DYNAMIC INSTRUCTIONREUSE

by

AVINASH SODANI

A dissertation submitted in partial fulfillment

of the requirements for the giee of

Doctor of Philosoph

(Computer Sciences)

at the

University of Wisconsin—Madison

2000

@opyright by A vinash Sodani 2000
All Rights Reserved

Abstract

Traditionally, improvementsin processomicroarchitecturehave comefrom observingpro-

gramcharacteristicanddevising mechanism$o exploit them.Thisthesispresent& new phe-
nomenonexhibited by programsand proposesa novel microarchitecturaltechniquefor

exploiting it to improve processoperformanceThe phenomenongalleddynamic instruction

repetition, is thatinstructionsn programsftenexecuterepeatedlywith the samenputvalues
andproducethe sameresultsover andover again. The nev microarchitecturatechniquepro-

posedn this thesisexploits this phenomenomo reducethework thatneedso be donein exe-

cuting programs.This technique called dynamic instruction reuse, detectsthat instructions
areproducingthe sameresultsrepeatedlyandinsteadof re-executingthem,reusegheresults
from the instructions’previous executions.This techniquemproves performancebecausef

severalreasonspneof whichis its ability to collapsedatadependencesy completingdepen-
dent instructions simultaneously

This thesis mads two main contriltions:

1. It studiesthe phenomenomf instructionrepetition,presentingiumerouscharacterization
resultsandperformingdetailedanalyseso betterunderstandhe causef this phenome-
non.

2. It introducesandstudieshe conceptof dynamicinstructionreuselt presentdour instruc-
tion reuseschemesTheseschemegeuseresultsof instructionsfrom a hardware table

calledthe Reuse Buffer (RB), wheretheresultsarestoredpreviously. Thevalidity of these

old resultsis establishedy checkingwhetherthe currentoperandvaluesarethe sameas

thoseusedto calculatethe old results.The thesisalso studiesthe size and associatiity

requirementgor the storageneededor saving instructionresults,and presentfour new

policiesfor managinghis storageefficiently. Finally, this thesisstudiesthe interactionsof

instruction reuse with otheek microarchitectural features in processors.

The experimentalresultsshav that thereis abundantinstructionrepetitionin programs,
andthatsignificantpercentag®f this repetitioncanbereused Althoughthe resultantperfor-

mance impreements are not commensurately highythes still significant in mancases.

iii

Acknowledgements

| would lik e to thankmy advisor Guri Sohi, for his guidanceandsupportduringmy graduate
studies,andfor the invaluabletraining | receved ashis student.His influenceis sureto stay
with mefor along time andhelp mein my careerin mary ways.As his student| alsocher-
ishedthe freedomhe offeredto exploreanddevelopnew ideas.This freedomkeptmy interest
alive in my research all through out the Ph.D.

| would like to thank Mark Hill, Jim Goodman CharlesFischer Jim Smith, and David
Woodfor servingon my preliminaryanddefensecommitteesTheir incisive evaluationof my
work helpedme focusmy researchn the correctdirection.Mark Hill andJim Goodmaralso
severed as readers for this thesis. This thesis benefitted immensely fromfuresr ef

Many peoplehelpedmeduringmy yearsin graduateschool. Andy Glew, Andreasviosho-
vos, Shulu Mukherjee andT.N. Vijaykumarwerealwayswilling to offer advice.l alsolearnt
a lot aboutmakinggoodtalk slidesfrom Andreas.Ilt was a pleasuresharingan office with
Andy. Thenumerougliscussion$ hadwith him onvariety of topicshelpedmedevelopa bet-
ter appreciation for fields gend computers.

This thesiswork would not have beenpossiblewithout the love, support,and constant
encouragemerftom my family. Theimmensepride thatmy parentsandbrotherstake in my
smallestof achiezementsvasa constansourceof motivation. My wife Shilpacheerfullyput
up with my spendingcountlesshoursat work. It washerlove andsupportthatmadethefinal

and, aguably the most strenuous year of graduate school much easier to withstand.

Contents

A Al . . i
Acknowledgements.o i
Chapter 1. IntroduCtion.t e e 1
1.1 Scenariosfor Instruction RepetitionandReuse. 3
1.1.1 Scenario 1. Squash RepetitionandReuse 4

1.1.2 Scenario 2: General RepetitionandReuse. 5

1.2 ThesisContributionSo e 9
1.2.1 Instructionrepetitiont 9

122 INSrUCIONREUSEo e 10

1.3 ReatedWork. 14

14 TheSiSOULINE e e 16
Chapter 2. Experimental Framework 17
21 SIMUIAOIS . . .o 17
211 Functiona Simulatoro i 18

212 Timingsimulator 18

2.2 Processor MicroarchiteCture 21
2.3 BenChmarks. 24
231 DESCHPLON . ottt e e e 24

232 Compilation 26

233 EXECULION ... 27
Chapter 3. An Empirical Analysisof Instruction Repetition 31
3.1 Qualitative Description of Causes of Repetition........................ 32
3.2 Quantitative Analyses: Introduction and Rationale. 34

3.3 DENIIONS. . ..o 36

34 Experimental SEtUDo 38

3.5 Statistical Analysis: Characterizing Instruction Repetition. 40
3.6 Analysisto Understand the Causes of Repetition 47
3.6.1 Globa Analysis e 47
3.6.2 FunctionLevel AnalysiSt 52
3.6.3 Local AnalySiS e 55
3.7 Discussion and Further Investigations., 65
3.7.1 Globa ANalysSiS ... e 65
3.7.2 FunctionLevel AnalySiS 67
37.3 Local ANAlYSIS ... 69
3.8 Summary and CONCIUSIONSottt e 73
Chapter 4. DynamiclnstructionReuse. ... 77
41 INSUCHION REUSE.ottt 78
4.2 ReuseBUfer 79
4.3 Schemesfor InstructionReuse. 81
4.3.1 Scheme Sv: Reuse based uponoperandvalues 81
4.3.2 Scheme Sn: Reuse based uponregisternames 83

4.3.3 Scheme Sn+d: Reuse using register names and dependence chains 85

4.3.4 Scheme Sv+d: Reuse using register values and dependence chains 89

435 Summaryofschemes............. . . . i 91
4.4 MicroarchitecturewithaReuseBuffer 93
45 Reuse Schemes. Optimizations, Constraints and Variations. 97

451 OptimIizationSottt e 97

452 CONSIrAINTS . . oottt 99

453 Vaiations 102
4.6 Invalidationsin RB: Issuesand Alternatives. 105

4.6.1 Non-loadinvalidationsc.ou ... 107

4.6.2 Dependent instruction invalidations 109

4.7 Experimental Evaluation. 110

471 ExpeimentsandResults i 111
4.8 Related Work and DisCUSSION oo v i e 131
4.9 Summary and ConcluSIONSttt 133

Chapter 5. ReuseBuffer Characterization and Management................ 136
51 Experimental SEtUDt 137
52 CharacterizingRB: Size.t 139
5.3 Characterizing RB: ASSOCIALIVITYoii e e 142

5.3.1 Effect of storing multiple instancesin RB onreuserates 142

5.3.2 Overdl effect of associativity onreuserates 144
54 RBManagement . ..ot 146

54.1 InsertionPolicy 148

54.2 ReplacementPolicyc it 151

5.4.3 FiF: Farthest in Future Replacement Policy 153
5.5 Evauation of Management Policies, 161

55.1 Direct measuresof policy operationc.ociiin.... 162

55.2 Stability of distancesinFiF i 164

553 ReEUSERAESot 167

554 Performanceo 171
56 Summary and CONClUSIONSttt e e 173

Chapter 6. Sensitivity ANalySiS. oot e 176
6.1 Experimental SEUDt 177
6.2 Causesfor Sensitivity of IR.o 177
6.3 InstructionWindow Size. 180

6.3.1 Possibleimpactsonreuseratesc ... 181

6.3.2 Possibleimpactonreuseperformance. 181

B.3.3 RESUIES 182
6.4 PipelineWidth. e 184

6.4.1 Possibleimpactonreuseratesiiiiiiiii 184

6.4.2 Possibleimpact onreuseperformance............. ... i 186

Vi

6.4.3 ReESUItS 187
6.5 PipelinelLength 189
6.5.1 Possibleimpactonreuseratescoiiiiiii... 190
6.5.2 Possibleimpact onreuseperformance............. 190
6.5.3 RESUIS 191
6.6 BranchPrediction. 193
6.6.1 Possibleimpactonreuseratescoiiiiiiii.. 193
6.6.2 Possibleimpactonreuseperformance............. 194
6.6.3 RESUILSo 195
6.7 Memory LatenCycoor 197
6.7.1 Possibleimpactonreuseratesc.coiiiiiii 198
6.7.2 Possibleimpact onreuseperformance. 198
6.7.3 RESUILS 199
6.8 ReUSELAENCY 200
6.8.1 Pipeinewithreuselatency 201
6.8.2 Possibleimpactonreuseratesc..o i 202
6.8.3 Possibleimpactonreuseperformance. 203
6.8.4 RESUIESt 204
6.9 Summary and CoNCIUSIONSttt 204
Chapter 7. CONCIUSIONSo e e e e e 208
7.1 TheS S SUMMAY. . ..o e e e 208
7.1.1 Anaysisof Instruction Repetition 210
712 InstructionReUse 212
7.2 FUUreWOrK. . .. 216
7.21 Reuseathighergranularity 216
7.2.2 Compiler supportforreuseiiiiiiiiiii. 220
7.2.3 LOW POWES .ottt et et e 221
724 Otherusesof IRo 221

7.2.5

Further developing the FiF policy i, 222

vil

Bibliography

Appendix A. Additional Results

Chapter 1

| ntroduction

Over the past decade, microprocessors have become immensely powerful. This growth in
performance has been made possible not only by improvements in semiconductor technology
(resulting in higher clock frequencies) but also by advancements in the processor microarchi-
tecture (resulting in more work performed per clock cycle). With computers becoming ubiqui-
tous and the way increasingly complex tasks being entrusted upon them, the need for faster
processors is likely to grow unabated in the near future. To satisfy this requirement, it is
important not only to improve the semiconductor technology, but also to innovate in the field

of microarchitecture.

Microarchitectural innovations are often inspired by commonly observed behavior of pro-
grams. Designers have frequently introduced new microarchitectural features for exploiting
patterns in program behavior to improve processor performance. Some examples of common-
place microarchitectural features in modern processors that exploit program behavior are
caches, branch prediction, and the out-of-order execution paradigm. These features exploit
different traits in programs and, hence, improve processor performance in different ways.
Caches exploit locality of memory references, a property exhibited by most programs, to

reduce memory access time. Branch prediction exploits regularity in branching behavior,

2
another property exhibited by programs, to streamline instruction-fetch. The out-of-order exe-

cution paradigm exploits the presence of significant amounts of instructions-level parallelism
in programs to hide the latency of long-running operations. Thus, as shown by these example,
the knowledge of program characteristics is central to improving processor microarchitecture.
To further improve processor microarchitecture, we need to seek out new program characteris-
tics and devise mechanismsto exploit them.

In this thesis, we present a new phenomenon exhibited by programs and propose a novel
microarchitectural technique for exploiting this phenomenon to improve processor perfor-
mance. The phenomenon is that in programs, instructions often execute repeatedly with the
same inputs and, therefore, produce the same results over and over again. That is, if an instruc-
tion executes with operand values v1 and v2 and produces an output v3, then during program
execution this instruction may execute with v1 and v2 as inputs and produce v3 as output
many times. We call this phenomenon dynamic instruction repetition, or ssimply, instruction
repetition.

The microarchitectural technique that we propose exploits this phenomenon to reduce the
amount of work that needs to be done for executing a program. This technique detects that
instructions are producing the same results repeatedly, and instead of re-executing them,
reuses the results from their previous executions. The repetition is detected by ascertaining
that the current operand values of the instructions are the same as those used to compute the
previous results. We call this technique dynamic instruction reuse, or simply, instruction
reuse.

What are the benefits of reusing instructions? There are several. First, a reused instruction

need not be executed. Hence, the pipeline resources (e.g., issue window entry, functional

3
units, datacacheports)thatwould have beenusedfor its executioncannow be usedfor pro-

cessingotherwaiting instructions.Secondwhenan instructionis reusedjts resultsbecome
known earlierthanthey would have throughregularexecution.This permitsotherinstructions
thataredependenbn theseresultsto executesooner Third, aswe shallillustrateshortly, this
mechanismallows usefulwork to be sahagedfrom the work thatis discardeddue to mis-
speculationn processorsThis helpsalleviate the penaltyof suchmis-speculationsk-ourth,
reusecollapsesdata dependencesdependeninstructions,which would normally execute
sequentiallycanbe reusedin parallel. Hence,reusehasthe potentialto breakthe dataflav

limits on the &ecution times of instructions.

In this thesis,we studythe phenomenormf instructionrepetitionanddeveloptheinstruc-
tion reusetechniquefor exploiting it. We presentan overview of the contritutionsof this the-
sisin Sectionl.2. However, beforethat,to develop a betterfeel for instructionrepetition,we
illustrate why this phenomenoroccurs,in the next section.In Sectionl.3, we describethe
relatedwork, andfinally, in Sectionl.4,we concludethis chapterby presentinghe outline of

the rest of the thesis.

1.1 Scenariosfor Instruction Repetition and Reuse

Instructionsget repeatedecausef two mainreasons(i) speculatie execution,and(ii) the
natureof the programitself. We presenttwo scenariogo illustrate thesereasonsbelow. In
eachexample,we alsomentionhow exploiting that form of repetitionmay improve perfor-

mance.

TS
’é::mnm’
00

(XA

X
z

predicted -~ Dynamic
path -~ instruction
S stream
| EEEES correct
= ®) path

o
N
4,

e
&R

BN

%
e

(X
e

Squashed

W

0

0

%
0
{0

R
3
e
&
G

K

<4
R
R0
R0
0k
o

)
]
)
3
<3

Figure1l.1 Scenario where execution on the (mis)predicted path converges with the execution
on the correct path. In such cases certain instructions from part (C) need not be re-executed
when encountered on the correct path.

X
(X
kX

1.1.1 Scenario 1. Squash Repetition and Reuse

Squash Repetition: In the first scenario, the instructions are repeated because of the specula-
tive execution of programs. When executing instructions speculatively, processors discard
executed instructions on mis-speculations. These discarded instructions are sometimes exe-
cuted again, resulting in repetition. For example, consider the scenario shown in Figure 1.1.
When a branch instruction is encountered, its outcome is predicted, and instructions from the
predicted basic block (block A) are executed speculatively. In addition to executing instruc-
tions from block A, the processor may execute instructions from another block (C), which is
control independent of the branch. If the branch were mispredicted, instructions executed
from both blocks A and C would be discarded, and execution would resume at block B, from
where it would proceed to block C. Instructions in block C that were discarded, but whose
operands are not affected by instructions in either blocks A or B, would end up being

repeated. Since this repetition is engendered by squashes, we term it as squash repetition.

5
Squash Reuseln the above example,if resultsof theinstructionsin block C were buffered,

thenthey couldbereusedafterdetectingthattheir operandsarethe sameasat thetime of the

first execution. Since this reuse is enabled by squash repetition, wesgatsh reuse.

Benefits: This form of reusealleviatesthe mis-speculatiompenalty but to understandavhy, we
needto seewhatconstituteghe mis-speculatiopenalty The mis-speculatiopenaltyconsists
of two components(i) the cyclesthatarewastedexecutinginstructionon thewrongpath,and
(i) the cyclesthat are spentfilling up the pipeline after the squash Squashreusealleviates
boththesecomponentasfollows. First, sinceit reusesvork thatwasperformedonthewrong
path,notall cyclesusedin executingthe discardednstructionsarewasted Secondwhenthe
reusetakesplacejust afterthe squashit hidesthe pipeline-fill lateng for the reusednstruc-

tions, alleviating the second component.

1.1.2 Scenario 2: General Repetition and Reuse

General Repetition®: In this scenariorepetitionoccursbecausef the very natureof pro-
grams— i.e., becausef the way programsarewritten. To understandhis statement|et us
considertwo practicespenasiely employed while writing programsand seehow they may
generatanstructionrepetition. First, we write programsto be generic in nature— i.e., we
don't write themfor fixedinput values;rather we write themsothatthey arecapableof oper-

ating on a variety of input values.But, if during execution,the programencounterghe same

1. An anecdoteOur initial purposefor coming up with the instructionreusetechniquewasto reducethe
branchmis-predictionpenalty by recovering useful work from squashesThe fact that instructionsare
repeatedn generalwasdiscovered,quite serendipitouslywhile we were studyingthe reusetechniquedor
the above purposeln fact, after discovering that mary non-squashethstructionsalsogetrepeated| actu-
ally spenta considerablamountof time trying to filter outthese'unwarrantedrepetitionto stopthemfrom
clouding the squash reuse results!

6
inputsvaluesrepeatedly(e.g.,the samekeywordsin gcc or the samelettersin compress) then

it is likely thattheinstructionswithin the programwill alsoexecutewith thesamenputvalues
repeatedlyThis will resultin repetitionof instructions.Secondwe expresscomputationin
programsin a concise manner Thatis, if we have to performan operationon an array we
don't write a separatestatemenfor eachelementof the array;instead,we expressthe task
usinga loop, whereeachiteration performsthe operationon a single (or a small number)of
arrayelementsTo allow computatiorto be expressedn this manneywe needto includethe
loop-controlinstructions(instructionsthat will “unroll” the computationdynamically)with
eachloop. Theseloop-control instructionsmay be repeated(along with other dependent
instructions)whenthe loop is invoked repeatedly(This repetitionmay occureven whenthe

loop body may be performing a totally feifent computation).

We illustratetheabove situationwith anexampleshowvn in Figure1.2.1n thisexample the
function f unc searchedor a value x in alist of a particularsi ze. The function
mai n_f unc callsf unc severaltimes,searchindgor adifferentelementin the samelist with
eachcall. Whenf unc is called,it iteratesthroughthel i st , elementby elementsearching
for thevalueuntil theendof thel i st , andexits whenthevalueis found. Instructionscorre-
spondingto the loop in f unc areshavn in Figurel.2(b). Figurel.2(d) shavs the dynamic
instance®f theseinstructionswhich aregeneratedby thefirst call to f unc. In eachiteration
of the loop, instruction2 is dependentiponthe si ze parameterinstructions3 and4 are
dependentiponthel i st parameternnstruction5 is dependentiponthel i st aswell asthe
valuebeingsearchedor, andinstruction6 is dependenon theinductionvariable.If f unc is

calledagain (Figurel.2(e))onthesame i st (andsamesi ze), but with a differentsearch

int func(x, list, size) {
int i;
for(i=0; i<size; i++) {

/

W N

i =0
if(i >= size) junp out
p =1list +i

if(x==list[i]) return i; 4 val = Menory[p]
} 5 if(x ==val) junp found
return -1; 6 i++
} 7 junp 2
(a) (b)
mai n_func(a, b, c¢)
func(a, list, size);
(b, list, size);
(c)
~A
*1i =0 *Li =0
*2 if(i >= size) junp out *2 if(i >= size) junp out
*3 p=Ilist +i *3 p=1list +i

*4 val = Menory][p]

5 if(a ==val) junp found
*6 i ++

*7 junp 2

*2 if(i >= size) junp out
*3 p=Ilist +i

*4 val = Menory][p]

5 if(a ==val) junp found

*6 i ++

(d)

*4 val = Menory[p]

5 if(b ==val) junmp found
*6 i ++

*7 junp 2

*2 if(i >= size) junp out

*3 p=1list +i

*4 val = Menory[p]

5 if(b ==val) junmp found

*6 i ++

(e)

Figure 1.2 Exampleillustrating that often times instructions perform the samecomputation
over and over again. The dynamic instructions marked “*” would perform the same
computation for both the calls to functionf unc shown in the figure.

8
key, then all the different dynamic instances of instructions 1-4 and 6 will produce the same

outcomes as they did the previous time the function was cal led.? Only the dynamic instances
of instruction 5 produce results that might differ from the previous call to f unc. This repeti-
tion of the results of the dynamic instances of instructions 1-4 and 6 is directly attributable to
the fact that f unc was written to be a generic list search function, but in this particular case,
only one of its parameters changed between different callsto it. Evenif f unc was called with
all its parameters being different for each call, the different dynamic instances of the instruc-
tion 6 (i=0, i=1, i=2, ...) in the second call to f unc would end up producing the same values
asthey did in thefirst call to f unc, a consequence of using loops to express the desired com-
putation in a concise manner. (Actualy, if the si ze parameter was aso different, then only

min(si zel, si ze2) dynamic instances of instruction 6 would produce the same values.).

Since, the form of repetition as exemplified above occurs because of the general nature of

programs, we call it general repetition.

General Reuseln the above example, if we buffered the (si ze) dynamic instances of
instructions 1-4 and 6, we will be able to reuse them when they get repeated. This form of

reuse that is enabled by general repetition, we call general reuse.

Benefits: To see how the performance might benefit from general reuse, let us consider the
advantages of reusing instances of instructions 1-4 and 6 in the above example. First, the
dynamic instances of instructions 1-4 and 6 do not have to pass through all the different
phases of execution (ALU, result bus, register write, etc.), thereby reducing the demand for

processor resources. (In the above case, accesses to the data cache are also eliminated — these

2. atota of si ze dynamicinstances of instructions 2-4 and 6

9
endup becomingaccesse® the buffer which holdspreviousinstructionresults.)Secondthe

critical pathto carry out the total computationinvolvedin f unc canbe cut down consider-
ably. Without dynamic instruction reuse, the critical path through the computation,as
expressedabove, would besi ze+3 steps;si ze stepsto generatall the dynamicinstances
for theinductionvariablei , plus 3 stepsto executedinstructions3, 4, and5 of eachiteration
(which form a dependencehain).In otherwords, the height of the dataflav graphfor the
above computationis si ze+3 steps.In the bestcase the critical path,i.e., the heightof the
dataflav graphthroughthe computationjs reducedo only 1 stepwith instructionreuse.This
is becausdéhe outcomesof all the dynamicinstancef instructionsl-4 arealreadyknown,
andall thedynamicinstancesbeingindependentf oneanotheycouldall executeatthesame
time. Although,in practice the availablebuffer spacewould placealimit on how muchof the
computationcanbe collapsedthe abore examplegoesto shawv the potentialthat instruction

reuse has for breaking the datafllimit “inherent” in programs.

1.2 Thesis Contributions

In this thesis,we make two main contritutions: (i) we studythe phenomenorf instruc-
tion repetition;and(ii) we introduceandstudythe concepiof dynamicinstructionreuse Each

of these contribtions are elaborated belo

1.2.1 Instruction repetition

We performan elaboratestudy of the phenomenorf instructionrepetition.The purpose

is to develop a betterunderstandingf the phenomenonso thatwe canexploit it effectively.

10
The study consists of two parts. In the first part, we perform athorough characterization of the

phenomenon. Here we answer questions such as what percentage of all dynamic instructions
get repeated, what percentage of all static instructions generate repeated instances, what frac-
tion of static and dynamic instructions account for most of the repetition, and so on.

Although the above characterization gives us various statistical facts about the phenome-
non, it does not provide us with much insight into its causes. In the second part of the study,
we perform an empirical analysis of the phenomenon to better understand what may be caus-
ing it. For this purpose, we categorize the instructions in programs based on the type of data
used (e.g., external input, internal data) and the type of work performed (e.g., address calcula-
tions, function prologue and epilogue), and then determine the amount of instruction repeti-
tion arising for each category. This breakdown gives us an idea about the primary sources of
repetition, and thereby, its causes.

We draw numerous observations from our results. Of these, two are especially interesting.
First, we observe that the phenomenon of instruction repetition is pervasive — more that 75%
of dynamic instructions are repeated for several benchmarks. Second, we see that for most
benchmarks, the majority of the repeated instructions use data that originate from within the
program itself rather than from external inputs. This observation suggests that the phenome-

non of instruction repetition may be more a property of the program itself than of input data.

1.2.2 Instruction Reuse

The second and the main contribution of this thesis is the concept of instruction reuse —
i.e., theideathat the previous work by instructions can be non-specul atively reused when they

perform the same work again. The bulk of thisthesisis devoted to developing and understand-

11
ing this concept. The work on instruction reuse can be divided into three categories: (i) devis-

ing and studying reuse schemes; (ii) studying the storage issues for instruction reuse; and (iii)
investigating the sensitivity of instruction reuse performance to other microarchitectural fea-

tures existent in processors. We elaborate next on each of these categories.

1.2.2.1 Instruction reuse schemes

We present four schemes for implementing instruction reuse. These schemes preserve
results of instructions (along with other information needed to establish their validity at alater
time) in a hardware table called the Reuse Buffer (RB). When an instruction is encountered
again, its results from RB are reused if they are still valid. The validity of the results is estab-
lished by checking whether the current operand values are same as those used to calculate the
results. The four schemes differ in the type of information they use to establish the sameness
of operands. The scheme S, uses operand values; the scheme S, uses operand names; and the
schemes S .4 and S;,+¢4 Use the dependence between instructions, along with the operand val-
ues and operand names, respectively. The use of dependence information facilitates the reuse

of dependent chain of instructions.

We evaluate the concept of instruction reuse with extensive simulations. We present
results such as the number of instructions reused and the amount of performance gained by
reuse. We show reuse characteristics such as the reusability of different instruction types and
the contribution of different instruction types to total reuse. We also present a break down of
total reuse into general and sguash reuse. Our results show that a significant percentage of
dynamic instructions in programs get reused, with more than 50% of dynamic instructions

getting reused in severa cases, and that the performance improvement due to reuseis al'so sig-

12
nificant for sgeral benchmarks, being more than 15% in ynzases.

1.2.2.2 Sorage issues for instruction reuse

Oneimportantpartof theinstructionreusetechniquds the RB, which storeshe resultsof
instructions.To alarge extent, the numberof instructionsthatcanbe reuseddependn howv
mary valid resultsthe RB can hold. We conducta detailedstudy to betterunderstandhe
requirement®f this structure.This studyis divided into two parts.First, we characterizéhe
RB with respecto its threemainparameterssize,associatiity, andmanagemenmnolicies.We
presenthow the amountof instructionsreusedvaries with eachof theseparameters\We
presenthe maximumreuserates obtainedusinga managemerpolicy similarto the Belady's
optimalmanagemenpolicy, for arangeof RB sizesandassociatiities. This optimalnumbers
give usanupperboundonthereuseratesfor differentRB sizesandassociatiities— or, alter-
natiely, tells usthe minimum RB sizeandassociatiity requiredto capturea certainamount

of reuse.

Thesecondpartof this studyis motivatedby theresultsof thefirst part,which shav thata
significantgap exists betweenthe optimal andthe actualreuserates.This gap indicatesthat
thereis potentialto improve the reuserate further by efficient managemenof the RB. To
bridge this gap, we devise and study four managemenpolicies for managingthe RB effi-
ciently. Two of thesepolices,FnReused and FnReady, attemptto improve RB utilization by
controllinginsertionan RB —i.e, by insertingonly thelik ely reusablenstructions Thethird
policy, RR, attemptsto improve RB utilization by controlling eviction from RB — i.e., by
evicting thelikely unreusablénstructionsbeforethe reusableones.Thefourth policy, a novel

managemenpolicy called Farthest in Future (FiF), attemptsto improve RB utilization by

13
managingit alongthe lines of the Belady’s optimal managemenpolicy. This policy deter-

mineshow farin thefutureeachinstructionis likely to getreusedThe RB is thenmanagedy
schedulinginstructionsin it using this distance-to-reusanformation, giving priority to the
instructionghathave shorterdistancevalues.TheFiF is agenerainanagemenolicy thatcan
alsobeusedfor managingotherformsof storagege.g.,cacheshowever, in thisthesiswe only
usethe FiF for managinghe RB, leaving the taskof evaluatingit for otherstoragestructures

as future work.

The succes®f thesenew policiesin improving RB utilization is mixed. For somebench-
marks,we seea significantimprovement(over the existing policies)in reuseratesusingthe
new policies;for othersthe improvementswith the new policiesaresmall (or slightly nega-
tive). Due to its generalnature,the FiF policy performsbetterthan other policiesin most
casesHowever, policiesFnReadyand RR may be comparatrely inexpensve to implement,

and, hence, the imprements in reuse rates caused by them may be/orkg.

1.2.2.3 Sengitivity analysis

It is importantto not only study how a nev microarchitecturatechniqueperformsby
itself, but alsoto understandhow it interactswith othermicroarchitecturafeatures.To culti-
vatesuchanunderstandindpr instructionreuse we studyits sensitvity to variouskey proces-
sor parameterssuchas (i) instructionwindow size, (ii) pipelinewidth, (iii) pipelinelength,
(iv) branchpredictionaccurag, (v) memorylateng, and(vi) reuselateng. This study con-
sistsof two parts.In thefirst part,we first present detailedqualitatve discussioron how and
why instructionreusemay be sensitve to eachof the parametersin the secondpart, we

presenseveralsimulationresultsto provide a quantitatve measuremendf theamountof sen-

14
sitivity.

1.3 Related Work

The idea of not having to redo computation is not new — it has been used before in several
different contexts. A technique called memoization [29, 5, 8] has been used for functional and
logic programs [47, 30]. The outcome of afunction (or arule) is saved in atable. If the func-
tion or the rule is encountered again with the same parameters then the result from the tableis
used instead of re-evaluation. Memoization is also used to reduce the running time of optimiz-

ing compilers, where the same data dependence test is carried out repeatedly.

The observation that the instructions produce the same results repeatedly and that this phe-
nomenon is widespread in ordinary programs has been made more recently by severa
researchers. Lipasti et al. [27, 26] observed that many instructions produce the same values as
thelir last instance (or last few instances). They termed this recurrence of instruction results as
value locality. Similar results were al so reported by Mendelson and Gabbay [18, 19]. The phe-
nomenon of instruction repetition — where not only the results but also the instruction oper-
ands are repeated — was first reported by us [43] (although the phenomenon was not termed

as such in that paper).

Several researchers have studied the repetition of values elaborately. The study that we
will present later in this thesis was first reported in [44]. Calder et al. [12] presented several
statistical results on this phenomenon. Sazeides and Smith [40] tracked the creation, propaga

tion, and termination of value locality in to better understand its causes.

Many ways of exploiting this phenomenon have also been proposed. Several researchers

15
[27, 26, 19, 39, 48] have suggested exploiting this phenomenon for predicting results of

instructions in advance and performing dependent computation in parallel. We propose
exploiting this phenomenon for reducing the amount of work that needs to be performed for
executing instructions using instruction reuse technique. This technique was first reported by
usin[43]. In the software arena, researchers have proposed exploiting this phenomenon using
dynamic software optimizations, such as function memoization and code specializations [6,

17, 21], and static compiler optimizations, such as partia redundancy elimination [32, 10, 9].

Severa researchers have performed work [23, 36, 37, 34] that is related to our method of
exploitation. This prior work presents different techniques that obviate re-execution of repest-
ing instructions by reusing their previous results. However, there are several important differ-
ences between our technique and theirs in terms of, for example, the ability to collapse the
chain of dependent instructions or the type of instructions targeted. However, these differences
and the mechanics of these technigues themselves can be best understood after we discuss the
details of our technique. Hence, we defer the discussion on this subject until the Related Work

section in Chapter 4.

Since our initial publication of the concept of instruction reuse [43], significant amount of
work has been donein this area. The reuse concept has been extended to basic-block level [24]
and trace-level [20]. Molina et al. [31] extended the instruction reuse technique to do compu-
tation reuse, i.e., reuse of work done by other static instructions. Chou et al. [14] studied a dif-
ferent microarchitecture technique for performing squash reuse. Connors and Hwu [16]
studied how compiler assistance can be used for reusing large regions of code. Reusability of

instructions in other application domains, such as multi-media, has also been studied [15].

16

1.4 ThesisOutline

Therest of thethesisislaid out asfollows. In Chapter 2, we describe our experimental frame-
work. In Chapter 3, we present an empirical analysis of the phenomenon of instruction repeti-
tion. In Chapter 4, we present the instruction reuse technique. In Chapter 5, we present a
characterization of the RB and study policies to manage it efficiently. In Chapter 6, we study
the sengitivity of instruction reuse to other microarchitectural features. Finally, in Chapter 7,

we summarize this thesis and provide directions for future work.

17

Chapter 2

Experimental Framework

In this chapter, we describe the experimental framework used in this thesis. All our experi-
ments are performed using two processor simulators. We describe these ssmulators in the next
section and mention the types of experiments for which they are used. Then, in Section 2.2,
we describe the base processor microarchitecture that we simulate. Finally, in Section 2.3, we

describe our suite of benchmarks and present some of their execution characteristics.

2.1 Simulators

The experiments in this thesis can be divided broadly into two categories: (i) one that studies
program behavior and program structure for understanding instruction repetition (performed
in Chapter 3); and (ii) the other that evaluates and studies the technique of instruction reuse
(performed in Chapters 4 to 6). For each of these categories, we use adifferent type of simula-
tor: a functional simulator for the former and a timing simulator for the latter. Both of these
simulators are written in C, using several components from a preliminary version of the now
publicly available Smplescalar toolset [11]. These simulators are execution-driven and they
interpret an instruction-set derived from the MIPS-1 I1SA [25]. We describe these ssimulators

and their purpose in greater detail next.

18
2.1.1 Functional smulator

The functional simulator only models the architectural behavior of the processor at
instruction level — i.e., it simply reads and executes the instructions from the program binary
(without modelling any microarchitectural details or any execution times).

This simulator is used for several purposes in our studies. As mentioned before, we use it
in Chapter 3 for analyzing the dynamic behavior of programs — collecting various run-time
statistics and tracking different sources of dynamic repetition. We aso use the functional sim-
ulator in several other ways, such as, verifying the timing simulator on-the-fly, implementing
perfect branch prediction, and skipping initial parts of the benchmarks during timing simula-

tions; we discuss more about these uses |ater in this chapter.

2.1.2 Timing simulator

The timing ssimulator is used to evaluate and study the Instruction Reuse (IR) technique.
This simulator models the microarchitectural behavior of an out-of-order, superscalar proces-
sor (shown in Figure 2.1) at the cycle-by-cycle level.

We developed the simulator for the out-of-order engine and the IR technique. These two
components were then integrated with many other supporting components from the Simples-
calar toolset — e.g., loader, memory-module, cache-module, branch predictors, and syscall-
module — to give us a complete simulator. The design of the out-of-order simulator was influ-
enced by the required support for IR. As we will see in Chapter 4, IR interacts with several
parts of the pipeline. So that we can simulate these interactions faithfully, we model the base
pipeline faithfully: instructions (and values) flow through the pipeline cycle-by-cycle and the

various micro-operations are performed in appropriate pipe-stages (we do not fake them).

19
Also, to studysquashreusewe modelthe speculatre executionandmis-speculatiomecovery

faithfully: the processors allowedto executedown the mispredictegathuntil the mispredic-
tion is detectedandthentherecovery is madeby squashinghe pipeline,just asit would bein
a real pipeline.

For someexperimentan Chapter6, we requirea perfectbranchpredictor—i.e., apredic-
tor that predictsall branchesorrectly We implementthe perfectbranchpredictorusingthe
functionalsimulator This simulatorexecutesnstructionsbeforethey enterthetiming simula-
tor, generatingtheir results— and, hence,the branchresults(when theseinstructionsare
branches)— in adwance.We simulateperfectbranchpredictionby using the branchresult
generated ahead of time as predictions.

We alsousethe functionalsimulatorto validatethe timing simulatoron-the-fly Sincethe
timing simulatoris muchmorecomple thanthefunctionalsimulator it is moresusceptibléo
errorsthan the latter Sometimestheseerrors may causethe timing simulatorto generate
incorrectresults.We detectsucherrorswith the help of the functional simulatorasfollows.
We runthetiming andthefunctionalsimulatorsimultaneouslyEvery instructionthatemeges
from the timing simulator pipeline is executedon the functional simulator and the results
obtainedrom thetiming simulatorarecomparedvith thoseobtainedrom thefunctionalsim-
ulator. An error is detected when thedwesults are diérent.

The above validation only verifies the functional correctnes®f the timing simulator; it
doesnot verify its timing correctnessVerifying that the timing resultsare correctis a hard
problem,andthereis no straightforvard way of doingso.We take several stepsto ensurethat
the timing results of our simulator are consistent:

» During the processof writing the simulator we used several self-constructedmicro-

20
benchmarkdor testingthe behaior of the pipeline.Most of the micro-benchmarksvere

stringsof 5 to 10 instructionswhich weregenerateananually andinjectedinto the pipe-
line. This approachallowed usto verify thatthe flow of instructionsthroughthe pipeline
wasaswould be expectedfrom the dependencelsetweerthem. This washelpful in vali-
dating the warious pipeline interactions.

