5.4.3.2 using a 256-set RB. We employed a large buffer, which

can store up to 2000 instances for every static instruction,5 to remember the previous distances

4. There can be other more relaxed definition of stability — we can track non-consecutive distances. However,
here, since we make our prediction based on the last distance, we base our measure of stability on the same-
ness of consecutive distances.

5. This is the same as the buffer used in Chapter 3 for determining the amount of repetition.

I1
1 I1

2 I1
3

dynamic instruction stream

d1 d2

Figure 5.7 Illustration of the distances that are compared in Figure 5.8.
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for dynamic instances.

In Figure 5.8, we see that for 5 benchmarks (m88ksim, perl, vortex, li, and compress), the

distances are fairly stable: between 42-77% of the distances are exactly the same as the last

one — meaning they are predictable based on the last distance. Also, for these benchmarks,

more than 70% of the distances differ from the last one by less than ±4. Although they are not

exact predictions, the distances which are in error by a small amount, may still cause the pol-

icy to make the right management decision.

For the other three benchmarks (go, ijpeg, and gcc) the distances are not as stable. Very

few times the distances are the same as the last one (e.g., only 18% for go and 28% for gcc),

while a significant percentage of the distances differ from the last one by more than ±16 (e.g.,

more than 50% for go, 40% for ijpeg, 35% for gcc).

Thus, we see that stability of distances may vary from benchmark to benchmark. Also,

based on the above results, we expect that the FiF policy will be more effective for the first
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five benchmarks than for the next three (in fact, as we will see later, FiF causes degradation in

reuse rates for some RB sizes for the next three benchmarks).

5.5.3  Reuse Rates

We show the reuse rates for the new, limit, and LRU policies in Figure 5.9. The reuse rates are

shown for RB sizes ranging from 256 to 64k entries (shown on the x-axis in log2). Overall, we
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see that the results are mixed: the new polices perform very well for some benchmarks (e.g.,

m88ksim, perl, and vortex) but poorly for others (e.g., go, ijpeg, and gcc). Although, for li and

compress they don’t improve the reuse rate significantly, in absolute terms, they (specially

FiF) are successful in nearly eliminating the gap between the LRU and the limit (which is

small to begin with). Next, we interpret the results for individual schemes.
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FiF: This policy performs better than other policies for almost every benchmark. This is espe-

cially true for small RB sizes (256-2k entries). For example, in m88ksim the reuse rate

improves from 9% (LRU) to 50% (FiF) for the 512-entry RB; similarly, for perl the reuse rate

improve from 16%(LRU) to 36% (FiF) for the 1024-entry RB; improvements in the case of

vortex are also significant, being about 10%-points for various RB sizes. Seen another way,

this result means that a particular reuse rate can be obtained with a much smaller — up to two

to four times smaller — RB with FiF than LRU. For go, ijpeg, and gcc, like other policies, the

improvement in the reuse rates with FiF are negligible. For li and compress, on the other hand,

though the improvements in reuse rates are small, FiF policy nearly eliminates the gap

between the LRU and the limit policy.

FnReused (filter not reused instructions): This policy performs well for a couple of bench-

marks (m88ksim and perl), but not so well for others. In fact, for vortex and li, it actually

degrades the reuse rates below the LRU level. For, m88ksim and perl, cases where it performs

well, it improves the reuse rates significantly: e.g., from 9%(LRU) to 29% for 512-entry RB in

m88ksim; from 16%(LRU) to 31% for 1024-entry RB for perl (performing close to FiF). The

degradation in reuse rate occurs because, as mentioned in its description in Section 5.4.1, it

does not have a mechanism to correct itself when it goes wrong. After it starts filtering an

instruction from the RB, it does not have a way of knowing when the instructions becomes

reusable. Thus, if the instruction becomes reusable later, it would still filter it from the RB and

hence miss reusing it. This causes it to degrade reuse rates for vortex and li.

FnReady (filter not ready instructions): This policy, in general, improves the reuse rates by

a small amount, but this amount is significant considering its simplicity and possible ease of
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implementation. For example, improvement in the reuse rates for RB sizes between 512- and

4096-entries are in the range of 1-10% points for m88ksim, around 5% points for perl, and

around 1% point for vortex. Except for li, where it slightly degrades the reuse rate below LRU,

this policy always improves reuse rates over LRU.

RR (retain reused): This policy, also, improves reuse rate by a small amount. The improve-

ments are around 2-3% points for perl and vortex, and between 1-12% points for m88ksim for

RB sizes ranging between 512- and 4096-entries. This policy may also be inexpensive to

implement, relative to FiF and FnReused, since it does not require a separate table for storing

the state. Given that, the reuse rate improvements achieved by this policy may be note-worthy.

In general, we note that policies FnReused, FnReady, and RR perform worse than FiF.

This can be attributed to the fact that they are all “special-purpose” policies; i.e., they optimize

certain aspects of the buffer management problem and don’t attack in a general way. These

“special-purpose” policies work only when the aspect they optimize happens to be the main

cause of poor buffer management. For example, FnReady will improve reuse rates when many

reusable instructions get evicted from the RB by not-ready instructions (hence, filtering these

not-ready instructions will likely allow the reusable instructions to get reused); Similarly,

FnReused will improve reuse rates when many reusable instructions are evicted from the RB

by instructions that are persistently not reused; RR will improve reuse rates when instructions

that are reused once have the propensity to get reused repeatedly. In places where these

aspects are not prominent, the “special-purpose” policies have a limited impact on the reuse

rate (they may, in fact, degrade the reuse rate when the limited improvements they achieve is

not sufficient to offset the effects of the occasional sub-optimal decisions they make). FiF, on
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the other hand, attacks the buffer management problem in a general way and, hence, is able to

adapt better to the changing RB access patterns and, consequently, able to perform well for

most benchmarks.

5.5.4  Performance

In Figure 5.10, we present the speedups obtained with IR (over the machine without IR)

using LRU and FiF policies. The speedups are calculated as follows: ((IPCIR/IPCw/oIR) -

1)*100. The experiments were run with 4-way associative RBs, ranging in size from 256- to

64k-entry. We make the following observations from this figure:

• For both policies, speedups follow the reuse rates (shown in Figure 5.9) closely: an

increase in the reuse rate in most cases entails an increase in the amount of speedup. Since

these trends also exist for other policies, for the sake of clarity, we do not include their

speedup graphs in this figure; their relative position can be inferred from their reuse rates.

• Comparing the two policies, we see that differences in their reuse rates are also, in most

cases, reflected in differences in their speedup numbers. If FiF policy reuses more instruc-

tions than LRU, it also shows higher speedups than LRU, and vice versa. An exception is

vortex; despite improvement in the reuse rate by FiF, there is no (or very small) improve-

ment in the speedups. This shows that the additional instructions reused by the FiF policy

are not executional bottlenecks (a closer look at the benchmark showed that many were,

for example, branches that get predicted correctly); hence, their reuse does not impact the

bottomline performance.

• Again, as would be expected from the reuse result, in most cases, the difference in speed-

ups is small, about 1%-point in many cases. But, in cases of m88ksim and perl, we notice
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significant improvement in speedups: e.g., for m88ksim speedups increase from 8% (LRU)

to 16% (FiF) for 2k-entry RB; and for perl, speedups increase from 4% (LRU) to 9%

(FiF).

5.6  Summary and Conclusions

In this chapter, we study the RB — the main hardware structure used in IR — in more detail.

We present how the reuse rates vary with RB size for different conventional replacement poli-

cies, such as LRU, FIFO, and Random. We also present the limit reuse rates for each RB size,

giving us an upper bound on the amount of reuse we can capture per RB size. We see a signif-

icant difference between the limit and convention policies’ reuse rates, suggesting that the RB

may be very inefficiently utilized.

We also characterize the RB with respect to its associativity. We show how many instances

later instructions normally get reused. This gives us a lower bound on the amount of associa-

tivity needed to capture a certain amount of reuse. We see from the results that, for most

benchmarks, a significant percentage of total reuse may be captured with a small degree of

associativity, since most — more than 70% — of the instructions get reused within their next

4 instances. We also show how the reuse rates vary with associativity, concluding that higher

associativity is more important for large RBs than for small ones. We also observe, that even

with large associativities, a significant gap remains between the limit and conventional poli-

cies and that increasing the associativity does not improve RB utilization.

We study four RB management policies to improve RB utilization: FnReused, FnReady,

RR, and FiF. The first two policies perform selective insertion in the RB, filtering out instruc-
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tions that are not likely to be reused. The RR policy performs selective eviction, retaining

instructions in the RB that are likely to be reused. The FiF policy is a novel management pol-

icy which chooses instructions for keeping in the RB based on their likelihood of reuse. This

policy calculates the likelihood of reuse for instructions in terms of their chances of getting

evicted from RB before being reused — more the chances of getting evicted, less the likeli-

hood of reuse.

The results for the management policies vary with benchmarks. For some benchmarks

(m88ksim, perl, and vortex), we see a significant improvement in the reuse rate with the new

policies over LRU (e.g., in m88ksim the reuse rate improves from 9% to 50% for FiF policy

for 512-entry RB). Interpreting the results another way, for these benchmarks, the same

amount of reuse can be captured with an RB up to 2-4 times smaller using the new policies.

However, for benchmarks such as go, ijpeg, and gcc, we see a negligible improvement or a

degradation in the reuse rate with the new policies. We also show the speedups attained by IR

with LRU and FiF policies and note that in most cases the improvements in performance

closely follow the improvements in the reuse rate (except for vortex).

This work can be further extended in several possible directions. Other methods of buffer

management that can be explored. In this work, we gave equal importance to every instruc-

tion. It is conceivable to have a policy that treats different instruction-types differently, giving

less preference to instruction-types that are less likely to get reused. Similarly, we can think of

performing the buffer management with profitability of reuse as a criterion in which only

those instruction sequences that will be profitable to reuse (cause performance improvement)

are kept in the RB. It is also possible to have an hybrid of different policies: for example, the

FnReady policy can be used with other policies, or the FnReused and RR policy can be used
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together (since they complement each other well). Lastly, we note that the FiF policy is a gen-

eral buffer management policy: it can also be used for managing other forms of memory stor-

age, such as caches. In this thesis, we evaluated it for IR; it will be interesting to see how well

it performs in managing other forms of storage structures.
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Chapter 6

Sensitivity Analysis

In previous chapters, we evaluated the concept of IR in the context of one particular processor

pipeline. It is reasonable to expect that the IR may perform differently for other types of pipe-

lines. The task of this chapter is to develop a sense of how might the IR performance change

when the pipeline configuration is varied. For this purpose, in this chapter, we select a few key

parameters of pipeline configuration and vary their values, and study how sensitive the IR

results are to these variations.

We investigate six important pipeline parameters in this chapter: (i) instruction window

size, (ii) pipeline width, (iii) pipeline length, (iv) branch prediction accuracy, (v) memory

latency, and (vi) reuse latency. These parameters were selected because they are likely to be

different for different processors and are also likely to impact the performance of IR for rea-

sons explained later in the chapter.

The rest of this chapter is laid out as follows. In the next section, we present the experi-

mental setup used in this study. In Section 6.2, we describe at a high level why IR results may

vary with the above mentioned parameters. In Sections 6.3-6.8, we analyze the sensitivity of

IR to the above mentioned parameters. In each section, we discuss why and how the reuse

rates and the reuse performance may vary by varying the parameter studied in that section. We
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finish each section by presenting and discussing the simulation results. Finally, in Section 6.9,

we summarize this chapter and provide conclusions.

6.1  Experimental Setup

The base machine, over which the speedup numbers are measured, is the same as the one

described in Chapter 2, except for the parameters that we vary for different experiments. Thus,

for example, in window-size experiments, the base machine will have all its parameters as

described in Chapter 2 except for window size, which will be the same as the value used in the

experiment (32, 64 or 128). IR is implemented using scheme Sv and a 4-way associative RB

with 1024 entries managed with the LRU policy (except in reuse latency experiments where

we vary the RB sizes from 256- to 16k-entries.). In cases where it is possible that the impacts

on IR may be different for other reuse schemes (such as Sn and Sn+d), we point this out during

discussion and suggest the likely difference.

We evaluate the impact on IR in terms of changes in two metrics: (i) the reuse rate — i.e.,

the percentage of instructions reused; and (ii) the reuse performance — i.e., percentage

speedup over the (appropriate) base machine IPC. In several places in this chapter, we refer to

two metrics together as the reuse results.

6.2  Causes for Sensitivity of IR

Before we can analyze how the reuse results may vary with individual processor parame-

ters, we need to understand what causes the reuse results to be sensitive in the first place. That

is, why may the reuse rates and reuse performance change when the underlying processor is
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changed? What is it in the way we reuse instructions or in the way reuse improves perfor-

mance that may change when the processor is changed? In this section, we highlight some

such aspects of IR. The discussion here will help us better follow the effects of the individual

parameters presented in the later sections.

First, we consider the reuse rates. For the instructions to get reused (with scheme Sv) there

is a strict requirement — in the way we implement IR in this thesis — that the operand values

of the instructions must be ready at the reuse stage.1 This is the main reason why reuse rates

may get affected by changes in the underlying processor. Changing the processor parameters

may change — move backward or forward — the ready time of operands, impacting the reuse

rates accordingly: the reuse rates may improve if the operands become ready sooner (i.e., the

ready time is moved backward); they may decrease, otherwise. In later sections, we will see

how exactly each parameter influences the ready time of operands.

Next, we consider the reuse performance. Since reuse can improve performance because

of several reasons, its performance can get impacted in several ways by changing the underly-

ing processor. To understand how the overall reuse performance may change, we need to

understand how its different components may get impacted. We discuss the impact on differ-

ent components below.

• An important reason why reuse improves performance is that it collapses data depen-

dences by reusing a dependent chain of instructions in a single cycle. How much perfor-

mance is gained because of this component depends on two things: (i) the length of the

dependent chains reused — longer chains means more data dependences are collapsed,

and, hence, means more benefit; (ii) the importance of dataflow latencies in the total exe-

1. For reuse schemes Sn and Sn+d, the requirements for reuse are more stringent, as mentioned in Chapter 4
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cution time of programs — if dataflow latencies are important, then collapsing them will

mean more benefit. The reuse performance due to this component will get impacted by

any change in the processor that affects either of the above two factors. If the length of

dependent chains that can be reused in a cycle changes (e.g., due to changes in machine

width) or if the importance of dataflow latencies changes (e.g., due to changes in branch

prediction accuracy), then the reuse performance may get affected.

• Another important source of performance is squash reuse, i.e., reusing work that had been

discarded because of misprediction squashes. Since squash reuse salvages useful work

from the work that was performed on the mispredicted control path, it reduces the penalty

of misprediction. This performance benefit not only depends on the amount of squashed

work that can be reused (more a function of the reuse technique), but also on the amount

of work that was thrown away in the first place (a function of the underlying processor). If

the amount of work that gets thrown away changes due to changes in the processor (e.g.,

improvement in branch prediction accuracy), then the amount of benefit derived from

squash reuse may also change accordingly.

• IR also improves performance because it generates instruction results early and, thereby,

allows instructions dependent on these results to execute sooner than they would have

done otherwise. The amount of benefit derived from this component depends on two fac-

tors: (i) how much earlier than the execution results do the reuse results become available

— the earlier they do, more may be the benefit from reuse; (ii) how much sooner the

dependent instructions actually execute using the reused value compared to using the val-

ues generated through regular execution. Thus, any changes in the processor that affect

either of these factors may affect the reuse performance. If, for example, the reuse results
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do not get generated much earlier than the results from regular execution (for instance,

because of high reuse latency), then the reuse performance will be decreased. Likewise, if

the dependent instructions get delayed (e.g., because of a pipeline stall), they may not be

able to execute any sooner than the base case, diminishing the advantage due to reuse.

• Since the reused instructions do not get executed, IR frees up execution bandwidth. This is

another reason why IR may improve performance, especially for machines where the exe-

cution bandwidth is not enough to exploit all the available parallelism in the window. For

such processors, the execution bandwidth freed because of reuse can be used to execute

other ready instructions in the window, hence, improving performance. Obviously, this

component of reuse performance will be sensitive to changes in the execution bandwidth

of the underlying processor: if the change is such that the execution bandwidth is

decreased (e.g., pipeline width is reduced), then the potential benefit of reuse will increase,

and vice versa.

The overall impact on the reuse performance of the processor changes will depend on how

these individual effects interact. We discuss this further for individual processor parameters in

subsequent sections.

6.3  Instruction Window Size

The size of an instruction window — which in our case is the same as the size of the RUU —

defines the number of instructions that can be in flight at any given time in a processor. In all

our previous simulations, we have used a window of 64 instructions. In this section, we inves-

tigate the impact of changing the window size on the reuse rate and the reuse performance.
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Before presenting the results, let us qualitatively discuss possible impacts changes in win-

dow size may have on the reuse rates and reuse performance.

6.3.1  Possible impacts on reuse rates

Increasing the window size may decrease the number of instructions reused because more

instructions may find their operands not ready at the reuse stage. We explain this with an

example. Consider a machine with a small instruction window. The front-end of this machine

may often stall because the window gets full. These stalls will provide time for instructions in

the window to execute and prepare operand values for the not-yet-fetched dependent instruc-

tions. When the stall clears and instructions are fetched, the new instructions may find their

operands ready when they reach the reuse stage and, hence, may get reused. A machine with a

large window may stall less often because of a full window. This may permit the dependent

instructions to arrive at the reuse stage too soon — before their source instructions have exe-

cuted and, hence, before their operand values have become ready — and cause these instruc-

tions to not get reused.

6.3.2  Possible impact on reuse performance

An increase in window size may both increase or decrease the reuse performance. Since

the reuse performance is correlated with the reuse rate, it may decrease because the reuse rate

may decrease with an increase in window size (as discussed above). However, it may increase

reuse performance by increasing the number of useful reuses — i.e., reuses that actually cause

the dependent instructions to execute earlier. A machine with a small window may frequently

stall due to unavailability of window entries, rendering many reuses useless. For example, this
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situation may happen when an instruction is reused but the instructions dependent on its

results are stalled. By the time these dependent instructions enter the pipeline, their operand

values could become ready through normal execution; hence, they may not execute any sooner

with reuse than in the base case. However, in a machine with a large instruction window, the

dependent instructions may be able to get into the window and may be able to execute sooner

than in the base case (hence, improving performance) by taking advantage of the source

instruction reuse.