In our simulator we have severalindependentounterghat countdifferenteventsduring
execution(e.g.,the numberof instructionsexecuted the numberof instructionsquashed,
etc.).We placedseveralassertionsn our simulatorsto checkthe variousinvarianceghat

can be devied from these counters, such as,

1. # instr eecuted - #xecuted instr squashed = # instr committed xé&aited instr in pipeline
2. # loads fom D-cabe + # loads satisfied by stw in stoe-buffer - # executed load squashec

= # loads committed + #xecuted load in the pipeline

Theseinvarianceswere checled every cycle. They helpedlink the differentpartsof the
simulator and ensuredthat changesnadein one part were consistentwith other parts.
Theseinvarianceswere especiallyuseful in catchinginconsistenciesntroduceddue to
fresh changes to the simulator

In our simulator instructionsactuallyflow throughthe pipeline;we do not fake the pro-
cess.Sucha designhelpsuncover mary timing (or interaction)errorssinceit reduceghe
numberof interactionerrorsthat are completelysilent (as may be the caseif we were
doing trace-basedsimulation). An error in pipeline interactionsoften causeswrong
instructionor datato flow throughthe pipeline.This caneithercausenrongexecutionthat

getsdetectedby our functional verifier or causestherforms of errorssuchas seggment

21
fault or deadlock, which again can be detected and fixed.

» Instruction reuse technique, for which the timing simulator is used, has a good property
from the point of view of validation. It not only affects the timing but also the functionality
of the simulator. (In this regard, it differs from other performance enhancing techniques,
such as cache or prefetchers, which only affect the timing). If we reuse an instruction
incorrectly, the processor will end up using an incorrect value, leading to incorrect pro-
gram execution. This, again can be detected by either our functional verifier or through
other non-silent ways such as deadlocks or segment faults. The error can then be fixed
accordingly. The fact that all our simulations with IR were functionally correct lends high

confidence to the reuse rate results.

* We implemented several sanity-check routines in our simulator that were called periodi-
cally (every 10,000 cycles) to check the consistency of the simulator data structures. For
example, we check that the number of unresolved branches == number of checkpoints
taken for branch recovery, or depth of the retstack > number of returnsin pipeline. These
sanity-check routines helped check the consistency of the data structures, making sure that

the simulation was proceeding correctly.

* Finally, we performed extensive debugging using the debugger, gdb, single-stepping

through every newly written piece of code to verify the timing information it generates.

Next, we describe the microarchitecture and parameters of the simulated processor.

2.2 Processor Microarchitecture

The pipeline and the microarchitecture of the processor that we simulated in our timing

22
simulator are shown in Figure 2.1 (a) and (b), respectively. The pipeline consists of six stages:

Fetch, Decode & Rename, Register Read, Issue, Execute, and Commit. All stages except the
Execute stage are a single cycle in length; the Execute stage is of variable length, depending
upon the latency of the executing instruction. In Figure 2.1 (a), we also depict the variable
number of cyclesthat an instruction may have to wait before being issued. This pipeline struc-
tureistypical of currently available dynamically-scheduled processors (like, Pentium-I11, HP-
PA8500).

Next, we describe the various microarchitectural operations performed for processing an
instruction. The Instruction Fetch Unit (IFU) fetches instructions from the I-cache (part of

IFU) and places them in the Instruction Queue (1Q). The IFU also prepares the address of the

Decode & | Register Variable waiting time

Fetch Issue Execute | Commit

Rename | Read in the I ssue Window
(@
—» FU
Inst. Decode Reorder Buffer
Fetch |—p{ Inst. Queue —» & - FU
Unit Rename
Issue Window o
0 ;
Arch. 0
Register File Data
—»
cache >
(b)

Figure2.1 (a) Stagesinthepipdine. (b) Microarchitecture modelled in the simulator.

23
next fetch using the branch prediction engine (also part of IFU). The instructions are read

from the 1Q by the Decode and Rename (D& R) unit. This unit decodes the instructions and
renames their operands; it also allocates entries for them in the Reorder Buffer (ROB) [42] and
the Issue Window (IW). In the Register Read stage, the register operand values are read from
the architected register file or from the ROB, whichever contains the latest version of the reg-
ister. The instructions and the operand values are placed in the pre-allocated IW entries; if an
operand value is not ready, atag (ROB index) identifying its producer is stored instead. This
tag is used to snoop the value when it is broadcast after the producer finishes execution. The
instructions are also placed in the pre-allocated ROB entries, where they await in-order retire-
ment. The issue logic selects and dispatches ready instructions (i.e., instructions whose all
operand values are available) from the IW to Function Units (FU) for execution. Load instruc-
tions are issued to the data cache only when there are no store instructions with unknown
addresses ahead in the pipeline. If aload address matches the address of a store ahead in the
pipeling, the store value is bypassed to the load (and the data cache access for the load is obvi-
ated). After an instruction completes execution, its results are written back into its ROB entry
and are also broadcast to the IW entries where they are snooped by the instructions awaiting
these results. Instructions are retired when they become the head of the ROB and the architec-
tural state of the machine (register file and memory) are updated with their results.

The baseline configuration of the timing simulator is shown in Table 2.1

24

Instruction fetch

4 instspercycle. Only onetakenbranchpercycle. Cannotfetchacrosscache
line boundaries in the samgcte.

L1 Instruction
cache

64K bytes, 2-\ay set assoc., 32 byte line,\&les miss latenc

Branch predictor

Gshare [28], with 10-bit history géster and 16K entry counter table. Retufjr
Stack with 64 entries.

Out-of-Order
execution mecha-
nism

Issue of 4 operations/cle, 64 entry RU (which is the ®B and the IW
combined)46], 64 entry load/store queue. Max of 16 unresdlisranches.
Loads eecuted only after all preceding store addresses amrkn@alues
bypassed to loads from matching stores ahead in the load/store queue,

Architected
registers

32 inteyer, hi, lo, 32 floating point, fcc.

Functional units
(FU)

4-integger ALUs, 2 load/store units, 2-FP adders, 1¢gateMULT/DIV, 1-FP
MULT/DIV.

FU lateny
(total/issue)

int alu-1/1, load/store 1/1, int mult 3/1, invd0/19, fp adder 2/1, fp mult 4
1, fp div 12/12, fp sqrt 24/24.

L1 Data cache

64K bytes, 2-way set assoc., 32 byte line,\&kes miss latenc Dual ported,
non-blocking.

L2 cache

Perfect (all accesses hit)

Table2.1 Basesimulator parameters

2.3 Benchmarks

2.3.1 Description

The benchmarksuite we usein this thesisconsistsof 21 programs:8 SPEC‘95 integer
programs[4], 10 SPEC'95 floating-pointprograms,and 3 self-picked graphicsprograms.
Table2.2 shavs the namesandinputsfor all the benchmarksSincethe threegraphicsbench-
marks—Viewperf+ Mesa, MPEG-2 decoder, andPOV-Ray — arenot aswell-known asother
benchmarksywe describehemfurtherhere Miewperf, abenchmarldevelopedby SPECopg™

[2], measureshe performancef graphicssystemshatimplementthe OpenGLY API [1] by

Total _ #dynami c jyi:ziaﬂfidc
Benchmarks Inputs dynamlc ' inst. ingt.
inst. simulated skipped
Specint ‘95
go null.in (ref) 35.7B 1B 500M
m88ksim ctl.in (ref) 38.8B 1B 500M
ijpeg vigo.ppm (train) 1.44B 944M 500M
perl scrabbl.pl, scrabbl.in (train) 556M 556M -
vortex vortex.in (train) 2.67B 1B 500M
li au.lsp puzzle0.Isp xit.Isp 10.2B 1B 500M
gce reload.i 921M 921M -
compress bigtest.in (ref) 42.3B 1B 2.5B
SpecFP ‘95
tomcatv train input with ITER =50 2.44B 1B 500M
swim train input with X=10, Y=10 849M 849M -
su2cor train input with LSIZE=8888 4.6B 1B 500M
hydro2d train input with ISTEP=10 4.67B 1B 500M
mgrid train input with NTIMES=1 368M 368M -
applu train input 642M 642M -
turb3d train input with nsteps=4 6.4B 1B 500M
aps train input 2.67B 1B 500M
fpppp train input 499M 499M -
waves train input 3.54B 1B 500M
Graphics

Viewperf+Mesa Viewset: AWadvs-02 2.58B 1B 500M
Mpeg-2 decoder hhilong.m2v 1.80B 1B 500M
POV-Ray swirlbox.pov 1.08B 1.08B -

Table2.2 Benchmarks

25

26
renderingand manipulating3D imagesusing this APIl. Mesa [35] is a publicly available

implementationof the OpenGL API that we usedwith Viewperf. MPEG-2 decoder [33]
decodesandplaysa movie encodedn MPEG-2videoformat. POV-Ray [3] is a scenerender-
ing applicationthatcreates3-D imageswith realisticlighting effects,usinga renderingtech-
nique called ray-tracing.

Some benchmarkshave commandline parametersother than the inputs specifiedin

Table2.2. These parameters are listed abl€2.3.

2.3.2 Compilation

All C benchmarksverecross-compiledo the SimplescalatSA usinggcc (version2.6.3)
with the following optimizationflags:-O3, -funroll-loops,and-finline-functions.The assem-
bler andthe linker usedweregas (version2.5.2)andgld (version2.5), respectiely. The For-

tranbenchmarksverefirst corvertedto C usingAT&T’ sf2c programandthencompiledusing

Benchmarks Command line parameter s

m88ksim -C

-compression.quality 90 -compression.optimize_coding 0 -compres
ijpeg sion.smoothing_gctor 90 -diference.image 1 -dérence.x_stride 10 -
difference.y_stride 10 erbose 1 -GO.findoptcomp

-quiet -funroll-loops Horce-mem -fcse-follw-jumps -fcse-skip-blocks
gcc fexpensve-optimizations -fstrength-reduce -fpeephole -fschedule-ingns
finline-functions -fschedule-insns2 -O

-pg DYN -rm POLYGON -nf 10-cp FRAME -zb -nll 2 -bf -tx advs2.mtv
viewperf+mesa -magf LINEAR -minf LINEAR_MIPMAP_LINEAR -te MODULAE -
xws 720 -yws 720 -grab grabl.scr

MPEG-2 decoder | -f -00 rec%d
POV-Ray -W320 -H200 -F +D -Q4

Table2.3 Additional command line parametersfor some benchmarks

217
the C compiler To allow for graphicsdisplay we cross-compiledndlinkedthe X11 library

with the graphics benchmarks.

Sincewe usedthe f2c translatorit is likely thatthe Fortranbenchmarksverenot asopti-
mized asthey would have beenhadthey beencompiledusing a Fortrancompiler This can
affectourresultsis someways.Dueto (probable)nefficient compilation theseprogramanay
containredundanciesl his mayincreaseéheamountof repetitionwe see Moreover, thetrans-
lation mayaddmary “support”instructiongn thebinary, which mayalsoincreaséheamount
of repetitionwe obsene. Consequentlythe amountof reusewe capturemay also be more
thanwhatwe would seefor Fortranbenchmarks€ompiledwith a Fortrancomplier However,
moreinstructionsin the translatedcodecanalso hurt reuserate, becausavith moreinstruc-
tions therewill be more contentionin the RB andthe reusablenstructionsmay be evicted
beforebeingreusedUnfortunately we have no way of discerningthe amountof inefficiency
inducedby usingf2c. However, the points discussedabore shouldbe bornein mind while

interpreting the floating point results in this thesis.

2.3.3 Execution

In this sectionwe describenow we run our simulationsln Table2.2,we shav thenumber
of dynamicinstructionspresenin a completerun of eachbenchmarkfor the input shavn in
column?). To finish the simulationswithin areasonabl@eriod,we only simulatea partof the
completerun for benchmarkswith large dynamicinstructioncounts.The actualnumberof
instructionssimulateds shavn in column4 (# instructionssimulated).To ensurghatour sim-
ulatedportion of the benchmarkdoesnot entirely consistof the initialization phase we skip

thefirst 500M instructiongfor mostbenchmarks)executingthemon a fastfunctionalsimula-

28
tor, before simulating the 1B instructions. In Column 5, we show the number of instructions

skipped for each benchmark. In the case of compress, we skip the first 2.5 billion instructions
since compress has an unusually long initialization phase in which it internally generates the
input file.

In Table 2.4, we present five baseline results for al benchmarks to show their relative
characteristics. These results are base |PC (instructions per cycle), |- and D-cache miss rates,
branch prediction rate, and the return stack hit rate (number of returns predicted correctly).
These results were obtained using the base processor described in this chapter with the config-
uration shown in Table 2.1. Overall, most benchmarks have an IPC between 2 and 3. The I-
cache misses are low for most benchmarks, except for fpppp. The D-cache misses are low for
Specint ‘95 and graphics benchmarks (except for compress), but are relatively high for the
SpecFP ‘95 benchmarks. The branch prediction rates and the return stack hit rates are high for
most benchmarks, except for go and ijpeg.

In Table 2.5, we show the second set of inputs for our benchmarks. We use these inputsin
Chapter 3 to investigate the sensitivity of the phenomenon of instruction repetition to program

inputs.

29

Cache Misses Branch Return
Benchmarks Base IPC Prediction | Stack Hit
I-Cache D-cache Rate Rate
Specint ‘95
go 1.74 0.13% 0.89% 76% 100%
m88ksim 243 0.00% 0.01% 95% 100%
ijpey 2.69 0.00% 0.63% 88% 99.9%
perl 2.46 0.00% 0.98% 96% 99.8%
vortex 2.78 0.19% 1.07% 98% 100%
li 2.30 0.00% 1.28% 96% 99.8%
gcc 2.05 0.29% 0.17% 91% 100%
compress 2.28 0.00% 9.56% 91% 100%
SpecFP ‘95
tomcatv 2.87 0.00% 4.89% 98% 99.9%
swim 2.56 0.00% 5.97% 98% 100%
su2cor 234 0.00% 7.45% 94% 100%
hydro2d 2.40 0.00% 10.03% 99% 99.3%
mgrid 241 0.00% 2.23% 96% 100%
applu 2.69 0.00% 3.78% 93% 100%
turb3d 2.77 0.00% 1.74% 94% 100%
aps 211 0.01% 1.11% 96% 100%
fpppp 1.63 4.04% 0.05% 94% 100%
waveb 221 0.00% 2.75% 97% 100%
Graphics
Viewperf+Mesa 210 0.32% 0.97% 94% 100%
Mpeg-2 decoder 2.87 0.00% 0.76% 94% 100%
POV-Ray 2.16 0.59% 0.46% 94% 100%

Table2.4 BaselPC, |- and D-cache misses, branch prediction rates, and the return stack hit
rates, for all benchmarks. Cache misses are percentages over total cache accesses. Branch
prediction rates are percentages over total number of dynamic conditional branches. Return
stack hit rate are percentages over number of dynamic returns

30

Specint ‘95 Second set of inputs | SpecFP ‘95 Second set of inputs
go 2stone.in tomcatv ref input
m88ksim train.in swim ref input with X= 100, Y= 100
ijpeg specmun.ppm su2cor test input
perl primes.pl, primes.in hydro2d test input with MPROW = 200
vortex vortex.in (ref) mgrid test input
li au.lsp tak2.lsp xit.Isp applu test input
gce amptjp.i turb3d test input with itest =0
compress test.in (train) apsi train input withx =32,z=8
Graphics Second set of inputs fpppp test input
Viewperf+Mesa | Viewset: CDRS-04 test input with grid 625x20
waveb . .
Mpeg-2 decoder | meil6v2.m2v particle dist 2500 50
POV-Ray mist.pov

Table 2.5 Second set of inputdr the benchmarks

31

Chapter 3
An Empirical

Analysis of I nstruction Repetition

In Chapter 1, we described the phenomenon of instruction repetition. Before we can dis-
cuss the methods for exploiting this phenomenon, we need to develop a better understanding
of the phenomenon itself. We not only need to be aware of its various characteristics — such
as percent of total dynamic instructions repeated, or groups of instructions generating most
repetition — but we also need to understand the underlying causes that give rise to this phe-
nomenon. Only after gaining such an understanding will we be able to exploit this phenome-
non effectively.

To achieve thisgoa we perform two main tasks in this chapter: (i) we supply various char-
acteristics regarding the phenomenon of repetition and (ii) we present an empirical analysis of
instruction repetition to better explain what may be giving rise to this phenomenon. We begin
by, first, qualitatively describing the causes of repetition and then introducing the different

types of analyses we perform in this chapter.

32
3.1 Qualitative Description of Causes of Repetition

What causesnstructionrepetition?In Chapterl, we briefly addressedhis questionand
statedthatinstructionrepetitionoccursbecaus@f therepeatinghatureof inputvaluesandthe
structureof programsthemseles. In this chapter we elaboratefurther To understandvhy
programinputs and structuremay causerepetition,let us considerhow a typical programis
written. In Figure3.1,we showv a pieceof code:a function,func, thatsearche$or anelement

xin anarraylist of sizesize (sameasthe codeexampleusedin Sectionl.1.2).Thestructureof

int func(x, list, size) {
int i;
for(i=0; i<size; i++) {
if(x==list[i]) return i;

}

return -1;

}

Figure 3.1 A code fragment to exemplify the typical structure of a program. This example
also occursin Figure 1.2 of Chapter 1.

this programrevealsthe following characteristicaboutthe way we write programs:(i) we
write programgo begeneric in nature:.e., we oftendon't write themfor particularinputval-
uesonly; insteadwe write themto be capableof handlinga variety of input values(e.g.,dif-
ferentvaluesof x or list in the above function); (i) we expresscomputationconcisely using
loops— e.g.,in the above casewe did not write a uniquestatementor checkingeachele-
mentof the list; instead,we wrote one static checkstatementaind useda loop to apply it to

every elementon the list; and, (iii) we breakour programsinto separatenoduleslike func-

33
tions, to simplify a complex task. Another commonfeaturein programs(not exemplified

explicitly in the above example)is datastructureswe normally organizethe programdata,
basedon their logical grouping,into arrays,structs lists, etc. For supportingsuchmannersof
programmingthereexists several “extra” instructionsin a programapartfrom the “computa-
tion” instructionswhich performthe actualtaskof the program.For supportingloopsin pro-
grams,we have instructionsthat“run” theloop andhelp generatehe dynamicprogramfrom
the conciserepresentationlo supportthe useof functionsin programswe have instructions
thatsave andrestoreregisterstatewhenenteringandexiting a function. Similarly, to support
comple data-structuresye needa fair amountof computation(and, hence,instructions)to

access the indidual elements in these data-structures.

How do theseprogramcharacteristicengenderepetitionAVe describdive ways.First, a
programoften encountershe sameinput datavaluesrepeatedlycausingthe codewhich was
writtento begenericn natureto performthe samecomputatioragain. For example programs
thatscanthroughtext files (like gcc, compress andgrep) may encounterepeateaccurrences
of the sameitemssuchaswords,spacesandcharactersln the exampleshavn in Figure3.1,
the function may be calledrepeatedlyto searchor differentelementsn the samelist, which
may resultin instructionsoperatingon thelist valueto performthe samecomputatiorrepeat-
edly. Second the loop-controlinstructions,which performthe task of unravelling the con-
cisely expresseccomputationmay getrepeatedvhenthejob of unravelling the computation
is performedrepeatedlyor differentinvocationsof the samepieceof code(e.g.,theloop con-
trol instructionswould get repeatedvhenthe sameloop is invoked again). Theseinstruction
would getrepeatedevenif the computatiorperformedis entirely new. Third, theinstructions

devoted to accessinghe elementsof a complex data-structuranay get repeatedvhen the

34
same elements are accessed repeatedly, even if the value being accessed is different. Fourth,

the register save-restore code of a function may get repeated if the registers do not change
between two calls to the function. Finally, many instructions in programs have immediate val-
ues as operands, e.g., smple initialization instructions or groups of instructions loading a
large constant in a register. These instructions (and instructions dependent on them) get

repeated on re-execution since their operands are constants.

3.2 Quantitative Analyses: Introduction and Rationale

After identifying the causes of repetition qualitatively, we are now ready to analyze the
phenomenon quantitatively. But, at this point, we are faced with the dilemma as to what sort
of analysis should we conduct. What sort of investigation would satisfyingly reveal the nature
of the phenomenon? Unfortunately, a direct answer to this question in not possible, at |east not
at present, and we make no attempt to obtain such an answer. Instead, we perform several dif-
ferent types of analyses, each providing a different way of looking at the phenomenon, and,
hopefully, all together providing a better understanding about the nature of the phenomenon.
These analyses fall into two broad categories: a category that attempts to characterize the phe-
nomenon and a category that attempts to isolate the contribution of different “parts’ of pro-

grams to the phenomenon.

To characterize instruction repetition, we carry out analyses similar to what others[12, 39]
have carried out for related phenomenon: we analyze the instructions of a program as awhole.
We call this a statistical analysis. Here we ask questions of the form: how much repeatability

exists? how many static instructions account for a certain fraction of the repeatability? etc.

35
While a statistical analysis allows us to characterize the phenomenon, it fails to give us

insight into the causes of instruction repetition. Answers to questions of the form: how much
of the repeatability is due to repeated inputs? how much can be attributed to instructions that
unwind the dynamic computation? etc. are not available. To answer these questions, we need
to categorize both the instructions that are executed as well as the instructions that are
repeated, into different classes (e.g., instructions that operate upon external inputs, or those
that operate upon global variables).

Categorizing instructions into different classes requires us to capture dynamic slices of
instructions, that is, dynamic paths through programs traced by the flow of data (e.g., adlice of
instructions executed in afunction that depends upon itsfirst argument). In capturing slices of
computation, we are faced with the question of whether to consider data dependences, control
dependences, or both. Control dependences determine which static instructions are entered
into the dynamic instruction stream, and data dependences determine the outcome of those
instructions. Since our purpose is to understand the repetitive behavior of instructions that are
present in the dynamic instruction stream and not with how static instructions are entered into
the dynamic instruction stream, we do not consider control dependences when dividing the
dynamic instruction stream into dynamic slices. We base our decisions and analysis solely on
data dependence relationships (in fact, the notion of a control dependence is somewhat mean-
ingless in a dynamic instruction stream).

In the next section, we formally define the various terms used in the remainder of the the-
sis. Then, in Section 3.4, we briefly describe the experimental setup that is specific to the
experiments performed in this chapter. In Section 3.5, we characterize instruction repetition,

and in Section 3.6 we analyze the sources of repetition. In Section 3.7, we discuss and further

36
investicate someof the resultspresentedn this chapterand,finally, we summarizeandcon-

clude this chapter in Secti@8.

3.3 Definitions

In this sectionwe definethreetermsthatwe usein this thesis:dynamic instruction repetition,
static instruction repetition, andunique repeatable instance. First we definetheminformally

and then follav it with more formal definition.

We startout by definingdynamic instruction repetition. Repetitionoccurswhendifferent
dynamicinstancesf the samestaticinstructionhave repeatecutcomesAn instructioncan
generatea repeatecdoutcomeif its operandsare repeatedthe commoncase).However, the
outcomeof aninstructioncanberepeatedvenif its operandsrenot repeatede.g.,the out-
comeof acomparanstructioncanbethe samewith vastlydifferentinputs).In somecasesthe
resultof aninstructionmay not be repeatedevenif its operandsarerepeatedbecausef the

side effects of otherinstructions(e.g., a load instructionreadingdifferent valuesfrom the

samememoryaddress)In this thesis,we saythat (a dynamicinstanceof) an instructionis

repeated if boththeinputsandthe outputsof the instructionarerepeatedi.e., theinstruction

produceghe sameoutputsfor the samesetof inputsasa previous instanceof theinstruction.

At placesin this thesis,we usethe termrepeatability to meanthe phenomenorf instruction

repetition.

We further clarify the conceptof repetition.First, consideraninstruction‘l’ thatexecutes
with operandvaluesvl and v2 and producesv3. Then a later (not necessarilythe next)

instanceof ‘I’ will be consideredepeatedf thatinstancealso executesusingvl andv2 as

37
inputs and produces v3 as output. Second, a load (like any other instruction), is considered

repeated when its operand values (which are used to compute the load address) and the result
(the value loaded from memory) are the same as some earlier instance of the load. Finally, a
store is considered repeated when its operand values (which are used to compute the store
address) and it store value (the value that will be stored to memory) are both the same asin
some earlier instance of the store.

The above definitions explain what is meant by a repeated dynamic instruction. Now, we

state the meaning of a repeated static instruction. A static instruction is said to be repeated if

it generates at |east one repeated dynamic instruction.

Next, we define a unique repeatable instance. A unique repeatable instance is the basic

dynamic instance (of a static instruction) that gets repeated. For example in Figure 3.2 the

| staticinstruction (1): 11 « r2 +r3 |

Dynamic Inputs Output
Instances r2 r3 ri
1 2 0 2
12 2 1 3
13 2 1 3
14 2 2 4
15 2 1 3
16 2 2 4
|7 2 2 4
_ repeated unique repeatable
Instructions Instance

Figure 3.2 Unique repeatable instances —basic dynamic instances which get epeated.

static instruction (I) generates seven instances. The instances 12 and 14 are the first (hence
unique) occurrence of the instance that gets repeated subsequently as 13, 15, 16, I7. We call 12

and 14 unique repeatable instances. Note that 11 does not fall in this category (although it is

38
unique) because it does not get repeated.

Finally, we restate the above definitions more formally using the following notations. Let
|(PC) stand for a static instruction at the address PC, and let |;(PC) stand for the ith dynamic
instance of that static instruction. A dynamic instance of a static instruction can also be repre-
sented with the following, more detailed, notation: I;(PC, opl;, op2;, res;), wherei denotes the
ith instance of I; opl; and op2; stand for the operand values and res; stands for the result value.
If 1;(PC) and I; (PC) are two dynamic instances and i < j then it means that |;(PC) occurs ear-
lier in program order than I;(PC). Two dynamic instances are said to be equal, i.e., I;(PC, opl;,
op2;, res) == 1, (PC, opl,, op2, resy), if they are instances of same static instruction and op1;
== 0ply, op2; == 0p2}, res == res,. With these notations, the three definitions presented ear-

lier in this section can be restated more formally as follows:

Dynamic instruction repetition:
A dynamic instruction I;(PC) is said to be repeated if [1 |i < j and I;(PC) == I;(PC)
Satic instruction repetition:

A static instruction | (PC) is said to be repeated if L and [| 1;(PC) == I;(PC)

Unique repeatabl e instance:
A dynamic instruction 1;(PC) is said to be a unique repeatable instance

if 0 |i < j and I;(PC) == I;(PC), but Zh |h< i and I,(PC) == 1;(PC)

3.4 Experimental Setup

The experimental setup used for this study is described in Chapter 2. We use our func-

tional simulator to execute the benchmark program and perform the analysis during execution.

39
To track instruction repetition, we buffer each new instance of a static instruction that is gener-

ated during the course of execution. An instance is considered repeated if it uses the same
operand values and produces the same result as one of the previously buffered instances of the
same instruction. We buffer up to 2000 unique instances (i.e., instances that use different input
values or produce different output value) per static instruction for each benchmark and per-

form LRU replacement when additional unique instances are encountered.t

In Table 3.1, we show the number of dynamic instructions executed (column 2), the num-
ber of static instructions present (column 4), and the percentage of static instructions executed

(column 5) for each benchmark (other columnsin this table are discussed in the next section).

Since the analysis was performed only on a portion of a program, it is likely that the
results of the analysis are not representative of the whole program run. To address this issue,
we simulated the programs for 10 billion instructions? (or until completion) and collected the
statistics on overall local analysis. (We discuss what thisanalysisisand its purpose later in the
chapter.) The statistics from the long simulations tallied with those obtained (and presented
later) from the short simulations. Although this verification does not necessarily imply that the
results of the analysis are representative of the complete run, they serve to give us more confi-

dencein our results.

Since the phenomenon we are analyzing is dependent on the properties of data, it is rea-

sonable to suspect that the results may be sensitive to the program inputs chosen. As men-

1. A version of this work presented earlier at ASPLOS ‘98 [44] did not use any replacement policy. It only
buffered the first 2000 unique instances and ignored all unique instances thereafter. This difference causes
some results in the two studies to differ dlightly (e.g., percentage of instructions repeated, number of unique
repeatabl e instances observed, etc.), with the results in [44] generally being a more conservative evaluation
of the phenomenon than those presented here.

2. Wedidn't have to track repetition for these experiments, and hence both the time and memory reguirements
were small.

40
tioned in Chapter 2, we ran similar experiments using other program inputs (shown in

Table 2.5) and found similar trends with the second set of inputs. (Some results for the second
set of inputs is shown in Appendix A.) In this chapter we present results only for the inputs

shownin Table 2.2.

3.5 Statistical Analysis. Characterizing Instruction
Repetition

In this section, we attempt to get a feel for the characteristics of repeatability in the pro-
gram as awhole (statistical analysis). In our first set of data, we try to get afeel for how much
instruction repetition exists and how many program instructions contribute to repetition.
Table 3.1 shows the repetition results for all benchmarks. The second column (Total) shows
the number of instructions that were executed dynamically, and the third column (Repeat)
shows the percentage of dynamic instructions that were classified as repeated. In general, we
see that a significant percentage of dynamic instructions get repeated, especially for the inte-
ger and graphics benchmarks, where the dynamic repetition rate is greater than 70% for al
benchmarks, except for compress (where the repetition rate is 57%). For the floating-point
benchmarks the repetition rates are comparatively lower, ranging between 40-70%, except for

mgrid (19%), fpppp (37%), and turb3d (90%).

The remaining columns of Table 3.1 deal with static instructions. In the fourth column we
show the number of static instructions present in each program. In the last two columns, we
present the percentage of static instructions that get executed (% of Total) and the percentage

of executed static instructions that show repetition (% of Exec). We observe that only a small

41

Dynamic Instructions Static I nstructions
Benchmarks Total Executed | Repeated
L Repeat (%) Total
(millions) % of Total | % of Exec
Speclint ‘95
go 1000 93.8 84,552 62.9 934
m88ksim 1000 98.8 37,824 4.5 97.7
ijpeg 942.2 79.8 58,894 254 98.1
perl 555.6 85.1 73,850 22.3 65.7
vortex 1000 96.6 125,018 28.3 935
li 1000 89.9 23,026 84 99.8
gcc 421.4 88.2 299,988 39.5 87.7
compress 1000 57.7 13,798 13.1 66.3
SpecFp ‘95
tomcatv 1000 56.2 20,926 171 89.1
swim 849 49.2 22,154 42.3 74.8
su2cor 1000 49.5 36,872 39.9 89.6
hydro2d 1000 43.9 32,084 24.0 98.0
mgrid 368 193 23,264 44.0 75.9
applu 642 60.9 34,130 60.4 70.8
turb3d 1000 90.0 35,904 16.9 80.7
apsi 1000 65.9 63,134 30.9 90.9
fpppp 499 36.6 44,170 65.6 83.5
waveb 1000 61.0 65,448 12.1 57.0
Graphics
Viewperf+Mesa 1000 774 775,758 10 93.3
Mpeg-2 decoder 1000 731 22,902 23.0 94.3
POV-Ray 1081 825 263,148 17.1 56.5

Table3.1 Tableshowsthebenchmark programs, thetotal dynamicinstructions executed and
the percentage of dynamic instructions repeated. It also shows the total static instructionsin
each program, and the percentage executed and repeated.

42
fraction of the total static instructions get executed dynamically but a large fraction of those

executed are repeated. This trend is true for all the benchmark programs. Thus, repetition is
not a phenomenon which is exhibited by only asmall fraction of the static instructions that are
executed. However, a few static instructions might be accounting for a large number of
repeated instructions, and we study that next.

In Figure 3.3, we show the percentage of the repeated static instructions which account for
a certain fraction of the total dynamic repetition. We observe that for al but five benchmarks
less than 20% of the repeated static instructions account for more than 90% of the dynamic
repetition. The exceptions are m88ksim (56%), applu (22%), fpppp (29%), waves (27%), and
viewperf (35%). For m88ksim, waveb, and viewperf, although the corresponding percentages
of the repeated static instructions are higher, the absolute number of repeated static instruc-
tionsin these casesis small to begin with.

Table 3.1 and Figure 3.3 suggest that many instructions are repeated but do not tell us how
many different values generated by the instructions contribute to the repeatability. WWe measure
this next. In Figure 3.4, we show for all three benchmark groups the contribution of instruc-
tions with a certain number of unique repeatable instances (defined in Section 3.3) to the
overall dynamic repeatability. For example, in go, 25% of the dynamic repeatability is due to
instructions with 1 unique repeatabl e instance and another 12% is due to instructions that have
2-10 unique repeatabl e instances. We observe that repetition is not limited to instructions pro-
ducing few unique repeatable instances only. Instructions which produce many unique repeat-
able instances also account for a sizeable amount of the dynamic repetition (except in
tomcatv). For example, instructions producing between 101 and 1000 unique instances

account for 47% of the repetition in ijpeg, 28% in li, 55% in hydro2d, and 18% in pov-ray.

43

e T T T =5
o - . m88ksim ---x---
° o peg ---*
perl &
vortex ---m-—
li - |
g cC o -
IX/ compress A -
(] /
j=2]
]
[
>
. i
g
<
2
2
Q.
o
L)
: Specint ‘95 I
S
3
X
0 . ‘ ‘ |
i ” 40 60 80 100

% repeated static inst

tomca}tv —

swim ---x---
su2cor ---%---
hydro2d &
mgrid —-m-—
applu ---&--
turb3d ----e---
apsi -4
fpppp -4+~

waves —v—

SpecFP ‘95

% dynamic repetition coverage

0 T T T T
0 20 40 60 80 100
% repeated static inst
100 L L p—
s viewperf —+—
mpeg-2 ---X---
pov-ray ------
80 - i L
o i
g i
o ’
> i
8 604 L
c i
S /
g f
o , Graphics
E 40/ -
g i
= |
© i
3 H
|
*
20 o
0 T T T T
0 20 40 60 80 100

% repeated static inst

Figure 3.3 Static instructions coverage of dynamic repetition. This graph shows that very
few (lessthan 20% for most cases) of the static instructions which get repeated generate most
(morethan 90%) of the repetition observed dynamically.

100-
B instances: >2k
90+ B instances: 1k-2k
80 instances: 101-1000
(R B instances 11-100
2 instances: 2-10
g 9
g instance: 1
13 50+
Specint ‘95 & .
8w -
; uy
O g
20- I N
104
0 T . T T T T T T
go masksim ijpeg perl vortex li gcc compress
Benchmarks
1004
= . = B instances: >2k
90 . instances: 1k-2k
— .
80 — instances: 101-1000
c 70 Bl instances 11-100
S ; !
o instances: 2-10
= e |
=1 instance:: 1
‘
SpecFP ‘95z 501 . u
§ 40 |
5 H |
T 304 ||
204 1
10
O T T T T T T T T T
tomcatv swim su2cor hydro2d mgrid applu turbad aps fpppp waves
Benchmarks
100-
B instances >2k
90+ B instances: 1k-2k
80 instances: 101-1000
. B instances 11-100
o instances: 2-10
-‘%’ 60
. g instance: 1
Graphics ¢ so- -
=
B
o]
R
20
10
0 T T T T T
viewperf mpeg-2 pov-ray
Benchmarks

Figure3.4 Contribution to total dynamic repetition of static instructions generatingdiffer ent
number of unique repeatable instances. As seen,repetition is not limited to instructions
generating few unique repeatable instances only, e.g, significant repetition is seenfrom
instructions which generate between 100 to 1000 uniquepeatable instances.

45

Unique Repeatable Unique Repeatable Unique Repeatable
Specint Instances SpecFP I nstances Graphics I nstances
Benchs Count Rgp\)/egéts Benchs Count Rg\p\)lgéts Bench Count Rglgéts
go 22,595,020, 42 tomcatv | 1,041,603 539 | Viewperf | 45471952 17
m88ksim 103,354 9555 swim 5,886,407 71 Mpeg-2 | 17,036,206| 43
ijpeg |24,278,066| 31 su2cor | 21,012,330 24 POV-Ray | 27,305,631 32
perl 2,209,087 214 |hydro2d 734,890 597
vortex | 7,476,760 129 mgrid 1,380,997 51
li 8,805,941| 102 applu | 20,142,921 19
gcc |17,749,001| 21 turb3d | 11,884,880 76
compress (18,498,014| 31 aps 19,483,424 34
fpppp 7,003,833 26
waves | 35,175,001 17

Table3.2 Number of uniquerepeatableinstancesand average number of repetitionsfor each.

This suggests that we need to track multiple repeatable instances of instructions in order to

capture alarge fraction of the repeatability in a program.