6.3.3 Results

In Figure 6.1, we show the impact of varying the instruction window size on reuse rate and

reuse performance (Figures 6.1 (a) and (b), respectively). Three window sizes are studied: 32,

64, and 128 instructions. The rest of the processor parameters in the 32- and 64-instruction

window experiments are the same as those presented in Chapter 2. But, for the 128-instruction

window experiments, we increase the number of unresolved branches allowed in the processor

from 16 to 32 to prevent this constraint from implicitly limiting the effective window size. The

reuse rates presented are in terms of percentage of all committed dynamic instructions, and

the speedups are in terms of improvements over the IPC of the base case (without IR). Here

we also point out that each window size has a separate base case, and speedups for a particular

window size are calculated over its base case.

From Figure 6.1, we can observe that, in general, varying the window size has negligible

impact on reuse rate and reuse performance. For most benchmarks, the reuse rates for all three

sizes are the same2 (Figure 6.1(a)). For ijpeg and vortex, we see a small decrease in the reuse

2. Within the degree of precision — until the second decimal place — that we plot in our graphs.
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rate for larger window sizes, which, as we have discussed earlier, occurs because some

instructions enter the pipeline before their operands become ready and hence don’t get reused.

In Figure 6.1(b), we see that, except for ijpeg and vortex, the amount of speedup attained

by IR for all three window sizes over their respective base cases is the same for all bench-

marks. For ijpeg, the performance increases slightly (2%-point) from window size 32 to 64

and then decreases (1%-point) for 128. The initial increase can be attributed to the fact that

window size 64 converts many reuses that may be useless with window size 32 to useful ones;
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the latter decrease can be attributed to the corresponding decrease in the reuse rate. For vortex,

the reuse performance decreases from 7% to 5% when going from window size 32 to window

sizes 64 and 128. Again, this decrease can be attributed to the corresponding decrease in the

reuse rate.

Overall, we see that the reuse rates and the reuse performance obtained using scheme Sv

are not very sensitive to the variation in the instruction window size.3

6.4  Pipeline Width

By pipeline width we mean the number of instructions the pipeline can fetch, decode, issue,

execute, and commit, in a cycle. In all our previous simulations, we use a pipeline of width 4.

In this section, we study the impact of varying pipeline width on reuse rates and reuse perfor-

mance. Before presenting the results, we present a qualitative discussion on how we might

expect the reuse results to be affected by the changes in pipeline width.

6.4.1  Possible impact on reuse rates

Increasing pipeline width can either increase or decrease reuse rates. The decrease may

take place because as the pipeline becomes wider, more instructions may arrive at the reuse

stage before their operand values are available and, hence, may not get reused. We illustrate

this scenario in Figure 6.2. In this figure, we show the flow of an instruction stream — I1, I2,

3. As described in Section 4.5.2, for schemes Sn and Sn+d, the reuse constraints are more stringent than for
scheme Sv. For example, with scheme Sn+d, an instruction cannot be reused if any of its unreused source
instructions exist ahead in the pipeline (executed or not). The amount of reuse missed due to this constraint
increases rapidly with window size because instructions may remain in the window longer, obstructing the
reuse of dependent instructions. Hence, the reuse performance may be sensitive to instruction window size.
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I3, and I4, where I4 is dependent on I1 — through 1- and 2-wide pipelines. (For ease of expla-

nation, we do not show the read register stage in the pipeline and assume that the reuse test is

performed in the decode stage itself). We see that in the 1-wide machine, the source (I1) and

the dependent (I4) instructions are 3-cycles apart. By the time I4 is tested for reuse (cycle 5),

its operands are ready (since I1 has already executed), allowing it to get reused. But, in the 2-

wide machine, due to a higher fetch and decode bandwidth, I4 arrives at the reuse stage (same

as the decode stage in our example) before I1 has executed, and hence it does not get reused.

By increasing the width of a machine we not only increase the front-end bandwidth

(which may hurt the reuse rate, as described above), but we also increase the execution band-

width which may improve the reuse rate, as we describe next. With more execution band-

width, the processor may be able to execute instructions sooner and, hence, may be able to
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Figure 6.2 Example of how some instructions may not get reused when pipeline wide is
increased. Here, when the pipeline width is increased from 1 to 2, I4 does not get reused. (In
this pipeline we assume that the reuse test is performed in the decode stage).
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prepare the operand values in time for the reuse of the dependent instructions. For example,

consider the following scenario. Suppose that because of a few long-latency operations (e.g.,

cache misses), the instruction window fills up and the machine is stalled. Also suppose that

most instructions in the window are dependent on these long-latency operations. After these

operations complete, the stall is cleared, the dependent instructions start executing, and the

new instructions start entering the window. These new instructions will not get reused if their

source instructions are stuck in the backlog ahead. How rapidly this backlog gets cleared

depends on the execution bandwidth of the machine: the greater the bandwidth, the faster the

backlog will get cleared, and, hence, the smaller will be the number of instructions that will

not get reused because of this backlog. For this reason, as the machine width is increased, it

develops the potential to reuse more instructions.

6.4.2  Possible impact on reuse performance

Like the reuse rate, the reuse performance may also either improve or degrade with an

increase in the pipeline width. The change in the reuse performance may take place simply in

correspondence to the variation in the reuse rate: if the reuse rate increases with the pipeline

width, the reuse performance may also improve, and vice versa. However, there are other rea-

sons why changing the pipeline width may impact reuse performance, and we describe them

next.

IR may improve the performance of a narrow machine more than that of a wide machine.

A low execution bandwidth in a narrow machine may not be enough to exploit all the ILP

present in programs — i.e, execution bandwidth may be a bottleneck for these machines. By

reusing instructions we can free up execution bandwidth that can be used to execute other
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ready instructions, thereby, improving performance. Since the execution bandwidth is not

likely to be a bottleneck for wide machines, this advantage of reuse may decrease in impor-

tance as machines are made wider, possibly decreasing its impact on performance.

Increasing the pipeline width may also improve reuse performance because it facilitates

the reuse of longer chains of dependent instructions in the same cycle. In this thesis, we reuse

a chain of instructions in the same cycle if all the instructions are present in the reuse stage in

the same cycle. When the width of the machine is increased, the number of instructions

present in the reuse stage in any cycle also increases, thereby, increasing the chances of reus-

ing longer chains of instructions. Reusing longer chains of instructions in a cycle will impact

the performance more. Hence, increasing the machine width may improve reuse performance.

6.4.3  Results

In Figure 6.3, we show the impact of varying the machine width on reuse rates (figure a)

and reuse performance (figure b). The results are shown for 4 machine widths, 1-, 2-, 4-, and

8-way.

Although, on average, we see that reuse rates are to a large extent insensitive to machine

widths, for individual benchmarks we see interesting variations due to the interplay of various

impacts of making the machine wider, as discussed in the previous section. For some bench-

marks (m88ksim, go, and compress) we see a steady decrease in reuse rates (although slight)

as the machine is made wider. This happens because increasing number of instructions arrive

at the reuse stage before their operands are ready for the reasons discussed earlier. For some

benchmarks, e.g., vortex, perl, and li, we seen an increase in the reuse rate with the increase in
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width from 2-way to 4-way machine. This happens because of the favorable effects of increas-

ing the execution bandwidth, as discussed earlier.

In Figure 6.3 (b), we show the impact of varying the machine width on reuse performance.

We see that the reuse performance is extremely sensitive to machine width: with the perfor-

mance improvement being the most for the narrow machines, e.g., 1-way or 2-way wide. As

we have discussed earlier, this can be attributed to the fact that for narrow machines the execu-

tion bandwidth is a bottleneck, and reuse frees up execution bandwidth that can be used by
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other ready instructions. For 1-way and 2-way machines, the average speedups attained with

reuse are 15% and 13%, respectively; for some benchmarks, e.g., li and compress, the speed-

ups are as high as 20%. We see a significant drop in speedups when the machine width is

increased to 4-way because for 4-way machines the execution bandwidth is less of a bottle-

neck. However, we, again, see an improvement in speedups for 8-way machine, which can be

attributed to reusing longer chains of instructions per cycle, as described earlier.

6.5  Pipeline Length

In our earlier experiments, we used a 6-stage pipeline, as shown in Figure 2.1. A pipeline of a

different length may impact reuse rate and reuse performance differently. In this section, we

study the impact of varying the pipeline length on reuse results.

With respect to the reuse stage, the pipeline (Figure 6.4 (a)) can change in two ways —
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Rename
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Read Issue Exec. CommitExtra
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Figure 6.4 The default pipeline (a) and the pipelines with extra stages (b and c). In (b) the
extra stages are before Reuse stage (same as Register Read stage), and in (c) the extra stages
are after Reuse Stage.
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either there are extra stages before it (Figure 6.4 (b)) or there are extra stages after it

(Figure 6.4 (c)). As we will discuss next, the reuse results may get impacted differently

depending on which is the case. In this section, we study the impact of the latter two pipelines

on reuse results. But, before we present the simulation results, we qualitatively discuss how

the two pipelines shown in Figures 6.4 (b) and (c) may affect the reuse results.

6.5.1  Possible impact on reuse rates

We discuss the effect of adding extra stages before and after the reuse stage separately.

The addition of extra stages before the reuse stage should not affect the reuse rate, provided

they are non-stalling. This is because they do not insert any delay between the source and the

dependent instructions and, hence, do not obstruct any reuse. However, if these stages are

stalling, then they may affect the reuse rate in the same way as any change that could cause the

front-end of the machine to stall (e.g., small-window size, which we have already discussed in

Section 6.3). However, non-stalling stages before the reuse stage may affect reuse perfor-

mance in other ways, which we will describe shortly, in the following section.