To get afeel for the total number of instruction instances we need to track in order to cap-
ture a certain fraction of the repeatability, we turn to the datain Table 3.2 and Figure 3.5. In
Table 3.2, we show the number of unique repeatable instances (column count) in the program
(the sum of all the unique repeatable instances of all instructions that are repeated). We also
show the average number of times that a repeatable instance is repeated (column Avg.
Repeats). The numbers show that all the observed repetition is generated by relatively few
unigue repeatable instances and that a unigque repeatable instance gets repeated several times

on average.® In Figure 3.5, we show the fraction of the unique repeatable instances that

3. The number of unique repeatable instances reported here are higher than what the actual count would be.
This is because instances get evicted from the 2000-entry repetition-tracking buffer. An evicted instance
when re encountered is again counted as a unique repeatable instance.

s ~ g0 —+—
~* m8sksim ---x---
ijpeg --x---
perl &
vortex —-m--
li ---o |
gcc e
compress -4 -~
Q
g
9]
>
o L
S
c
8
3
&
= ‘
Specint ‘95
£ 40 L
g
>
°
8
20 + F
0 T T T T
0 20 40 60 80 100
% unique repeated dynamic inst
100 -

80 1

60 4
i

40 +

% dynamic repetition coverage
a}

20 4

SpecFP ‘95

swim ---x---
SU2C0r -~ %~
hydro2d
mgrid
applu --o-
turb3d
apsi A
foppp &~
waves —v—

T T
40 60
% unique repeated dynamic instance

60 4/

40

% dynamic repetition coverage

20 1

Graphics

viewperf —+—
mpeg-2 ---x---
pov-ray ---%---

T T
40 60
% unique repeated dynamic instance

80

100

46

Figure 3.5 Coverage of repeatability by the unique repeatable instances shown in Table 3.2.
For example, in most cases 80% of the repeatability is generated by less than 20% of the

instances shown in column 2 of Table 3.2.

47
account for a certain fraction of the dynamic repetition. We observe that in most of the cases,

less than 20% of all the repeatable instances account for more than 80% of the dynamic repe-

tition.#

3.6 Analysisto Understand the Causes of Repetition

Having performed the statistical analysis, we now address the second purpose of the chap-
ter: to understand the causes of repetition. Ideally, we would like to identify the repeatability
due to a particular program function, e.g., which instructions in the dynamic execution of a
program correspond to addressing a particular data structure, and how many of these instruc-
tions are repeated? But, what is the best way to breakdown programs for our analysis pur-
poses? To overcome this dilemma, we analyze the programs at three different levels —global
(whole program), function-level, and local (within functions). At each level we divide the pro-

grams into categories that intuitively seem to provide useful information at that level.

3.6.1 Global Analysis

At the global level, we can classify program instructions into three broad categories: (i)
instructions whose inputs are influenced by external program input, or external input instruc-

tions, (ii) instructions whose inputs are influenced by initialized global variables, or global init

4. The dynamic repetition coverage numbers from specint’ 95 programs presented here differ from those pre-
sented in [44]. The difference stems from the way the dynamic instance were sorted before determining the
coverage. In [44] we used an approximate method: we determined the number of repeated and number of
unique instances generated by each static instruction. Then we calculated the average repetition per unique
instance for each static instruction. We then sorted the list based on this average before accumulating the
coverage. In thisthesis, on the other hand, we employ a more accurate method. We keep track of the number
of repeated instances generated by each unique dynamic instance during simulation, and use this number to
sort the list of unique repeatable instances. In any case, this difference does not change the basic conclusion
drawn from the result — i.e., very few unique repeatabl e instances generate most of the observed repetition.

48
datainstructions, or (iii) instructions whose inputs are influenced solely by program internals.

(Instructions classified as program internal either operate upon immediate values, or [transi-
tively] operate upon values generated by instructions that operate upon immediate values.)
Sometimes instructions use uninitialized registers: for example, when an uninitialized callee-
saved register is saved on afunction entry. We classify such instructions in a separate (fourth)
category called uninit.

To perform the analysis, we trace the flow of data through the program during execution.
We tag each data item with the category name to which it belongs and propagate these tags
along with the data to the dependent instructions. This propagation traces slices of instructions
for each source category. The category of an instruction is determined by the categories of its
input operands. We use a supersede rule, external input > global init data >4 program inter-
nal > 4 uninit, to determine the category of an instruction where two slices with different cate-
gories meet. In thisrule, A > B (A supersedes B) implies that if slices of A and B meet, the
resultant slice will be that of A. We chose this rule to assign higher priority to a source that is
likely to be “less repeatable’.

We present the results of this analysisin Table 3.3, which consists of three tables, one for
each of the benchmark groups — integer, floating-point, and graphics. For each benchmark
group, we show three types of results: overall, repeated, and propensity. The overall results
show the percentage of all dynamic instructions in each of the categories; the repeated results
show the percentage of all repeated dynamic instructionsin each of the categories; the propen-
sity results show the percentage of dynamic instructions belonging to each category that got
repeated (i.e., amenability or propensity of each category to repetition, hence the name). More

precisely, the propensity value of a particular category is

49
(# of repeated instructionsin the category)* 100/(# of total dynamic inst. in the category),

where the numerator is obtained from the repeated results and the denominator is obtained

from the overall result.

Overall Results: In general, the results are different for the different groups. For integer
benchmarks, we see that for most of the instructions (more than 50% in al benchmarks except
perl) the inputs come from slices which originate from program internals (e.g., initialization
statements). About 12% to 30% instructions inputs come from slices which originate from
global initialized data. Also, for most integer programs, less than 20% of the dynamic instruc-
tions use values that come from slices which originate from external input. This shows that
most of the computation performed in the program is on the data internal (or “hardwired”) to
the program. This should not come as a surprise: in addition to the “ computation” instructions
themselves that operate on data values, programs contain a lot of “overhead” instructions,
such asinstructionsthat perform addressing and program control. This observation also serves
as a basis for decoupled architectures that divide the instruction stream into an addressing

stream and a computation stream [41].

In contrast to integer benchmarks, floating-point and graphics benchmarks have a much
larger percentage of dynamic instructions that use values coming from slices which originate
from external inputs. Except for mgrid and turb3d, in al floating-point benchmarks most
dynamic instructions obtain their inputs from external inputs slices (e.g., 84% for apsi, 79%
for fpppp, 57% for applu). The same is true for the two graphics benchmarks, viewperf and
pov-ray, with 59% and 48% of dynamic instructions in this category, respectively. However,

even for these two benchmark groups, the data* hardwired” in programs (internals+global init

50

Categories go m88k ijpeg perl vortex li gce comp
Overall % of all dynamic instructions
internals 86.3 54.6 63.2 46.1 53.6 47.0 59.8 68.5
global init data 13.8 26.3 20.3 18.8 285 12.4 251 29.5
external input 0.0 19.0 16.5 33.6 17.9 39.8 15.1 2.0
uninit 0.0 0.1 0.0 0.5 0.0 0.8 01 0.0
Repeated % of all repeated dynamic instructions
internals 86.2 54.4 60.5 51.6 54.3 48.1 63.1 77.1
global init data 13.8 26.2 224 221 28.8 13.8 27.2 229
external input 0.0 19.3 17.2 25.8 16.9 37.3 9.6 0.0
uninit 0.0 0.1 0.0 0.6 0.0 0.9 0.1 0.0
Propensity % of all dynamic instructions in each category
internals 93.7 98.5 76.4 94.2 97.8 92.0 426 65.0
global init data 94.4 98.3 87.9 98.8 97.8 99.6 43.8 447
external input 97.1 99.9 83.3 64.5 90.8 84.3 25.9 0.0
uninit 98.7 100.0 99.3 99.0 99.0 100.0 43.6 60.6
(Speclnt)
Categories tomcatv | swim | su2cor | hydro2d | mgrid | applu | turb3d | aps fpppp | wave5
Overall % of all dynamic instructions
internals 36.7 331 16.8 44.2 4.1 24.9 12.9 7.8 84 219
global init data 26.1 10.8 325 10.0 95.9 18.1 87.1 8.0 12.9 30.9
external input 37.2 55.8 50.7 45.8 0.0 57.1 0.0 84.0 78.7 47.2
uninit 0.0 0.4 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0
Repeated % of al repeated dynamic instructions
internals 58.9 35.0 33.0 36.7 138 38.8 13.6 11.9 229 34.7
global init data 318 21.9 43.4 19.6 86.2 23.9 86.4 121 35.2 255
external input 9.3 424 237 437 0.0 37.3 0.0 75.8 41.9 39.9
uninit 0.0 0.8 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0
Propensity % of all dynamic instructions in each category
internals 90.1 52.1 97.0 36.4 65.8 94.9 94.8 99.9 99.8 96.6
global init data 68.3 99.9 65.9 86.0 17.3 80.5 89.2 99.5 99.6 50.3
external input 14 374 231 41.9 86.0 39.8 99.7 59.5 195 51.5
uninit 99.9 99.9 97.2 56.3 76.8 96.1 99.9 99.9 63.2 0.0
(SpecFP)

(Graphics bench on the next page)

Table 3.3 Breakdown in terms of sources of input: program internals (constants), global init
data, external input, and uninit. Overall shows the breakdown of the complete program.
Repeated shows the break down of the repeated instructions. Propensity shows the percentage
of dynamic instruction in each category that got repeated.

51

Categories viewper f mpeg-2 povray
Overall % of all dynamic instructions
internals 24.6 67.5 29.8

global init data 151 13.0 20.2
external input 58.8 19.5 47.7
uninit 15 0.0 23

Repeated % of all repeated dynamic instructions

internals 317 69.3 33.7
global init data 18.9 15.0 24.9
external input 474 15.8 38.6

uninit 2.0 0.1 29

Propensity % of al dynamic instructions in each category

internals 99.6 75.0 91.3
global init data 97.0 84.3 99.7
external input 62.4 59.2 65.3

uninit 100.0 100.0 99.4
(Graphics)

Table 3.3 (continued) Breakdown in terms sour ces of inputsfor graphics benchmarks.

data) provide inputs to significant percentage of dynamic instructions. For example, in five
floating-point benchmarks (tomcatv, hydro2d, mgrid, turb3d, and wave5) and in all graphics
benchmarks, the categories internals and the global init data taken together constitute the big-
gest source of input data for dynamic instructions, corroborating our earlier observation that a

significant portion of the total computation takes place on datathat is internal to the programs.

Repeated Results: The distribution of the repeated results across the global categoriesis sim-
ilar to that of the overall results: i.e., the amount of repetition seen in a particular category is

commensurate with the amount of computation in that category.

For integer benchmarks, most repetition comes from the “hardwired” part of the program,
i.e,, most of the instructions which get repeated operate on the data that is internal to the pro-
gram. This suggests that repeatability may be a phenomenon inherent to the way programs are

expressed and less sensitive to the external input. (As mentioned earlier, we have observed

52
similar results using different input files for the programs.) Thisis also true for floating-point

and graphics programs, but in these cases the external input category also contributes signifi-
cantly to the total repetition (e.g., apsi, hydro2d, viewperf, pov-ray). Since much of the repeti-
tion occurs because of the “hardwired” part of the program, it would appear that compiler
should have eliminated this “redundancy” in the first place. We defer the discussion on this

issue until Section 3.7.

Propensity Results: We see a significant percentage of dynamic instructionsin each category
get repeated. As expected, both internals and global init data show a high propensity for repe-
tition (greater than 80% for most cases). The external input category in general shows a com-
paratively low propensity for repetition (for most floating-point programs, it is less than 50%).
However, in afew cases — e.g., m88ksim (99%), vortex (86%), and pov-ray (65%) — a sig-
nificant percentage of instructions in the external input category get repeated. Although some
benchmarks such as go, compress, mgrid, and turb3d, show a high propensity for repetitionin
the external input category, we point out that there are very few instructions in this category
for these benchmarks. Similarly, even though the percentages for uninit are high, we again

note that this category has very few instructions (compared to the other categories).

3.6.2 Function Level Analysis

Functions (or procedures) are a common way of expressing a computation that gets
invoked repeatedly. Often they are written to be general purpose (parameterized by argu-
ments), and a specific task is performed by invoking them with argument values appropriate
for that task. One reason why repetition occurs is because functions often get invoked repeat-

edly with the same argument values (argument repetition). Accordingly, we measure the repe-

53
tition in function arguments and present the resultsin Table 3.4. The second column shows the

number of static functions called, and the third column shows the number of dynamic callsto
these functions. The fourth column shows the percentage of al dynamic callsin which all the
arguments were repeated argument values (i.e., these functions had been called earlier with
the exact same set of argument values), and the fifth column shows the percentage of dynamic
callsin which no arguments were repeated (i.e., none of the argument values in these function
calls have occurred earlier as arguments). A strikingly large number of times the functions
show all-argument repetition: for every benchmark, except waveb, more than 50% of dynamic
function calls show all-argument repetition, with many of them — such as go, ijpeg, viewperf,
and mpeg-2 — having more than 75% of their dynamic functions with all-argument repetition.
On the contrary, the functions seldom show no-argument repetition. Except for afew floating-
point benchmarks (e.g., waveb, apsi, fpppp, and su2cor), for most benchmarks the percentage
for no-argument repetition is less than 2%.

Do the above results suggest that large numbers of function calls are redundant? Not nec-
essarily since not all of the computation in afunction depends solely on its arguments. We will
revisit thisissue in Section 3.7 when we investigate some of the results of this chapter further.
Nonetheless, the repeatability of al or some of the arguments of functions suggests an impor-
tant source of repetition in instruction execution. (The percentage of calls with some argu-
ments repeated can be calculated from the data in Table 3.4. We have also seen that argument

repetition is not limited to single argument functions.)

Benchs No. of | No. of dynamic | Dynamic callswith | Dynamic callswith
funcs calls ALL argsrepeated | NO argsrepeated
Specint ‘95
go 481 11M 78% 0.49%
m88ksim 390 17™M 83% 0.03%
ijpeg 528 1.5M 98% 0.01%
perl 477 6.4M 76% 1.36%
vortex 1,077 21M 67% 0.07%
li 473 30M 97% 0.31%
gce 2,027 5.6M 59% 9.00%
compress 131 28M 66% 1.14%
SpecFP ‘95
tomcatv 218 0.43M 55% 0.01%
swim 229 10M 76% 0.00%
su2cor 259 7.0M 86% 10.9%
hydro2d 267 307 56% 6.51%
mgrid 232 21,264 88% 1.92%
applu 236 8,690 67% 4.93%
turb3d 249 3.5M 74% 0.00%
apsi 326 5.0M 57% 21.6%
fpppp 268 0.29M 65% 19.2%
waves 329 11M 16% 60.0%
Graphics

viewperf 3,282 12M 89% 0.37%
mpeg-2 217 17™M 94% 1.36%
pov-ray 2,228 17M 66% 1.81%

Table 3.4 Function Level Analysis. For each benchmark we show the number of functions,
number of function calls encountered during execution, the percentage of function calls with
all-argument repetition, and the per centage of function calls with no-argument repetition.

55

3.6.3 Local Analysis
To further our understanding of instruction repetition, we continue our analysis within
each function — we call thislocal analysis. We divide dynamic instructions into different cat-
egories using two broad classification criteria: (i) the source of input data used by instructions

and (ii) the specific task performed by groups of instructions.

In general, the data used within a function come from one of the following sources:. (i)
arguments, (ii) global data, (iii) returned values, and (iv) function internals. Arguments are the
values explicitly passed to functions at the time of their invocation. Global data are the values
which are global to the program (they either reside in the data segment or on the heap) and
were not passed as arguments. Returned values are the values explicitly returned from other
function calls. Function internals, like program internals in our global analysis, operate on
immediate constants. Thus, using the first criterion for division, we will classify a slice of

computation, for example, as argumentsiif it originates by operating on function arguments.

We identify the following categories for instructions based on the task performed: (i) pro-
logue, (ii) epilogue, (iii) global address calculation, (iv) function returns, and (v) operations
on stack pointer (SP). Prologue and epilogue represent the overhead incurred for calling a
function. They perform, respectively, save and restore of callee-saved registers on entry and
exit to functions. Just as addressing and loop control are “overhead” for a generic and compact
representation of a computation, function prologue and epilogue are overheads associated
with a modular programming style. Global address calculation is comprised of sequences of
instructions which calculate the address of a global variable either using immediate values or

using global pointer register, gp (aspecial register provided in MIPS architecture that pointsto

56
the data segment). Since these instructions perform a very specific task, we group them sepa-

rately from function internals (even though they operate on immediate values). Returns is
comprised of function returns. The category SP consists of operations on stack pointer (e.g.,
adding an offset to stack pointer to form an address of a variable on the stack). We keep
returns and SP separate from the other categories because their repeatability depends (partly)
upon the present depth of the stack, and we wish to analyze the repeatability due to thisinflu-
ence separately.

We realize that the two broad classification criteria that we have chosen are not completely
digoint and also that the categories within them may not be the best possible way of dividing
afunction, but we believe that this division is a good first step in understanding the causes of
instruction repetition.

Asin global analysis, we categorize the instructions dynamically while executing the pro-
gram on our simulator. We tag the data values with their appropriate source category, e.g., data
loaded from the data segment are tagged as global, and we use function calling conventions to
identify arguments and return values. The category in which an instruction is binned depends
upon the categories of itsinput data. Asin global analysis, an instruction with inputs from two
different categories is categorized using the supersede rule argument > return value > (glo-
bal, heap) > function internal. The reason is to give preference to categories that may show
more variability and less repeatability. Identifying the task-based categories such as global
address calculation, function returns, and operations on SP, is straightforward. The prologue
and epilogue are identified as follows. On entry into a function, we mark all registers as unint
(except those used for passing the arguments). Store instructions that save unint registers are

categorized as prologue whereas |oad instructions that load these saved values are categorized

57
as epilogue. Instructions that allocate or deallocate space on the stack are also categorized,

accordingly, as prologue or epilogue.

3.6.3.1 Overall Results

We show the percentage of total dynamic instructions within each category (overall analy-
sis) in Tables 3.5, 3.8, and 3.11 (overall) for integer, floating-point and graphics benchmarks,
respectively. The results vary from benchmark group to benchmark group (and aso from pro-
gram to program). However, in general, we glean the following from these results. Prologue
and epilogue constitute a significant fraction of the dynamic program for integer and graphics
benchmarks (e.g., as many as 24% of the dynamic instructions in vortex, 19% in li, 15% in
pov-ray, and 12% in viewperf). But, they are not very prominent for the floating-point bench-

marks where most benchmarks have |less than 5% of dynamic instructionsin these categories.

Although in global analysis we saw that most of the instructions for integer programs fell
on slices originating from immediate values (program internals), in local anaysis (Table 3.5)
we see relatively fewer instructions derive their input values from immediate values (function
internals and global address calculations). This is because several program internal slices
gpan across functions and the information that they are internal slices (and that they might
possibly be operating upon a compile time constant) gets hidden when these program internal
glices cross function boundaries. These dlices then show up as part of global, heap, or argu-
ment slices. This observation is also true for the graphics programs (Table 3.11). But, for the
floating-point programs, we see that the program internals category in global anaysis and the
sum of the function internals and global address calculation categories in local analysis

(Table 3.8) are comparable in value. This implies that in floating-point programs (unlike in

58

Specint ‘95

Categories go m88k ijpeg perl vort li gce comp
prologue 3.12 4.93 1.16 7.33 12.40 12.08 8.48 1.90
epilogue 312 4.93 1.16 7.32 12.40 12.06 8.47 1.90

function internals 9.22 17.21 8.81 8.94 9.80 8.72 14.13 5.41
glb_addr_calc 15.66 14.77 0.44 4.47 3.35 0.54 2.95 10.27
return 112 175 0.16 113 2.10 3.04 1.29 2.79

SP 1.30 0.17 0.63 1.06 4.07 3.01 2.37 0.00

return values 177 4.46 4.29 254 2.90 3.69 2.88 16.72

arguments 12.46 15.65 34.30 2253 36.62 8.69 19.33 5.02

global 52.24 26.94 2.05 9.20 5.41 11.72 16.77 55.98

heap 0.00 9.21 47.00 34.48 10.94 36.46 23.34 0.00
Table3.5 Overall: Distribution of all dynamicinstructions (% of all dynamicinstructions).

Categories go m88k ijpeg perl vort li gce comp
prologue 3.29 4.99 1.44 7.90 12.56 12.27 8.34 2.79
epilogue 3.29 4,99 1.44 7.88 12.56 12.24 8.34 2.79

functional internals 9.83 17.43 11.03 10.60 10.15 9.70 15.98 9.36
glb_addr_calc 16.69 14.96 0.55 5.30 3.46 0.59 3.46 17.79
return 1.19 177 0.20 134 218 3.38 151 4.83

SP 1.38 0.17 0.78 1.26 4.21 3.29 257 0.00

return values 183 451 4.60 1.10 2.86 3.78 254 8.50

arguments 12.28 15.62 30.99 2221 35.84 8.77 17.48 4.18

globa 50.22 26.24 252 8.43 5.42 12.77 17.74 49.75

heap 0.00 9.32 46.45 33.97 10.75 33.21 22.04 0.00
Table3.6 Repeated: Distribution of all repeated instructions (% of all repeated dynamic instructions).

Categories go m88k ijpeg perl vort li gcc comp
prologue 99.03 99.99 98.49 90.66 97.81 91.35 39.71 84.55
epilogue 99.03 99.99 98.49 90.63 97.82 91.28 39.71 84.55

function internals 99.98 100.00 99.97 99.73 99.95 100.0 45.65 100.00
glb_addr_calc 99.98 100.00 99.98 99.99 99.99 98.26 47.43 100.00
return 99.99 100.00 99.97 99.99 99.99 99.99 47.21 100.00

SP 99.69 100.00 99.88 99.94 99.89 98.30 43.78 74.45

return values 96.95 99.99 85.69 36.39 94.97 92.13 35.62 29.38
arguments 92.43 98.59 72.12 82.94 94.53 90.76 36.50 48.08

globa 90.15 96.22 98.56 77.09 96.64 97.99 42.69 51.30
heap 0.00 99.97 78.90 82.89 94.95 81.92 38.09 0.00

Table3.7 Propensity: Percent of instructionsin each category that get repeated (% of all dynamic instructionsin
each category).

59

SpecFP ‘95

Categories |tomcatv| swim | su2cor |hydro2d| mgrid | applu | turb3d apsi fpppp | waves
prologue 0.16 3.10 184 0.00 0.02 0.01 1.04 2.60 0.23 251
epilogue 0.16 3.10 184 0.00 0.02 0.01 1.04 2.60 0.23 251

function internaly 34.39 851 8.48 17.08 117 14.07 6.69 5.22 0.75 474
glb_addr_calc 0.06 22.70 1.62 13.81 0.01 7.51 0.45 0.58 6.14 5.47
return 0.04 1.19 0.71 0.00 0.01 0.00 0.36 0.50 0.06 1.07

SP 26.37 0.00 4.80 0.36 0.02 255 0.30 0.46 041 0.09

return values 37.03 423 12.34 0.00 0.03 0.01 18.34 2.03 6.89 5.80

arguments 0.55 9.50 42.63 4.25 32.04 557 58.53 51.69 1.78 10.13
global 1.13 47.66 25.76 64.49 66.70 70.29 13.27 3431 83.51 67.66
heap 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table3.8 Overall: Distribution of all dynamic instructions (% of all dynamic instructions).

Categories |tomcatv| swim | su2cor |hydro2d| mgrid | applu | turb3d aps fpppp | waveb
prologue 0.28 5.92 3.27 0.00 0.09 0.01 1.15 3.62 0.47 255
epilogue 0.28 5.92 3.27 0.00 0.09 0.01 1.15 3.62 0.47 255

functioninternaly 54.81 13.02 16.33 17.43 6.06 23.02 7.43 7.83 201 7.20

glb_addr_calc 0.11 18.70 3.27 4.38 0.04 12.19 0.50 0.88 16.78 8.61

return 0.08 242 143 0.00 0.03 0.00 0.40 0.76 0.16 1.76

SP 32.22 0.00 9.44 0.83 0.08 4.18 0.34 0.70 111 0.14

return values 9.16 8.09 5.32 0.00 0.14 0.00 20.19 1.83 455 315

arguments 0.96 19.29 28.47 0.38 53.84 4.67 57.18 59.24 3.63 9.85

globa 2.00 26.64 29.21 76.99 39.64 55.91 11.66 2154 70.82 64.20

heap 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table3.9 Repeated: Distribution of all repeated instructions (% of all repeated dynamic instructions)

Categories |tomcatv| swim | su2cor |hydro2d| mgrid | applu | turb3d apsi fpppp | waves
prologue 98.60 94.14 87.86 77.22 95.59 91.03 99.91 91.68 73.97 61.82
epilogue 98.60 94.13 87.86 77.06 95.64 91.11 99.91 91.68 73.95 61.82

function internaly 89.50 75.29 95.28 44.76 99.90 99.60 99.99 98.74 98.10 92.64
glb_addr_calc | 99.99 40.57 99.99 13.92 96.40 98.75 99.99 99.99 99.93 95.99
return 99.99 | 100.00 | 100.00 | 69.61 98.45 95.98 | 100.00 | 99.99 99.90 | 100.00

S 68.62 75.63 97.25 99.94 97.73 99.98 99.96 99.96 99.12 99.82

return values 13.89 94.09 2131 49.88 93.67 35.13 99.04 59.17 24.14 33.18
arguments 96.87 99.95 33.03 3.87 32.42 51.08 87.90 75.52 74.35 59.34
globa 99.99 2752 56.09 52.35 11.47 48.41 79.07 41.36 31.01 57.91

heap 49.82 40.26 0.00 0.00 64.31 65.85 0.00 62.40 41.30 33.02

Table3.10 Propensity: Percent of instructionsin each category that get repeated (% of all dynamic instructionsin
each category).

Overall

Categories |viewperf| mpeg2 | povray
prologue 5.95 4.78 7.28
epilogue 5.95 4.78 7.28
function internaly 8.37 5.69 6.44
glb_addr_calc 0.51 2.26 1.72
return 121 1.70 1.60
SP 1.08 0.09 1.63
return values 6.15 1.65 7.38
arguments 26.17 19.13 32.09
global 4.48 42.75 11.98
heap 40.11 17.17 22.60

Propensity

Categories |viewperf| mpeg2 | povray
prologue 92.14 95.43 98.07
epilogue 92.14 95.43 98.10
function internal§ 100.00 | 100.00 | 97.62
glb_addr_calc | 100.00 | 100.00 | 94.45
return 100.00 | 100.00 | 99.55
SP 100.00 | 99.98 98.12
return values 71.22 88.58 61.09
arguments 64.76 54.69 68.95
global 100.00 | 79.23 76.72
heap 73.29 49.20 86.64

60

Graphics Repetition
Categories |viewperf| mpeg2 | povray
prologue 7.09 6.24 8.84
epilogue 7.09 6.24 8.84

function internaly 10.82 7.78 7.78
glb_addr_calc 0.66 3.09 201
return 1.56 2.33 197

SP 1.40 0.12 1.99

return values 5.67 2.00 5.58

arguments 2191 14.31 27.38

global 5.79 46.33 11.38

heap 38.00 11.55 24.23

Table 3.11 Local Analysis results for Graphics

benchmarks. “Overall” shows the numbers are % of
all dynamic instructions. “Repeated” shows
Contribution of each category to total repetition (the
numbers are % of all repeateddynamic instructions).
“Pr opensity” shows the propensity of eachcategoryto
repetition (the numbers are % of all dynamic
instructions in that category).

integer and graphics programs) most slices which derive inputs from the immediate values do

not cross function boundaries (and, hence, may be recognizable and exploitable statically).

In general, most of the dynamic instructionsfall on global, heap or argument slices. A sig-

nificant portion of the dynamic program is devoted to calculating the addresses of global vari-

ables, e.g., 16% for go, 15% for m88ksim, 23% for swim, and 14% for hydro2d. Categories SP

and returns congtitute few dynamic instructions (less than 2% in most cases). Return value

slices also comprise few dynamic instructions (less than 5%) for all integer benchmarks,

except for compress where they comprise 17% of dynamic instructions. This category is more

61
prominent in floating-point and graphics benchmarks where it comprises of 37% dynamic

instructions in tomcatv, 18% in turb3d, 12% in su2cor, and 7% in pov-ray.

3.6.3.2 Repetition Breakdown

We show the percentage of total repeated instructions for each category in Tables 3.6, 3.9
and 3.11 (repeated) for integer, floating-point, and graphics benchmarks, respectively. The
amount of repetition that each category accounts for varies with the benchmark. But, in gen-
eral, most of the repetition isaccounted for by arguments, global (or heap), and function inter-
nals. Prologue and epilogue a so contribute significantly to repetition, for integer and graphics
benchmarks.

We show the propensity of each category to repetition — i.e., the percentage of dynamic
instructions in each category that got repeated — in Tables 3.7, 3.10, and 3.11 for integer,
floating-point and graphics benchmarks, respectively. In general, we see that every category is
amenable to repetition, especially for integer and graphics benchmarks (greater than 90% pro-
pensity for most cases). The propensity is especially high (as would be expected) for function
internals and global address calculations. The percentages are high for return and SP aswell,
but we note that these categories have very few instructions (compared to the other catego-
ries). The propensities are lower (less than 50% in many cases) for return values, global (or
heap), and argument categories.

Next we discuss the results and describe why each category may be getting repeated. (All
percentage values presented below are from Tables 3.6, 3.9, and 3.11, unless specified other-

wise.)

Global and Heap Values: For most benchmarks, between 20% and 70% of repeated instruc-

62
tions fall on slices originating from load instructions that read global values. This repetition

can occur for severa reasons. The runtime switches (which are mostly set using parameters
that are input to a program) are often stored in global variables. These switches get initialized
when the program begins execution and remain constant for the remainder of the execution.
Often other program parameters, which remain constant for a given execution, are stored in
global data structures (e.g., atable of frequencies for al letters used in Huffman encoding, or
machine descriptions like function unit latency in a processor simulator). These data struc-
tures get initialized once per program execution (either at compile time or runtime) and
remain unchanged thereafter. For some global variables, e.g., positions on a chess or a go
board, the values may change infrequently or the variables may assume only asmall set of val-
ues, causing the same values to flow down to the dependent instructions and hence resulting in

repetition.

Function Prologue and Epilogue: These two categories comprise a significant percentage of
total repetition for integer and graphics benchmarks (e.g., 15% for perl, 24% for vortex, 13%
for gcec, 17% for pov-ray, and 14% for viewperf). This repetition occurs because functions
often save and restore the same values of callee-saved registers from the same stack locations.
Such a situation may happen, for example, when functions get called from the same call site
repeatedly (hence the save and restore code accesses the same locations in the stack) and the
values of callee-saved registers are the same as before (because, for instance, if they are not

used in the caller function at al).

Function Arguments: A significant percentage of repeated instructions fall on argument

dlices (e.g., 26% for ijpeg, 22% for vortex, 59% for apsi, 57% for turb3d, and 27% for pov-

63
ray). As shown earlier in Table 3.4, many times functions are called repeatedly with some or

al of their arguments having the same values as before. In such cases, the instructions which
operate on these arguments may perform the same computation repeatedly. However, repeti-
tion of an argument doesn't necessarily result in repetition of its complete dlice; the values
coming from other dlices (e.g., global dlices) that merge with argument slices may change and
hence prevent repetition. For example, inijpeg only 77% of the instructions from this function
arguments category (propensity results in Table 3.7) are repeated even though 98% of its
dynamic functions are called with all-argument repetiti on° (the function-level analysis results

arefound in Table 3.4).

Function Return Value: Often, the value returned by function calls belongs to a small set of
possible values (e.g., true or false). In such cases, the computation in the caller function which
uses this return value may perform the same task repeatedly. Although repetition due to this
category is generaly low, it is significant in some cases: e.g., it is9.3% for compress, 20% for

turb3d, 9.2% for tomcatv, 5.7% for viewperf, and 5.6% for pov-ray.

Function Internals: Since these dlices originate from instructions operating on immediate
values, the different execution of these slices generate the same results (provided the govern-
ing control flow resolves in the same way for each execution). The percentage contribution to
repetition for some of the benchmarks are 19% for vortex, 19% for gcc, 54% for tomcatv, 16%

for su2cor, and 11% for viewperf.

Global Address Calculation: Instructions in this category either operate on immediate val-

ues or on register gp (which is a runtime constant). Hence they perform the same task every

5. Inijpeg, severa functions are called with pointersto global arrays as arguments. Although the pointer values
remain the same, the contents of the array change.

64
time they are executed. The percentage contribution of this category to repetition for some of

the benchmarks are 18% for go, 15% for m88ksim, 19% for swim, and 12% for applu.

SP and Returns: The computation involving SP, such as adding an immediate to form an
address of avariable, generates the sameresult if the valuein SP isthe same, which isthe case
when the same function is called from the same call depth repeatedly (e.g., a function called
from the same call site repeatedly). The percentage contribution of SP to repetition isin gen-
eral low (less than 5%) for most benchmarks, except for tomcatv (32%) and su2cor (9%).
Returns get repeated when a function returns to the same call site repeatedly. The percentage
contribution of returns to repetition is aso low in general, except for a few integer bench-
marks where the contributions are measurably high (e.g., 4.9% for compress and 3.3% for li).
In most cases, the contribution of returns to repetition is less than 2%.

We make another observation from the repetition results similar to the observation made
for the overall results. Although the results from global analysis for integer and graphics
benchmarks show that most of the repeated instructions are part of program internal slices
(Table 3.3, under repetition), in local analysis we see comparatively fewer repetitions fall on
dlicesthat originate from immediate values— i.e., function internal and global address cal cu-
lation dlices. This indicates that much of the invariance flows into a function via arguments
and global values and that this invariance may not be obvious (statically) inside the function.
However, in the case of floating-point benchmarks the global and local results are comparable
in this respect, which implies that such invariances may be easy to track statically for these

benchmarks.

65
3.7 Discussion and Further I nvestigations

In the last few sections, several characteristics of sources of instruction repetition have sur-
faced. Many of these characteristics are striking. For instance, most of the repetition in pro-
gramsfall oninstruction slices originating from the hardwired values in programs, most of the
dynamic functions exhibit all-argument repetition, and significant repetition is generated from
function prologues and epilogues. These characteristics raise several questions. Why does
such a behavior exists in programs? Why wasn't repetition eliminated at compile time? Can
repetition be easily tracked for the purposes of exploitation (in software or hardware)? We
don’t yet know the conclusive answers to these questions, which can be both yes and no; the
answers can only be found after much further research, which is beyond the scope of this the-
sis. However, attempting to address these questions, even partialy, is still important as it will
likely help develop a better grasp on the nature of the phenomenon (and, possibly, on appro-
priate methods for its exploitation). Consequently, in this section, we discuss and investigate
further several of the results discovered in previous analyses to address some of the above
guestions. This section consists of three subsections: one devoted to discussing results from
each of the three analyses — global, function-level, and local. We begin with the global analy-

SiS.

3.7.1 Global Analysis

Global analysis (Table 3.3) shows that most of the dynamic instructions and the repetition
fall on the program internal slices and global initialized slices. These dlices originate from

immediate values and statically initialized data respectively, both of which are known at com-

66

pile time. This information suggests that we may be able to optimize code statically to elimi-

nate this source repetition. However, there may be some challenges in doing so, which we

discuss below:

The dynamic path through the program may not be known statically. Although the same
definition of a value may reach a use repeatedly, this invariance may not be obvious at
compiletime.

To ensure correctness, a compiler needs to assume dependences conservatively. On several
occasions, global variables cannot be register allocated in the presence of pointers or func-
tion calls. Dynamically, loads of global variables may read the same value repeatedly.

It may not be obvious within the body of afunction, without sophisticated inter-procedural
analysis, that avalueis statically known if the value was passed to the function as an argu-
ment.

Much instruction repetition is a result of code executed to dynamically recreate a compu-
tation from its static image. Exploiting this repetition statically may involve “unrolling”
the dynamic computation statically, perhaps affecting the generality of the computation as
well as the code size.

Some instruction repetition is due to features of the instruction set and cannot be elimi-
nated by optimizations such as constant propagation. For example, the number of bitsin
the immediate field of an instruction format limits the size of the immediate value that can
be handled by an instruction. In such cases, larger constants are manipulated using a
sequence of instructions, all of which would perform the same computation when exe-
cuted repeatedly.

In some situations, aloop invariant computation may not be register allocated, because of

67
the resultant increase in register pressure which might cause spillsinside the loop.

3.7.2 Function Level Analysis

Function analysis (Table 3.4) shows that most of the functions are called with repeated
arguments (all-argument repetition). This result immediately brings to mind a question: how
many of these functions can be memoized (dynamically or statically)? We investigate this

result further.

Memoization can be hindered if afunction has side effects such as external input/output or
storesto aglobal address or if it hasimplicit inputs through global variables. In Table 3.12, we
show the percent of functions called with all-argument repetition that do not have any side
effects or implicit inputs (hence may be candidates for memoization). We see different results
for different benchmark groups. In integer benchmarks, ailmost every function has side effects
or implicit inputs and may defy memoization (unless the side effects and other inputs them-
selves have arepeated pattern that can be detected statically). On the other hand, in most float-
ing-point benchmarks and in two graphics benchmarks (viewperf, and pov-ray), a significant
percentage of functions that are called with all-argument repetition lack both side-effects
(external i/o or store to a global variable) and implicit inputs (e.g., load values from a global

variable). These functions may be good candidates for memoization.

Another aspect of the repeatability of function arguments is the number of different values
with which this repetition takes place. This aspect isimportant because it determines the trac-
tability of this program behavior in hardware or software. To get an idea of this aspect, we

determine for each function the most frequently occurring argument-set, the second most fre-

68

Dynamic Functionsw/o side effects or implicit
inputs
Benchmarks -
% of all funcs % of funcsyvl_th all-arg
repetition
Specint ‘95
go 0.0% 0.0%
m88ksim 7.8% 9.3%
ijpeg 0.3% 0.2%
perl 0.0% 0.0%
vortex 0.0% 0.0%
li 0.1% 0.0%
gcc 0.6% 0.9%
compress 0.0% 0.0%
SpecFP ‘95
tomcatv 327 55.3
swim 79.2 86.4
su2cor 85.5 87.5
hydro2d 0.0 0.0
mgrid 1.0 0.0
applu 22 2.1
turb3d 37.1 42.4
apsi 56.7 51.6
fpppp 42.1 44.4
waves 54.0 78.2
Graphics

viewperf 224 25.2
mpeg-2 0.0 0.0
pov-ray 23.3 32.2

Table3.12 Functions which do not have any side effects or any implicit input. The numbers
are percentages of all dynamic functions (column 2) and percentages of functions with all-
argument repetition (column 3).

69
guently occurring argument-set, and so on. Then we determine what percentage of the total

all-argument repetition (shown in column 4 of Table 3.4) is because of the most occurring
argument-set, the second most occurring argument-set, and so on. We show these numbersin
Figure 3.6 for up to five most frequently occurring sets of arguments. These results show, for
example, if we track for every function in viewperf the most frequently occurring argument-
set (using, say, a direct-mapped hardware table) then we would capture 25% of the function
callswith al-argument repetition, 37% if we track the top two frequently occurring argument-
sets (using, say, a 2-way associative hardware table). We see that for integer benchmarks the
coverage attained by the five most frequently occurring combination of argument valuesis not
very high: in all but one case, even tracking all five most frequent sets of argument values does
not alow us to cover more than 50% of functions with all-argument repetition. Wheress, for
floating-point benchmarks, the coverage is considerably higher: the most frequently occurring
set of argument values itself covers most of the all-argument repetition in many cases (e.g., in
tomcatv, apsi, applu, and wave5). In graphics benchmarks, although the coverage is higher
than in most integer benchmarks, there is significant all-argument repetition beyond the top

five argument sets.

3.7.3 Local Analysis

Local analysis (Tables 3.5-3.11) shows that function prologue and epilogue are a signifi-
cant contributor to both the number of instructions executed dynamically aswell asto instruc-
tion repetition (especialy in integer and graphics benchmarks). This overhead and repetition

can potentially be optimized if the compiler had global information and could inline the func-

70
tion at the call site. From this point of view, it isinteresting to find out how many static func-

tions contribute to most of the prologuetepilogue repetition and to determine their sizes (since
increase in code sizeis one of theissuesin function inlining). In Table 3.13, we show the sizes
(in number of static instructions) of the functions that are the top five contributors to the pro-
loguetepilogue, as well as the fraction of all prologue and epilogue repetition accounted for
by these five functions (coverage column) for the benchmarks. We observe that in all three
benchmark groups most functions are greater than 50 instructions in size and may be consid-
ered large for inlining purposz&e.6 Among the three benchmark sets, the floating point bench-
mark set has the greatest number of small functions (< 50 instructions in size) as major
contributors to prologuetepilogue repetition (hence, these benchmarks may lend themselves
well to function inlining). From the percent coverage values, we can also deduce that a consid-
erable amount, greater than 40%, of prologuetepilogue repetition remains for many bench-
marks even after considering the top five functions. Thus, simply focusing on a few bhig

contributors may not eliminate most of the prologuetepilogue repetition.

Local analysis also identifies other sources of instruction repetition, such as global dlices,
function internal dlices, and instructions that compute global addresses. Another important
aspect of the global slice repetition is the number of different values with which the repetition
takes place. (Since function internal slices and dlices that compute global addresses begin
from constant values, they get repeated with a single value every time they are executed). As
in the case of function argument (discussed in Section 3.7.2), the number of different values

for global dices determines its tractability (whether in hardware or software) with fewer val-

6. Because the dynamic path length through a function can be smaller than the static instruction count, the pro-
logue/epilogue can still be asignificant contributor to the dynamic instruction count even for large functions.

Specint ‘95

SpecFP ‘95

Graphics

Figure 3.6

% of all arg. repetitions
g
T

BB

5

go

100+

90

80

70

60

50

30

% of all arg. repetitions

20

104

masksim

ijpeg

T
perl

T
vortex

Benchmarks

T T
gcc compress

% of all arg. repetitions
g
T

Benchmarks

tomcatv swim suzcor hyd;02d mg'rid ap;alu turbad

aﬁsi fpﬁpp waves

view'perf

mpeg-2

Benchmarks

pov-ray

5th most freq arg sets
4th most freq arg sets
3rd most freq arg sets
2nd most freq arg sets
Most freq args set

5th most freq arg sets
4th most freq arg sets
3rd most freq arg sets
2nd most freq arg sets
Most freq args set

5th most freq arg sets
4th most freq arg sets
3rd most freq arg sets
2nd most freq arg sets
Most freq args set

71

Percentageof all-argument repetition due to the five most frequently occurring

argument set.

72

Bench. 1 2 3 4 5 coverag
Specint ‘95
go addlist getefflibs lupdate ldndate livesordies 40%
113 558 683 683 799
. Data path execute display_trace Pc test issue 0
MB8ksim 143 883 150 149 56 66%
. emit_bits encode_one_block fill_bit_buffer jpeg_idct_islow memcpy 0
Py 97 103 93 643 55 81%
orl evd memmove malloc str_nset str_sset 500
P 6639 97 304 76 142 °
Mem_GetWord | TmFetchCoreDb |Chunk ChkGetChunk| Mem_GetAddr TmGetObject
vortex 49%
53 125 50 49 49
. mark xlobgetvalue xlsave livecar newnode
li 62%
67 88 40 46 26
cc reg_scan_mark_refgmark_set_resources canon_reg mark_jump_label|copy_rtx_if_shared 17%
9 262 309 162 259 271 °
) getcode output readbytes
compresy 86 142 85 100%
SpecFP ‘95
X_getc pow _ finite |dexp pow_P 0
tomeaty 47 118 19 119 92 a2%
. __drem _ finite sin cos
swim 176 19 126 119 100%
log Idexp _ finite __logb __drem 0
suzcor 158 119 19 48 176 95%
fct artdif filter t2 b2
— — - — — 0,
hydro2d 824 401 1394 141 189 o7
. memcpy __mpn_divmod X_putc __mpn_mul_1 do_fio 0
mgrid 55 360 35 18 219 43%
exact_ X_putc memcpy __mpn_divmod ne d 0
applu 156 35 55 360 412 69%
fftz2 drem fftzl cfft finite
— — — — —_ 0,
turb3d 257 176 148 363 19 88%
. ekmlay pow _ finite radb4 Idexp 0
apsi 134 118 19 432 119 S4%
Idexp fmtgen_ exp d_int floor 0
fppp 119 414 91 16 29 4%
__drem _ finite Idexp log cos 0
waves 176 19 119 158 119 86%
Graphics
. sample_2d_linear floor sample lambda 2d | gl_shade rgba log 0
viewperf 728 29 329 486 158 A%
. form_component -
mpeg-2 putbyte Flush_Buffer Get_Bits " prediiction form_prediction 91%
21 365 14 679 117
. . priority_queue_in All_Box_Intersecti
pov-ray Ray_In_Bound Intersect_Box Point_In_Clip =t ons 28%
120 528 56 117 207
Table 3.13 We show names of five functions which are 5-top contributors to

prologue+epiloguerepetition. For eachfunction we show its sizein number of instructions. We
also shav the amount of prologue+epilogue epetition covered by these fie functions.

73
ues meaning easily tractable and vice versa. To obtain this number of different values, we

determine for each global load the most frequently occurring value, the second most fre-
guently occurring value, and so on. (We consider global |oads because they initiate the global
dices). Then we determine what percentage of total global load repetition can be accounted
for by the most frequently occurring values, the second most frequently occurring value, and
so on. We show these results in Figure 3.7 for up to five most frequently occurring values.
These results can be interpreted as follows. we will able to track about 40% of repeated load
values that start the global dlice if we track the most frequently load value (using a direct
mapped hardware table, for instance) for all global loads in gcc, for example, and about 55%
of repeated load valuesiswe track top 2 most frequently occurring values for each load (using
a 2-way associative hardware table, for instance). We see that in the floating-point bench-
marks, the coverage attained by the most frequently seen load values is considerably higher
than in the integer or graphics benchmarks — e.g., for tomcatv, swim, and applu, the most fre-
guently seen value itself accounts for more that 80% of repetition on global slice. For integer
and graphics benchmarks, global slices may need to be tracked for several possible values to

capture more of the global repetition.

3.8 Summary and Conclusions

In this chapter, we empirically analyzed instruction repetition, which is the phenomenon
that instructions operate on the same operand values and produce the same result repeatedly.
We analyzed the SPEC ‘95 integer and floating-point benchmarks and graphics programs to

understand the underlying characteristics of programs that give rise to this phenomenon.

Specint ‘95

% of all repeated global+heap loads

SpecFP ‘95

% of all repeated global+heap loads

Graphics

% of all repeated global+heap loads

10 B 5thmost freq value
904 B 4th most freq value
80 == =] 3rd most freq value
704 | 2nd most freq value
60 L — . . Most freq value
50 — —
wl — -

304
204
104
go m88ksim ijpeg perl vortex li gce compress
Benchmarks
1909 = [l 5th most freq value
90 || = I 4th most freq value
80 : 3rd most freq value
704 = 2nd most freq value
60 — I l Most freq value
! N
40
30
204
104
0 T T T T T T T T
tomcatv swim su2cor hydro2d mgrid applu tur bad fpppp waves
Benchmarks

9 B 5thmost freq value
904 I 4thmost freq value
80 : 3rd most freq value
70 — - 2nd most freq value
60 - : Most freq value
50 —

ol —
304
20
104
o . T T
viewperf mpeg-2 pov-ray
Benchmarks

74

Figure3.7 Percentage of all global+heap load repetition with the five most frequently repeated

values.

75
We first characterized instruction repetition. We found that most of the dynamic instruc-

tionsin programs are repeated (e.g., 99% for m88ksim, 93% for vortex, and 82% for pov-ray).
We also found that although almost all of the executed static instructions contribute to repeti-
tion, for most benchmarks less than 20% of the repeated static instructions account for more
than 90% of the dynamic repetition. However, instruction repetition is not limited to instruc-
tions producing a few instances dynamically; as much as 42% of the repetition in ijpeg, and
28% inli is due to instructions that produce between 101 to 1000 distinct values.

To better understand this phenomenon, we further analyzed the dynamic execution of
these programs at three levels: (i) global, (ii) function, and (iii) local (inside functions). In glo-
bal analysis, we tracked the data usage pattern of the program as a whole and determined the
sources of repeated instructions (external input, global initialized data, or program internals).
We saw that most of the instruction repetition fall on instruction slices originating from pro-
gram internals values (such as immediate values) and global initialized data. We saw similar
results when running the benchmarks with other inputs although we did not report these
results in this chapter (they are reported in Appendix A). This suggests that repetition as a
phenomenon is more a property of the way computation is expressed in a program than a
property of input data (especially for the integer benchmarks).

In the function analysis, we saw that very functions often get invoked repeatedly with
exactly the same set of arguments values (e.g., 98% of function call in ijpeg, 83% in m88ksim,
78% in go). In contrast, only afew function calls have no repeated arguments values (less than
2% for several benchmarks).

In the local analysis, we tracked the source of repetition. We classified the instructions of a

function into different categories based on the source of data values used (e.g., function argu-

76
ments) and the specific task performed (e.g., save and restore registers). We found that most

of the repeated instructionsfall either on global value or argument value slices. Instructions on
function internals slices also get repeated frequently. Significant repetition is also seen due to
function prologue and epilogue. For some benchmarks, the sequences of instructions that cal-
culate the addresses of global variables also get repeated significantly.

Finally, we discussed and further investigated some of the results of the three analyses. We
showed that most functions exhibiting all-argument repetition had side effects or other
implicit inputs (hence may not be easy candidates for memoization). We presented number of
different values with which the function arguments are repeated. For local analysis results, we
identified functions that contribute the most to the function prologue and epilogue repetition

and showed the number of different values with which load slices get repeated.

77

Chapter 4

Dynamic I nstruction Reuse

In the previous chapter we discussed the phenomenon of instruction repetition. We presented
its various characteristics and analyzed various programs to expose its various sources. In this
chapter we are concerned with how to use this phenomenon to our advantage — i.e., how to

exploit it.

Ideally, on the matter of exploitation we would like to ask questions such as, “What are the
different ways of exploiting repetition?’ or “How best can we exploit instruction repetition?’
However, instruction repetition is a phenomenon that was discovered fairly recently and,
hence, the depth of understanding required to answer such questions is not yet available. In
addition, how we exploit this phenomenon will also depend on what we wish to gain from it:
if the goal isto make the processor run fast, then there may be one way of utilizing this oppor-
tunity; but if the goal is something else — say, to reduce the power consumption in processor
— then the approach can be entirely different (and may be still unknown). The different uses
of this phenomenon will only become apparent after we understand what aspects of it are
exploitable and what are not, and this understanding can only be developed by actually under-

going the process of exploiting this phenomenon.

Thus, in this chapter, instead of attempting to explore the topic of exploitation comprehen-

78
sively, we pursue one particular purpose for exploiting this phenomenon — a purpose that is

somewhat self-suggestive from the nature of the phenomenon itself: i.e., reducing the amount
of work that needs to be done to execute a program. If the instructions are producing the same
results repeatedly, then why execute them over and over again? Instead, reuse results from
their previous executions and avoid their repeated executions. The topic of our study in this
chapter is dynamic instruction reuse, the name we call the technique employed for accom-

plishing the above result.

4.1 Instruction Reuse

Instruction reuse (IR) is a non-speculative, hardware technique that dynamically detects that
certain instructions are producing the same results repeatedly and reuses the earlier results of
these instructions instead of re-executing them. This technique worksin the following manner.
As instructions execute, their results are stored in a hardware table called the Reuse Buffer
(RB). When an instruction enters the pipeline, the RB is queried to see if avalid result for that
instruction isavailable; if so, that result is reused from the RB and the execution of the instruc-
tion is complete. A reused instruction “skips’ the remaining pipe stages and becomes ready
for retirement. However, if avalid result for the instruction is not found in the RB, the instruc-

tion moves through the pipeline and get executed as usual .

IR is non-speculative because only valid results, i.e., results which are guaranteed to be
correct, are reused. The validity of aresult is confirmed by establishing that the operand val-
ues that were used to calculate that result are the same as the current values of the operands.

Based on how we perform this validity check, which we term the reuse test, we obtain differ-

79
ent schemes for reusing instructions (which is described later in this chapter).

There are severa benefits of exploiting repetition in this manner. First, since a reused
instruction is not required to be executed, it does not occupy resources (e.g., issue window
entry, functiona units, data cache ports) in a pipeline, making these resources available for
other instructions to use. Second, through reuse, instruction results become known earlier in
the pipeline than they are through execution. This permits dependent instructions to execute
earlier. Third, reuse breaks the serialization due to data dependences, and hence, has the
potential to exceed the dataflow limit. For example, reusing a chain of dependent instructions,
in effect, completes the individual instructions together, which would not be possible if the

chain is executed.

The layout for the rest chapter is as follows. In the next section, we describe the Reuse
Buffer, the hardware table used in IR. Thereafter, in Section 4.3, we present the different
schemes for IR; in Section 4.4, we describe how IR may integrate with a generic pipeline; in
Section 4.6, we discuss certain implementation issues of IR; in Section 4.7, we perform a
quantitative evaluation of IR; in Section 4.8, we discuss the various related work, and finaly,

in Section 4.9, we summarize and provide conclusions.

4.2 Reuse Buffer

All reuse schemes, which we will describe in the next section, employ a Reuse Buffer
(RB) for storing and maintaining the previous results of instructions. A generic structure of an
RB is shown in (Figure 4.1). Each entry of the RB stores information pertaining to a single

instruction. The exact contents of the RB entriesis decided by the particular scheme chosen to

80

Reuse Buffer
] < - entries
////
_ PC
Events | Invali- | _| - o - Other
date L Z info

(o)

Reused inst.

Figure 41 Generic Reuse Buffer. It is indexed by the PC (possibly combined with other
information as discussed in Section 4.5.3), and it has mechanisms for selectively invalidating
entries based on some event.

implement instruction reuse. Three more issues need to be dealt with: (i) how the information
in the RB is accessed, (ii) how we know that the accessed RB entry (or entries) has reusable

information, and (iii) how the buffer is managed.

Thefirst issue is easily dealt with: the program counter (PC) of the instruction provides a
convenient index for searching the RB. There are other ways of indexing in an RB, some of
which we discuss in Section 4.5.3. One advantage of using the PC as an index is that it is
available before any other information about the instruction; hence, RB access can begin early
in the pipeline, enabling early reuse of instructions (or, permitting the use of a bigger, thus
slower, RB). To accommodate multiple instances of a static instruction, the RB can be orga-
nized with any degree of associativity; the larger the associativity, the larger the number of

dynamic instances of an instruction that can be held in the RB at a given time.

To deal with the second issue, we need to develop areuse test which checks information
accessed from the RB to see if there is a reusable result. Details of the test depend upon the

reuse scheme, as we describe shortly.

81
There are two aspects to RB management: (i) deciding which instructions get placed in the

buffer and (ii) maintaining the consistency of the buffer. The decision as to what to place in
the buffer can range from a naive policy, i.e., place all recently executed instructions in this
buffer (if they aren't already present), to a more judicious policy that filters out instructions
that aren’t likely to be reused. This aspect of buffer management is dealt which in the next
chapter; in this chapter we adopt the naive policy approach. Maintaining the consistency of

information in the RB depends upon the reuse scheme, as we will see shortly.

4.3 Schemesfor Instruction Reuse

In this section, we describe four hardware schemes to implement dynamic instruction
reuse. These schemes mainly differ in the way in which reusable results are identified. The
first scheme (S,) tracks operand values for each instruction, the second scheme (S;)) tracks
only operand names (register identifiers), and the third (S;;4) and the fourth scheme (S,.q)
extend the first two schemes by the use of dependence relationships among the instructions for

tracking reuse. For each scheme, we discuss the following issues:
* What information is stored in the RB?
* How isthereusetest performed?

* How istheinformation in the RB updated/invalidated?

4.3.1 Scheme S, Reuse based upon operand values

Scheme S, is a straightforward implementation of the reuse concept. The operand values

of an instruction are stored along with its result. Since the reuse test is based on operand val-

82

operandl | operand2

result | mem
9| value | value | e ‘ ‘valid
(@
tag | operandl operand2| aqgress | result | result mem
reg name| reg name valid | valid
(b)
d2
tag ———f799g—a[]q:¥ ffffff _79‘395?"1 ————— address result relet mem
sre-index 1 reg name| src-index | reg name) vaild | vaild
(©)
d2
tag f”f;—qp—err—aﬂg} —————— ;ggqﬂa—n —————— address result| mem vaild
src-index ;regvalue src-index 'regvalue
(d)

Figure4.2 RB entry (a) SchemeS, (b) Scheme S, (c) Scheme S, (d) Scheme S,.4.
ues, as we will see shortly, we call thisscheme S, where*v’ stands for value.

When an instruction is decoded, its current operand values are compared with those stored
in the RB. If they are the same, the result stored in the RB is reused. Loads, being a two-oper-
ation instruction, need special handling. Address-calculation can be reused if the operands for
the address calculation did not change. However, the actual outcome of the load can only be
reused if the addressed memory location was not written into by a store instruction. Informa-
tion in the RB has to distinguish between the two. Likewise, stores are also special. While
reusing the address calculation part of a store presents no problems (we treat it no differently
from the address calculation for aload) we make no attempt to reuse the actual memory write
— the memory write could have side effects outside the domain of the processing node. (Sim-

ilar restrictions would apply to other instructions with side effects, e.g., loads in the I/O

space.)

RB entry: An entry in the RB for this scheme is shown in Figure 4.2(a). The tag field stores
part of the PC. The result, operand valuel, and operand value2 store the result and the oper-

and values of the instruction. These fields are used to identify the instruction (or address cal-

83
culation in the case of aload/store) that can be reused. The memvalid bit and the address field

are used to determine if the actual memory access for a load instruction can be reused; the
memvalid bit indicates whether the value loaded from memory (present in the result field) is
valid, and the address field stores the memory address (i.e., the outcome of the address calcu-

lation).

Reusetest: For testing reuse, the operands of an instruction are compared with the valuesin
the operand value fields of the RB entry. A match indicates that result is valid (for non-load/
store instructions) or address is valid (for loads and stores). For loads, in addition to testing
the validity of the address bits, we also need to test the memvalid bit to see if the outcome of
the load (in the result field) can be reused. If the operand values are not known at the time of

the reuse test, then the instruction is not reused.

Invalidation: For non-load operations, the reuse test works because the operands uniquely
determine the result; therefore invalidations are not needed to maintain the integrity of the test.
For loads, a store to the same address invalidates the value in the result field. Accordingly, on
a store, the address field of each RB entry is searched for a matching address, and the mem-

valid bit reset for matching entries.

4.3.2 Scheme S;;: Reuse based upon register names

In scheme S, we attempt to trivialize the reuse test (and also to reduce the size of each RB
entry). Rather than store operand values, we store operand (architectural) register identifiersin
the RB. When an instruction writes into a register, al instructions with a matching (source)

register identifier in the RB are invalidated. Only the valid instructions are reused from the

84
RB. The advantage of thisreusetest isthat it can be done much earlier in the pipeline than the

reuse test in scheme S, since it does not require the operand values. Since the reuse test is
based on operand names (and not value), we call this scheme S,,, where ‘n’ stands for name.

The remaining details are as follows:

RB entry : An RB entry for this scheme is shown in Figure 4.2(b). Differences from scheme
S, are: (i) the operandl and operand? fields contain register names of the operands instead of
actual operand values, (ii) there is aresultvalid bit, which indicates whether the result is valid.
(This bit was not required in scheme S, because the reuse test detected the stale results.) This

bit is set when an entry isfirst inserted into the RB.

Reusetest: The reuse test is as simple as testing the state of resultvalid and memvalid bits.
Address calculation for load/store instructions and results for all other instructions can be
reused if the resultvalid bit is set; the result of a load instruction can be reused if both
resultvalid and memvalid are set. (Since different instances of the same static instruction will
have the same operand names,* we do not need to compare the operand names explicitly for
reuse.) As mentioned above, since this reuse test does not require operand values, it can be

potentially done earlier in the pipeline; this may result in the reuse being more beneficial.

Invalidations: As before, stores invalidate the loads from the same address (memvalid bit is
reset). Moreover, when aregister iswritten, the RB is searched for entries whose operand field
matches the name of the register. The entries that match are marked invalid (resultvalid bit is

reset).

1. This may not necessarily be the case for self-modifying code. Hence, for architectures that support self-
modifying code, we will need to invalidate instructions in the RB when they get modified.

85
4.3.3 Scheme S, ;4: Reuse using register names and dependence chains

Scheme S;,;4 extends scheme S, by attempting to establish chains of dependent instruc-
tions, and to track the reuse status of such instruction chains. Since the reuse status of an
instruction in the RB is established based on its operand names and/or its dependence infor-
mation in this scheme, we call it scheme S, (the letters ‘'n” and ‘d’ stand for name and
dependence respectively).

Figure 4.3(a) motivates scheme S;,.4. The figure shows a dynamic stream of instructions
on the left and the contents of the RB at different point in time on theright. I, J, K isachain of
dependent instructions; 14, J;, K; and I, J, K, are the dynamic instances of this instruction
chain. With scheme S, only instruction I, could reuse the result of |1, because results of J; and
K, areinvalidated by instruction R. Scheme S, 4 instead tries to establish the fact that instruc-
tion J, (J;) depends solely upon instruction |, (I4), and instruction K, (K,) depends solely
upon instructions |, and J, (1, and J;) (Figure 4.3(b)). If instruction I, can be reused, so can
instructions J, and K,. Furthermore, if 15, J,, and K, are all fetched simultaneously from the

RB, the reuse status of al three instructions could be established simply by establishing the

Dynamic instruction time RB contents Dynamic instruction time RB contents
stream stream
I, - ri < o0 ri< 0 L - rl<-0 1< 0 -
‘]1 . r2<-rl1+4 r2 < rl+4 ‘1 cr2 < rl + 4 [r2 <-rl+ 4
K, : r3 <-rl +r2 tl r3 < rl+r2 Ki © r3<-rl1+r2 t1l r3 < r1+rzj
° 1< 0 [rl <=0 j
) _ rl < 4 t2 r2 <-rl+4
R :rl <‘; 4 t2 ﬂz R o r3 <- r:L+r2j
° l, : rl <- O=--reused--- 3= 1 r1< 0
b : rl1< 0 4»7[e_u§?@,,t37 ==-1 r1< 0 b r2 < rl + 4¢»Feused—*""E r2 < rl+ 4 j
J 1 r2<-rl1+4 i Bl Ka : r3 <- rl + r2=-eused|-~" "~ r3 < r1+r2j
K, : r3 < rl1 +r2 _r3 < ¢3+712
@) (b)

Figure 4.3 Dependent sequence of instructions (a) not handled in Scheme S,,, but (b) handled
in Scheme S,44-

86

< - - Independent
Source - N «— 0
P 2« r1+a
3 «— r1+r2 —. Dependent

Figure 44 Instructions with data dependence links. The arrows point from the instruction
using the value to the instruction producing the value.

reuse status of 1,, and verifying the dependence relationship (as we elaborate below). Thisis
tantamount to obtaining the result(s) of chains of dependent operations in a single cycle.
Scheme S,, which does not maintain instruction dependence relationships, can’t establish the
reuse status of a dependence chain as easily. In our example, the reuse status of |, would have
to be established; the result of 1, would be needed to establish the reuse status of J,, and J,’s

result would be needed to establish the reuse status of K.

For the ensuing discussions, we define the following terms (illustrated in Figure 4.4).
Instructions that produce values used by other instructions in the chain are called source
instructions (e.g., A and B in the figure). Instructions whose source instructions are not in the
chain, which implies that their data dependence information is not available, are called inde-
pendent instructions (e.g., A). Finaly, instructions whose source instructions are in the chain

are called dependent instructions (e.g., B and C).

Dependence chains are created as entries are inserted into the RB. To facilitate this pro-
cess, we use a mapping table called a Register Source Table (RST). The RST has an entry for
each architectural register; it tracks the RB entry which has (or will have) the latest result for
that register. When an entry isreserved in the RB for an instruction, the RST entry for its des-

tination register is updated to point to the reserved entry. If, however, an entry could not be

87
reserved, then the RST entry for the destination register is set to invalid (since the latest pro-

ducer of that register will not be in the RB). When an instruction is reused, the RST entry for
its destination register is updated to point to the reused RB entry. The RST is similar in spirit
to the rename map used in register renaming. In essence, the RST is used to link a consumer
instruction to the latest producer instruction by pointing to the “physical register” (RB entry)
of the producer. Accordingly, another way of looking at scheme S, iS to consider it as a
“physical register” version of scheme S,,, which tracks dependences using architectural regis-

ters. We next present details of this scheme's operation and then illustrate it with an example.

RB entry: An RB entry (shown in Figure 4.2(c)) issimilar to the onein scheme S,,, except for
the addition of a src-index field. The dependence links are created by storing the RB index of
the source instructions in this field. An invalid value is inserted in this field if the source

doesn’'t exist in the RB.

Reuse test: The reuse status of independent instructions is established asit was in scheme S,
(resultvalid bit is set; memvalid is set in the case of load instructions). A dependent instruction
is reused if its source instructions (in the RB), as indicated by the src-index field of its oper-
ands, are indeed the latest producers for its operands. This fact is established with the help of

the RST, aswe shall illustrate below with the help of an example (Figure 4.5).

State updates: Asin schemes S, and S,,, stores invalidate loads to the same address (mem-
valid isreset). Asin scheme S, independent instructions are invalidated when their operands
registers are overwritten (resultvalid is reset). Dependent instructions need not be invalidated
on operand overwrites because their reuse status can be established using their dependence

information. Instead, they are invalidated when their source instructions are evicted from the

88
RB, i.e,, when the dependence information is lost.! To perform this operation the RB needs to

be searched for entries whose src-index field matches the index (in the RB) of the source

instruction being evicted. The entries which result in amatch are invalidated (resultvalid bit is
reset).

Example: We illustrate the working of this scheme using the example shown in Figure 4.5
with the same dynamic stream of instructions asin Figure 4.3. Figure 4.5(a) shows the state of
the RB and RST at the time when |, is encountered in the dynamic instruction stream. At this
time, the results of instructions I, J; and K, are present in the RB with appropriate data

dependence information (indicated by the linksin the RB and the index valuesin the src-index

li: "1 <4«—0

Jq: r2 «—rl+4
Dynamic Kiq: r3 +— r1+r2
instruction '
stream R: rl<«— 4

valid RB index valid RB index valid RB index

N\ _~10| r1=—0

10 ri=—o ‘ ‘ NN
o

ri N
15 r2<7r1+4‘10r,<’: 15 r2<7r1+4‘1°r“/:w ° LTS r2=—ri+4 [10] {4+
2 6 r3<7r1+r2‘10/‘ 1577: 2 16 r3<7r1+r2‘10/‘ 15F-' r2|yeq |15-7" 16 r3—=— r1+r2‘10/‘ 15 -
5 o
o
o
RST RB RBT RB
RSt Re r2=—riva o] |
@ (b) (©)

Figure 45 lllustrating the reuse test for dependent instructions. (a) State when I, is
encountered. (b) Testing r2 <- r1 +4 for reusability. (c) Testing r3 <- r1 + r2 for reusability.

1. An optimization to this approach is to check whether the source instruction is the current producer for its
destination register (this can be done using the RST). If so, then the dependent instructions are not invali-
dated; instead they are treated as independent instruction thereafter. In our simulations, we implemented this

optimization.

89
field). Sinceinstructions J; and K, are stored in the RB as dependent instructions, their results

are not invalidated by instruction R (unlike scheme S;)). Instruction |, reuses the result of |4
(sinceit isindependent and valid), and the RST entry for r1 isupdated to point to the RB entry
10 (the latest producer for r1)(Figure 4.5 (b)). To establish the reusability of J,, the src-index
field for r1 is compared with the RST entry for r1 (Figure 4.5 (b)). A match indicates that the
source for r1 in the dependence chain (which is|,) is also the current producer for r1; hence
the result is reusable. Instruction K, gets reused in a similar fashion (Figure 4.5 (c)). The
instructions I,, J,, and K, can be reused simultaneously if encountered in the same cycle.
While performing the reuse test on each instruction, interdependence among them needsto be
considered. The interdependence check resembles what is done while renaming registers for

multiple dependent instructions in the same cycle.

4.3.4 Scheme S, 4: Reuseusing register values and dependence chains

Although the scheme S, is the most accurate in detecting the reusable instructions among
the three schemes presented so far, it is not very well suited for reusing chains of dependent
instructions in a single cycle. For example, reusing two instructions, |1 and J, with J being
dependent on |, would require that we first reuse | and then using the reused result of | we per-
form the reuse test for J. This whole operation may be difficult to do in a single cycle, espe-
cially for long dependence chains. To facilitate the reuse of dependent instructions, we
augment the scheme S, with the dependence-tracking ability of scheme S, .4, giving us the
scheme S, ..

Asin scheme S,.4, instructionsin this scheme are stored in the RB with pointersto the RB

entries containing their source instructions. The dependency chains are constructed using an

90
RST in the same way as they are constructed in scheme S;,,4. Most of the operations per-

formed in this scheme are borrowed from scheme S, or scheme S, 4, as we describe below. In
the following discussion, we use the terms dependent and independent instruction, which

were define in Section 4.3.3. Next, we describe the various details of scheme S, .

RB entry: An RB entry (shown in Figure 4.2(d)) issimilar to the onein scheme S, except for
the addition of a src-index field. Just like in scheme S, 4, the dependence links are created by
storing the RB index of the source instructionsin thisfield. Aninvalid value isinserted in this

field if the source doesn’t exist in the RB.

Reusetest: The reuse status of independent instructions is established as in scheme S: the
operand values are compared with the current values of those registers and the memvalid bit is
used to determine the validity of loads. Asin scheme S;,,4, @ dependent instruction is reused
by confirming that its source instructions (in the RB), as indicated by the src-index field of its
operands, are indeed the latest producersfor its operands. Thisfact is established with the help

of the RST, asillustrated earlier in Figure 4.5.

State updates. As in other schemes, stores invalidate the loads to the same address (mem-
valid is reset). As in scheme S,.4, the state of dependent instructions is updated when their
source instructions are evicted from the RB, i.e., when their dependence information is lost.
The state can be updated in two ways: either (i) the dependent instructions can be marked
invalid, or (ii) their src-index fields, pointing to the evicted source, are annulled (and thereaf-
ter, they are treated like independent instructions — i.e., their validity is determined by value
comparison). The first option is simple but conservative since it invalidates potentially useful

instructions. The second option, on the other hand, retains the dependent instructions, but it

91
requires additional space in RB entries since the operand values need to stored for the depen-

dent instructions as well (so that value comparison can be performed if the dependent instruc-
tions become independent). Nevertheless, both update operations require that the RB be
searched for the entries whose src-index field matches the RB index of the source instruction
being evicted. These matching entries are either invalidated or converted into independent

entries.

4.3.5 Summary of schemes

The four reuse schemes, which we presented in the preceding sections, mainly differed in
the way the reuse tests were performed and the RB was kept consistent. Several mechanisms
for implementing these two operations were presented. In this section, we summarize these

mechanisms for each reuse scheme.

In Table4.1, we show a check list of various mechanisms employed by each reuse
scheme. We presented four mechanisms for performing reuse test. In scheme S, value com-
parison between the current operand values and those stored in the RB was used to reuse
instruction. In scheme S, 4, value comparison was used for reusing independent instructions.
In scheme S,,, the valid bit check, which indicated validity of the operand values in the RB,
was used to reuse instructions. This check was also used by scheme S, but only for reusing
the independent instructions. The remaining two reuse test mechanisms were for reusing
dependent instructions. In scheme S, the dependent instructions were reused by comparing
the values in RB with those forwarded from the source instructions (Value forwarding). In

schemes S;,,4 and Sy, the dependent instructions were reuse by tracking and checking the

92

Schemes
M echanisms
Sh+d Sy+d
Value comparison O
Valid bit check O
Reuse
Test | Dependent Value forwarding
instruction
reuse Dependence check d O
Load
invalidation D .
Maintaining Non-load 0
consistency in RB invalidation
Dependent 0 0
instruction invalidation

Table4.1 Various mechanismsfor implementing different reuse schemes.

dependence between instructions (Dependence check). As illustrated earlier in Figure 4.3,

scheme S, cannot not reuse dependent instructions (hence we had no corresponding mecha-

nism for it).

Three types of invalidations were used for keeping the RB consistent. Load invalidation,

which marked the load instructionsin the RB as stale when their memory locations were over-

written, was used by all four reuse schemes. Non-load invalidation was used in schemes S,

and S;,,q to invalidate instructions (independent instructions in scheme S,,,4) When their oper-

ands were overwritten. Dependent instruction invalidation was used in schemes S, ,q and S 44

when instructions were evicted from the RB. Its purpose was to invalidate the instructions

immediately following the evicting instruction in the dependent chain, and thereby avoid hav-

ing dangling dependence pointersin the RB.

Later in this chapter (in Section 4.6), we discuss various issues with supporting invalida-

93
tionsin the RB and suggest some ways of dealing with these issues.

4.4 Microarchitecture with a Reuse Buffer

Figure 4.6 shows how an RB could be integrated with a generic microarchitectural pipe-
line. Figure 4.6 (@) shows the position of RB-specific operations — RB access, Reuse test, RB
insert, and RB invalidations — in our simulated pipeline; and Figure 4.6 (b) shows the RB’s
position in the microarchitecture datapath. We next describe the working of the microarchitec-
ture with the RB and then discuss the different issues involved in integrating the RB in a pipe-

line.