If the extra stages are added after the reuse stage (Figure 6.4 (c)), then they may lower the

reuse rate. This is because these extra stages add latency between the execute and the reuse

stage and, thereby, increase the number of times the operand values will not be ready for

instructions at the reuse stage (because the source instructions have not yet executed).

6.5.2  Possible impact on reuse performance

The performance benefit due to reuse is, in part, also dependent on the fraction of the pipe-

line that is skipped by the reused instructions: if a big fraction of the pipeline is skipped then
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the impact on performance is more, since the big skip cuts down a greater part of the latency

through the pipeline; however, if a small fraction is skipped then the performance benefit is

small. The benefit of skipping a part of pipeline is realized when the latency of the pipeline is

exposed, such as at the time of branch misprediction squash. The fraction of the pipeline

skipped is different depending on whether the extra stages are before or after the reuse stage

Hence, the performance impact of reuse in the two cases is likely to be different.

Adding the stages before the reuse stage elongates the pipeline but keeps the number of

stages skipped by the reused instruction the same (Figure 6.4 (b)). Hence, the proportion of

the pipeline skipped by the reused instruction decreases, thereby, possibly decreasing the

impact of reuse on performance.

Adding the stages after the reuse stage (Figure 6.4 (c)) has two opposite effects. On the

positive side, it increases the number of stages and the proportion of the pipeline skipped by

the reused instructions. In such a pipeline, reuse may have greater impact on performance.

However, on the negative side, adding extra stages after the reuse stage may lower the reuse

rate, as we have discussed earlier, and, hence, may cause the reuse performance to degrade.

6.5.3  Results

In Figure 6.5, we show how the reuse results vary when the pipeline length is varied. The

reuse rates and reuse performance are shown in Figures 6.5 (a) and (b), respectively. The pipe-

line length is varied by adding 1 or 2 extra stages before or after the reuse stage, as shown in

Figures 6.4 (b) and (c). These extra stages are non-stalling; i.e., they don’t generate pipeline

stalls by themselves.
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Adding the extra stages before the reuse stage has no impact on the reuse rates

(Figure 6.5 (a)), as would be expected since these stages are non-stalling. Adding them after

the reuse stage, on the other hand, decreases the reuse rates for all benchmarks (although by a

small amount). This is because, as discussed earlier, due to this extra delay before the execu-

tion stage, more instructions don’t execute soon enough to enable the reuse of their dependent

instructions. However, the decrease in the reuse rate is small on average (1 to 2%-point), with

the maximum decrease being 5%-points (from 33% to 28%) in the case of m88ksim.
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In Figure 6.5 (b), we see that the variation in the pipeline length can impact the reuse per-

formance differently for different benchmarks. For some benchmarks (e.g., li, and compress),

adding stages before the reuse stage degrades the reuse performance more than adding them

after the reuse stage; in others (e.g., perl, and ijpeg) the opposite is true. This variation can be

attributed to the relative importance in these benchmarks of the various factors that affect

reuse performance (e.g., skipping larger fraction of the pipeline, decrease in reuse rate). How-

ever, on average, the changes in reuse performance are small, suggesting that, overall, the

reuse results are relatively insensitive to small changes in the pipeline length.

6.6  Branch Prediction

In all the previous experiments, we used a gshare predictor for branches (Table 2.1). Although

we attain reasonably high prediction accuracy, gshare is not the most aggressive predictor

available today; other more accurate predictors, such as hybrid predictors [50], have been

developed and are commonly used today, both in the research community and in industry. In

this section, we study how the reuse results might change if more accurate branch predictors

are used in the underlying processor. We, first, qualitatively discuss the impact of improving

the branch prediction rate on the reuse results.

6.6.1  Possible impact on reuse rates

Increase in the branch prediction rate may decrease the reuse rate because of two reasons.

First, with high branch prediction rate, the pipeline will experience fewer squashes — and,

hence execution will get delayed less often due to branch misprediction. As we have discussed
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before in this chapter (in relation to window size and pipeline width), delays in the pipeline

sometimes help in reusing more instructions because they provide time for the source instruc-

tions to execute and produce the results that enable the reuse of the (delayed) dependent

instructions. Since improvements in branch prediction can reduce delays in the pipeline, it

may reduce the number of instructions reused. Said another way, improving the branch predic-

tion accuracy increases the effective fetch rate, which may cause instructions to arrive at the

reuse stage before their operand values are ready and, hence, may cause them to not get

reused.

Second, improving the prediction rate may reduce the squash reuse component of the total

reuse, because it reduces the number of misprediction squashes. This may result in an overall

decrease in the reuse rate. (Sometimes, a reduction in squash reuse does not reduce the overall

reuse rate because the instructions that would have gotten reused because of squashes get

reused as part of the general reuse in the absence of squashes.)

6.6.2  Possible impact on reuse performance

Increase in branch prediction rate may both improve or hurt reuse performance. It may

hurt the reuse performance for two reasons. Firstly, since fewer instructions may get reused

when the branch prediction rate is improved, the reuse performance may decrease accord-

ingly. Secondly, since squash reuse makes a significant contribution to performance improve-

ment (as we can see from Figure 4.14), its reduction may reduce overall performance.

However, improving branch prediction may also improve reuse performance in two ways.

Firstly, improving branch prediction streamlines the control flow and, hence, makes the data-

flow latencies more critical to the overall execution time. Since instruction reuse reduces the
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dataflow latency (e.g., by collapsing dependent instructions), its performance impact may

increase with the increase in branch prediction rate. Said another way, an increase in branch

prediction accuracy will allow more and more reuses that were earlier rendered useless

because of misprediction latencies to be useful reuses.4 Therefore, reuse may have a higher

impact on performance with improved branch prediction accuracy. Secondly, the reuse perfor-

mance may improve because as the branch prediction improves, the machine can fetch deeper

down the correct path and fill the instruction window with “legal” instructions. With more

“legal” instructions present in the window, the available execution bandwidth may not be

enough to exploit all the useful work present in the window — especially in the case of a nar-

row machine. Since reusing instructions can free up execution bandwidth, which can then be

utilized in executing other ready instructions, reuse may have a larger impact on the perfor-

mance when the branch prediction rate is improved.

6.6.3  Results

In this section, we show how the reuse results are impacted when the branch prediction

rates are improved. To do this study, we run experiments with a perfect branch predictor —

where all branches get predicted correctly — and compare the results with those obtained with

gshare predictor. Using the perfect predictor, instead of any actual predictor, lets us see the

maximum impact on reuse results of the improvements in branch prediction accuracy. We

conduct the experiments for 2 pipeline widths: 4-way (our default pipeline) and 2-way. We

study the 2-way pipeline to show the variations in reuse results in a pipeline where execution

4. This is analogous to why increasing the window size makes more reuses useful and, thereby, improves reuse
performance as discussed in Section 6.3
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bandwidth may be a bottleneck. The results are presented in Figure 6.6.

First, we discuss the impact on reuse rates (Figure 6.6 (a)). For the 4-way machine, the

reuse rates are not affected appreciably by the improvements in the prediction rate. This

implies that, in this pipeline, the problem of operands not being ready, which may be caused

by higher branch prediction rates (as described earlier), is not very severe (because of suffi-

cient execution bandwidth). However, we see a more pronounced decrease in the reuse rate for

the 2-way machine. This is because a better branch predictor improves the effective fetch rate,

and the low execution bandwidth of the machine is not able to execute instructions soon

enough to make the operand values ready before the instructions needing them arrive at the
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reuse stage. Thus, we see that the reuse rate becomes sensitive to and decreases with branch

prediction accuracy when the underlying processor is not aggressive.

Next, we discuss the impact on reuse performance (Figure 6.6(b)). We see interesting

effects on reuse performance because of improvements in branch prediction accuracy. In the

case of the 4-way machine, we see a marked decrease in speedups with perfect prediction.

This is due to couple of reasons mentioned earlier, including the absence of squash reuse,

which is a significant factor in performance (as shown in Figure 4.14). Also, the ability of

reuse to free execution bandwidth is of little advantage in this case since a 4-way machine

potentially has enough execution bandwidth to exploit the available ILP. However, we see a

different story in the case of the 2-way machine. For several benchmarks (e.g., go, m88ksim,

compress), the reuse performance improves significantly with perfect prediction. This is

because in 2-way machine the execution bandwidth is in short supply, and the ability of reuse

to free up execution bandwidth (and thereby allow other ready instructions to execute) helps it

to impact the performance to a larger extent. The average reuse performances, in this case, for

the perfect and actual predictor are the same. Thus, we see that, overall, the reuse performance

is sensitive to branch prediction accuracy, but whether it increases or decreases with predic-

tion accuracy depends on the aggressiveness of the underlying machine.

6.7  Memory Latency

In our simulations, we have used a L1 miss latency of 6-cycles. In this section, we study

how varying this parameter may affect the reuse results. We begin with a qualitative discus-

sion.
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6.7.1  Possible impact on reuse rates

Increasing the memory latency may both improve or decrease the reuse rates. It may

improve the reuse rates for the same reason decreasing the instruction window size may

improve the reuse rates (Section 6.3). With higher memory latency, the instruction window

may get full more often. The resulting pipeline stalls may give source instructions in the win-

dow more time to execute and prepare the operands for the dependent instructions before the

latter reach the reuse stage. This may decrease the number of reuses that were missed due to

operands not being ready.

However, increasing memory latency can also delay the generation of operands and,

hence, can also hurt reuse rate. This may happen for instructions that depend on the load that

misses in the cache. Due to the long memory latency, the dependent instructions may not have

their operands ready in time and hence may miss reuse.