The Instruction Fetch Unit fetches and places the instructions in the Instruction Queue.
Instruction decode and register renaming is done in the Decode and Rename Unit. In the Reg-
ister Read stage, the operand values for the instruction are read either from the register file or
from the Reorder Buffer (ROB) [42]. The RB access can be pipelined and can begin at the
same time as the instruction fetch. At the Register Read stage the reuse test is performed on
the entries read from the RB to seeif their results are reusable. If areusable result isfound, the
instruction does not need to be operated upon any further; it bypasses the Issue Window (IW),
and proceeds directly to the ROB, whereit is queued for retirement. Loads bypassthe IW only
if both micro-operations, address cal culation and the actual memory operation, are reused. For
some of the reuse schemes — e.g., scheme S, — the reuse test may require more than one
cycle to complete, as depicted by the extra Reuse test stage in Figure 4.6 (a). Multiple cycle
reuse takes place as follows. The instruction is placed in the IW, while its reuse test is taking

place. If the instruction is still not executed when the reuse test completes, the result obtained

94

I nvalid-
RB access Tere R -ations
Test @ Test in RB
Feich Decode & | Register \(arlaplewajtln_g'Ume lssue Execute | Commit
Rename | Read mthglswerrgdow
Entry Results
_reserved stored in
in RB fOI‘ re&rved
future (a) mtry
insert
Reuse |4
Buffer
| — | FU
B) -
Inst. Decode /, Reorder Buffer
Fetch |—»| Inst. Queue & —» FU
Unit Rename
| ssue Window o
(o]
€)] Arch. °
Register File —p Data | |
cache

(b)

in the pipeline of RB-specific operations. (b) Generic

Figure 4.6 (a) Position
microarchitecture with an RB. The additional data-path due to RB is shown in bold lines. The
contral lines (e.g., for access, invalidation etc.) are not shown.

95
from the RB is used and the instruction is not issued for execution. If, however, the instruction

completes execution before its reuse test completes, then the reused result isignored.

In both single- or multiple-cycle reuse, if areusable result is not found in the RB, an entry
isreserved in the RB where the result of the instruction will be placed after it is executed, set-
ting it up for future reuse (in schemes S, and Sy, the RST has to be updated accordingly).
Oncein the IW, instructions proceed as they would in any generic superscalar processor. After
an instruction has executed, its results are stored in the reserved RB entry. In scheme S, the
operand values are also stored in the entry at this time. When an instruction commits, depend-
ing on the reuse scheme, it invalidates appropriate results (or make other forms of state
updates) in the RB.

Since one of the purposes of IR is to recover useful work from sguashes (as discussed in
Chapter 1), we alow speculative instructions to get inserted in the RB. However, we must take
steps to ensure that the RB contents remain consistent and that no incorrect value is reused.
What steps needs to be taken depends on the reuse test (and hence the reuse scheme)
employed for performing reuse. For schemes S, and S, 4, hothing special needs to be done —
the value-comparison based reuse test ensures that correct results are reused. For schemes S,
and S;,;4, however, the reuse test itself is not enough to sift out incorrect results — additional
constraints needs to be enforced. We describe these constraints (and why are they needed)
later, in Section 4.5.2. Schemes S,,,4 and S, use the structure RST, which like the rename
table keeps track of the instructionsin the RB which are the latest producers of registers. Since
this table controls the reusability of instructions, it needs to be repaired accordingly after
every misprediction. We do so by taking a checkpoint of the RST at every point where a spec-

ulative decision is made and restoring the RST appropriately on misprediction.

9
The RB contents also need to be maintained consistently in presence of context-switches

and multiprocessor environment. Both these issues can be handled fairly easily. The issue of
context switches can be handled in the same way as it is handled for virtual caches. The RB
can either be invalidated on context switches or its entries can be augmented with process
identifiers so that only entries from the current process can be reused. In multiprocessor envi-
ronment, the loads in the RB of one processor will need to be kept coherent with the storesin
other processors. This situation can be handled in the same way as is done for the L 1-cache.
The RB can maintain inclusion with the L2-cache, so that it is shielded from the external
events. When a line in the L2-cache is replaced or invalidated (due to external events), the

loads in the RB from that line can be invalidated.

Though we assumed that RB access takes a single cycle in our previous discussions, there
isno need for this timing constraint since accesses may be pipelined. For example, the access
can begin in the fetch stage of the pipeline after the PC of the instruction is available (since
only the PC isrequired for indexing the RB, RB access can begin as early asthe fetch stage, as
illustrated in Figure 4.6 (a)). Other operations, such as invalidations, evicting entries to make
way for new instructions etc., can be pipelined as well. For example, when the RB gets full,
entries can be freed for future inserts. This will ensure that the free RB entries are always
available, eliminating the search for avictim entry from the critical path. We will discuss more

about RB invalidations in Section 4.6.

97
4.5 Reuse Schemes. Optimizations, Constraints
and Variations

In the descriptions of the reuse schemes earlier in the chapter we focussed mainly on the basic
operations necessary to understand the concept of reuse. In this section, we go alevel deeper.
We talk about some optimizations we can make to improve reuse rate; we discuss various con-
straints that need to be imposed upon the RB insertion and reuse policy to ensure that incor-
rect values are not reused; and we present other ways of performing certain operationsin reuse
scheme (like indexing the RB) and discuss their trade-offs. We begin by describing some opti-

mizations we can make to the reuse schemes.

4.5.1 Optimizations

Preventing unnecessary invalidations. Reuse schemes use invalidations to mark instructions
in the RB as stale whose invalidity (due to changes in the processor state) will not be other-
wise detected by the reuse schemes. All schemes invalidate load instructions in the RB when
stores write to matching memory addresses. Schemes S, and S;,,4 use invalidations to ascer-
tain the reusability of the non-load instructions as well: these schemes invalidate instructions
(independent instructionsin case of scheme S;,;4) when their operand registers are overwritten
during the course of execution. Many times these invalidations are unnecessary as the new
value being written is the same as the old value; hence the instruction results in the RB would
still be valid. We can prevent these unnecessary invalidations by comparing the new and the
old values before invalidation and by only invalidating an instruction when the two values are

different. Thus, in the case of load instructions in the RB, before invalidating a particular load

98
we compare the store value with the load value, and if they are the same then the load is not

invalidated. In schemes S, and S,,,, to prevent the invalidations of the non-load instructions
we compare the old and the new operand values, alowing invalidation when the values are

different.

Implementing this optimization for the non-load instructions (and for the address calcula-
tion part of the load instructions) in schemes S, and S,,;4 may require changesin the RB entry.
This is because we do not store the operand values in the RB entry by default in these two
schemes. To prevent invalidations, we may need to store them (so that the earlier values can be
compared with the new operand values before invalidations), which will increase the size of
the RB entries. However, an alternative solution is possible. Instead of storing the operand val-
uesin RB entries and comparing the newly created values of registers with their values stored
in the RB, we can compare new values of registers with their old values in the register file. If
the two values are the same, the invalidation signal is not sent to the RB at all (thereby, pre-
venting the invalidation of the RB entries). Otherwise, invalidations are performed as usual.
This approach avoids increasing the size of RB entries; however, it may require extra portsin

the register file for reading the old val ues.

In the case of loads, however, performing this one-point check may not be feasible since
reading the memory locations before writing them may not be possible. To implement invali-
dation-prevention, the store values will need to be compared with the load results stored in the
RB. However, since the load values are stored in the RB anyway, doing so may not increase

the RB entry size.

Resurrecting invalid instructions: Once the logic network for performing the RB invalida-

99
tionsisin place, we can use it to perform the opposite task as well — i.e., resurrection or re-

validation of the previously invalidated instructions in the RB. For example, while a store is
invalidating loads in the RB, if it finds aload (with a matching address) that is invalid but has
the same result as the store value then that load can be made valid again (i.e., its memvalid can
be set to true again). In schemes S;, and S, the invalid non-load instructions in the RB can
be resurrected in asimilar manner.

However, unlike in the case of the previous optimization, for resurrection, we will need to
also store the operand register values in the RB for schemes S, and S;,;.4 (which otherwise are
not required to be stored). Hence, for non-load instructions, the size of the RB entry will
increase for implementing this optimization.

We use both of the above optimizations in the schemes that we evaluate later in the chap-
ter. We also show how important these optimizations are by comparing the results with and

without these optimizations.

45.2 Constraints

Insertion constraintsin scheme S,: We mentioned earlier that we may want to insert specu-
lative instructions in the RB so that we can recover useful work from control squashes. When
allowing speculative instructions to enter in the RB, the insertion policy can no longer remain
naive (i.e., insert every instruction): certain conditions need to be checked to ensure that the
instruction to be inserted will not lead to an incorrect reuse in the future.

How can speculative instructions cause wrong reuse? They can do so if the pipeline
sguash that takes place after they are inserted in the RB makes their results in the RB illegal

and the reuse scheme employed has no mechanism for detecting this problem. We illustrate

100
this with an example. Consider a piece of code shown in Figure 4.7. The code depicts a case

where there are two statements defining the value of rl (11 and 13) and which of these two
reach the use of rl at 14 is decided by a branch at 12: if the branch is taken then the definition
reaching 14is11 (rl <- 0); otherwiseitis13 (rl <- 1). First let us consider a scenario of wrong
reuse with scheme S,. Suppose 11 is executed and committed. The branch at 12 isinitially pre-
dicted “not-taken”, and instructions 13 and 14 are executed and inserted in the RB. Now, the
branch is found to have been mispredicted, instructions are squashed, and the “taken” path is
fetched. On the restart, instruction 14 is encountered on the “taken” path. The version of this
instruction that was executed on the wrong path is still present in the RB in avalid state (since
no intervening instruction overwrote the value of r1), and hence, it will get reused when the
new instance of 14 is encountered. Thiswill be an incorrect reuse because the version of 14 in
the RB executed with a value of 1 for rl, while the current value of rl is 0. So, what went
wrong? The problem was that we inserted an “incorrect” execution of 14 (an execution that
would have never occurred in a legal execution of the program) and had no way of detecting
this problem before reusing the instruction. What we need to do is to insert only those specu-
lative instructions in the RB whose results either remain valid even after they are squashed, or,

if not then their results inserted in the RB should be made unreusable. To ensure this, we place

11 ri1 <1
|2: branch 14
13: rl1—0

14: 2 -rl+4

Figure4.7 A code sequencetoillustratethe possibility of incorrect
reuse when speculativeinstructionsareinserted in the RB.

101
the following condition on the insertion of an instruction when using scheme S;;: a speculative

instruction isinserted in the RB only if its source instruction is non-speculative. With this con-
dition in place, the scenario of wrong reuse described above will not occur since the specula
tive execution of 14 will not get inserted in the RB because its source instruction (13) is also

speculative.

Insertion constraint for scheme S;,,4: Now, let us consider the same scenario for scheme
Sh+g- Inthis case when instructions 13 and 14 are inserted in the RB, there will be alink point-
ing from 14 to 13. Because of this link, the speculatively executed 14 will not get reused (and
correctly so) when 14 is encountered on the correct path since the producer of r1 will bel1 and
not I3 (hence the dependency check will fail). However, the same problem that occurred in
scheme S,, will ariseif 14 wereto be inserted as an independent instruction (for example, if for
some reason 13 is not inserted in the RB). Thus, the condition for insertion of instructionsin
the RB for scheme S, .4 is insert a speculative instruction in the RB only if either its source
instruction is non-speculative (just like for S,)) or if al its source instructions are present in the

RB (and hence thisinstruction will get inserted in the RB as a dependent instruction).

Notice that no special conditions need to be enforced in the cases of schemes S, and S,

as the reuse test based on value comparison unambiguously detects whether aresult isvalid.

Reuse constraints. Certain constraints need to be obeyed when performing instruction reuse
in a pipelined processor. If the reuse status of a particular instruction cannot be definitely
determined because of unresolved instructions ahead in the pipeline, then that instruction can-
not be reused. For example, in al four schemes, load values are not reused if there is a store

with unknown address or matching address ahead in the pipeline (only load addresses are

102
reused in these cases). In schemes S, and S,4, an instruction (an independent instruction in

the case of S,,.¢) isnot reused if its current operand values are not available for comparison —
i.e., if the latest producer of its operand registers has not executed yet. Since schemes S;, and
Sh+q do not use value comparison, they need to be more restrictive. If the source instruction of
an instruction operand (an independent instruction operand in the case of scheme S,,q) IS
present ahead in the pipeline (whether executed or not), the schemes S;, and S, 4 need conser-
vatively assume that this source instruction will change the operand value, and hence, they
don’'t reuse the instruction.

Having discussed the various constraints necessary to ensure correctness, we move on to
the second topic of this section: we discuss the various options available for performing the

different functions of the reuse mechanism.

45.3 Variations

Inserting instructionsin the RB: Instructions can be inserted in the RB at different stages of
the pipeline. In Section 4.4, we described one strategy for inserting instructions in the RB:
allocate RB entries when instructions are decoded and popul ate these entries with values after
the instructions have executed. Here we provide the rationale for adopting this policy and dis-
cuss other ways (and their trade-offs) for inserting instructions in the RB.

Another place in the pipeline where instructions can be inserted in the RB is the commit
stage. This simplifies the maintenance of the RB state: nothing special needs to be done to
ensure the correctness of the information in the RB or in the RST since wrong path instruc-
tions do not get inserted in the RB. However, inserting instructions here has a negative point

too: since the speculative instructions do not get inserted in the RB, we may not be able to

103
recover useful work from squashes (unless the squashed instructions were already present in

the RB from their earlier execution).

Another option is to insert the instructions into the RB at the execute stage. Although this
scheme allows reusing squashed instructions, it works only for schemes S, and S;,. In schemes
Sh+q @nd S.g, the dependence-links needs to be created between instructions that get inserted
in the RB, and this requires that the insertion policy see the correct ordering between these
instructions. This ordering information is not available at the execute stage of an out-of-order

jprocessor.

Thisleads usto theinsert policy that we have already described in Section 4.4. We reserve
the entries in the RB for the instructions at the decode stage, creating links between these
entries based on the dependence relations that are visible at this stage. The index of these
entries are then passed along with the instructions down the pipeline. After execution, the
results of the instructions are written into their reserved RB entries using these indices.
Although thiswill allow reusing squashed instructions, it makes the reuse scheme more com-
plex: now the RST needs to be fixed after branch misprediction. This can be done by main-
taining checkpoints of the RST at each branch (just like would be done for arename table) and
reverting the RST state to the checkpoint at the mis-predicted branch. Thus this solution

requires extra hardware state for RST checkpointing.

Indexing RB: Earlier we presented one way of indexing into the RB, the way we employ in
this thesis, by using the PC. There are other ways of accessing data in the RB; we describe
some of them here. One approach is to use the operand values to form an index into the RB.

The advantage of this approach isthat it will map instances of an instruction that execute with

104
different values to different RB locations, and thereby reduce collisions between such

instances. This will allow capturing more reuse from instructions that execute with many dif-
ferent values. But the problem with this approach is that it serializes the indexing process for
dependent chains of instructions: two instructions, if one is dependent on the other, cannot
access the RB simultaneously since the result of the source instruction will be needed to form
the index of the dependent instruction. This will prevent the reuse of the dependent chain of
instructions in the same cycle.

Another approach can be to use the instruction itself as an index into the RB. This
approach alleviates the problem inherent in the using operand values for indexing and allows
dependent instructions to access the RB simultaneously. It has another advantage: it allows
computation reuse — i.e., it allows results computed by one static instruction to get reused by
an instance of another static instruction, provided both static instructions have the same
instruction word (i.e., same opcode and same registers). The disadvantage of this approach is
that it requires the instruction word itself to index into the RB, and hence, unlike the PC based
approach it will not be able to overlap the RB access with the |-cache access.

Other information can be used along with the PC to reduce the collision between different
instances of the static instruction. One such piece of information is the branch history register.
The branch history is indicative of the path that program took to arrive at the current point. If
an instruction executes with operand values different from the ones with which it executed
earlier, then it is possible that sometimes this may be due to a different path followed by the
program. Hence, using the branch history information in conjunction with the PC may allow
us to map different instances of a static instruction to different sets in the RB, and hence,

reduce the conflicts among them. In this thesis, however, we use just the PC for indexing in

105
the RB and leave the evaluation of the above variations to future work.

RB organization: Until now we have only considered monolithic RBs. Other ways of orga-
nizing the RB are possible. We note that the address and the memvalid fields in an RB entry
(along with the associative search for invalidations) are required only to maintain the integrity
of the load values. The RB can be split into two buffers: one for storing load values, called the
load RB, and the other for storing everything else (including entries for load addresses), called
the main RB. Figure 4.8 shows aload entry for unified and partitioned RB. This RB organiza-
tion has two advantages: first, the address and memvalid fields need not be maintained for
entries storing non-load instructions, reducing the overall storage required for the reuse
scheme; second, the main RB need not have the load invalidation logic as this logic would
only be present in the load RB, which probably would be much smaller than the main RB.
(The main RB will still have the invalidation logic for non-load instructions in scheme S, and
Sh+d-)

One disadvantage of thisorganization isthat it may make the reuse process more complex.
For example, now a pointer will need to be kept for loads from their load RB entry to their
main RB entry (as shown in Figure 4.8) to ensure correct load value reuse; this pointer will

also need to be checked for validity during the reuse test.

In this thesis, however, we assume a unified RB, and leave the task of evaluating different

RB organizations for future work.

4.6 Invalidationsin RB: Issues and Alternatives

To maintain the RB consistent with the rest of the processor state, we employ three differ-

106
ent types of invalidations (shown in Table 4.1). Since these invalidations require CAM [49]

accesses into the RB, supporting them may make the RB design complex. In this section, we
present various issues in supporting invalidations in the RB and discuss some ways of address-

ing these issues.

Some of the issues are as follows. The CAM accesses are likely to be slow for large RBs
since they require full access paths through the RBs. The latency of these accesses, and hence
that of invalidations, may limit the size of an RB. CAM ports may be expensive to implement,
making the support for multiple of them in an RB difficult. This may be an issue for scheme
S, and S;,;q which may require to perform several invalidations per cycle. Finally, significant
power may be expended if invalidations are frequent, since invalidation operations drive inval-

idation lines that may carry large capacitive loads.

We discuss some of the ways in which the above issues may be addressed. The latency of
the CAM logic can be reduced by partitioning the RB. Each partition will have fever RB

entries, making it feasible to provide fast invalidation paths. In most practical implementa

operl | oper2
value value

mem

Load entry in Unified RB tag address result | \aiid

\ |
Load entries operl | oper2 ptr to mem
in Partitioned RB 9 | vaue | value | ress e ”Fl""'B” address| result | 5iq
Main RB entry Load RB entry

Figure4.8 Load entriesfor scheme Sv in unified and partitioned RB.

107
tions, the RB would be partitioned anyway for other reasons (e.g., for reducing the decoder

latency); the CAM logic can benefit from this partitioning. Other ways of RB partitioning are
also possible; for example, we have already discussed one type RB partitioning for reducing
the cost and latency of load invalidationsin Section 4.5.3 (under RB organizations).

Although partitioning the RB may alleviate the invalidation latency, it may not solve other
issues due to CAM logic — namely difficulties in providing multiple ports and power con-
sumption. These issues may be especially problematic for the invalidations that occur fre-
guently, such as non-load and the dependent instruction invalidations (load invalidations are
caused only by stores and hence are relatively infrequent). One way to solve these issuesisto
use invalidations as a fall-back mechanism, instead of as a primary mechanism, for maintain-
ing RB consistency. As afall-back mechanism, it will be invoked infrequently, only when the
aternative (and possibly less expensive) primary mechanism is unable to maintain consis-
tency in the RB. Hence, the invalidation paths may not have to be as aggressively optimized,
higher invalidation latencies may be tolerated, and fewer CAM ports in the RB may be suffi-
cient. In the next two sections, we describe how we can reduce the frequency of non-load and

dependent instruction invalidations.

4.6.1 Non-load invalidations

These invalidations are performed in schemes S;, and S;,,.4 for preventing the reuse of stale

instruction instances. Their frequency can be reduced in several ways.

Exploiting existing reuse constraints: As mentioned in section Section 4.5.2 (under Reuse
constraints), schemes S, and S;,,4 do not reuse instructions (independent instructions in case

of S,+g) If their source instructions (i.e., instructions writing their operand registers) are

108
present ahead in the pipeline. We can exploit this constraint to reduce the number of invalida-

tions. Since the purpose of invalidationsis to prevent the reuse of instructions whose operand
registers have changed, we will only need to invalidate instructions in the RB when thereis a
danger of such an incorrect reuse. With the reuse constraint mentioned above, this danger will
exist only when there is no source instruction for that register in the pipeline. Thus, we only
need to invalidate instructions in the RB that use, for example, register r if the instruction
being committed is the last source of that register in the pipeline. If there are other sources of
register r in the pipeline, they will prevent the reuse of instructions that use register r (unless
the instructions using r are linked to them through dependence pointers), thereby also prevent
any incorrect reuse. The information whether there are more sources of a particular register in

the pipeline can be obtained from the rename table.

Version number for registers. We can also reduce the number of invalidations by using ver-
sion numbers for registers, instead of invalidations, for detecting stale instruction instances in
the RB. A version number counter can be associated with every architectural register, which
can be incremented every time a new value is written into its corresponding register. The ver-
sion numbers for the operand registers can be stored in the operand field in the RB entry. The
reuse test can then be changed from checking the valid bit to matching the operand register
version numbers in the RB with the current ones. With this arrangement, the non-load invali-

dations will only be needed when version number counters overflow.

The above two mechanism may help reduce the number of invalidations significantly. This
decrease can help reduce the number of CAM ports required in the RB for non-load invalida-

tions and may also decrease the power consumption in the RB. However, if we reduce the

109
number of CAM ports in the RB, we may need a small buffer to save the extra invalidations

for times when there are more invalidations than the number of ports. The saved invalidations
can be performed at alater time when the CAM ports are available. This buffer will have to be
checked during the reuse test to see whether any outstanding invalidations exist for the oper-
ands of the instruction being tested for reuse (in which case, the instruction should not be
reused). Although these mechanism are likely to reduce the RB complexity, they have one dis-
advantage: they will reduce the frequency of invalid-instruction resurrection, one of the reuse

scheme optimizations discussed in Section 4.5.1.

4.6.2 Dependent instruction invalidations

These invalidations are performed in schemes S, 4 and .4 When instructions are evicted
from the RB. The purpose of these invalidationsisto clean up the dangling dependence point-
ers in the instructions immediately following the evicting instruction in the different depen-
dent chains (note that the whole chains are not traversed). The frequency of these invalidations
can aso be reduced by using version numbers, instead of invalidations, to detect dangling
dependence links. A version number counter can be maintained for each RB entry. This
counter can be incremented every time anew instruction instance isinserted in its correspond-
ing RB entry. When dependence links are made in the RB, the version number of the source
RB entry can also be stored in the dependent RB entry. The reuse test for dependent instruc-
tions can then be changed from just checking the RB indices for establishing dependence to
also checking the version numbers of the source instructions with the version numbers stored
in the dependent instructions. The dependent instructions are not reused if there is a version

number mismatch. With this mechanism in place, the dependence instruction invalidations

110
will only need to be performed when a version number counter overflows.

In this thesis, however, we maintain consistency in the RB using the three types of invali-
dations. Further investigation of the various alternative mechanisms presented in this section

are left as future work.

4.7 Experimental Evaluation

The description of our simulator along with the parameters for the base configuration were
presented in Chapter 2. We extended this base ssimulator to incorporate the RB and the four
instruction reuse schemes described earlier. The RB is integrated with the processor pipeline

as described in section 4.4.

In our ssimulations, the RB is capable of supporting 4 reads, 4 writes, and 4 independent
invalidations simultaneously. We assume that all RB accesses — read, write or invalidate —
complete in one cycle, and that all schemes can reuse instructionsin asingle cycle (i.e,, in the
Register Read stage). We also assume that schemes S, S;.4, and S, can reuse multiple
dependent results in a single cycle. (The impact of multiple-cycle reuse test is investigated
later, in Chapter 6.) The maximum length of a dependence chain reused in acycleis equal to
the read bandwidth of the RB, whichis 4 in the simulated configuration. In our reuse schemes
we employed the optimization of invalidation prevention and resurrection as described in
Section 4.5.1. These optimizations were used for loads in all schemes and for non-load
instructionsin schemes S;, and S,,4. In this chapter, we evaluate | R with one set of experimen-
tal parameters. The study of its sensitivity to some of these parameters (e.g., window size,

issue width, pipeline length, and reuse latency) is conducted later, in Chapter 6.

111
4.7.1 Experimentsand Results

In subsequent sections, we present the results of several experiments we conducted to
evaluate the concept of dynamic instruction reuse. We first show the percentage of total
dynamic instructions that are reused and present the impact of this reuse on the performance
of the baseline processor. We then present what types of instructions get reused and how much
contribution does each instruction type make to total reuse. Then, we categorize the total
instruction reuse into squash reuse and general reuse, and show the contribution of either cate-
gory to total speedup. We evaluate the importance of the various optimizations we described
in Section 4.5.1, and then present statistics on the lengths of instruction chains reused. Finaly,
we perform a brief evaluation of the impact of RB associativity on percentage instructions
reused and speedups (a more thorough evaluation of RB associativity is performed in
Chapter 5).

For most of our experiments we use fully-associative RBs of three different sizes: 256,
1024, and 4096 entries with LRU replacement policy. As mentioned earlier, we make no
attempt to be selective about what instructions get inserted into the RB; that will be the subject

of investigation in Chapter 5.

4.7.1.1 Instructions Reused

In this section we present the percentage of total dynamic instructions reused for the four
different schemes, with 3 different RB sizes for each scheme. Integer and graphics bench-
marks are presented in Figure 4.9, while FP benchmarks are found in Figure 4.10. We see that
al the analyzed benchmarks exhibit significant instruction reuse, especially for the larger

buffer sizes. For example, scheme S, with 4096 entries reuses 76% of dynamic instructions

112
for m88ksim and vortex, 67% for perl, 48% for gcc, 48% for viewperf, and 37% for povray.

Even for smal RB sizes, the percentage of instructions reused are significant for several

benchmarks (24% for li, 19% for gcc, 26% for mpeg, and 16% for go).

From the figure we can make several observations about how effective the reuse schemes
arein reusing instructions, what impact increasing the RB size has on the reuse rate for differ-
ent schemes, and how much reusability is exhibited by different benchmarks. We present sev-

era such observations below.

Comparing the four schemes with each other, we see that, in general, scheme S, reuses the
most number of instructions. This is because the reuse test in this scheme is based on direct
value-comparison, and hence is the most accurate of all the reuse tests. (In some cases, other

schemes work better; we describe the reasons when discussing those schemes bel ow)

Scheme S, reuses the least number of instructions (in general). This should be expected
since it is the ssimplest and, hence, the most conservative of all schemes. Invalidations occur
very frequently in this scheme (being done every time a register or memory location is writ-
ten). Also, it does not reuse instructions if the sources of their operand registers are present
ahead in the pipeline. Because of these restrictions the number of instructions that are avail-
able for this scheme to reuse are small, hence this scheme does not benefit from theincreasein
the RB size. However, frequent invalidations have one advantage: they help utilize small size
RBs (256 entries) better by only retaining more likely instructions in the RB. In fact, scheme
S, performs better than scheme S, for with a 256-entry RB for some benchmarks, like
m88ksim, perl, and viewperf. Since the number of invalidations in scheme S, are small,

instructions that are not likely to be reused remain in the RB; hence the RB is not utilized as

Percentage Instructions Reused: Integer and Graphics Benchmarks

90,

80 Scheme Sv
76 76

704

60

50

Percent Reuse

€) 30

10

go m88k ijpeg perl vort li gce

comp HMean

Scheme Sn

(b)

Percent Reuse

go m88k ijpeg perl vort li gcc comp HMean

Scheme Sn+d

4243
404

304 29

(©)

Percent Reuse

20

go m88k ijpeg perl vort li gce

80 Scheme Sv+d
70
60
50

(d)

40

Percent Reuse

304

204

104

0-
go m88k ijpeg perl vort li gce

comp HMean

comp HMean

vperf povray

vperf povray

vperf povray

vperf povray

256 RB entries
1024 RB entries
4096 RB entries

mpeg HMean

256 RB entries
1024 RB entries

4096 RB entries

mpeg HMean

256 RB entries
1024 RB entries
4096 RB entries

mpeg HMean

256 RB entries
1024 RB entries
4096 RB entries

mpeg HMean

113

Figure4.9 Percentage of instructionsreused for RB sizes: 256, 1024 and 4096 entries. The RB
in these experiments was fully associative. (a) Scheme S, (b) Scheme S, (c) Scheme S, .4

(d) Scheme S,,4. HMean stands for harmonic mean.

Percentage I nstructions Reused: Floating Point Benchmarks

804 256 RB entries
70 Scheme Sv 1024 RB entries
I 4096 RB entries
60
50 8 49 49
é 47
- 404
@ 5
o
& 30
24
204 17 18,19
ol (’_I—I s ’TI
0
tomcatv ~ swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5 Hmean
50-
Scheme Sn 256 RB entries
40 1024 RB entries
% 0 S W 4096 RB entries
®F »
§ 20 18 18
gf 15 15 15 16,16 16 14 14,18
12 12 12 12
104 ‘I‘Ig'gmsss 8 82
| I l_l_l 5 6 6 6
0 |—I_l 1
tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5 Hmean
60, 256 RB entries
50 Scheme Sn+d 1024 RB entries
46 46
I 4096 RB entries
g 40
'?é 30 &
(C) E) 02528 25,26
g 20
14 14 14 L
0
tomcatv swim su2cor hydroZd mgnd applu turb3d apsi fpppp wave5 Hmean
80
256 RB entries
70 Scheme Sv+d 1024 RB entries
60 [4096 RB entries
8 504 48
§ 47
@ § “f
F 30
204 . 20 18,19
14
104 ’, ’_I—I 11 11 11 ’£|£I I
0

tomcatv ~ swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5 Hmean

114

Figure 4.10 Percentage of instructions reused for RB sizes: 256, 1024 and 4096 entries. The
RB in these experiments was fully associative. (a) Scheme S, (b) Scheme S;, (c) Scheme S, 14
(d) Scheme S,,4. HMean stands for harmonic mean.

115
efficiently. On average scheme S, performs as good as scheme S, with 256-entry RBs.

Scheme S;,.4 has lower frequency of invalidations than scheme S, (since only independent
instructions are invalidated) and has the ability to reuse dependent chain of instructions. Con-
sequently, it is able to reuse more instructions than scheme S;,, and it benefits when the RB
size is increased to 1024 entries. However, invalidations and the fact that it does not reuse
independent instructions if sources of their operand registers are ahead in the pipeline (and
thereby does not start a chain) restrict the amount of instructions that can be reused; hence it
does not benefit as much from the 4096-entry large RBs for most benchmarks (except |i, pov-
ray, applu, and fpppp). (We study the sensitivity of thisrestriction of IR to changesin underly-
ing microarchitecture in Chapter 6).

The amount of reuse captured by scheme S,,4 is comparable to that captured by scheme
S,- This shows that restricting the value-comparison to independent instructions and using
dependence information for reusing the dependent instructions does not sacrifice the reuse
rate appreciably. Using the dependence information for reusing the dependent instructions,
facilitates collapsing chains of dependent instructionsin acycle.

In FP benchmarks, on average less amount of reuse is captured as compared to integer and
graphics benchmarks (24% in FP versus 48% in integer for the 4096-entry RB with scheme
S,). Also, we observe that for many FP benchmarks increasing the RB size does not improve
the reuse rate, indicating that the capacity misses in the RB are very high for these bench-
marks and that the increase in the RB size up to 4096 entries is unable to eliminate them.

Finally, it may seem counter-intuitive that even with resurrection, schemes S, and S;,,4 do
not perform as well as scheme S,. It would be expected that if scheme S, is able to reuse an

instruction then that instruction should get resurrected (and hence reused) in schemes S;, and

116
Sh+d- The reason for this apparent mismatch is that the resurrection takes place at the commit

stage and, hence, does not help if the instructions that would have reused the resurrected

entries have already gone past the reuse stage in the pipeline.

4.7.1.2 Speedups

Figures 4.11 and 4.12 show percentage speedups ((IPCithre~! PCuwithoutre)* 100/ PCith-

outrB) obtained with the different reuse schemes for varying the RB sizes. The speedups are
not as impressive as the percentage of instructions reused, however, they are still significant in
many cases, they range from 1% to 7% for a 256-entry RB, from 4% to 12% for a 1024-entry

RB, and from 11% to 19% for a 4096-entry RB.

Comparing the percent instruction reuse results in Figures 4.9 and 4.10 with the speedup
results, we see the speedup results in general follow the same trend as the reuse results. in
cases where more instructions are reused, more speedup is observed. Scheme S, and S 14
show the highest speedups, specialy for the large RBs, with S, averaging 13% for integer,
12% for graphics, and 10% for FP benchmarks with the 4096-entry RBs. Although S;, and
Sh+q don’'t show large speedups on average (with averages less than 6% and 10% respec-
tively), they still show significant speedups for some benchmarks, such as tomcatv (8% and

19%), mgrid (12% for both), applu (10% and 19%), and povray (6% and 7%).

4.7.1.3 Reuse Characteristics

To study the reuse characteristics of different instruction types, we divide the instructions
into the following broad categories: loads, address cal culations, control and integer. The cate-

gory address calculations consists of loads and stores for which only the address calculation

Speedups: Integer and Graphics Benchmarks

25-
256 RB entries
Scheme Sv 1024 RB entries
20- 19 I 4096 RB entries
15
g 13
o}
a
@ 7 g
5. 5
2
0-
go m ijpeg perl gcc comp HMean vperf povray mpeg HMean
15- .
256 RB entries
Scheme Sn 1024 RB entries
_ 104 B 4096 RB entries
b &
K 6
5.
04
go m88k ijpeg perl vort li gcc comp HMean vperf povray mpeg HMean
15- 256 RB entries
1024 RB entries
Scheme Sn+d
[4096 RB entries
10 o
I3
(C) o 7 7 7 7
b 6 6 6
5 5 5 5 5 5 5 5 5
0
go m88k ijpeg perl vort li gcc comp HMean vperf povray mpeg HMean
25- i
256 RB entries
Scheme Sv+d 1024 RB entries
204 I 4096 RB entries
17
154
(d) :
104
5
0

go ijpeg perl vort i gcc comp HMean

vperf povray mpeg HMean

117

Figure4.11 Speedupsobtained dueto instruction reuse. The numbersare presented for RB
entries 256, 1024 and 4096. (a) Scheme S, (b) Scheme S,, (c) Scheme S,,,4 (d) Scheme S ..

HM ean stands for har monic mean.

Speedups: Floating Point Benchmarks

25-
Scheme Sv 256 RB entries
21 1024 RB entries
20 20
19 I 4096 RB entries
17 17
154
§ 13 13
@ ¢ 2
ke 11
104
8
6
5 555
4 | I 4
’(2 2 2 2 ’—I
0 T T T T T T .
tomcatv ~ swim su2cor hydro2d mgrid applu turb3d s fpppp wave5 Hmean
154
Scheme Sn 256 RB entries
121242 1024 RB entries
. 10 52 B 4096 RB entries
® 5 | [T
7
o 6
a 6
5
54 4 4 4 4 4 4 4 4
3 3
... [l 0 Inl P i
111 1 1
0 T T T T T T ,_‘_l T 0 T T
tomcatv ~ swim su2cor hydro2d mgrid applu turbad apsi fpppp wave5 Hmean
20+
s SchemeSn+d 256 RB entries
1024 RB entries
154
I 4096 RB entries
13 13
. 12 12 12
z 1
(© o 10
o
5 555 5
4 4
| I | I d | | Ffl
O T T T T T
tomcatv ~ swim su2cor hydro2d mgrid applu turbad aps fpppp wave5 Hmean
25-
256 RB entries
Scheme Sv+d 1024 RB entries
20 20
204 19 [4096 RB entries
17 17
15
(d) E 13 13
12 12
g u
10
7
5] 5 555
4
3
1

tomcatv ~ swim su2cor hyd;ozd mg'rid apqu turbad si

fPPPP

wave5 Hmean

118

Figure 4.12 Speedupsobtained due to instruction reusefor floating-point benchmarks. The
numbers are presentedfor fully-associative RB with entries 256,1024and 4096.(a) SchemeS,

(b) Scheme § (c) Scheme ;4. HMean stands br harmonic mean.

119
part is reused. (As noted earlier, for stores we reuse only the address calculation and not the

actual memory operation). The integer instructions are further divided into three subcategories

based on the type of operands: two reg operands, one reg operands and immediate.

Reuse rates of different instruction categories: Table 4.2 shows the percentage of instruc-

tions reused from each category using a 4096 entry RB. The numbers are shown for integer,

Instruction Reused (%)
Sy Sh Sh+d Sv+d

Instruction Categories

Specint ‘95
Loads (value) 31.6 8.1 12.3 30.3
Address Calculations 41.0 164 21.5 40.2
Control 454 2.4 16.5 42.0

two reg operandy 43.8 15.2 24.8 41.2
Integer |oneregoperand| 54.2 20.1 345 52.2
immediate 91.2 98.7 98.7 91.0

Floating Point 8.2 0.0 5.3 6.9
SpecFP ‘95

Load (value) 275 18.8 25.2 28.2

Address Calculations 19.9 11.3 151 19.3

Control 44.2 1.2 22.3 41.8

two reg operandg 19.9 54 15.8 195

Integer |oneregoperand| 38.9 10.8 319 38.7
immediate 77.1 79.1 79.0 74.3

Floating Point 6.1 0.2 21 5.0
Graphics

Load (value) 36.9 18.7 23.0 35.3

Address Calculations 36.7 16.4 21.6 33.9

Control 39.2 31 151 35.9

two reg operandg 34.0 10.5 185 29.0
Integer |oneregoperand| 45.6 193 30.3 41.9
immediate 74.3 99.2 9.1 74.1
Floating Point 6.6 0.3 15 4.6

Table4.2 Percent reuse per instruction category for a 4096 entry RB

120
floating-point, and graphics benchmarks (averaged over the respective benchmark set). Thus

the numbers in the table should read as, for example, 43.8% of all integer instructions with
two register operands in integer benchmarks are reused with scheme Sv. As expected, most
computation involving immediate constants is reused. Likewise, reuse of address calculation
is also not very surprising. Somewhat surprising is that a large number of load instructions
could be reused (an average of 21.2% for scheme S,)). This reduces the demand for data cache

bandwidth, which can possibly be exploited by reducing the number of data cache ports.

Another observation we can make from the results presented in the table is that very few
floating point instructions are reused (e.g., even for FP benchmarks only 6% of the FP instruc-
tions were reused by the most aggressive reuse scheme). This should not come as a big sur-
prise. There are two reasons for low reusability of FP instructions. First, the FP instructions
often operate on large amounts of data: operating on big matrices, or arrays. To capture signif-
icant amount of floating point repetition, the RB may need to be able to buffer many instances
of the same instructions. For an RB of alimited size this may not be possible, hence the reuse
rate for the FP instructions are low. Second, as mentioned in Chapter 3, much of the repetition
in the programs is often due to instructions that perform overhead work — like accessing
complex data-structure elements, calculating memory addresses, function prologue and epi-
logue, etc. Floating point instructions are seldom used for performing these overhead work
and are mostly used to perform the “actual computation” on the data input to the program. As
shown in the last chapter, less repeatability falls on instruction slices originating from the pro-

gram input data, hence floating point instructions are a less repeatable category to begin with.

Contribution of different instruction categoriesto total reuse: Figure 4.13 shows the con-

100-,
90

704
60
50
40
304
204
104

Per cent

Integer

Break down of I nstruction Reuse per category

Floating
Point

Percent
2

256 1024 4096

scheme Sv

256 1024 4096

scheme Sn

256 1024 4096

scheme Sn+d

256 1024 4096

scheme Sv+d

Break down of Instruction Reuse per category

Percent
&

Graphics

256 1024 4096

scheme Sv

256 1024 4096

scheme Sn

256 1024 4096

scheme Sn+d

256 1024 4096

scheme Sv+d

Break down of Instruction Reuse per category

256 1024 4096

scheme Sv

256 1024 4096

scheme Sn

256 1024 4096

scheme Sn+d

256 1024 4096

scheme Sv+d

121

floating point
integer : immediate
integer : onereg
integer : two reg
control

addr calc

loads

floating point
integer : immediate
integer : onereg
integer : two reg
control

addr calc

loads

floating point
integer : immediate
integer : one reg
integer : two reg
control

addr calc

|oads

Figure 4.13 Contribution of each instruction category to total reuse. These numbers are
average over all benchmarks for a full associative RB. Note that in some bars above certain
FP in integer benchmarks and for scheme S, in other
benchmarks; control for scheme S, in FP-benchmarks.

sub-bars are indiscernible :

122
tribution of each instruction category to the total instruction reuse for 3 different RB sizes for

each reuse scheme. The figure shows three plots, one for each benchmark set, and each plot is
an average over all programsin that benchmark set. We observe that each instruction category
makes a measurable contribution to the total instruction reuse; reuse is not limited to some
particular instruction type. However, some categories make more contributions than the oth-
ers. For example, it is worth noting that almost 40-50% of the reuse comes from the load
instructions (about 15%) and address calculations (25-35%). Also, the FP instructions make a
very small contribution to the total reuse (most contribution being ~7% in the case of FP
benchmarks for scheme S, with a 4k-entry RB). This would be expected from our previous

observation that FP instructions are not as amenabl e to reuse as integer instructions.

4.7.1.4 Lengths of reused dependence chains

As mentioned several timesin thisthesis, IR can reuse chains of dependent instructionsin
a same cycle. In Table 4.3, we show the length distribution and the average lengths of such
reused chains. The distribution numbers, which are averages over all benchmarks programs,
show percentages of all chains of instructions that are 1-instruction long, 2-instruction long,
and so on. The maximum length in this distribution is 4 because we can reuse at the most 4
instructions per cycle, since our base machine is 4-way superscalar. From the table, we see
that overall most of the reused chains are 1-instruction long. However, significant amount of
2- and 3-instruction chains are aso reused. For example, in scheme S, for integer bench-
marks, on average, 17.7% of the dependent chains are 2 instruction long, 4.98% are 3 instruc-

tion long, and so on. We also see that the average lengths of the dependent chains of

123
instructions that get reused in a cycle to be typically between 1.30 and 1.45.

4.7.1.5 Sguash Reuse vs. General Reuse

As we have described in Chapter 1, instructions reuse can occur due to squash reuse or
general reuse (both illustrated in Figure 1.1 and Figure 1.2 of Chapter 1, respectively). In this
section we present the relative contribution of these two types of reuse to the total number of
instructions reused and the overall performance improvement. First, we describe how we sep-
arate out the contribution of the general and squash reuse. To do so, we simulate each bench-
mark twice. The first smulation is the usual simulation, like that done for other results in this
chapter; this gives us the overal reuse rates and speedups. In the second simulation, we do

everything exactly as in the first smulation except that we only reuse those instructions that

Dependent Chain Length Distribution (%)
Schemes Average Length
1 2 3 4
Specint ‘95
S, 70.83 19.96 572 3.49 1.43
Shtd 75.66 17.70 4.98 1.65 1.33
Si+d 70.10 21.86 5.29 2.74 141
SpecFP ‘95
S, 63.07 30.49 4.64 1.78 1.45
Sh+d 62.07 32.78 3.77 1.37 1.45
Si+d 64.38 30.03 4.00 1.59 1.43
Graphics
S, 67.40 25.49 4.83 1.27 1.42
Sh+d 69.62 26.00 3.30 1.07 1.36
Si+d 68.07 26.35 3.93 1.64 1.39

Table 4.3 Percentage of dependent chainsthat are of lengths 1, 2, 3, and 4. The number are
averages over programsin each benchmark suite. Average chain lengths are also shown. The
number s are not shown for scheme S, since it does not reuse dependent chain of instructions.
All numbersarefor afull-associative 4096-entry RB.

124
were entered in the RB speculatively and were later squashed. To recognize such instructions

in our ssimulator, at the time of sgquash recovery, for each executed instruction that we throw
away we set aflag in the RB entry of that instruction. Only those RB entries which have this
flag set are considered for reused. Thisflag is reset after first reuse. The reuse rates and speed-
ups obtained in this manner give us the contributions of the squash reuse to these two metrics.
The remaining portion in the overall reuse rates and overall performance is attributed to gen-
eral reuse.

In Figure 4.14(a), we present a break down of the number of instructions reused into
squash reuse and general reuse. In this figure we show the information for integer and graph-
ics benchmarks for all three RB sizes (256-, 1024-, and 4096-entry) with scheme S, (break-
downs for other schemes and for floating point benchmarks are shown in Appendix A). We
observe that the relative contribution of squash reuse to total reuse decreases as the RB size
increases. For a 256-entry RB, the amount of reuse due to squashes is, in general, within the
range of 10-30% (with some exceptions); for a 4096-entry RB this range is typicaly 5-10%.
The sguash reuse contributions are more for small RBs because, small RBs are |ess effective
in performing general reuse since for that instructions often need to be buffered for a long
period of time. Many squashed instructions, however, are re-encountered in a short while after
the sguash, and hence can be reused by a small RB. Asthe size of RB isincreased, it become
more effective in performing genera reuse, and given massive amounts of instruction repeat-
ability present in most programs, the contributions to total reuse of general reuse increases,
and accordingly the contribution of squash reuse decreases.

Figure 4.14 (b) separates the performance obtained by squash reuse from that obtained by

general reuse. As was the case in Figure 4.14 (a), we observe that the contribution of squash

125
reuse to overall performance decreases with the increase in the RB size. Barring afew excep-

tions (e.g., m88ksim and vortex) the typical contribution of squash reuse to total performance
improvement is between 5-25%. We also observe that for several benchmarks (e.g., m88ksim,
vortex, and gcc) the fraction of the speedup attributed to squash reuse is greater than the con-
tribution of squash reuse to the total number of instructions reused (compare with Figure 4.14

(). This suggests that squash reuse is more time critical than general reuse — the squash

general reuse
Per cent squash reuse squash reuse
1004 4 M e e e e e e S
804
= 604
:
o 40
204 | ||] I] Ll
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
go ijpeg vortex gce viewperf mpeg
m88ksim perl li compress povray
Benchmarks
(a
general reuse
Performance from squash reuse squash reuse
1005 +—— M e e e e e e ey —
80
~ 60
5
g -
Q. 40 B L]
2041 [[T [TH u il 1 H |
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
go ijpeg vortex gce viewper f mpeg
m88ksim perl li compress povray
Benchmarks

Figure 4.14 Breakdown of percentageinstruction reused(showvn in (a)) and performance
(shown in (b)) in terms of general and squash reuseusing schemeS,,,q4. Bar ‘A’ is for a 256-
entry RB, ‘B’ is for a 1k-entry RB, and ‘C’ is for a 4k-entry RB.

Load invalidations Non-load invalidations
Prevented Resurrected Prevented Resurrected
Schemes (%oftotd | (%oftota | (%oftota | (% of total
invalidation successful invalidation successful
attempts) invalidations) attempts) invalidations)
Specint ‘95

Scheme S, 41 29
Scheme S 41 30

Scheme S, 55 42 22 20
Scheme S;.q 44 20 35 44

SpecFP ‘95

Scheme S, 41 24
Scheme S, 36 20

Scheme S, 44 26 37 41
Scheme S;.q 38 23 56 34

Graphics

Scheme S, 36 28
Scheme S, 28 45

Scheme S, 36 47 47 37
Scheme S,4q 25 42 19 40

Table 44 Invalidation prevention and resurrection rates for different reuse schemes. The
numbers are averages over all benchmark programsfor 1024-entry RB.

penalty impacts the bottom line more than the latency of an instruction (or a set of instruc-

tions), especially in adynamically scheduled processor.

4.7.1.6 Impact of reuse scheme optimizations

Until now all experiments that we performed used the two reuse optimizations presented
in Section 4.5.1: the invalidation prevention and the invalid instruction resurrection. In this
section, we show the number of times these optimizations were applied in prior experiments

and the amount of impact they had on the percentage instructions reused and speedups gained.

To show how often these optimizations were applied, we present in Table 4.4 the percent-

127
age of invalidations that were prevented and the percentage of invalid instructions that were

resurrected for different reuse schemes. The numbers presented are the arithmetic averages
over the benchmark programs and are for a 1024-entry RB. We see that a significant percent-
age of invalidations, both load and non-load, were prevented and resurrected. For example, for
integer benchmarks, 44% of load invalidations were prevented and 20% of invalid loads were
resurrected on average when using scheme S;,;4. The corresponding numbers for non-load
invalidations were 35% and 44%, respectively. In general, the percentages of invalidation pre-

ventions and resurrections were between 20 to 40% (with some exceptions).

To show the impact of these optimizations on the reuse results, we present in Figures 4.15
and 4.16 the average percentage instructions reused and the average speedup gained with and
without these optimizations. From these figures, we see that schemes S, and S, are affected
more significantly by these optimizations than the other two schemes. For example, for
scheme S, 4 with a4096-entry RB, the average reuse decreases from 25% to 18% for integer
benchmarks and from 23% to 14% for graphics benchmarks when not using these optimiza-
tions (Figure 4.15); the corresponding decrease for scheme S, is from 48% to 46% and from
40% to 39%, respectively. Similar trends are also seen for the speedup results (Figure 4.16).
This difference in impact is expected, since schemes S, and S,,.4 are more dependent on inval -
idations than schemes S, and S.4. We aso note from the results that without the optimiza-
tions scheme S, 4 isless likely to benefit from increasing the RB size, since it becomes more

encumbered with invalidations.

4.7.1.7 Set Associative RB

Until now we have used fully associative RBs in our experiments. In this section, we

128

Percentage | nstructions Reused: with and without optimizations

100+ with opt
90+ Scheme Sv without opt
80
704
&
(a) E 60
b 50.
5 =
o
40 40, 39
g
304 28 27 27 27
24 24
204
10
04
256 1024 4096 256 1024 4096 256 1024 4096
Integer FP Graphics
50,
with opt
!} 404 Scheme Sn i
(b) 2 without opt
x 304
8 "
g s [0 o 2 10
256 1024 4096 256 1024 4096 256 1024 4096
Integer FP Graphics
60-,
with opt
50+ Scheme Sn+d P
8 without opt
() ,38: 404
C =
o
[s]
ol
o
256 1024 4096 256 1024 4096 256 1024 4096
Integer FP Graphics
100+,
with opt
90- Scheme Sv+d o
804 without opt
704
&
é 60
@ 5 o
w404 40 39
a
30+ 28 77 27 27
24 24
204
10
0
256 1024 4096 256 1024 4096 256 1024 4096
Integer FP Graphics

Figure 415 Mean percentage reuse rates with and without the various reuse optimizations
(discussed in Section 4.5.1) for different reuse schemesand RB sizes.

30
25
o 20
i
@ 7
:
o 104
5]
0.
154
() § o
&
:
H
154
% 10|
&
(© 3
5
30,
25
= 20
T
& 15
:
d &

Speedups:. with and without optimizations

Figure 4.16 Mean speedups with an without various reuse optimizations for different reuse

schemes and RB sizes.

Scheme Sv

256 1024 4096 256 1024 4096 256
Integer FP
Scheme Sn

256 1024 4096 256 1024 4096 256
Integer FP
Scheme Sn+d

256 1024 4096 256 1024 4096 256
Integer FP
Scheme Sv+d

256 1024 4096 256

1024 4096 256

Integer FP

with opt

without opt

1024 409
Graphics
with opt
without opt

1024 409
Graphics
with opt
without opt

1024 4096

Graphics

with opt
without opt

1024 4096

Graphics

130
briefly show how a set-associative RB compares with afully-associative RB. A more thorough

evaluation of RB associativity and RB size) is conducted in Chapter 5.
Apart from eliminating the conflict misses between different instructions, a fully-associa-
tive RB alows buffering several instances per instruction, and hence permits the reuse of

instructions that produce several different instances. A set-associative RB, on the other hand,

904 Reuse : Full vs. 4-way assoc : RB 4096 entries
Fully-assoc.

80 B 4-way set assoc.
76 76

67

(@

Per cent
a
o
1
3

404 39 39 39
33
37 36 36

go m88k ijpeg perl vort li gcc comp Hmean vperf povray mpeg Hmean

int graphics
30+

Speedups: Full vs. 4-way assoc : RB 4096 entries
Fully-assoc.

254
B 4-way set assoc.

20
19

17

(b)

Per cent

10

13

go

m88k

13

ijpeg

perl

vort

gce

comp Hmean

13

int

14

12

11 11 11

12

vperf povray mpeg Hmean

graphics

Figure 4.17 Comparison of 4-way set associative RB against fully-associative RB. (a)
Per centage instruction reused, (b) Speedups. The results are for RB with 4096 entries using
SchemesS,,.

131
can only buffer as many instances per instructions asits set size (assuming the only PC is used

for indexing the RB). Hence, a set-associative RB may be unable to capture the reuse of

instructions that produce alarge number of different instances.

Keeping this explanation in mind, we see the results in Figure 4.17. In this figure, we
present the (a) reuse rates and the (b) speedups for a 4-way set-associative and afully associa-
tive RB with 4096 entries. The results are shown for integer and graphics benchmarks and are
obtained using the scheme S,. We observe that for most benchmarks the reuse rates and the
resultant speedups for 4-way associative RBs are comparable to the fully-associative ones
(e.g., for go, viewperf, povray, compress). But for benchmarks, like perl, vortex, ijpeg and gcc,
fully associative RBs perform far better than 4-way associative RBs. The reason for this dif-
ferenceis, as explained above, dueto the ability of the fully-associative RB to retain many dif-
ferent instances per instruction. We will look at the size and associativity requirements more

thoroughly in Chapter 5.

4.8 Related Work and Discussion

Harbison in [23, 22] proposes a stack-oriented architecture, the Tree Machine, which uses
a hardware mechanism, the value cache, for eliminating common sub-expressions and loop
invariant expressions. He keeps the result of a computation (called a phrase) in the value
cache. A bit vector, called a dependency set, is associated with each result in the value cache
to indicate the variables used in computing the result; the bit positions are determined by the
address of the variables. When an address is overwritten, all the results in the value cache

which have the bit set for that address are invalidated. If a phrase is encountered again, recom-

132
putation is avoided by reading the result from the value cache. This approach is similar to our

second reuse scheme, scheme S,,. Both perform reuse based on the architectural names of the
operands (scheme S, uses the register specifier, while the value cache uses the memory
address). The differences are highlighted later in this section.

Richardson [36, 37] introduces the notion of redundant computation, which is computa-
tion that produces the same result repeatedly because it gets the same value for its operands. In
thiswork, the results of floating point operations are stored in a cache, called the result cache.
Theindex of the cache is obtained by hashing the operand values. The result cache is accessed
in parallel with executing an floating point operation. If the result is found in the result cache
then the operation is halted.

Oberman and Flynn [34], propose the use of division caches and reciprocal caches for
capturing the redundancy in the division and square root computation. The division caches are
similar to Richardson’s result cache, but for divisions only. The reciprocal caches hold the
reciprocals of the divisors. They help convert the high latency division operation to arelatively
low latency multiply operation. These caches are accessed using the bits from the mantissa of
the operands.

There are several differences between our work and the work mentioned above. First, the
above techniques are more specia purpose. The value cache [22, 23] approach is tailored for
an architecture which expresses computation in the form of parse trees (Tree Machine). The
result caches[36], and the division and reciprocal caches|[34] target only floating point opera-
tions. Our approach is general purpose in that it does not assume any special architecture, and
it captures reuse of any type of instruction (except stores). Second, the techniques referred to

above access their respective result buffers (value cache in [23], result cache in [36] and divi-

133
sion and reciprocal cachesin [34]) by using either the operand address [23] or operand values

[36, 34], which are only available later in the pipeline. Thus, the result buffer accessis delayed
until the execute stage, which restricts the usefulness of these techniques only to instructions
which have multi-cycle latency ([36] usesit for floating point instruction, while[34] usesit for
floating point divides only). In contrast, the reuse schemes presented in this thesis access the
RB using the instruction address, and hence reuse occurs while the instruction is still in the
decode stage. This has two advantages: first, even single cycle instructions benefit from reuse;
second, the reused instruction need not flow down the pipeline, which frees machine resources
for other instructions to use. The third differenceis, since other technigques use operand values
for indexing in the result buffer, unlike our schemes, they cannot reuse multiple dependent
instructions simultaneously (the result of one instruction would be needed to form the index

for the dependent instruction)

One of the benefits of instruction reuse is that it collapses true dependencies. Other tech-
niques based on value prediction have been proposed to achieve the same effect [27, 26]. The
fundamental difference from our schemes is that these approaches are speculative. The
instructions still must execute to generate result for later verification. Our schemes are non-
speculative, and the reused result is guaranteed to be correct. For amore elaborate comparison

of the similarities and differences of these two techniques, the readers are referred to [45].

4.9 Summary and Conclusions

In this chapter, we introduced and studied the concept of dynamic instruction reuse. We

presented four schemes for exploiting the phenomenon. All four schemes buffer the outcome

134
of an instruction in areuse buffer from where future instructions can access it (if the operands

match). The schemes differ in the way that they track the reuse status of an instruction:
scheme S, uses operand values, scheme S, uses operand names, scheme S,,;4 uses operand
names as well as dependence information, and scheme S,,4 uses operand values and the
dependence information. By dynamically reusing instruction results, we are able to (i) cut
down on the resources required to execute the instructions, and (ii) cut down on the time that it
takes to know the outcomes of sequences of dependent instructions, i.e., reduce the length of

critical paths of computation.

We evaluated the effectiveness of the proposed schemes using 3 different buffer sizes: 256,
1024, and 4096 entries. Significant instruction reuse was found in many cases (e.g., 76% for
vortex and m88ksim, 48% for gcc, viewperf and tomcatv), with as many as 76% instructions
reused in two cases. Comparing the four schemes, we see that scheme S, being the most
aggressive scheme, reused the most instructions (average reuse over SPEC ‘95 integer, SPEC
‘95 floating point, and graphics benchmarks were 48%, 24%, and 40%, respectively, for the
4096-entry RB). Scheme S;,, being the most conservative scheme, reused the least number of
instructions (average reuse rates for integer, floating point and graphics benchmarks were
16%, 15%, and 12%, respectively, for 4096-entry RB). Scheme S;,,4 improved upon scheme
S, by alowing the reuse of the dependent instructions, and consequently performed better
than S;, (average reuse for the three benchmark sets were 25%, 19%, and 23%, respectively).
Finally, scheme S,,4 augmented scheme S, by reusing dependent instructions in the same
cycle only through the dependence information (and not through values). This scheme not
only facilitated the reuse of dependent instructions in a value-based scheme, but it aso

attained the reuse rates close to scheme S, (averages for the three benchmarks sets were 45%,

135
23%, and 36%, respectively).

We presented other reuse characteristics, such as, the reusability of different instruction
types and the contribution of each instruction type to total reuse. These results showed that
most of the instruction categories were amenable to reuse; a significant number of instructions
were reused from all the broad categories of instructions considered (e.g., 31% of loads were
reused, 44% of 2-register operand integer instructions were reused). We saw that although
most instruction categories are amenabl e to reuse, loads and address cal culation contribute the
most to the overall reuse (nearly 50% or more of total reuse came from these two categories).

We also measured the resulting speedup in the program execution time. We saw that
speedups follow the trend in the reuse rates, i.e., an increase in reuse rates amost always
engenders a corresponding increase in speedups over base case. However, in absolute terms
the speedups obtained were small in many cases, specially for scheme S, and S, (they are
less than 5% in many cases). However, for schemes S, and S, 4 we saw significant improve-

ment in performance with more than 10% speedups in many cases.

136

Chapter 5

Reuse Buffer

Characterization and M anagement

As may be obvious from the previous chapter, the Reuse Buffer (RB) is the hardware
structure central to the instruction reuse (IR) technique. It provides space for preserving the
state of instructions and, depending on the reuse scheme, has mechanisms for ensuring the

consistency of these instructions when the state of the machine changes.

The RB is a complex structure with its CAM (content addressable memory) [49] search
logic for selectively invalidating instructions and multiple ports. We would like to keep this
structure small so as to keep it implementable. Yet we would also want to achieve high reuse
rates. We can cater to both requirements by having a small RB and managing it efficiently —
i.e., by judiciously deciding which instructions get to reside in the RB so that the reuse rate is
maximized. In this chapter, we study the topic of RB management. We present four ways for
managing the RB efficiently to improve reuse rate. Three of these policies are enhancements
to existing policies (such as LRU) and the fourth is a novel management policy that attempts

to tackle the problem of buffer management at a more fundamental level.

Before exploring the management policies for the RB, we attempt to better understand the

137
behavior of the RB itself. For this purpose, we characterize the RB with respect to its three

main parameters — size, associativity, and current management policies — showing how the
reuse rates change when each of these parameters are varied. We aso present the limit reuse
rates for different RB sizes and associativities to ascertain the best reuse rate we can hope to
achieve for different RB configurations. Aside from characterizing the RB, this study — espe-
cially the comparison between the limit and the real reuse rates — exposes the inefficient use

of the RB, and hence sets the stage for the RB management studies which follow.

This chapter is laid out as follows. In the next section, we present the experimental setup
specific to this chapter. Thereafter, in Sections 5.2 and 5.3, we characterize, respectively, the
Size and associativity of an RB. In Section 5.4, we describe four new RB management poli-
cies, presenting the rationale behind using them and discussing their advantages and disadvan-
tages. In Section 5.5, we experimentally evaluate these policies. And, finally, we summarize

this chapter and provide conclusionsin Section 5.6.

5.1 Experimental Setup

The experiments in this chapter are performed using the timing ssimulator described in
Chapter 2. The processor model used is the same as the one described in Section 4.4, with one
exception: in these experiments, we insert instructions in the RB at the commit stage of the
pipeline. We do so to study the RB characteristics arising because of the actual program rather
than because of speculation. The instruction reuse is implemented using scheme S, the most

aggressive reuse scheme.

To obtain the maximum reuse rates achievable by different RB sizes, we use a RB man-

138
agement policy similar to the Belady’s optimal management policy [7]. In this policy, we use

the oracle information about when each instruction is going to be reused in the future to
decide which instructions to keep in the RB. However, thereis a dlight difference between our
and Belady’s algorithm: the original Belady’s algorithm only controlled the replacements
from a storage, whereas our algorithm controls both storage replacements and insertions.
More specifically, the Belady’s agorithm replaces those items from a storage which will be
needed farthest in the future, but it always inserts the incoming item in the storage, even if the
incoming item will be needed further away in the future than the item that it replaces. In our
algorithm, we not only evict those items from the storage which will be needed farthest in the
future (like Belady), but we also do not insert an incoming itemif it is going to be needed fur-
ther away in the future than the item that it will replace. Although, intuitively, it appears that
our algorithm should be optimal (and the experiments show that it performs better than the
original Belady’s algorithm), we do not yet have aformal proof for it’'s optimality. Hence, in
spite of our conjecture that this algorithm is optimal, we restrain ourselves from naming it as
such in this thesis; instead, we call it alimit policy. However, the reuse rates from this policy
are taken to be the upper bounds on the reuse rates achievable by different RB sizes.

To keep the ssimulation requirements manageable, we only use the SPEC’ 95 integer pro-

grams for the studies in this chapter.

1. Evenif these reuse rates were not true optimal, they will still be quite high, and since it isinconceivable that
these high reuse rates can be attained by any practical policy, they will still serve as a useful upper bound.

139

5.2 Characterizing RB: Size

In this section, we determine how the reuse rates — i.e., percentages of dynamic instructions
reused — vary with the RB size. The results of this characterization are presented in
Figure 5.1. The reuse rates are obtained for 4-way associative RBs ranging in size from 256-
to 64k-entries (sizes are shown in log, of number of RB entries). We show results for three
commonly used replacement policies— LRU, FIFO, and Random — and for the limit policy
(labelled as limit:4way). On this graph, we a so include the reuse rates for full-associative RB
managed using the limit policy (limit:full). This curve is meant to provide the absolute upper

bound on the reuse rate for every RB size.

Next, we present the different ways we can interpret the graphs in Figure 5.1 and aso

present several observation we can make fromit.

* First, for most benchmarks, we see that the reuse rate increases steadily with the size of
the RB. This result confirms what would be expected given that there is a significant

amount of repetition in programs.

* In Chapter 3, we had seen what fraction of a program gets repeated (Table 3.1). Anao-
gously, in Figure 5.1, we show what fraction of a program gets reused. This result is pro-
vided by the highest point on the limit:full curve, which shows the maximum number of
instructions that can be reused in programs. Comparing this result with the results in
Table 3.1, we see that most of the repetition present in programs can be reused; the non-
speculative (and, hence, conservative) nature of IR does not fundamentally limit the

amount of repetition it can capture.

» Further the limit:full curve also indicates the minimum number of RB entries required to

140

100 1 1 1 1 1 1 1 1 100 1 1 1 1 1 1 1 1 -
limit: assoc full ——— ga limit: assoc full —+— M88ksim
90 A limit: assoc 4 --—>-- 90 A limit: assoc 4 ---x---
LRU: assoc 4 ---%--- LRU: assoc 4 ---%--- L
FIFO: assoc 4 =t FIFO: assoc 4 £ PP e A
80 Random: assoc 4 ——m-—- 80 Random: assoc 4 ——B-—- 3
70 70
8 60 60
o 50 g 50
- / 8 40
o 40 8 =
> 2 -
30 g 30
20 20
7 7
10 : 10
= | .
0 +— : 0
100 0 1 2 3 45 6 7 8 910 1 12 13 14 15 16 17 18 19 20 100 0 11 21 31 41 51 q 71 81 9 10 11 12 13 14 15 16 17 18 19 20
limit: assoc full —+— 1Hpe limit: assoc full —+—)
90 4 limit: assoc 4 --->-- p =g 90 4 limit: assoc 4 ---x--- pG‘l’l
LRU: assoc 4 ------ LRU: assoc 4 ---%----
FIFO: assoc 4 -3 FIFO: assoc 4 -3
80 Random: assoc 4 --m-—- 80 Random: assoc 4 --®-—
70 70
8 60 Lo 60
3 =
50 50
© A
<)
R 40 40
30 e - 30
20 X 20 /
VN o o
L X,,,ﬁ»;iﬁ A
10 ‘o 10
/// S [&
0 0 +=—
1000}%34}§§z§01011121314151617181920100011%3141qq7181910111?1314151617181920
limit: assoc full —— ortex L limit: assoc full —+— i
90 limit: assoc 4 --- —t 90 4 limit: assoc 4 ----—-
LRU: assoc 4 ------ A LRU: assoc 4 ------
FIFO: assoc 4 -2 7 FIFO: assoc 4 -
80 - Random: assoc 4 ——-m-—- e o 80 Random: assoc 4 ——m-—-
70 ; 70
% 60 ; 60
x 50 50
o 4
o\ 20 4 - 0
30 30
20 . 2 / 7
10 - 10
/// //
0 0
01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 0 1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
100 1 1 1 1 1 1 1 1 100 1 1 1 1 1 1 1 1
limit: assoc full —+— CC limit: assoc full —+— mpr
90 limit: assoc 4 ---x--- 9 90 - limit: assoc 4 ---x--- compress
LRU: assoc 4 ---%--- LRU: assoc 4 ------
FIFO: assoc 4 & FIFO: assoc 4 -
80 A Random: assoc 4 - -~ 80 Random: assoc 4 - -B-—
1
70 / 70
8% 60 ks 60
a 50 50
m /A
S R g
R 40 40
30 30 £
/ B
20 20
10 10 -
/// 7//
0 4 0
01 2 3 45 6 7 8 9 1011 12 13 14 1516 17 18 19 20 01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Log_2(num of RB entries) Log_2(num of RB entries)

Figure5.1 Limit and actual (Lru, Fifo, and Random) reuseratesfor different RB sizes.

141
attain a certain level of the reuse rate. For example, to attain a reuse rate of 50% in vortex

we need an RB with at least 512 entries. We also note from the limit:full curve that asig-
nificant amount of reuse can be captured with small number of RB entries —e.g., more
than 50% of dynamic instructions can be reused for most benchmarks with less than 2K
RB entries.

For most benchmarks (except ijpeg and li), the limit:4way curve closely follows the
limit:full curve, suggesting that an associativity of 4 may be sufficient to attain the reuse
rates close to the absolute limit. However, for ijpeg and li, higher associativity may be
required. (Associativity is more thoroughly investigated in the next section.)

We see that there is a significant gap between the limit:4way and the LRU:4way curves.
For several benchmarks (e.g., perl, go, gcc), the limit policy achieves the same level of
reuse as the LRU with an RB nearly 8 times smaller. The RB size needed by the limit pol-
icy is at least 2 times smaller than the LRU for the same level of reuse in all cases. This
gap indicates that there is significant room for improving the reuse rate of an RB — or,
aternatively, reducing the size of an RB keeping the same reuse rate — by better manage-
ment of RB space.

Finaly, we note that the reuse rates obtained by LRU, FIFO, and Random replacement
policies are comparable, and that FIFO and Random policies are unable to bridge the gap
between the limit and LRU policies. The inability of these commonly used policies to
solve the problem (we discuss the reasons | ater in Section 5.4) provides further motivation

for investigating better RB management policies.

142

5.3 Characterizing RB: Associativity

Before we move on to the topic of RB management, we also characterize the RB with respect
to its associativity. In an RB, associativity helps in two ways: (i) by allowing multiple instruc-
tions to reside in the same set, hence reducing the conflict misses (as in caches), and (ii) by
permitting the storage of multiple instances of instructions in the RB, thus enabling the reuse
of instructions whose repetitions are interspersed with their other (non-matching) instances
(thisis unique to IR). In this section, we first determine how interspersed the reuse is in gen-
eral and thereby ascertain an upper bound on the amount of reuse that can be captured by an
RB of acertain degree of associativity. After that, we present the overall effect of RB associa-

tivity on the reuse rates.

5.3.1 Effect of storing multipleinstancesin RB on reuserates

As mentioned above, an instruction may get repeated after several other of its instances
have been encountered. If every dynamic instruction isinserted in the RB, the reuse of such an
instruction is possible only when the RB associativity is large enough to store the instruction
and all its intermediate instances. The amount of reuse, for example, that a 4-way associative
RB can capture is limited by the amount of reuse that exists at a distance of up to 4 instances
away. That is, areuse that occurs after 3 instances may be captured by a 4-way RB, while the
one that occurs after 7 instances will not be. In this section, we try to get afeel for the upper
bound on the amount of reuse for different RB associativity — or, alternatively, the least

degree of associativity needed to capture a certain amount of reuse.

In Table 5.1, we show what percent of total reuse is present at which reuse distance. The

143
total reuse is defined as the reuse that can be captured using an infinite size (very large) RB

(this total reuse is shown by the highest point on the limit:full curve in Figure 5.1). The reuse
distance is defined as the number of instances after which an instruction gets reused — for
example, if an instruction is reused after 7 of its other (non-matching) instances are encoun-
tered, then the reuse distance is considered to be 8. The greater the reuse distance, the more
instances need to be saved to capture the reuse, and, hence, the higher is the required associa-
tivity. In the table, we show the reuse distances from 1 to 4096 (at increments of a power of 2)

and the fraction of total reuse that exists within that distance. From the table we can make the

Reuse % of Total Reuse in Programs
Distances go m88k ijpeg per| vort li gcc comp

1 57 62 35 56 58 49 51 73
2 63 74 37 66 64 55 59 76
4 71 85 41 86 73 61 69 84
8 77 88 50 90 83 70 75 92
16 82 90 52 95 91 78 81 94
32 87 92 61 98 A 84 85 95
64 90 93 69 99 95 86 89 96
128 92 95 74 99 96 87 91 96
256 94 95 78 99 97 88 95 97
512 97 100 86 100 98 88 98 98
1024 98 100 95 100 98 93 99 99
2048 99 100 98 100 99 98 100 100
4096 99 100 99 100 99 99 100 100

Table 5.1 Percentage of total reuse in programs at different reuse distances (see text for
definition). The reuse distances are in terms of the number of instances of the same
instruction. Thus, 77% of reuse at the distance of 8in go meansthat 77% of total reuse present
in the program isencountered within 8 instances of the same instruction.

144

following observations:

For all benchmarks, except ijpeg and li, more than 50% of total reuse present in programs
exists at a distance of 1 — meaning, we can capture more than 50% of available reuse by
only buffering the last instance of instructions, i.e., 1-way associativity is sufficient. In
general, more than 70% of total reuse exists within the distance of 4, meaning we only
need to buffer the last four instances to capture this fraction of reuse. Thus, we note that
for most programs we don’t need to look beyond alarge number of instances for reuse; the
majority of reuse exists “near-by”. Thus, a high associativity may not be essential for cap-

turing high amounts of reuse.

For, ijpeg and li, the reuse distances are longer. For example, to capture 62% of total reuse
in ijpeg we need to be able capture reuse that occurs up to the distance of 32. Thus, to cap-
ture large amounts of reuse, many instances need to be saved for these benchmarks,
requiring a highly associative RB. In Section 5.2, we had stated for ijpeg and li, based on
the divergence between the limit:4way and limit:full curves, that these programs may

require a higher associativity; the results here corroborate this statement.