6.7.2  Possible impact on reuse performance

Increasing the memory latency may also either improve or decrease the reuse perfor-

mance. This may happen because of several reasons. The reuse performance may increase or

decrease according to whether the reuse rate increases or decreases with the increase in mem-

ory latency. However, there are other types of interactions that can take place, which may gov-

ern how the reuse performance is impacted. We mention them next.

As mentioned in the previous section, with higher memory latency, it is possible for the

window to fill up more often. The ensuing stall, apart from affecting the reuse rates in the way

described earlier, may also decrease the reuse performance by rendering many reuses useless.

The source instructions may be reused, but the dependent instructions may be stalled; by the
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time the stall clears, the dependent instructions may not execute any earlier than they would

have in the base case (as in the case of smaller instruction windows).

The increase in memory latency may increase the impact reuse has on the bottom line per-

formance. This may happen in the unlikely case when the loads that miss the cache get reused.

Since this would amount to short-circuiting a very long latency operation, it will improve per-

formance significantly.

6.7.3  Results

In Figure 6.7, we show the impact of an increase of memory latency on reuse results. We

perform experiments with four memory latencies (which in our case is the same as the L1

miss latencies): 6 cycles, 10 cycles, 20 cycles, and 100 cycles. (The latency of 6 cycles is the

default for our baseline processor.) The size of the D-cache used in these experiments is the

same as that shown in Table 2.1. The reuse rates and the reuse performance are shown in

Figure 6.7 (a) and (b), respectively.

From Figure 6.7 (a), we see that for most benchmarks the reuse rates are not affected by an

increase in the memory latency. On average, we see the same reuse rate for all latencies. Sim-

ilarly, from Figure 6.7 (b), we see that for most benchmarks (and on average) the reuse perfor-

mances are the same for the memory latencies of 6, 10, and 20 cycles. For the memory latency

of 100, although we see a consistent decrease in performance for all benchmarks (for reasons

discussed earlier), on average the performance is comparable to that with other latencies. This

result shows that for the D-cache miss rates that we see (which are small), the reuse rates and

the reuse performance are largely insensitive to memory latency — only slight changes in
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results occur by increasing the latency. But, for applications that incur higher data cache

misses, the reuse results may get impacted more significantly in ways that were discussed in

the previous two sections.

6.8  Reuse Latency

In all our previous simulations, we had assumed that the reuse test — the test that estab-
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lishes whether an instruction can be reused — completes within a single cycle. Depending on

which reuse scheme is used, it is possible that the reuse test may take multiple cycles to com-

plete, particularly in the case of the value based schemes, Sv and Sv+d, which require that the

values of operands be compared to determine reuse.5 In this section, we evaluate the impact

on reuse results if the latency of the reuse test — i.e., reuse latency — is more than one cycle.

However, in the next section, we first describe how IR with multiple cycle reuse latency inte-

grates in a pipeline. Then, in Sections 6.8.2 and 6.8.3, we qualitatively discuss how reuse

latency may affect reuse rates and performance. Finally, in Section 6.8.4, we present the

results.

6.8.1  Pipeline with reuse latency

The pipeline with IR, shown in Figure 4.6 (page 94), can be modified for multiple-cycle

reuse latencies as follows. At the read register stage, the pipeline is divided into two pipelines:

the regular pipeline and the reuse pipeline. The number of stages in the reuse pipeline is the

same as the reuse latency (e.g., if reuse latency is 2, the reuse pipeline will have two stages).

This is based on the assumption that the reuse test can be pipelined. The first stage of the reuse

pipeline overlaps with the register read stage — thus, with reuse latency of 1, the modified

pipeline will be same as the original pipeline shown in Figure 4.6.

At the read register stage, the instructions are sent down both pipelines. If an instruction

gets reused before it is executed in the main pipeline, then the reused results are written to the

reorder buffer entry of the instruction, and are also forwarded to dependent entries in the

5. For Sv+d, the value comparison is needed only for the independent instructions; the dependent instructions
are reused using the dependent information (Section 4.3.4, page 89).
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instruction window. A reused instruction is not issued for execution in the main pipeline (if it

has already been issued for execution then its writeback is ignored). If, on the other hand, the

instruction completes execution before it is reused, then the reused result, if generated, is

ignored.

6.8.2  Possible impact on reuse rates

Whether the reuse rates are affected by the reuse latency, depends both on the details of

how the main and the reuse pipelines interact and on how the reuse test itself is partitioned

among the various stages of the reuse pipeline. Conceptually, the reuse rates may improve due

to the multiple-cycle latency of the reuse test because the requirement that the operand values

should be ready may now need to be met latter in the pipeline. But exploiting this opportunity

will require that the main pipeline be able to communicate results to the latter stages of the

reuse pipeline and, therefore, will also require us to make specific assumptions about the

structure of the reuse pipeline. We do not want to be so specific about the reuse pipeline struc-

ture in this study. Therefore, we only allow bypasses within the reuse pipeline from instruc-

tions that get reused to dependent instructions behind in the pipeline. With this assumption,

the reuse rate that we will achieve for the multiple-cycle reuse latency case will be exactly the

same as that for 1-cycle reuse latency;6 only the reuse performance will be affected by the

increased reuse latency. (We can also infer this from the results of Section 6.5, where we

showed that non-stalling stages before the reuse stage will not affect reuse rate.)

6. We also count the reused instructions that get ignored (because the instruction result was available from the
execution before the reuse pipeline) as part of total reuse.
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6.8.3  Possible impact on reuse performance

Increasing the reuse latency may reduce the profitability of reuse and, hence, may

decrease the reuse performance for several obvious reasons. Due to an increase in reuse

latency, many instructions may get reused after they finish execution, making the reuses prof-

itless. An increase in reuse latency may delay the execution of the instructions dependent on

the reused value and, thereby, diminish the benefits of reuse. It may also degrade other bene-

fits of reuse (such as early resolution of branches), which arise because of IR’s ability to gen-

erate results early.

However, the reuse performance may be tolerant to some amount of reuse latency — i.e.,

the performance may not degrade completely when the reuse is delayed by few cycles. Some

of the reasons why this may be the case are described below. First, although the execution

stage in a pipeline may logically be a few cycles away from the register read stage (2 cycles in

our pipeline), it may take many more cycles for instructions to get executed from the time they

get past the register read stage because of other instructions ahead of them in the window. In

such cases, if the reuse latencies are short, it may be possible for instructions to get reused

before they complete execution. This reuse may still improve performance. Second, some-

times, even after the reuse latency the reuse results may still become available to the depen-

dent instructions before they can use them. Hence, the execution of the dependent instructions

may not occur any later than with 1-cycle reuse latency. In such cases, an increase in reuse

latency may not affect performance at all. Finally, the reuse of the dependent chain of instruc-

tions in the same cycle may still be profitable since it is likely that the time taken to execute a

chain of dependent instructions is more than the reuse latency.
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6.8.4  Results

In Figure 6.8, we show how increases in the reuse latencies affect the reuse performance.

(We do not show the reuse rates because, as discussed earlier, they are not impacted by the

increase in the reuse latency.) We present speedups for 3 reuse latencies: 1-cycle, 2-cycles,

and 3-cycles. The 1-cycle reuse latency is the reuse latency that we have used in our other IR

experiments so far. The speedups are shown for 4-way associative RBs with sizes ranging

from 256-entries to 16k-entries.

From the figure, we see that the impact of reuse on performance is largely tolerant of small

increments in reuse latencies. For many cases, we see negligible difference in the speedups for

different reuse latencies (e.g., vortex for RB sizes 512 entries - 4k entries, perl for 2k entries to

4k entries). In most cases, where there is a difference in speedups, the difference is small:

about 1%-point. The maximum degradation occurs in the case of compress, where the speed-

ups decrease from 5% to 2%.

6.9  Summary and Conclusions

In this chapter, we studied the sensitivity of reuse results — reuse rates and reuse performance

— to various processor parameters such as window size, pipeline width, pipeline length,

branch prediction accuracy, memory latency, and reuse latency. We vary these parameters

within reasonable limits and determine the impact that this change has on the reuse results. We

also discuss qualitatively, for each parameter, why and how we might expect the reuse results
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to change with variations in the parameter values. We summarize the finding for each of these

parameters below.

• We simulate three window size: 32, 64, and 128 instructions. We see that the reuse results

are fairly insensitive to this variation in window size: on average, the reuse rates and the

reuse performance are the same for all three window sizes.

• We simulate four pipeline widths: 1-, 2-, 4-, and 8-way wide. Although we obtain compa-

rable reuse rates for all four widths, we see that the reuse performance can vary widely

depending on the pipeline width. The narrow machines (1- or 2-way) see significantly

more performance improvement with IR than do the wide machines (4- or 8-way). This is

because narrow machines do not have sufficient execution bandwidth to exploit all the

available ILP in the window. Reusing instructions frees up execution bandwidth that can

be used to execute other ready instructions. Also, the reuse performance for the 8-way

machine is consistently higher than that for the 4-way machine. This is because a wider

width facilitates the reuse of longer chains of instructions.

• We vary the length of the pipeline by adding 1 or 2 extra stages before or after the reuse

stage. We find that the reuse rates and the reuse performance are fairly insensitive to these

changes in the pipeline length: on average, we see comparable results in all cases.