5.3.2 Overall effect of associativity on reuserates

In this section, we show how the reuse rates vary with associativity. In Figure 5.2, we

show the reuse rates for RBs with associativities 1, 2, 4, and 8, and sizes varying from 256- to

64k-entries. The numbers are presented for LRU and limit management policies. We can

make the following observations from this figure:

The associativity becomes important mainly for large buffers. For small buffers, the reuse

145

% Reuse

% Reuse

% Reuse

% Reuse

100 L L L 100
limit: assoc 8 —+— go
90 A limit: assoc 4 --->--- 90
limit: assoc 2 ---%---
limit: assoc 1 & -
80 + LRU: assoc 8 --m--- 80 -
LRU: assoc 4 ---©-- e S
70 4 LRU: assoc 2 ---@---
LRU: assoc 1 - 70 £ £ |
60 60
50 50
B - -A-- 7N
40 40
limit: assoc 8
30 30 limit: assoc 4 r
limit: assoc 2 ---
20 20 limit: assoc 1 b
LRU: assoc 8
LRU: assoc 4
1o 10 LRU: assoc 2 [
LRU: assoc 1 --
0 0 T T T
100 7 &} ? lp 11 12“ 13 14 15 16 17 100 7 8 9 10 11 12 13 14 15 16 17
limit: assoc 8 Nels limit: assoc 8 —+—
90 limit: assoc 4 1&g 90 4 limit: assoc 4 ---x--—- per l
limit: assoc 2 --- limit: assoc 2 ---%---
limit: assoc 1 limit: assoc 1 &
80 - LRU: assoc 8 80 ~ LRU: assoc 8 -—m--
LRU: assoc 4 LRU: assoc 4 --6 -
70 4 LRU: assoc 2 ----@--- 70 4 LRU: assoc 2 ----@ -
LRU: assoc 1 ---4--- LRU: assoc 1 ---&--
60 60
50 50
40 40
30 30
20 20
10 10
0 0
100 7 q % lp 11 12 13 14 15 16 17 100 7, 8 9 10 1 12 1 14 15 16 17
limit: assoc 8 —+— ||
90 4 limit: assoc 4 -—--x--—- 90
limit: assoc 2 ------
limit: assoc 1 & H
80 ~ LRU: assoc 8 ——@-— 80 LRU: assoc 8 ——@-—
LRU: assoc 4 ---6-- LRU: assoc 4 ---6--
70 4 LRU: assoc 2 ---@ - 70 4 LRU: assoc 2
LRU: assoc 1 -~ -4+ LRU: assoc 1 --
60 - 60
50 50
40 40 R
S
30 30 NS
20 20
10 10
0 0
7 8 9 10 11 12 13 14 15 16 17 7 8 9 0 11 12 13 14 15 16 17
100 L | | 100 p s
it imit: assoc 8 —+—
I!m!t. assoc8 —— g CC | Jimit: 85906 4 —->—— (,OmF ress
90 - limit: assoc 4 X 90 kg
limit: assoc 2 ---%--- :!m!}[. associ Ee
limit: 1o imit: assoc
80 — LIITRHLIJ: Z:igg 8 —m- 80 LRU: assoc 8 ——m-—-
LRU: assoc 4 ---& - LRU: assoc 4 ---6--
70 4 LRU: assoc 2 ---@ - 70 LRU: assoc 2 ---@ -
LRU: assoc 1 --- - LRU: assoc 1 --
60
50
40
30
20
10
0 0
7 8 9 10 11 12 13 14 15 16 17 7 8 9 10 11 12 13 14 15 16 17

Log_2(num of RB entries) Log_2(num of RB entries)
Figure5.2 Limit and LRU reuseratesfor RB assoc. 1, 2, 4, and 8 for different RB sizes.

146
rates are comparable for all four associativities. The advantages of increasing the associa-

tivity are small for small buffers because, generally, the accesses are uniformly distributed
over al entries. Thus, increasing the associativity does not reduce the contention. In fact, it
may sometimes increase contention — e.g., when a set merges with another set with a
high amount of contention after the associativity is increased — causing a degradation in

the reuse rate (e.g., in m88ksim, for a512-entry RB).

Comparing the limit and LRU curves, we notice that higher associativity reduces the gap
between the two management policies — e.g., the gap between 8-way limit and LRU
curvesis, in general, smaller than that between the 4-way curves. However, there is still a
significant gap between the two management policies, especially for small RB sizes (e.g.,
for m88ksim, perl, vortex, and go). Thus, increasing the associativity by itself does not
solve the problem of less than optimal buffer usage; we need to develop better manage-

ment policiesfor that purpose.

5.4 RB Management

Next, we discuss RB management, by which we mean deciding how the space in the RB is

used, i.e., which instructions get to reside in the RB. Until now, we have only used regular

replacement policies, such as LRU, FIFO, and Random, for managing the RB, without using

any special enhancements for improving the reuse rates. As we can see from Figure 5.1, these

regular policies perform far below the limit level, and that we need better ways of managing

the RB to utilize it more efficiently.

Intuitively, the reason for the sub-limit performance of the regular policies is that often

147
they evict reusable instructions, instead of unreusable instructions, from the RB. Thus, if we

are to develop a new management policy to improve RB utilization then this new policy
should prevent such non-optimal evictions from taking place. There are two broad
approaches: (i) by controlling insertion, i.e., by reducing the traffic into the RB (only inserting
instructions that are likely to be reused) and hence reducing the chances of (reusable) instruc-
tions in the RB getting evicted; and (ii) by controlling replacement, i.e., by not evicting
instructions that are likely to be reused. However, there can be many ways of implementing
these two approaches. In thisthesis, our purposeis not to perform an exhaustive study of vari-
ous buffer management strategies. Instead, we wish to focus on and understand the main
causes of poor buffer management; therefore, we develop and study a small group of policies
that attack what we believe are the main reasons for sub-limit RB usage. By learning about
why these policies work (or don’t work), we can gain insight into how to design more effec-
tive management policies for the RB.

We study four management policies. Two of these are insertion policies, i.e., they identify
instructions that are not likely to get reused and don’t insert them in RB. Thethird isareplace-
ment policy, which identifies instructions that are likely to get reused and does not evict them
from the RB. The fourth — unlike the other three, which are simple enhancements to the reg-
ular management policies — is a novel management policy. It performs both selective inser-
tion and selective replacement, and is designed along the lines of the limit policy. This policy
determines the expected distance to reuse for instructions and uses this distance to schedule
them in the RB, always giving priority to instructions whose reuse is nearer (like the limit pol-
icy).

Next, we describe these policies along with the rationale for using them.

148
5.4.1 Insertion Policy

5.4.1.1 Filter instructions that do not get reused (FnReused)

As mentioned above, the regular policies perform below limit level because they evict
reusable instruction from the RB when they should not have. We have seen that many times
these reusable instructions are evicted by instructions that themselves do not get reused. We
can prevent such evictions from taking place if we can filter out the unreusable instructions

from the insertion stream.

One way of detecting the unreusable instructions is to track their history: if they were not
reused in the past they are unlikely to get reused in the future. In the FnReused (Filter not

Reused) policy, we use such a method to detect unreusable instructions.

In this policy, we employ atable of counters indexed by the PC. Every time an instruction
is evicted from the RB without being reused, the counter for this instruction in this table is
incremented. If the counter reaches a pre-defined threshold value, then a bit is set in that table
entry indicating that the instruction is “unreusable”. If, however, the instruction gets reused
before the threshold value is reached then the counter is reset back to 0. Thistable is consulted
at the time instructions are inserted in the RB; if an instruction is found to be tagged “ unreus-
able” then it is not inserted in the RB. Note that the counter table is separate from the RB and
that its each entry is much smaller than an RB entry. Hence, it can potentially buffer state for a

much larger number of instructions than the RB.

Although we have described the policy using a separate table (and we also evaluate it this
way later), another place for storing the counters and the reusable/unreusable bits can be the |-

cache. The counters and the bits can be maintained per instruction (or per couple of instruc-

149
tions) in the I-cache. The advantage of this design is that we do not have to manage another

table structure; the counters and the bits are managed as part of 1-cache itself. The disadvan-

tage is that it make the I-cache design more complex.

The threshold value needs to be chosen so that it not only minimizes the number of times
potentially reusable instructions are tagged as “unreusable” (which may happen when the
threshold value is too small), but it also minimizes the number of times the actually unreus-
able instructions escape untagged (which may happen when the threshold value too high). The
threshold value may also be dictated by the hardware cost of implementing the counters since

the counter width is determined by it.

Finally, one issue with this policy is that it does not have a self-correction mechanism —
i.e., once it tags an instruction as unreusable, it cannot reset the tag if the instruction becomes
reusable (e.g., due to a different program phase). We will see the impact of this limitation in

the evaluation section.

5.4.1.2 Hter instructions that a& “Not-Ready” (FnReady)

One of the reasons why some instructions don’'t get reused is that their operands are not
available (i.e., ready)2 at the time they are cheded for reuse In this policy, called FnReady
(Filter not Ready) we filter out such instructions from the RB insertion stream (and, hence,
prevent the possible eviction of reusable instructions from the RB). In terms of coverage, this

policy is asubset of the FnReused policy sinceit only filters one “type” of unreusable instruc-

2. Though actual values are required for the reuse test only in the case of scheme S, (and, for independent
instruction in scheme S, ..¢4), the information whether instruction operands are ready or not is used for deter-
mining reuse by other reuse schemes as well; in schemes S;, and S;,,4 also, instructions do not get reused if
their operands are not ready. Thus using readiness of operand values for categorizing reusable and unreus-
able instructions is not something specific to scheme S, only.

150
tions. However, it may be significantly cheaper to implement since, as we describe next, it

does not need atable for storing its meta-state. Also, unlike the FnReused policy, this policy is
self-correcting, as we will explain later. In the ensuing discussion, we refer to an instruction
that does not have its operands ready at the time of reuse as a not-ready instruction, and the
one that has as aready instruction.

Conceivably, we can implement this policy aong the lines of the FnReused policy: that is,
track the history of instruction ready/not-ready information in atable; tag instructions that are
repeatedly not-ready; and prevent insertion of tagged instructionsin the RB. But, it is possible
to implement the FnReady policy in a simpler way, without requiring a separate table. The
operand ready/not-ready behavior is reasonably stable from one incarnation of an instruction
to the next; if an instruction is not-ready in its current incarnation, it will likely be not-ready in
the next one. So we do not need to accumulate counters to detect the not-ready instructions.
Based on whether an instruction is ready or not-ready in the current incarnation, we can insert
or not-insert the instruction in the RB.

This policy isimplemented as follows. With each instruction in the instruction window we
associate a “ready-at-reuse’ bit. We set this bit on two conditions: (i) if the instruction has its
operands ready at Register Read stage (the stage in which the reuse test is done), or (ii) if the
instruction’s source instructions, ahead in the pipeline have their “ready-at-reuse” bit set (the
reason for this condition is explained below). Only instructions with their “ready-at-reuse” bit
set areinserted in the RB. As mentioned above, apart from not requiring a separate table, this
policy has another advantage over FnReused: it has a natural self-correction mechanism. If a
not-ready instruction starts having its operands ready, it will automatically start getting

inserted in the RB. This advantage over FnReused arises because, unlike reused/not-reused

151
information, the generation of ready/not-ready information does not depend on whether or not

theinstruction isin the RB.

The second condition for setting the “ready-at-reuse” bit mentioned above, needs explan-
ing. This condition is used to avoid obstructing the reuse of a dependent sequence of instruc-
tions. For most dependent instructions, the operand values become ready because their source
instructions are reused (otherwise, the operand value may not be ready at the register-read
stage). Without the second condition, a dependent chain of instructions of length ‘n’” will have
to get encountered ‘n’ times to get fully inserted in the RB (since it will get inserted one
instruction per encounter). This might severely hamper the reuse of such chains. To avoid this,
we check in the first pass itself if the source instructions will get entered in the RB (because
their “ready-at-reuse” bits are set), and if so we enter the dependent instruction as well (set its

“ready-at-reuse’ hit).

5.4.2 Replacement Policy

5.4.2.1 Retain Reused Instructions (RR)

Until now we have used a standard LRU policy to do the replacement from the RB. This
policy does not consider whether the victim instruction is likely to be reused or not, and hence
it often ends up evicting a reusable instruction even when there are unreusable instructionsin
the RB. Reuse rate can be improved if such evictions can be prevented. In this RR (retain
reused) policy, we attempt to do this. We mark instructions in the RB as likely- reusable and
likely-unreusable. The instructions marked likely-reusable are then given a privileged statusin
the RB: they are selected for eviction only when there are no likely-unreusable instructions

available for replacement. Although several heuristics are possible for selecting likely-reus-

152
able instructions, we employ a simple one in this policy. We consider an instruction to be

likely-reusable if it has gotten reused in the past. Thisis based on our finding that instructions
that get reused often do so multiple times.3 We describe the implementation of this policy
next.

With each entry in the RB we attach a small counter. When an instruction is reused, the
counter in its entry is set to a pre-defined value, indicating that the instruction is likely-reus-
able. The replacement algorithm selects the likely-unreusable instructions (those with a zero
counter value) for eviction before the reusable instructions. The counter value of alikely-reus-
able instruction is decremented every time it is picked for replacement, but is not replaced.
When the counter value becomes zero, the instruction loses its privileged status and, thereaf-
ter, it is chosen for replacement as usua. If, however, the instruction is reused again, its
counter value is reset to the pre-defined value. The purpose of using the counter rather than a
static tag for marking the instructions as likely-reusable is that it limits the duration of the
privileged status and, hence, prevents a reusable instruction from residing in the RB forever
(even when it is no longer reusable).

When a likely-reusable instruction is evicted, we have two options: (i) either we can save
the information that it is likely-reusable in some another table and initialize the counter appro-
priately when the instruction is inserted in the RB the next time; or (ii) we do not save any
information on eviction, and on the next insert the instructions starts like an ordinary instruc-
tion (with counter value 0). While the first option may be more profitable (since it will be able
to retain more reusable instructions), the second will entail less hardware cost since it does not

require an extratable. In thisthesis, we evaluate the second option.

3. We have shown in Table 3.2 that unique repeatabl e instances get repeated many times on average.

153

5.4.3 FiF: Farthest in Future Replacement Policy
All policies presented so far are enhancements to existing management policies, such as
LRU. Also, they are somewhat ad-hoc in nature, attacking specific aspects of the buffer man-
agement problem rather than the whole problem in general. In this section, we look at a new
management policy that attempts to solve the RB management problem at a more fundamen-

tal level.

Before presenting the new policy, let us see what needs to be done to manage the RB effi-
ciently. The key liesin the criterion for selecting which instructions are inserted in the RB and
which are replaced from the RB. Intuitively, the criterion that will result in the best RB utiliza-
tion is the likelihood of reuse — i.e., how likely an instruction is to get reused. The reason
being, that’s the only piece of information that precisely quantifies the importance of keeping
an instruction in RB. Also, asymptotically — with 100% accurate likelihood information — a
policy based on likelihood of reuse will perform exactly like the limit policy. This assures us
that this line of approach is the right one, in the sense that, it (unlike other policies) has the
potential to lead us all the way to the best RB utilization. With this approach, we aso know
the knob that needs to be tuned for improving performance, namely the likelihood to reuse.
More accurate we can make the estimate of likelihood of reuse, the better will this policy be
able to utilize the RB. Under this criterion, the RB will be managed as follows: at the time of
replacement, an instruction that is least likely to get reused will be evicted; at the time of
insertion, an instruction will be inserted in the RB only if it is more likely to get reused than

the instruction it will replace.

But, how do we ascertain the likelihood of reuse for instructions? There may be several

154
ways. We describe one such way next, along with the rationale behind it. After that, we

describe the FiF (Farthestin Future) policy, where we show how this information can be used

to perform buffer management.

5.4.3.1 Obtaining “lilkelihood of euse” information

We know from the results of Chapter 3 that most instructions in programs get repeated
(more than 75% of dynamic instructions get repeated in many cases). One of the main reasons
why we cannot reuse al these instructions is because we are unable to retain them in the RB
until the time they are needed for reuse. Said another way, these instructions do not get reused
because they get evicted from the RB. Thus, we can calculate the likelihood of reuse in terms
of the likelihood of eviction — i.e., we can say that an instruction is more likely to get reused
if itislesslikely to get evicted from the RB, and vice versa. We describe how we cal culate the

likelihood of eviction next.

The likelihood that an instruction will get evicted before reuse depends on how many
other instructions map to the same RB set during the time the instruction isresident in the RB.
For example, suppose that an instruction getsinserted in the RB at time t1 and will get reused
at time t2. To get reused it needs to reside in RB until time t2. The likelihood that it will get
replaced before t2 depends on how many other instructions contend for space in the same RB
set between time t1 and t2. If the number of “collisions” — which we define as the number of
instructions mapping to the same RB set — during the time interval is small, then the likeli-
hood that the instruction will be evicted will be small. Conversely, if there are many collisions
in the time interval, then the likelihood of eviction will be large. In other words, an instruction

ismore likely to get evicted if it encounters more collisions from other instructions during the

155
time period it needsto bein the RB to get reused.

To summarize, we ascertain the likelihood of reuse for an instruction by estimating the
number of collisions it will see during the time period it needs to be present in the RB for get-
ting reused: the more the number of collisions, the more likely the instructions will get

evicted, and hence the less likely that they will get reused.

5.4.3.2 Description of the policy

The FiF policy uses the likelihood of reuse information, calculated in terms of the number
of collisions (as mentioned above), to perform buffer management. The number of collisions
an instruction is likely to experience before it gets reused can also be interpreted as its dis-
tance to reuse — the greater the number of collisions, the “further away” isthe reuse, and vice
versa. It is this interpretation that gives the FiF policy its name. Based on this interpretation,
we can describe the working of the FiF policy as follows. We try to keep the instructions
which have the shortest distances in the RB: choosing the instructions with the largest distance
to reuse for replacements, and inserting new instructions in the RB only if their distance to
reuse is smaller than those of the instructions they will replace (how distance is maintained in
RB is described shortly).

Next, we describe the various hardware structures needed to implement this policy. Then

we describe how we calculate the distances. Lastly, we describe the policy operation in detail.

Hardwar e structures: We need the following hardware structures for the FiF policy:
* A collision counter per RB set, which counts the number of collisions to the set.

* A PC-indexed Distance Table (DT), which is used for calculating and storing distances.

An entry in this table is shown below in Figure 5.3. It consists of three fields: last encoun-

156

confidence
counter

|ast encounter

count (LEC) distance (d)

Figure5.3 AnentryintheDistance Table (DT).

ter count (LEC), distance, and confidence counter. As we will describe later, we calculate
the distance between two instances by taking the difference of the collision counter values
at those two instances; the LEC field stores the first collision counter value. It is used for
calculating the distances for the unreused instructions. The confidence counter is used for

lending confidence to the distance value stored in the distance (d) field.

» Each entry in the RB is augmented with two additional fields: (i) the last encounter count
(LEC) field and (ii) the current distanceto reuse (CDR) field. The LEC field, likethe LEC
field in the DT, stores the first collision counter value. However, unlike the other field, this
value is used for calculating the distances for the reused instances. The CDR field main-
tains the current distance to reuse for the instruction resident in the entry — i.e., the
remaining number of collisionsit is expected to experience before reuse. On every colli-

sion to a set, the CDR value of every RB entry in that set is decremented by 1.

Calculating the distances:. Next, we present how we calculate the distances — the process
that is the heart of this policy. We present the whole process of distance calculation in
Figure 5.4 using a pseudocode. For the purposes of clear exposition, we have divided the pro-
cess into two parts: one part deals with the case when an instruction is first encountered and
the other deals with the case when the instruction is re-encountered. The second caseis again

divided into two parts. one for the case when the instruction is reused and other when it is not.

157

Instruction First Encountered

RBset [collision counter] ++
Reserveentry inDT

DT [distance] <— O
DT [LEC] <— RBset [collision counter]
Attempt insertion in RB
if yes
RBent [LEC] <— RBset [collision counter]
RBent [CDR] <— DT [distance]

I nstruction Re-encountered

If Reused

RBent [CDR] <— RBset [collision counter] - RBent [LEC]
RBent [LEC] <— RBset [collision counter]

DT[distance] <— RBent [CDR]

DT[LEC] <— RBset [collision counter]

If Not Reused

RBset [collision counter] ++
DT [distance] <— DT [distance] + (RBset [collision counter] - DT [LEC])
DT [LEC] <— RBset [collision counter] (see text for explanation)
Attempt insertion in RB
if yes
RBent [LEC] <— RBset [collision counter]
RBent [CDR] <— DT [distance]

RBent: RB entry; RBset: RB set; DT: Distance Table; DT [LEC]: LEC field in DT

Figure5.4 Pseudocode depicting the distance-calculation processin the FiF policy.

158
We describe the process in this order. The collision counter for an RB set is incremented on

every collision to the set. We define collision to a set as an instruction insertion attempt made
to the set, successful or otherwise.

When an instruction is first encountered, we create an entry for it in the DT and store the
current value of the collision counter fromits RB set in the LEC field. The distancefield in the
DT isset to 0. If thisinstruction gets inserted in the RB, the value of the collision counter is
also stored in the LEC field in the RB entry. The CDR field is set to the distance value from
the DT.

The distance value for an instruction is calculated when it gets re-encountered. But, how
exactly we calculate the distance value depends on whether the instruction is reused or not.
We describe the two processes separately. If an instruction is reused when re-encountered, we
calculate its distance value by subtracting the current value of its RB set collision counter with
the value in the LEC field of the RB entry. This gives us the exact distance value between the
original instruction instance and its reuse, and this is the reuse distance that we want in this
policy. This distance value is then stored in the DT and in the CDR field of the RB entry. If a
different distance value aready exists in the DT entry then it is replaced if the confidence
count is less than some threshold (not shown in Figure 5.4); otherwise, we decrement the con-
fidence count. If, on the other hand, the prior distance value is same as the current one then we
increment the confidence value. The current collision counter value is also stored in the LEC
fieldsin both the RB entry and the DT.

On the other hand, if the instruction is not reused when re-encountered, we calculate its
distance value as follows. Since in this case we do not have the exact LEC vaue for this

instruction (because the instruction is not in the RB), we use the LEC value from the DT. This

159
gives us the LEC value for the last instance of the same static instance. We subtract this LEC

value from the current value of the instruction’s RB set collision counter, and cumulate with
the previous distance value for the instruction. We explain the reason for this shortly. The cur-
rent value of the collision counter and the distance value are stored in the DT. If the instruction
gets inserted in the RB, these values are also stored in the LEC and CDR fields in the RB
entry.

Now, we explain the reason for cumulating the distance values for unreused instructions.
Asmentioned earlier, the distance value that we really desire is the one between the two recur-
rences of the same instruction instance — i.e., between an instance and its repetition. For
instructions that don’'t get reused, we cannot calculate this distance because the collision
counter value of the previous instance is not known (since that instance is not in the RB).
Thus, we need to come up with away to approximate the distance values for unreused instruc-
tions. One option is to use the distances between the two consecutive occurrences of the static
instruction. In the DT, we store the collision counter for the last occurrences of static instruc-
tions. We can calculate the distances between the two consecutive occurrences of a static
instruction by simply subtracting the LEC value in the DT with the current collision counter
value (RBset [collision counter] - DT [LEC], as shown in Figure5.4). But, the distance
between two consecutive occurrences of static instructions can be significantly smaller than
the distance between an instance and its repetition; thus, using that as approximation for dis-
tance may give an unduly high priority to unreused instructions. We would like to give such
instructions low priority, i.e, high distance values. Thus, instead of using the distances
between the consecutive occurrences of static instructions per se, we cumul ate these distance

values— i.e., we add the currently calculated distance to the previous value present in the DT.

160
This way, instructions that are not reused repeatedly get their distance values increased pro-

gressively, and thereby, become of lower and lower priority, which makesit harder for them to
secure a place in the RB (which should be the case). Cumulating the distance values is also
consistent with the philosophy of the algorithm: if an instruction is not reused, and the previ-
ous and the current distance values are ‘d’ and ‘dl’, respectively, then we know that the
repeating instance that we are trying to calcul ate the distance from existed at least ‘d + d1’ dis-
tance behind. Hence, in the absence of better knowledge the distance value for the instruction

must be at least that much.

Policy Operations: Once the distance is calculated, the policy works as follows. When an
instruction isto be inserted in the RB, we read its distance value (d) from the DT. Thisincom-
ing instruction is not inserted in RB if the instructions present in its RB set have distances (in
their CDR field) smaller than ‘d’ (which means they are more likely to get reused than the
incoming instruction). However, if the incoming instruction is found qualified for insertion,
then the instruction in the RB set that has the largest CDR value is chosen for replacement

(sincethisistheleast likely reusable instruction of all).

At the time of insertion, the distance ‘d’ is stored in the CDR field of the RB entry. This
value is decremented on every collision to that set. Decreasing the CDR value — which signi-
fies coming close to the time of reuse — increases the importance of instructions and makes
them more difficult to replace (as should be the case, intuitively). However, if the CDR value
gets decremented all the way to 0 and the instruction is not reused, then the instruction loses
its importance and, thereafter, is considered for replacement ahead of other instructions in the

set. If, however, the instruction gets reuse, then its CDR value is replenished with the current

161
distance value from the DT.

5.5 Evaluation of Management Policies

In this section, we evaluate the management policies discussed in the previous section. These
policies have parameters that control their behavior: e.g., the threshold value in FnReused, the
counter value in RR, the table sizes of FnReused and FiF. Ideally, we would liketo vary all the
parameters and perform a thorough evaluation of these policies. However, that would be
digressing from the main focus of the thesis which is the instruction reuse technique and not
buffer management. For this purpose, we select the parameter values as follows. For the
threshold and counter values in FnReused and RR, respectively, we conducted short smula-
tion studies to determine with what parameter values the policies performed better, in general,
and selected those values as the parameter values for the rest of our ssmulations. The tables
used in policies FnReused and FiF are conflict-free — i.e., every static instruction gets a sepa-
rate table entry. We do so to evaluate the algorithm of the policies, independent of the imple-

mentation effects. The configurations that we simulate are shown in Table 5.2. The threshold

Policies Configuration

FnReused Threshold = 16; conflict-free table.

RR Counter value = 8

FiF conflict-free DT

Table5.2 Configurations of different policiesthat are studied.

value selected for the FnReused policy (by the above the method) is 16, which means that an

instruction has to get evicted from the RB without getting reused 16 consecutive times to be

162
classified as unreusable. The counter value selected for the RR policy is 8, which means that a

reused instruction has 8 “lives’ in the RB.

We present the following results in this section. First, we show the amount of reduction
achieved by these policiesin the number of instructions that get inserted in the RB or the num-
ber of likely-reusable instructions that get evicted from the RB. These results give us a direct
measure of how successful the new policies are at selectiveinsertion or eviction. After this, we
present the stability of the distance valuesin programs, which is an important factor that deter-
mines the effectiveness of the FiF policy. Finally, we show the overall impact of these policies

on the reuse rates and bottomline performance (IPC).

5.5.1 Direct measuresof policy operation

In Figure 5.5, we show the effectiveness of the three policies — FnReused, FnReady, and
FiF — which perform selective insertion, in cutting down the number of instructions inserted
in the RB. Thus, 80% on this figure means that 80% fewer instructions were inserted in the

RB than in the case of the LRU policy. The numbers are shown for a 4096-entry, 4-way asso-

100-

% Reduction in # RB insertions

go m88k ijpeg perl vort li gce comp

Figure 5.5 Reduction in the number of RB insertions due to FnReused, FnReady, and FiF
policies. Notethat in this graph higher numbers mean morereduction.

163
ciative RB (which is representative of the numbers for other RB sizes).

We see that there is a significant reduction overall in the number of instruction inserted in
the RB. Both FnReused and FiF cut down the insertion traffic by more than 80% in all cases
(except for perl where FnReused cuts down by 72%). In general, FnReused filters dlightly
more number of instructions than FiF. On the other hand, the reduction caused by the
FnReady policy in comparison is much smaller (as would be expected from the discussion in
Section 5.4.1.2), but it is still very significant, being close to 50% in most cases. However, itis
understood that these reductions may not necessarily translate into improvement in reuse rates

or into speedups. Those numbers we will see shortly in Section 5.5.3 and 5.5.4.

One particular interpretation of these results may be interesting. As we shall see later, for
severa benchmarks, the impact of these policies on the reuse rates and speedups results are
small —i.e, the values for these metrics are not much different with and without the new pol -
icies. In that light, the results in Figure 5.5 show that we can obtain the same amount of reuse
rates and performance with much less RB activity — between 50% to 80% less activity. Since
the RB is a large structure, this reduction in activity may result in significant decrease in
power consumption. However, power saving is not atopic of consideration in thisthesis, and,

hence, we do not follow this line of investigation any further.

Next, we address the policy RR. RR, as described earlier, attempts to prevent the eviction
from the RB of the likely reusable instructions, which it defines as instructions that have been
reused in the past. In Figure 5.6, we show the percentage by which RR is able to reduce the
eviction of the likely-reusable instructions (the percentages are over the LRU case). We show

the numbers for three RB sizes: 256-, 4k-, and 64k-entries. As we can see from the figure, the

164

100

RB entries: 256
RB entries: 4K

80 [l RB entries: 64K
70

90

60

50

40

IV — | =

P — =

o me— ==

% Reduction in # evictions of reused inst.

0

go m88k ijpeg perl vort li gee comp

Figure5.6 Reduction in the number of reused instructions due to the RR policy. Note that in
this graph larger numbers mean more reduction.

amount of reduction varies widely with the RB size and even the trend is not consistent. An
increase in RB size decreases the contention in the RB; this can both decrease or increase the
percentage reduction in eviction. The contention can decrease because with less contention
fewer reused instructions get evicted in the first place. The decrease in the contention can also
increase the impact of RR because while earlier the policy was unable to retain instruction in
RB due to high contention, it is able to do so now that the contention has reduced. In any case,
we see that the reduction in reused instruction eviction is significant in several cases. Overal,
RR is able to cut down the eviction of likely-reusable instructions by 30-40% (with some
exceptions) for large RBs (4k- and 64k-entries) and it is able to do so by 10-30% (with some

exceptions) for the small RB.

5.5.2 Stability of distancesin FiF

Before we present the reuse rates and speedups results, we briefly study an important
property of programs — the stability of the distances between instruction instances. The effec-

tiveness of the FiF policy is closely tied to the accuracy of the distance estimates. And, the

165
accuracy of distance estimates, depend not only on the distance-cal culating mechanisms but

also on theinherent nature of the programs — i.e, whether the instructions actually do recur at
stable and, hence, predictable distances. In this section, we measure this inherent stability of

distances in programs.

One measure of stability is how distances differ between the two consecutive repetition of
an instruction instance. We explain this with an illustration. Suppose |, is a dynamic instance
of the static instruction |. Also, suppose, |, has three repetition 13, 13, 15, which occur in the
program as shown in Figure 5.7. Let the distance between |5 and 17 be d; and between 13
and I3 be d,. Then the stability can be measured in terms of how ds is different from dy: if d,
isthe same as or close to d,, we can consider the distances as stable (predictable from the pre-
vious distance), otherwise not.* In Figure 5.8, we present this measure of stability: the bar
labelled “exact” shows the percentage of al distances that are exactly same as the last one,
i.e., dy = dy; and those labelled +1, +4, +8, and £16, show the percentage of distances that dif-
fer from the previous one by the amounts 1, 4, 8, and 16, respectively. The distances are mea-
sured as described in Section 5.4.3.2 using a 256-set RB. We employed a large buffer, which

can store up to 2000 instances for every static instructi on,” to remember the previous distances

dy dp
AL AL
17 13 13

dynamic instruction stream

Figure5.7 lllustration of the distancesthat are compared in Figure 5.8.

4. There can be other more relaxed definition of stability — we can track non-consecutive distances. However,
here, since we make our prediction based on the last distance, we base our measure of stability on the same-
ness of consecutive distances.

5. Thisisthe same as the buffer used in Chapter 3 for determining the amount of repetition.

166
for dynamic instances.

In Figure 5.8, we see that for 5 benchmarks (m88ksim, perl, vortex, li, and compress), the
distances are fairly stable: between 42-77% of the distances are exactly the same as the last
one — meaning they are predictable based on the last distance. Also, for these benchmarks,
more than 70% of the distances differ from the last one by less than +4. Although they are not
exact predictions, the distances which are in error by a small amount, may still cause the pol-

icy to make the right management decision.

For the other three benchmarks (go, ijpeg, and gcc) the distances are not as stable. Very
few times the distances are the same as the last one (e.g., only 18% for go and 28% for gcc),
while a significant percentage of the distances differ from the last one by more than £16 (e.g.,

more than 50% for go, 40% for ijpeg, 35% for gcc).

Thus, we see that stability of distances may vary from benchmark to benchmark. Also,

based on the above results, we expect that the FiF policy will be more effective for the first

100

904 — B eror: +/-16

80+ — [] error: +/- 8

70 L — | | error: +- 4
- 604 —
= . . error: +/- 1
s — = — [| B
e . e [] noerror

30- |

20

10

0
go m88k ijeg perl vort li gce comp

Figure5.8 Stability of distancesin programs. “exact” standsfor perfect estimation: the actual
distance turned out to be equal to that predicted. “ diff +/- 1", etc., are cases when the predicted
distance was off by 1, etc,, from the actual distance. The space above the bars denotes the
percent of timeswhen the distanceswerein error by morethat +/- 16.

167

five benchmarks than for the next three (in fact, as we will see later, FiF causes degradation in

reuse rates for some RB sizes for the next three benchmarks).

5.5.3 Reuse Rates

We show the reuse rates for the new, limit, and LRU policiesin Figure 5.9. The reuse rates are

shown for RB sizes ranging from 256 to 64k entries (shown on the x-axisin log,). Overall, we

100 1 1 1 1
limit: assoc 4 —+—
FiF: assoc 4 —--x--- go
90 FnReused: assoc 4 ---*---
FnReady: assoc 4 &
RR: assoc 4 --®-
80 LRU: assoc 4 --o--
70
8; 60
R
8 //
50
@ e
=S o
S 40 o
30 e
e =
20 - =
P
.
10
0
7 8 9 10 11 12 13 14 15 16 17
100 1 1 1 1
limit: assoc 4 —— e
FiF: assoc 4 ---x--- |J F eg
90 4 FnReused: assoc 4 ---*---
FnReady: assoc 4 &
RR:assoc 4 —-m-
80 LRU: assoc 4 ---o---
70
% 60
KO 50
S
(S
40
30
P
20 — eSS ==
e At
e e
10
0
9 10 11 12 13 14 15 16 17
Log_2(num of RB entries)

100 1 1 1 1
limit: assoc 4 —+— .
FiF: assoc 4 ---x--- m88ksim
90 4 FnReused: assoc 4 ---*---
FnReady: assoc 4 &
RR: assoc 4 —-#-
: -0 -
80 LRU: assoc 4
70
60 .
8‘; %
B s :
(n'e /
<) /
> a0 8
30
20
10
0
7 8 9 10 11 12 13 14 15 16 17
100 1 1 1 1
limit: assoc 4 —+—
FiF: assoc 4 -—--x--- pe”
90 4 FnReused: assoc 4 ---*---
FnReady: assoc 4 &
RR: assoc 4 —-#-
: -0 -
80 LRU: assoc 4
70
8 B0 e e T D e T T T
68: 50 ~’>f.
S g
o .
40 S
L
30
5,
20 M
10 e B
g
0
7 8 9 10 11 12 13 14 15 16 17

Log_2(num of RB entries)

Figure5.9 Reuseratesobtained with the4 new policies. Thereuseratesfor thelimit and LRU
policy are also plotted for comparison. (Thisfigure continues on the next page).

168
see that the results are mixed: the new polices perform very well for some benchmarks (e.g.,

mB88ksim, perl, and vortex) but poorly for others (e.g., go, ijpeg, and gcc). Although, for li and
compress they don’'t improve the reuse rate significantly, in absolute terms, they (specialy
FiF) are successful in nearly eliminating the gap between the LRU and the limit (which is

small to begin with). Next, we interpret the results for individual schemes.