• To study the effect of improving the branch prediction accuracy on the reuse results, we

simulate the effects of perfect branch prediction. We find interesting changes in the reuse

rates and reuse performance with the increase in the branch prediction accuracy. The reuse

rates reduce with the increase in branch prediction rate for 2-way machine, but they do not

change appreciably for 4-way machines. This implies that the reuse rates are sensitive to

branch prediction accuracy only when the execution bandwidth is a bottleneck (since
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operands don’t become ready soon enough). The reuse performance, on the other hand, is

sensitive to branch prediction accuracy, but whether it improves or decreases for more

accurate predictors depends on the aggressiveness of the underlying machine: if the under-

lying machine is not aggressive then the reuse performance increases; otherwise, it

decreases.

• We simulated four different memory latencies: 6, 10, 20 and 100 cycles. We see that for

the small D-cache miss rates that our benchmarks experience, these changes in memory

latencies do not impact the reuse results; on average, the results for all these memory

latencies are comparable. However, we note that with higher D-cache misses, the variation

in memory latencies may have a more pronounced impact on the reuse results.

• Finally, we simulate 3 different reuse latencies: 1-, 2-, and 3-cycles. We see that the reuse

performance is largely insensitive to small changes in the reuse latency. For most pro-

grams we see no or a very small (1%-point) difference in the reuse performance with dif-

ferent reuse latencies.
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Chapter 7

Conclusions

In this chapter, we first present a summary of this thesis and then discuss the various direc-

tions in which this work can be extended.

7.1  Thesis Summary

In this thesis, we performed two main tasks: (i) we studied a new phenomenon exhibited by

programs, called instruction repetition; and (ii) we introduced and studied a novel microarchi-

tectural technique, called instruction reuse, for exploiting that phenomenon.

The phenomenon of instruction repetition is that instructions often execute repeatedly with

the same input values and produce the same results. We observed that this phenomenon is very

pervasive, with the majority of dynamic instructions getting repeated for most of the bench-

marks. Instruction reuse (IR) is a non-speculative technique that exploits this phenomenon to

reduce the amount of work that needs to be done to execute programs and, therefore, to

improve performance. It obviates the re-execution of repeating instructions by reusing their

results from a hardware table, called the Reuse Buffer (RB), where they were stored previ-

ously. The instructions get reused early in the pipeline (in our case, in the read register stage of

the pipeline), after which they skip the rest of the pipeline stages (such as, issue, execute and
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writeback) and become ready for retirement.

We identified two broad reasons why instructions may get repeated: (i) due to speculative

execution, and (ii) due to the nature of programs themselves. The repetition due to the first

reason occurs when executed instructions that are squashed due to mis-speculation are re-exe-

cuted with the same input values (e.g., due to control independence). We called this form of

repetition, squash repetition. The repetition due to the second reason occurs because of the

way programs are normally written. We write programs to be concise (using loops), modular

(using functions), and generic in nature. To support the concise and modular ways of express-

ing computation, programs contain many “support” instructions such as, loop-control instruc-

tions and function prologues and epilogues. These instructions often end up performing the

same tasks repeatedly during execution. To make programs generic in nature, we write them

so that they are capable of operating on different data values. But, when generically-written

programs see the same input values repeatedly, many instructions in them end up producing

the same results again and again. We called this second form of repetition, general repetition.

The reuse engendered by these two forms of repetitions were called squash reuse and general

reuse, respectively.

We outlined several reasons why IR may improve performance. First, since a reused

instruction is not executed, it frees up several pipeline resources (e.g., issue ports, functional

units, cache ports, etc.). These resources can then be used for executing other waiting instruc-

tions. Second, reused results become available early in the pipeline, which allows instructions

dependent on them to execute sooner. Third, IR salvages useful work from mis-prediction

squashes, which reduces the misprediction penalty. Fourth, IR reuses chains of dependent

instruction in the same cycle. This allows instruction sequences that would have otherwise
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taken multiple cycles to execute, to complete in a single cycle (or reuse-latency number of

cycles) when reused.

The study conducted in this thesis was performed using a benchmark suite consisting of

21 programs: 8 of them were SPEC ‘95 integer programs, 10 were SPEC ‘95 floating-point

programs, and 3 were (self-picked) graphics programs — Viewperf+Mesa, MPEG-2 decoder,

and POV-Ray. Viewperf is a benchmark that evaluates the performance of OPenGL imple-

mentations (Mesa is a publicly available OpenGL implementation that we evaluated). MPEG-

2 decoder plays an MPEG-2 format movie; and POV-ray is a scene renderer that uses ray-trac-

ing technique to create 3-D images.

Next, we summarize the work we performed on instruction repetition and reuse.

7.1.1  Analysis of Instruction Repetition

We studied the phenomenon of instruction repetition elaborately, for the purposes of

understanding it better. This study consisted of two parts. In the first part, we determined the

statistical characteristics of the phenomenon. We collected numerous results such as, percent

of dynamic instructions that get repeated, percent of static instructions that generate repeated

instances, fraction of static and dynamic instructions that account for most of the repetition,

number of different values with which repetition takes place, and so on. We found that there is

significant repetition in programs — more that 75% of dynamic instructions are repeated for

several benchmarks (e.g., 88% for gcc, 93% for vortex, 77% for viewperf, and 83% for pov-

ray). We also found that a very few static and dynamic instructions contribute to most of the

repetition — less than 20% of executed static instructions and less than 20% of unique

dynamic instances give rise to more than 90% and 80% of total repetition, respectively.
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In the second part of this study, we tracked various sources of instruction repetition to bet-

ter understand its causes. For this purpose, we grouped instructions in programs in categories

based on the type of data they used (e.g., program input data and immediate values) and the

type of work they performed (e.g., global-address calculation and function prologue and epi-

logue). We then determined how the total repetition was distributed across these categories.

We performed this analysis at two levels: (i) global-level, where we analyzed how repetition is

distributed over whole programs; and (ii) local-level, where we analyzed how repetition is dis-

tributed with functions. We also performed a function-level analysis, where we determined the

degree of repetition in the argument values of functions.

Many different types of results were presented, some which are as follows. The global

analysis showed us that most of the repeated instructions used data that originated from the

program internal values (immediate values) and the global initialized data — i.e., from the

data that is hardwired in program binary — and less used data that originated from the pro-

gram inputs. This suggested that the phenomenon of repetition may be more a property of the

program itself than of the input data. The local analysis showed that most of the repetition was

due to values that originated as function arguments or global values. We also saw significant

repetition due to instructions that constitute function prologues and epilogues and those that

are involved in computing addresses of global loads. The function analysis showed that there

is a significant amount of repetition in function arguments, with most dynamic function calls

(e.g., 78% in go) being calls with the exact same set of argument values as previous calls to

the same function.

Although we performed a very elaborate analysis, we note that this was only an initial

attempt to understand this phenomenon. Our choice of instruction categories and types of
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analyses (global, local, etc.) was largely empirical. Better insights into the phenomenon may

be gained by categorizing the instructions differently or by conducting the analysis at a differ-

ent level (e.g., algorithmic level).

7.1.2  Instruction Reuse

Substantial effort in this thesis was devoted to developing the instruction reuse techniques

and cultivating a better understanding of it. This work was divided into three categories: (i)

devising instruction reuse schemes, (ii) studying the storage issues for instruction reuse; and

(iii) investigating the different ways in which instruction reuse may interact with other

microarchitectural features. We summarize these categories below.

7.1.2.1  Reuse schemes

We studied four schemes for implementing instruction reuse. All these schemes reuse

instruction results from the RB by establishing that the current values of instruction operands

are the same as those used to calculate the results present in the RB. However, these schemes

differ in how they establish the sameness of operand values. Scheme Sv stores the operand

values along with the results in the RB. To establish reusability, it compares the current values

of operands with those stored in the RB. The result is reused if the values are the same.

Scheme Sn stores operand register identifiers in the RB with the results. It invalidates results in

the RB whose operands registers are overwritten with a new value. A result is reused if it is

still valid. Schemes Sv+d and Sn+d extend the schemes Sv and Sn, respectively, with the depen-

dence information, to facilitate the reuse of dependent instructions. The instructions in the RB

are linked together according to their data dependences, with the dependent instruction point-
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ing to the source. With this arrangement, the dependent instruction in the RB can be reused

simply by establishing that their source instructions are reused. The instructions for which no

dependent information is available is reused as in the base scheme Sv or Sn.

Our results showed that, in general, a significant percentage of dynamic instructions get

reused — for several benchmarks (e.g., m88ksim, vortex, and perl) more than 50% of dynamic

instructions were reused. Comparing the different reuse schemes, we saw that scheme Sv per-

formed the best (with average reuse rates of 48% for integer benchmarks with 4096 entry RB),

while scheme Sn performed the worst (the average reuse rates being 16%). Scheme Sn+d

allowed the reuse of dependent instruction and, hence, improved the reuse rates over scheme

Sn (with an average of 25%). Scheme Sv+d performed nearly as well as scheme Sv even with

using only the dependent information to reuse the dependent instructions (with an average of

45%). We also presented other reuse characteristics such as reusability of different instruction

types, and contributions of each category to total reuse. These results showed that all instruc-

tions categories are amenable to repetition; however, loads (and their address calculation

micro-operation) make the largest contribution to total reuse. The speedups over the base case

due to IR were not as pronounced as the reuse rates; nevertheless, they were significant — in

several cases we saw more than 15% improvement in performance.

7.1.2.2  Storage issues for IR

The RB is a central hardware structure that is used in the IR technique. We studied three

main parameters of this structure — size, associativity, and management policy — in greater

detail. We presented the results on how reuse rates vary with size and associativity of the RB.

We presented the maximum (limit) reuse rates for a range of RB sizes and associativities —
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or, alternatively, showed the minimum RB sizes and associativities required for capturing a

certain amount of reuse. The limit results showed that it is possible to capture significant

amounts of reuse with a small RB, e.g., for several benchmarks, we saw that close to or more

than 50% of dynamic instructions can be reused with the RB with 1K entries. One of the

determinants of the degree of RB associativities is the number of instruction instances that

need to be buffered to reuse a significant number of instructions. We presented the number of

instances that we need to buffer to capture a certain level of reuse. The results showed that, for

most benchmarks more than 70% of dynamic instructions can be reused by just buffering the

last four instances. This showed that the RB need not be of a high associativity for capturing

large amounts of reuse.

The limit results also showed the RB as being inefficiently utilized with the current man-

agement policies. Motivated by this result, we studied four RB management policies to utilize

the RB space efficiently. Two of these policies, FnReused and FnReady, performed selective

insertion in the RB, filtering our instructions that are not likely to get reused. The third policy,

RR, performed selective eviction from the RB, evicting the likely unreusable instructions from

the RB before the reusable ones. The fourth policy, FiF, was a novel management policy

designed along the lines of the Belady’s optimal management policy. For each instruction, this

policy determined how far in the future that instruction is likely to get reused. Using this infor-

mation, it scheduled instructions in the RB, giving priority to instructions with shorter dis-

tance values.

The success of these new policies was mixed. For some benchmarks, we saw a significant

improvement in the reuse rates; for others, we saw only small improvement or, in some cases,

a slight degradation in reuse rates. Overall, FiF showed potential to perform better than the
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other policies; however, we noted that policies FnReady and RR may be less expensive to

implement and, hence, the reuse rate improvement caused by them may be noteworthy.

7.1.2.3  Sensitivity analysis

Finally, we studied the sensitivity of IR with several other microarchitectural parameters,

such as instruction window size, pipeline width, pipeline length, branch prediction accuracy,

memory latency, and reuse latency. We first discusses qualitatively how the IR results may

vary with each of the parameters. We then conducted experiments by changing the parameters

(within reasonable limits) to measure the extent of sensitivity. We saw that the reuse results

were largely insensitive to the window size and pipeline length for the range in which we var-

ied them. The reuse results were, however, quite sensitive to changes in pipeline width. For

example, we saw that IR was far more effective in improving the performance for narrow

machines (1- or 2-way superscalar) than for wide machines (4- or 8-way superscalar). The

reuse results were also sensitive to branch prediction accuracy, but the “direction” of sensitiv-

ity depended on the width of the underlying pipeline: for narrow machines, improving the

branch prediction accuracy improved reuse performance, but for wide machines, doing so

decreased reuse performance. Finally, we saw that the reuse results were largely insensitive to

small changes (by 1 or 2 cycles) in reuse latency. The differences in reuse performances with

1, 2, and 3 cycle reuse latency were negligible in most cases.
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7.2  Future Work

This work is an initial effort in the area of instruction repetition and reuse. There is an

immense potential for further research in this field. In the next several sections, we present the

number of different ways in which this work can be extended further.

7.2.1  Reuse at higher granularity

In this thesis, we performed reuse at instruction-level granularity — i.e., instructions were

individually checked for reusability. We have seen that very often groups of instructions get

reused together. The concept of reuse can be extended from instruction-level to group-level,

where each group is checked for reuse as a single entity. The inputs and outputs of groups of

instructions can be identified, and a group can be reused when its input values are repeated —

without having to check the individual instructions within the group.

The group-level reuse may have several advantages. For example, (1) instructions within

groups may be skipped altogether, i.e., not fetched at all, when the groups are reused. (2) The

reuse information may be stored more concisely at group-level than at instruction-level, since,

only overall group information needs to be stored instead of per instruction information. (3)

The group-level reuse may require less number of ports in the RB than the instruction-level

reuse for reusing the same number of instructions simultaneously: a single group access may

supply the same number of instructions from the RB for which several single instruction

accesses may be needed.

However, there may be several issues with implementing group-level reuse. We performed

some work in this area. Below, we discuss some of the issues that we discovered in the pro-
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cess. Later in this section we also discuss some issues in performing group reuse when the

instructions within groups are not contiguous.

We implemented group-level reuse as follows. We constructed groups using instructions

that were dynamically contiguous and “reusable”. An instruction was considered “reusable” if

it got reused from a single-instruction RB. Each group consisted of a starting PC, a following

PC, inputs and outputs. The instructions themselves were not stored in the group. The starting

and the following PCs of a group were the PC of the first instruction in the group and the PC

of the instruction after the group, respectively. The inputs to a group were the registers or

memory locations that were read within the group without been first defined. While the out-

puts of a group were the registers or memory locations that were defined within the group. The

groups were stored, indexed by their starting PC, in a group reuse buffer (GRB), from where

they were reused, in the register read stage of the pipeline, when the same starting PCs were

re-encountered with the same set of input values. When a group was reused, its output values

were used to set appropriate registers and memory locations, and the instruction fetch was

diverted to the following PC, thereby, skipping the instructions internal to the group.

We faced two main issues while studying the above group-level reuse implementation.

Below, we describe these issues and some ways in which they can be addressed in future

work.

• First, the problem of inputs not being ready at the reuse stage got aggravated for group

reuse, resulting in our implementation of group reuse not capturing significant amount of

repetition. This problem, which was not as severe for single instruction reuse (as sug-

gested by the high reuse rates in Figure 5.1), became acute for group reuse because when

reusing groups certain input values were required sooner than they would be when reusing
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individual instructions. We illustrate this scenario in Figure 7.1, where we show a group

consisting of an instruction sequence, ‘A’, ‘B’, ‘C’. The external inputs to ‘A’ and ‘C’, ‘i’

and ‘k’, become the inputs to the group. With this group formation, the input ‘k’, which

would have been required at time t+2 for instruction reuse (Figure 7.1 (a)), would be

required at time t for group reuse (Figure 7.1 (b)). This early requirement may thwart the

group reuse, if the input is not ready at the prior time.

We suggest a couple of ways in which this problem may be tackled in future work. (1) A

part of the reason why this problem arose was because we reused groups (and instructions)

in fixed pipeline stages only: if inputs were not ready in those stages then the reuse was

forgone. We can alleviate this problem to some extent by making the reuse “floating”, i.e.,

by allowing groups to get reused when ever all their inputs become ready (if their reuse is

still beneficial), irrespective of their position in the pipeline. (2) We may also alleviate this

problem by devising more sophisticated algorithms for constructing groups that do not

include those instructions in groups whose inputs are unlikely to be ready when the groups

are re-encountered.

• The second issue we faced was the decrease in control prediction accuracies for several

benchmarks when performing group reuse, which neutralized the performance improve-

A B Ci

k

A B C

k

i

(a) (b)

time timet t+1 t+2 t t+1 t+2

group

Figure 7.1 Input requirement times for an instruction sequence A, B, C: (a) when
instructions are separate, (b) when instructions are in a group.



219

mentdueto reuse.Thisdecreaseoccurredbecausethepredictionstructuresdid notseethe

control instructionsthat were within the reusedgroups,since theseinstructionswere

skipped.The predictionaccuraciessuffereddueto incompleteknowledgeaboutthe his-

tory.

This issuemaybetackledin futurework by storingthepredictioninformationfor control

instructionsin groupsaspartof thegrouprepresentation.This informationcanbeusedto

appropriatelyupdatethe predictionstructureswhena group is reused.For example,the

directionsfor thebranchespresentinsidea groupcanbestoredin thegroup’s GRB entry.

This information can be usedto updatethe branchhistory register when the group is

reused.Similarly, the returnaddressesfor the calls andthe countof returnspresentin a

groupcanalsobe storedwith the grouprepresentation.This informationcanbe usedto

updatethe return addressstackwhen the group is reused:the return addressescan be

pushedon to thestack,while thecountof returnscanbeusedto poptheright numberof

addresses off the stack.

Somemoreinitial work on group-level reusehasalsobeenperformedby otherresearch-

ers.HuangandLilja [24] have studiedperformingreuseat basic-blocklevel, while González,

et. al. [20], have evaluatedthepotentialof performingreuseat thedynamicinstruction-trace

level.

7.2.1.1  Non-contiguous-instruction group reuse

The groupsmay also constituteof non-contiguousinstructions.One example of such

groupsis a chainof dependentinstructions.Theadvantageof reusingdependentchainsover

reusingcontiguousinstructionblocks is that a contiguousblock may containunrelatedand
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unreusable instructions that can thwart the reuse of the whole block. However, for dependent

chains, since the instructions are related, they are likely to exhibit same degree of reusability,

increasing the chances of the reusing the whole chain. However, a problem with the non-con-

tiguous group reuse may be the merging of the reused results back into the main pipeline.

Unlike in the case of contiguous instructions, all results cannot be merged immediately, since

there may be write-after-write hazards with the intermediate instructions not part of the group.

Some recent work [38] has shown how results from one computing subsystem can be inte-

grated into another using a technique that is similar in spirit to scheme Sn+d; such a technique

can also be used to integrate the reused results from a non-contiguous group into the main

pipeline.

7.2.2  Compiler support for reuse

Compiler may be able to play an important role in making the reuse technology more

practical. It can do so in several ways. First, it may help manage the RB efficiently, and

thereby, help make the RB small. It can identify the likely reusable instruction and pass this

knowledge as hints to the processor. These hints can then be used to choose which instructions

to place in RB. This way we may be able to reduce RB pollution and to achieve high reuse

rates from a small size RB.

Similarly, compiler may facilitate group-level reuse by identifying (or by creating) reus-

able groups of instructions for the hardware to exploit. Some work has started in this area. In

[16], compiler creates regions of code that are likely reusable. The reuse of these regions in

this work is software controlled, the results of these regions are saved and reuse by instruc-

tions inserted in the code by the compiler.
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7.2.3  Low power

IR reduces the amount of work that needs to be performed for executing programs. For

example, the reused instructions don’t have to flow through many stages of the pipeline (e.g.,

issue, execute, and writeback), or the reused loads don’t access the data cache. Due to this

work savings, IR may have the potential to reduce the amount of power consumed in proces-

sors (if, of course, the act of obtaining the results from the RB itself does not consume sub-

stantially more power). Further investigations are required in this area.

7.2.4  Other uses of IR

IR provides the ability to save work and reuse it later on. This ability can be put to several

other uses, some of which are described below.

The I-cache misses limit performance significantly, particularly because they cannot be

overlapped. IR can be used to perform some useful work while waiting for the missed line to

return. The instructions following the missed line can be fetched (if they are in the cache) and

executed assuming no data dependence from the missed line. These instructions are treated

differently than the normal instructions. They are neither inserted in the reorder buffer nor

renamed, and their results after execution are stored in the RB. If, later, the control reaches

these instructions (after the instruction fetch resumes), they can be reused if their results in the

RB are found to be valid. This approach can also be used for performing potentially useful

work when the processor is stalled for other reasons, such as when the instruction window

becomes full.

Recently, many researchers have started working on using separate threads in processors

to optimize the performance of a main thread [13, 38]. One optimization that is being studied
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is to let a subordinate thread run ahead and execute the performance-hurting events (such as,

cache misses and branch mis-prediction) in advance and communicate the results to the main

thread. The communication between the subordinate thread and the main thread can be pro-

vided using IR-like scheme. The subordinate threads may write the results in an RB, while the

main thread may selectively use (appropriate) results from the RB after checking the oper-

ands.

7.2.5  Further developing the FiF policy

The FiF policy, as we have mentioned earlier, is a general policy in that it can be used for

managing other forms of storage as well. Its use in managing the cache hierarchy can be par-

ticularly interesting and warrants further investigation.
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Appendix A

Additional Results

A.1  Repetition Results with second set of inputs

We show the repetition rates and the global analysis results for the second set of inputs

(shown in Table 2.5) in Table A.1 and Table A.2, respectively

A.2  Additional squash reuse results

We show the breakdown of percentage of instruction reused and total performance

improvement in terms of general and squash reuse. In Figure A.1, we present the breakdown

for the SpecInt ‘95 and the graphics benchmarks for schemes Sv and Sn. In Figure A.2, we

show the breakdowns for the SpecFP ‘95 benchmarks for schemes Sv, Sn, and Sn+d. The num-

bers for scheme Sv+d match those of scheme Sv closely, and hence are not shown separately.
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SpecInt ‘95

Dynamic Instructions

SpecFP ‘95

Dynamic Instructions

Total
(millions)

Repeat
(%)

Total
(millions)

Repeat
(%)

go 1000 94.1 tomcatv 1000 56.0

m88ksim 100.1 94.9 swim 1000 25.1

ijpeg 1000 74.6 su2cor 729.4 47.8

perl 12,396 97.7 hydro2d 623.0 43.9

vortex 1000 95.2 mgrid 1000 16.2

li 1000 85.6 applu 1000 52.6

gcc 400 89.4 turb3d 1000 90.0

compress 1000 51.8 apsi 212.8 68.7

Graphics fpppp 226.4 37.4

Viewperf+Mesa 485.8 83.5 wave5 826.1 36.7

Mpeg-2 decoder 38.1 69.0

POV-Ray 1000 81.5

Table A.1 Total number of dynamic instructions executed and percentage of them repeated
with the second set of benchmark inputs (Table 2.5). Most results tally very well with the
results with the first set of inputs, shown in Table 3.1 (except of wave5, where the repetition
rates are lower due to the limited per instruction buffering available in our repetition tracking
buffer).
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Categories go m88k ijpeg perl vort li gcc comp

Overall % of all dynamic instructions

internals 80.2 42.6 58.3 58.7 54.2 46.1 57.9 63.3

global init data 19.3 27.9 22.4 30.2 28.3 12.4 25.7 29.3

external input 0.5 29.3 19.4 8.0 17.5 40.7 16.4 7.4

uninit 0.0 0.2 0.0 3.1 0.0 0.8 0.1 0.0

Repeated % of all repeated dynamic instructions

internals 80.5 42.8 57.3 60.1 55.2 47.3 61.4 77.4

global init data 19.0 26.3 24.4 30.9 28.8 14.4 28.4 21.2

external input 0.4 30.7 18.3 5.8 15.9 37.4 10.1 1.4

uninit 0.0 0.2 0.0 3.2 0.0 0.9 0.1 0.0

Propensity % of all dynamic instructions in each category

internals 94.5 95.4 73.3 99.9 96.9 87.8 94.8 63.3

global init data 92.7 89.4 81.5 99.9 97.0 99.6 98.8 37.4

external input 90.0 99.3 70.58 71.8 86.7 78.5 55.3 9.7

uninit 0.0 100.0 0.0 99.9 0.0 99.8 100.0 0.0

Categories tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5

Overall % of all dynamic instructions

internals 37.2 33.6 23.0 43.6 4.7 24.6 16.4 9.7 8.2 17.7

global init data 37.8 6.3 24.7 16.9 95.3 18.2 83.5 9.1 13.0 15.8

external input 24.6 59.9 51.9 39.3 0.0 57.2 0.0 80.9 78.8 66.5

uninit 0.5 0.2 0.4 0.2 0.0 0.0 0.1 0.3 0.0 0.0

Repeated % of all repeated dynamic instructions

internals 58.4 47.0 31.2 37.3 13.9 33.6 13.6 13.3 21.9 39.8

global init data 30.8 1.9 28.8 20.0 86.1 26.8 86.4 11.4 34.5 12.2

external input 10.8 51.2 40.0 42.7 0.0 39.6 0.0 74.9 43.6 48.0

uninit 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0

Propensity % of all dynamic instructions in each category

internals 87.9 35.2 64.9 37.6 48.3 71.7 74.3 93.9 99.6 82.3

global init data 45.6 7.5 55.8 51.9 14.6 77.5 93.0 86.2 99.2 28.4

external input 24.7 21.5 36.9 47.7 0.0 36.4 0.0 63.6 20.7 26.5

uninit 0.0 0.0 0.0 2.3 0.0 0.0 89.9 100.0 0.0 0.0

(SpecInt)

(SpecFP)

Table A.2 Global analysis results for the second set of inputs (Graphics benchmarks on the
next page).
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Categories viewperf mpeg-2 povray

Overall % of all dynamic instructions

internals 29.8 60.3 26.4

global init data 12.6 11.6 24.2

external input 56.8 28.1 47.2

uninit 0.8 0.1 2.1

Repeated % of all repeated dynamic instructions

internals 34.6 60.6 30.4

global init data 15.0 16.7 29.7

external input 49.5 22.6 37.4

uninit 0.9 0.1 2.6

Propensity % of all dynamic instructions in each category

internals 97.0 69.3 93.7

global init data 99.2 99.6 99.8

external input 72.7 55.6 64.5

uninit 100.0 92.0 99.8

Table A.2 (contd) Global analysis results for the second set of inputs for graphics benchmarks

(Graphics)
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Figure A.1 Breakdown of percentage instruction reused and performance in terms of
general and squash reuse for schemes Sv and Sn. Bar ‘A’ is for a 256-entry RB, ‘B’ is for a 1k-
entry RB, and ‘C’ is for a 4k-entry RB.
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Figure A.2 Breakdown of percentage instruction reused and performance in terms of general
and squash reuse for schemes Sv, and Sn. Bar ‘A’ is for a 256-entry RB, ‘B’ is for a 1k-entry RB,
and ‘C’ is for a 4k-entry RB.

Scheme Sv

Scheme Sn

Floating Point Benchmarks

Breakdown
of % reuse

Breakdown of
performance

Breakdown
of % reuse

Breakdown of
performance



233

0

20

40

60

80

100

A B
tomcatv

C 	 A B
	

swim

C 	 A B
su2cor

C 	 A B
	

hydro2d

C 	 A B
mgrid

C 	 A B
	

applu

C 	 A B
turb3d

C 	 A B
	

apsi

C 	 A B
	

fpppp

C 	 A B
	

wave5

C

Benchmarks

P
er

ce
n

t

general reuse

squash reuse

0

20

40

60

80

100

A B
tomcatv

C 	 A B
	

swim

C 	 A B
su2cor

C 	 A B
	

hydro2d

C 	 A B
mgrid

C 	 A B
	

applu

C 	 A B
turb3d

C 	 A B
	

apsi

C 	 A B
	

fpppp

C 	 A B
	

wave5

C

Benchmarks

P
er

ce
n

t

general reuse

squash reuse

Figure A.2 (continued) Breakdown of percentage instruction reused and performance in
terms of general and squash reuse for scheme Sn+d. Bar ‘A’ is for a 256-entry RB, ‘B’ is for a
1k-entry RB, and ‘C’ is for a 4k-entry RB
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