100 1 1 1 1 100 1 1 1 1

limit: assoc 4 —+— limit: assoc 4 —+— 3
FiF: assoc 4 —-— vortex FiF: assoc 4 ---x--—- li
90 FnReused: assoc 4 ------ 90 4 FnReused: assoc 4 ---*---
FnReady: assoc 4 & FnReady: assoc 4 &
RR: assoc 4 --m-— RR:assoc4 —-m-
80 LRU: assoc 4 ---&-- 80 LRU: assoc 4 ---©---
//
70 70
e
X I
g ©0 S 60
3 gy 9 p
Y 50 50
’ x
=S o .
40 > 40
S T P Tt N N A
S I T N *-
30 Rl 30 e
X K l’//jf”'“"z"
S 20
20 f/l«;'Z
10 - 10
0 0
7 8 9 10 11 12 13 14 15 16 17 7 8 9 10 11 12 13 14 15 16 17
100 1 1 1 1 100 1 1 1 1 1
limit: assoc 4 —+— limit: assoc 4 ——
FiF: 2SS0 4 - gcc FiF: assoc 4 —--x--- compress
90 4 FnReused: assoc 4 ---*--- 90 FnReused: assoc 4 ---*---
FnReady: assoc 4 & FnReady: assoc 4 &
RR: assoc 4 —-#- RR: assoc 4 --#-
80 LRU: assoc 4 ---o--- 80 LRU: assoc 4 ---o---
70 70
R o0 60
X s — o
<] A
> - e X
* o
40 40
30 30
20 s 20
i;//
10 10
0 0
7 8 9 10 11 12 13 14 15 16 17 7 8 9 10 11 12 13 14 15 16 17
Log_2(num of RB entries) Log_2(num of RB entries)

Figure 5.9 (contd.) Reuse rates obtained with the 4 new policies. The reuse rates for the limit
and LRU policy are also plotted for comparison.

169
FiF: This policy performs better than other policiesfor almost every benchmark. Thisis espe-

cialy true for small RB sizes (256-2k entries). For example, in m88ksim the reuse rate
improves from 9% (LRU) to 50% (FiF) for the 512-entry RB; similarly, for perl the reuse rate
improve from 16%(LRU) to 36% (FiF) for the 1024-entry RB; improvements in the case of
vortex are also significant, being about 10%-points for various RB sizes. Seen another way,
this result means that a particular reuse rate can be obtained with a much smaller — up to two
to four times smaller — RB with FiF than LRU. For go, ijpeg, and gcc, like other policies, the
improvement in the reuse rates with FiF are negligible. For li and compress, on the other hand,
though the improvements in reuse rates are small, FiF policy nearly eliminates the gap

between the LRU and the limit policy.

FnReused (filter not reused instructions): This policy performs well for a couple of bench-
marks (m88ksim and perl), but not so well for others. In fact, for vortex and li, it actually
degrades the reuse rates below the LRU level. For, m88ksim and perl, cases where it performs
well, it improves the reuse rates significantly: e.g., from 9%(L RU) to 29% for 512-entry RB in
mB88ksim; from 16%(L RU) to 31% for 1024-entry RB for perl (performing close to FiF). The
degradation in reuse rate occurs because, as mentioned in its description in Section 5.4.1, it
does not have a mechanism to correct itself when it goes wrong. After it starts filtering an
instruction from the RB, it does not have a way of knowing when the instructions becomes
reusable. Thus, if the instruction becomes reusable later, it would still filter it from the RB and

hence missreusing it. This causes it to degrade reuse rates for vortex and i.

FnReady (filter not ready instructions): This policy, in general, improves the reuse rates by

a small amount, but this amount is significant considering its simplicity and possible ease of

170
implementation. For example, improvement in the reuse rates for RB sizes between 512- and

4096-entries are in the range of 1-10% points for m88ksim, around 5% points for perl, and
around 1% point for vortex. Except for li, where it dightly degrades the reuse rate below LRU,

this policy always improves reuse rates over LRU.

RR (retain reused): This policy, aso, improves reuse rate by a small amount. The improve-
ments are around 2-3% points for perl and vortex, and between 1-12% points for m88ksim for
RB sizes ranging between 512- and 4096-entries. This policy may aso be inexpensive to
implement, relative to FiF and FnReused, since it does not require a separate table for storing

the state. Given that, the reuse rate improvements achieved by this policy may be note-worthy.

In general, we note that policies FnReused, FnReady, and RR perform worse than FiF.
This can be attributed to the fact that they are all *“ special-purpose” policies; i.e., they optimize
certain aspects of the buffer management problem and don’t attack in a general way. These
“special-purpose’ policies work only when the aspect they optimize happens to be the main
cause of poor buffer management. For example, FnReady will improve reuse rates when many
reusable instructions get evicted from the RB by not-ready instructions (hence, filtering these
not-ready instructions will likely alow the reusable instructions to get reused); Similarly,
FnReused will improve reuse rates when many reusable instructions are evicted from the RB
by instructions that are persistently not reused; RR will improve reuse rates when instructions
that are reused once have the propensity to get reused repeatedly. In places where these
aspects are not prominent, the “special-purpose” policies have a limited impact on the reuse
rate (they may, in fact, degrade the reuse rate when the limited improvements they achieve is

not sufficient to offset the effects of the occasional sub-optimal decisions they make). FiF, on

171

the other hand, attacks the buffer management problem in a general way and, hence, is able to

adapt better to the changing RB access patterns and, consequently, able to perform well for

most benchmarks.

5.5.4 Performance

In Figure 5.10, we present the speedups obtained with IR (over the machine without IR)

using LRU and FiF policies. The speedups are calculated as follows: ((IPC,gr/IPCy0iR) -

1)*100. The experiments were run with 4-way associative RBs, ranging in size from 256- to

64k-entry. We make the following observations from this figure:

For both policies, speedups follow the reuse rates (shown in Figure5.9) closaly: an
increase in the reuse rate in most cases entails an increase in the amount of speedup. Since
these trends also exist for other policies, for the sake of clarity, we do not include their
speedup graphsin this figure; their relative position can be inferred from their reuse rates.
Comparing the two policies, we see that differences in their reuse rates are also, in most
cases, reflected in differences in their speedup numbers. If FiF policy reuses more instruc-
tions than LRU, it also shows higher speedups than LRU, and vice versa. An exception is
vortex; despite improvement in the reuse rate by FiF, there is no (or very small) improve-
ment in the speedups. This shows that the additional instructions reused by the FiF policy
are not executional bottlenecks (a closer look at the benchmark showed that many were,
for example, branches that get predicted correctly); hence, their reuse does not impact the
bottomline performance.

Again, as would be expected from the reuse result, in most cases, the difference in speed-

upsis small, about 1%-point in many cases. But, in cases of m88ksim and perl, we notice

172

Fil
LRU: assoc

, ,
F: assoc 4 —+—
4 e

go

20

18

FiF: assoc 4 —+—
LRU: assoc 4 ---x---

m88k

i
Y

®

% speedup

20

18

16

14

12

10

% speedup

20

18

16

14

12

10

% speedup

Figure5.10 Speedupsover the base case (noIR) of IR using RB with LRU and FiF policy.

8 9

FiF: assoc 4 —+—
LRU: assoc 4 ---x---

8 9
L L

10 11 12 13

FiF: assoc 4 —+—
LRU: assoc 4 ---x---

vortex

8 9

FiF: assoc 4 ——
LRU: assoC 4 ---x---

gcc

Log_2(num of RB

14 15

entries)

16

®

% speedup

% sppedup

8 9 10
I L

FiF: assoc 4 —+—
LRU: assoc 4 ---x---

per|

8 9 10

12

14

15

17

FiF: assoc 4 ——
LRU: assoc 4 ---x---

L B

11

12

FiF: assoc 4 —+—
LRU: assoc 4 ---x---

compress

8 9 10

11

12

13

14

15

Log_2(num of RB entries)

16

173
significant improvement in speedups: e.g., for m88ksim speedups increase from 8% (LRU)

to 16% (FiF) for 2k-entry RB; and for perl, speedups increase from 4% (LRU) to 9%

(FiF).

5.6 Summary and Conclusions

In this chapter, we study the RB — the main hardware structure used in IR — in more detail.
We present how the reuse rates vary with RB size for different conventional replacement poli-
cies, such as LRU, FIFO, and Random. We also present the limit reuse rates for each RB size,
giving us an upper bound on the amount of reuse we can capture per RB size. We see asignif-
icant difference between the limit and convention policies’ reuse rates, suggesting that the RB

may be very inefficiently utilized.

We also characterize the RB with respect to its associativity. We show how many instances
later instructions normally get reused. This gives us a lower bound on the amount of associa-
tivity needed to capture a certain amount of reuse. We see from the results that, for most
benchmarks, a significant percentage of total reuse may be captured with a small degree of
associativity, since most — more than 70% — of the instructions get reused within their next
4 instances. We also show how the reuse rates vary with associativity, concluding that higher
associativity is more important for large RBs than for small ones. We also observe, that even
with large associativities, a significant gap remains between the limit and conventional poli-

cies and that increasing the associativity does not improve RB utilization.

We study four RB management policies to improve RB utilization: FnReused, FnReadly,

RR, and FiF. Thefirst two policies perform selective insertion in the RB, filtering out instruc-

174
tions that are not likely to be reused. The RR policy performs selective eviction, retaining

instructionsin the RB that are likely to be reused. The FiF policy is a novel management pol-
icy which chooses instructions for keeping in the RB based on their likelihood of reuse. This
policy calculates the likelihood of reuse for instructions in terms of their chances of getting
evicted from RB before being reused — more the chances of getting evicted, less the likeli-
hood of reuse.

The results for the management policies vary with benchmarks. For some benchmarks
(m88ksim, perl, and vortex), we see a significant improvement in the reuse rate with the new
policies over LRU (e.g., in m88ksim the reuse rate improves from 9% to 50% for FiF policy
for 512-entry RB). Interpreting the results another way, for these benchmarks, the same
amount of reuse can be captured with an RB up to 2-4 times smaller using the new policies.
However, for benchmarks such as go, ijpeg, and gcc, we see a negligible improvement or a
degradation in the reuse rate with the new policies. We a so show the speedups attained by IR
with LRU and FiF policies and note that in most cases the improvements in performance
closely follow the improvements in the reuse rate (except for vortex).

Thiswork can be further extended in several possible directions. Other methods of buffer
management that can be explored. In this work, we gave equal importance to every instruc-
tion. It is conceivable to have a policy that treats different instruction-types differently, giving
less preference to instruction-types that are less likely to get reused. Similarly, we can think of
performing the buffer management with profitability of reuse as a criterion in which only
those instruction sequences that will be profitable to reuse (cause performance improvement)
are kept in the RB. It is aso possible to have an hybrid of different policies: for example, the

FnReady policy can be used with other policies, or the FnReused and RR policy can be used

175
together (since they complement each other well). Lastly, we note that the FiF policy is agen-

eral buffer management policy: it can aso be used for managing other forms of memory stor-
age, such as caches. In thisthesis, we evaluated it for IR; it will be interesting to see how well

it performs in managing other forms of storage structures.

176

Chapter 6

Sengitivity Analysis

In previous chapters, we evaluated the concept of IR in the context of one particular processor
pipeline. It is reasonable to expect that the IR may perform differently for other types of pipe-
lines. The task of this chapter is to develop a sense of how might the IR performance change
when the pipeline configuration is varied. For this purpose, in this chapter, we select afew key
parameters of pipeline configuration and vary their values, and study how sensitive the IR

results are to these variations.

We investigate six important pipeline parameters in this chapter: (i) instruction window
size, (ii) pipeline width, (iii) pipeline length, (iv) branch prediction accuracy, (v) memory
latency, and (vi) reuse latency. These parameters were selected because they are likely to be
different for different processors and are also likely to impact the performance of IR for rea-

sons explained later in the chapter.

The rest of this chapter is laid out as follows. In the next section, we present the experi-
mental setup used in this study. In Section 6.2, we describe at a high level why IR results may
vary with the above mentioned parameters. In Sections 6.3-6.8, we analyze the sensitivity of
IR to the above mentioned parameters. In each section, we discuss why and how the reuse

rates and the reuse performance may vary by varying the parameter studied in that section. We

177
finish each section by presenting and discussing the simulation results. Finally, in Section 6.9,

we summarize this chapter and provide conclusions.

6.1 Experimental Setup

The base machine, over which the speedup numbers are measured, is the same as the one
described in Chapter 2, except for the parameters that we vary for different experiments. Thus,
for example, in window-size experiments, the base machine will have all its parameters as
described in Chapter 2 except for window size, which will be the same asthe value used in the
experiment (32, 64 or 128). IR is implemented using scheme S, and a 4-way associative RB
with 1024 entries managed with the LRU policy (except in reuse latency experiments where
we vary the RB sizes from 256- to 16k-entries.). In cases where it is possible that the impacts
on IR may be different for other reuse schemes (such as S, and S;,..4), we point this out during
discussion and suggest the likely difference.

We evaluate the impact on IR in terms of changesin two metrics: (i) the reuse rate — i.e.,
the percentage of instructions reused; and (ii) the reuse performance — i.e., percentage
speedup over the (appropriate) base machine IPC. In several placesin this chapter, we refer to

two metrics together as the reuse resullts.

6.2 Causesfor Sengtivity of IR

Before we can analyze how the reuse results may vary with individual processor parame-
ters, we need to understand what causes the reuse results to be sensitive in the first place. That

is, why may the reuse rates and reuse performance change when the underlying processor is

178
changed? What is it in the way we reuse instructions or in the way reuse improves perfor-

mance that may change when the processor is changed? In this section, we highlight some

such aspects of IR. The discussion here will help us better follow the effects of the individual

parameters presented in the later sections.

First, we consider the reuse rates. For the instructions to get reused (with scheme S,) there
isastrict requirement — in the way we implement IR in this thesis — that the operand values
of the instructions must be ready at the reuse stage.X This is the main reason why reuse rates
may get affected by changes in the underlying processor. Changing the processor parameters
may change — move backward or forward — the ready time of operands, impacting the reuse
rates accordingly: the reuse rates may improve if the operands become ready sooner (i.e., the
ready time is moved backward); they may decrease, otherwise. In later sections, we will see
how exactly each parameter influences the ready time of operands.

Next, we consider the reuse performance. Since reuse can improve performance because
of several reasons, its performance can get impacted in several ways by changing the underly-
ing processor. To understand how the overall reuse performance may change, we need to
understand how its different components may get impacted. We discuss the impact on differ-
ent components below.

* An important reason why reuse improves performance is that it collapses data depen-
dences by reusing a dependent chain of instructions in a single cycle. How much perfor-
mance is gained because of this component depends on two things: (i) the length of the
dependent chains reused — longer chains means more data dependences are collapsed,

and, hence, means more benefit; (ii) the importance of dataflow latencies in the total exe-

1. Forreuse schemes S, and S,,,4, the requirements for reuse are more stringent, as mentioned in Chapter 4

179
cution time of programs — if dataflow latencies are important, then collapsing them will

mean more benefit. The reuse performance due to this component will get impacted by
any change in the processor that affects either of the above two factors. If the length of
dependent chains that can be reused in a cycle changes (e.g., due to changes in machine
width) or if the importance of dataflow latencies changes (e.g., due to changes in branch
prediction accuracy), then the reuse performance may get affected.

Another important source of performance is squash reusg, i.e., reusing work that had been
discarded because of misprediction squashes. Since sguash reuse salvages useful work
from the work that was performed on the mispredicted control path, it reduces the penalty
of misprediction. This performance benefit not only depends on the amount of squashed
work that can be reused (more a function of the reuse technique), but also on the amount
of work that was thrown away in the first place (afunction of the underlying processor). If
the amount of work that gets thrown away changes due to changes in the processor (e.g.,
improvement in branch prediction accuracy), then the amount of benefit derived from
squash reuse may also change accordingly.

IR also improves performance because it generates instruction results early and, thereby,
allows instructions dependent on these results to execute sooner than they would have
done otherwise. The amount of benefit derived from this component depends on two fac-
tors: (i) how much earlier than the execution results do the reuse results become available
— the earlier they do, more may be the benefit from reuse; (ii) how much sooner the
dependent instructions actually execute using the reused value compared to using the val-
ues generated through regular execution. Thus, any changes in the processor that affect

either of these factors may affect the reuse performance. If, for example, the reuse results

180
do not get generated much earlier than the results from regular execution (for instance,

because of high reuse latency), then the reuse performance will be decreased. Likewise, if
the dependent instructions get delayed (e.g., because of a pipeline stall), they may not be

able to execute any sooner than the base case, diminishing the advantage due to reuse.

» Sincethe reused instructions do not get executed, IR frees up execution bandwidth. Thisis
another reason why IR may improve performance, especially for machines where the exe-
cution bandwidth is not enough to exploit all the available parallelism in the window. For
such processors, the execution bandwidth freed because of reuse can be used to execute
other ready instructions in the window, hence, improving performance. Obvioudly, this
component of reuse performance will be sensitive to changes in the execution bandwidth
of the underlying processor: if the change is such that the execution bandwidth is
decreased (e.g., pipeline width is reduced), then the potential benefit of reuse will increase,

and vice versa

The overall impact on the reuse performance of the processor changes will depend on how
these individual effectsinteract. We discuss this further for individual processor parametersin

subsequent sections.

6.3 Instruction Window Size

The size of an instruction window — which in our case is the same as the size of the RUU —
defines the number of instructions that can be in flight at any given time in a processor. In all
our previous simulations, we have used a window of 64 instructions. In this section, we inves-

tigate the impact of changing the window size on the reuse rate and the reuse performance.

181
Before presenting the results, let us qualitatively discuss possible impacts changesin win-

dow size may have on the reuse rates and reuse performance.

6.3.1 Possible impactson reuserates

Increasing the window size may decrease the number of instructions reused because more
instructions may find their operands not ready at the reuse stage. We explain this with an
example. Consider a machine with a small instruction window. The front-end of this machine
may often stall because the window gets full. These stalls will provide time for instructionsin
the window to execute and prepare operand values for the not-yet-fetched dependent instruc-
tions. When the stall clears and instructions are fetched, the new instructions may find their
operands ready when they reach the reuse stage and, hence, may get reused. A machine with a
large window may stall less often because of a full window. This may permit the dependent
instructions to arrive at the reuse stage too soon — before their source instructions have exe-
cuted and, hence, before their operand values have become ready — and cause these instruc-

tions to not get reused.

6.3.2 Possible impact on reuse performance

An increase in window size may both increase or decrease the reuse performance. Since
the reuse performance is correlated with the reuse rate, it may decrease because the reuse rate
may decrease with an increase in window size (as discussed above). However, it may increase
reuse performance by increasing the number of useful reuses— i.e., reuses that actually cause
the dependent instructions to execute earlier. A machine with a small window may frequently

stall due to unavailability of window entries, rendering many reuses useless. For example, this

182
situation may happen when an instruction is reused but the instructions dependent on its

results are stalled. By the time these dependent instructions enter the pipeline, their operand
values could become ready through normal execution; hence, they may not execute any sooner
with reuse than in the base case. However, in a machine with a large instruction window, the
dependent instructions may be able to get into the window and may be able to execute sooner
than in the base case (hence, improving performance) by taking advantage of the source

instruction reuse.

6.3.3 Resaults

In Figure 6.1, we show the impact of varying the instruction window size on reuse rate and
reuse performance (Figures 6.1 (a) and (b), respectively). Three window sizes are studied: 32,
64, and 128 instructions. The rest of the processor parameters in the 32- and 64-instruction
window experiments are the same as those presented in Chapter 2. But, for the 128-instruction
window experiments, we increase the number of unresolved branches allowed in the processor
from 16 to 32 to prevent this constraint from implicitly limiting the effective window size. The
reuse rates presented are in terms of percentage of all committed dynamic instructions, and
the speedups are in terms of improvements over the IPC of the base case (without IR). Here
we al'so point out that each window size has a separate base case, and speedups for a particul ar
window size are calculated over its base case.

From Figure 6.1, we can observe that, in general, varying the window size has negligible
impact on reuse rate and reuse performance. For most benchmarks, the reuse rates for all three

sizes are the same? (Figure 6.1(a)). For ijpeg and vortex, we see a small decrease in the reuse

2. Within the degree of precision — until the second decimal place — that we plot in our graphs.

183

100-
90 Reuse Rates . .
32 inst window
80 64 inst window
128 inst window
70- u
® 60
3
b 50
@ 3
E 404 39 39 39
33 33 33
304 30 29 29 30,30 30
24 24 24 2525 22 24 24 24
204
1717 5 16 16 16
10- ’—|—I
0 | I
go m88k ijpeg perl vort li gce comp HMean
20-
18 Reuse Performance) .
32 inst window
16 64 inst window
14 B 128inst window
% 12
& 10
b) =
b 2
; 8- 8 8 8
o 7 7
64 6 6 6 6 6 6 6
5 5 5 5565 555
4 4 4 4
333
24 | I
0
go m88k ijpeg perl vort li gce comp HMean

Figure6.1 Impact of varying window sizes on (a) reuserates (b) reuse performance.

rate for larger window sizes, which, as we have discussed earlier, occurs because some
instructions enter the pipeline before their operands become ready and hence don’t get reused.

In Figure 6.1(b), we see that, except for ijpeg and vortex, the amount of speedup attained
by IR for al three window sizes over their respective base cases is the same for al bench-
marks. For ijpeg, the performance increases slightly (2%-point) from window size 32 to 64
and then decreases (1%-point) for 128. The initial increase can be attributed to the fact that

window size 64 converts many reuses that may be usel ess with window size 32 to useful ones;

184
the latter decrease can be attributed to the corresponding decrease in the reuse rate. For vortex,

the reuse performance decreases from 7% to 5% when going from window size 32 to window
sizes 64 and 128. Again, this decrease can be attributed to the corresponding decrease in the
reuse rate.

Overall, we see that the reuse rates and the reuse performance obtained using scheme S,

are not very sensitive to the variation in the instruction window size.3

6.4 Pipeline Width

By pipeline width we mean the number of instructions the pipeline can fetch, decode, issue,
execute, and commit, in acycle. In all our previous simulations, we use a pipeline of width 4.
In this section, we study the impact of varying pipeline width on reuse rates and reuse perfor-
mance. Before presenting the results, we present a qualitative discussion on how we might

expect the reuse results to be affected by the changes in pipeline width.

6.4.1 Possibleimpact on reuserates

Increasing pipeline width can either increase or decrease reuse rates. The decrease may
take place because as the pipeline becomes wider, more instructions may arrive at the reuse
stage before their operand values are available and, hence, may not get reused. We illustrate

this scenario in Figure 6.2. In this figure, we show the flow of an instruction stream — 11, 12,

3. Asdescribed in Section 4.5.2, for schemes S, and S,,,4, the reuse constraints are more stringent than for
scheme S,. For example, with scheme S,,,4, an instruction cannot be reused if any of its unreused source
instructions exist ahead in the pipeline (executed or not). The amount of reuse missed due to this constraint
increases rapidly with window size because instructions may remain in the window longer, obstructing the
reuse of dependent instructions. Hence, the reuse performance may be sensitive to instruction window size.

185

Instruction stream
11 12 13 14 (l4dependentonil)

1-wide Pipeline 2-wide Pipeline
Time Fetch Dec |ssue Exec 1iMe Fetch Dec Issue Exec
cyclel 1 cyclel 1211
cycle2 12 1 cycle2 1413 1211
cycle3 3 12 11 cycle3 1413 1211
cycle4 14 13 12 1 Y (operands not ready when 14 tested for reuse)

Y odes 1441312
(operands ready when 14 tested for reuse)

Figure 6.2 Example of how some instructions may not get reused when pipeline wide is
increased. Here, when the pipeline width isincreased from 1 to 2, 14 does not get reused. (In
this pipeline we assume that thereusetest is performed in the decode stage).

13, and 14, where 14 is dependent on 11 — through 1- and 2-wide pipelines. (For ease of expla-
nation, we do not show the read register stage in the pipeline and assume that the reuse test is
performed in the decode stage itself). We see that in the 1-wide machine, the source (11) and
the dependent (14) instructions are 3-cycles apart. By the time |14 is tested for reuse (cycle 5),
its operands are ready (since |1 has already executed), allowing it to get reused. But, in the 2-
wide machine, due to a higher fetch and decode bandwidth, 14 arrives at the reuse stage (same

as the decode stage in our example) before |1 has executed, and hence it does not get reused.

By increasing the width of a machine we not only increase the front-end bandwidth
(which may hurt the reuse rate, as described above), but we also increase the execution band-
width which may improve the reuse rate, as we describe next. With more execution band-

width, the processor may be able to execute instructions sooner and, hence, may be able to

186
prepare the operand values in time for the reuse of the dependent instructions. For example,

consider the following scenario. Suppose that because of a few long-latency operations (e.g.,
cache misses), the instruction window fills up and the machine is stalled. Also suppose that
most instructions in the window are dependent on these long-latency operations. After these
operations complete, the stal is cleared, the dependent instructions start executing, and the
new instructions start entering the window. These new instructions will not get reused if their
source instructions are stuck in the backlog ahead. How rapidly this backlog gets cleared
depends on the execution bandwidth of the machine: the greater the bandwidth, the faster the
backlog will get cleared, and, hence, the smaller will be the number of instructions that will
not get reused because of this backlog. For this reason, as the machine width is increased, it

develops the potential to reuse more instructions.

6.4.2 Possible impact on reuse performance

Like the reuse rate, the reuse performance may also either improve or degrade with an
increase in the pipeline width. The change in the reuse performance may take place simply in
correspondence to the variation in the reuse rate: if the reuse rate increases with the pipeline
width, the reuse performance may also improve, and vice versa. However, there are other rea-
sons why changing the pipeline width may impact reuse performance, and we describe them

next.

IR may improve the performance of a narrow machine more than that of a wide machine.
A low execution bandwidth in a narrow machine may not be enough to exploit all the ILP
present in programs — i.e, execution bandwidth may be a bottleneck for these machines. By

reusing instructions we can free up execution bandwidth that can be used to execute other

187
ready instructions, thereby, improving performance. Since the execution bandwidth is not

likely to be a bottleneck for wide machines, this advantage of reuse may decrease in impor-

tance as machines are made wider, possibly decreasing its impact on performance.

Increasing the pipeline width may also improve reuse performance because it facilitates
the reuse of longer chains of dependent instructions in the same cycle. In thisthesis, we reuse
achain of instructions in the same cycleif all the instructions are present in the reuse stage in
the same cycle. When the width of the machine is increased, the number of instructions
present in the reuse stage in any cycle aso increases, thereby, increasing the chances of reus-
ing longer chains of instructions. Reusing longer chains of instructions in a cycle will impact

the performance more. Hence, increasing the machine width may improve reuse performance.

6.4.3 Results

In Figure 6.3, we show the impact of varying the machine width on reuse rates (figure @)
and reuse performance (figure b). The results are shown for 4 machine widths, 1-, 2-, 4-, and

8-way.

Although, on average, we see that reuse rates are to a large extent insensitive to machine
widths, for individual benchmarks we see interesting variations due to the interplay of various
impacts of making the machine wider, as discussed in the previous section. For some bench-
marks (m88ksim, go, and compress) we see a steady decrease in reuse rates (although dlight)
as the machine is made wider. This happens because increasing number of instructions arrive
at the reuse stage before their operands are ready for the reasons discussed earlier. For some

benchmarks, e.g., vortex, perl, and li, we seen an increase in the reuse rate with the increase in

188

100-
90 Reuse Rates)
1-wide m/c
80 2-wide m/c
70 B 4widem/c
B 8widem/c
B 604
3
@ % 50
o]
a
go m88k ijpeg perl vort li gce _comp HMean
30, 1-wide m/c
28
25 Reuse Performance 2-wide m/c
” B 4-widem/c
2] B 8widem/c
21
204 20
19
S 18 18 18
b E B 1616
() =3 16| B 15
= 14
o 14 13 13
5 124 12 12
o
104 10 10
9 9 9
8. 88 8 8
7 7 7 7 7
6- 4 6
5 5 5
4 4 4
3
24
0 L | L] L | L | L || ||
go m88k ijpeg perl vort li gce comp HMean

Figure 6.3 Impact of varying the machine width on the (a) reuse rates and the (b) reuse
performance.

width from 2-way to 4-way machine. This happens because of the favorable effects of increas-

ing the execution bandwidth, as discussed earlier.

In Figure 6.3 (b), we show the impact of varying the machine width on reuse performance.
We see that the reuse performance is extremely sensitive to machine width: with the perfor-
mance improvement being the most for the narrow machines, e.g., 1-way or 2-way wide. As
we have discussed earlier, this can be attributed to the fact that for narrow machines the execu-

tion bandwidth is a bottleneck, and reuse frees up execution bandwidth that can be used by

189
other ready instructions. For 1-way and 2-way machines, the average speedups attained with

reuse are 15% and 13%, respectively; for some benchmarks, e.g., li and compress, the speed-
ups are as high as 20%. We see a significant drop in speedups when the machine width is
increased to 4-way because for 4-way machines the execution bandwidth is less of a bottle-
neck. However, we, again, see an improvement in speedups for 8-way machine, which can be

attributed to reusing longer chains of instructions per cycle, as described earlier.

6.5 Pipeline Length

In our earlier experiments, we used a 6-stage pipeline, as shown in Figure 2.1. A pipeline of a
different length may impact reuse rate and reuse performance differently. In this section, we

study the impact of varying the pipeline length on reuse results.

With respect to the reuse stage, the pipeline (Figure 6.4 ()) can change in two ways —

Reuse
(a) Fetch RDe?wCérﬁe ge?d I ssue Exec. | Commit
Reuse
Dec. & | Extra | Extra | Reg. i
(b) Fetch Rename | Stagel | Stage2 | Rea d Issue Exec. |Commit
Reuse
Dec. & Reg. Extra | Extra .
© Fetch Rename| Read Stagel | Stage2 | ssue Exec. |Commit

Figure 6.4 The default pipeline (a) and the pipelines with extra stages (b and c). In (b) the
extra stages are before Reuse stage (same as Register Read stage), and in (c) the extra stages
are after Reuse Stage.

190
either there are extra stages before it (Figure6.4 (b)) or there are extra stages after it

(Figure 6.4 (c)). As we will discuss next, the reuse results may get impacted differently
depending on which is the case. In this section, we study the impact of the latter two pipelines
on reuse results. But, before we present the simulation results, we qualitatively discuss how

the two pipelines shown in Figures 6.4 (b) and (c) may affect the reuse results.

6.5.1 Possibleimpact on reuserates

We discuss the effect of adding extra stages before and after the reuse stage separately.
The addition of extra stages before the reuse stage should not affect the reuse rate, provided
they are non-stalling. This is because they do not insert any delay between the source and the
dependent instructions and, hence, do not obstruct any reuse. However, if these stages are
stalling, then they may affect the reuse rate in the same way as any change that could cause the
front-end of the machineto stall (e.g., small-window size, which we have already discussed in
Section 6.3). However, non-stalling stages before the reuse stage may affect reuse perfor-
mance in other ways, which we will describe shortly, in the following section.

If the extra stages are added after the reuse stage (Figure 6.4 (c)), then they may lower the
reuse rate. This is because these extra stages add latency between the execute and the reuse
stage and, thereby, increase the number of times the operand values will not be ready for

instructions at the reuse stage (because the source instructions have not yet executed).

6.5.2 Possible impact on reuse performance

The performance benefit dueto reuseis, in part, also dependent on the fraction of the pipe-

line that is skipped by the reused instructions: if a big fraction of the pipeline is skipped then

191
the impact on performance is more, since the big skip cuts down a greater part of the latency

through the pipeline; however, if a small fraction is skipped then the performance benefit is
small. The benefit of skipping a part of pipeline is realized when the latency of the pipelineis
exposed, such as at the time of branch misprediction squash. The fraction of the pipeline
skipped is different depending on whether the extra stages are before or after the reuse stage

Hence, the performance impact of reuse in the two casesis likely to be different.

Adding the stages before the reuse stage elongates the pipeline but keeps the number of
stages skipped by the reused instruction the same (Figure 6.4 (b)). Hence, the proportion of
the pipeline skipped by the reused instruction decreases, thereby, possibly decreasing the

impact of reuse on performance.

Adding the stages after the reuse stage (Figure 6.4 (c)) has two opposite effects. On the
positive side, it increases the number of stages and the proportion of the pipeline skipped by
the reused instructions. In such a pipeline, reuse may have greater impact on performance.
However, on the negative side, adding extra stages after the reuse stage may lower the reuse

rate, as we have discussed earlier, and, hence, may cause the reuse performance to degrade.

6.5.3 Results

In Figure 6.5, we show how the reuse results vary when the pipeline length is varied. The
reuse rates and reuse performance are shown in Figures 6.5 (@) and (b), respectively. The pipe-
line length is varied by adding 1 or 2 extra stages before or after the reuse stage, as shown in
Figures 6.4 (b) and (c). These extra stages are non-stalling; i.e., they don’'t generate pipeline

stalls by themselves.

192

100

90 Reuse Rates
no-extra stages
80-] 1 extra stage before reuse
70 B 2 extrastages before reuse
B 1extrastage after reuse
% 60 B 2 extrastages after reuse
@ % s
5]
o
o]
o
go m88k ijpeg perl vort li gce comp HMean
20-
18 Reuse Performance
no-extra stages
16 1 extra stage before reuse
14 I 2 extrastages before reuse
B 1 extrastage after reuse
Q.
'i 12 B 2 extrastages after reuse
® 5
5]
o
o]
o

go ma88k ijpeg perl vort li gee comp HMean

Figure6.5 Impact of varyingthe pipelinelength on (a) reuseratesand (b) reuse performance.

Adding the extra stages before the reuse stage has no impact on the reuse rates
(Figure 6.5 (@), as would be expected since these stages are non-stalling. Adding them after
the reuse stage, on the other hand, decreases the reuse rates for all benchmarks (although by a
small amount). Thisis because, as discussed earlier, due to this extra delay before the execu-
tion stage, more instructions don’t execute soon enough to enable the reuse of their dependent
instructions. However, the decrease in the reuse rate is small on average (1 to 2%-point), with

the maximum decrease being 5%-points (from 33% to 28%) in the case of m88ksim.

193
In Figure 6.5 (b), we see that the variation in the pipeline length can impact the reuse per-

formance differently for different benchmarks. For some benchmarks (e.g., li, and compress),
adding stages before the reuse stage degrades the reuse performance more than adding them
after the reuse stage; in others (e.g., perl, and ijpeg) the oppositeis true. This variation can be
attributed to the relative importance in these benchmarks of the various factors that affect
reuse performance (e.g., skipping larger fraction of the pipeline, decrease in reuse rate). How-
ever, on average, the changes in reuse performance are small, suggesting that, overal, the

reuse results are relatively insensitive to small changes in the pipeline length.

6.6 Branch Prediction

In all the previous experiments, we used a gshare predictor for branches (Table 2.1). Although
we attain reasonably high prediction accuracy, gshare is not the most aggressive predictor
available today; other more accurate predictors, such as hybrid predictors [50], have been
developed and are commonly used today, both in the research community and in industry. In
this section, we study how the reuse results might change if more accurate branch predictors
are used in the underlying processor. We, first, qualitatively discuss the impact of improving

the branch prediction rate on the reuse results.

6.6.1 Possible impact on reuserates

Increase in the branch prediction rate may decrease the reuse rate because of two reasons.
First, with high branch prediction rate, the pipeline will experience fewer squashes — and,

hence execution will get delayed less often due to branch misprediction. As we have discussed

194
before in this chapter (in relation to window size and pipeline width), delays in the pipeline

sometimes help in reusing more instructions because they provide time for the source instruc-
tions to execute and produce the results that enable the reuse of the (delayed) dependent
instructions. Since improvements in branch prediction can reduce delays in the pipeline, it
may reduce the number of instructions reused. Said another way, improving the branch predic-
tion accuracy increases the effective fetch rate, which may cause instructions to arrive at the
reuse stage before their operand values are ready and, hence, may cause them to not get
reused.

Second, improving the prediction rate may reduce the squash reuse component of the total
reuse, because it reduces the number of misprediction squashes. This may result in an overall
decrease in the reuse rate. (Sometimes, a reduction in sguash reuse does not reduce the overall
reuse rate because the instructions that would have gotten reused because of sguashes get

reused as part of the general reuse in the absence of squashes.)

6.6.2 Possibleimpact on reuse performance

Increase in branch prediction rate may both improve or hurt reuse performance. It may
hurt the reuse performance for two reasons. Firstly, since fewer instructions may get reused
when the branch prediction rate is improved, the reuse performance may decrease accord-
ingly. Secondly, since squash reuse makes a significant contribution to performance improve-
ment (as we can see from Figure 4.14), its reduction may reduce overall performance.

However, improving branch prediction may also improve reuse performance in two ways.
Firstly, improving branch prediction streamlines the control flow and, hence, makes the data-

flow latencies more critical to the overal execution time. Since instruction reuse reduces the

195
dataflow latency (e.g., by collapsing dependent instructions), its performance impact may

increase with the increase in branch prediction rate. Said another way, an increase in branch
prediction accuracy will allow more and more reuses that were earlier rendered useless
because of misprediction latencies to be useful reuses.* Therefore, reuse may have a higher
impact on performance with improved branch prediction accuracy. Secondly, the reuse perfor-
mance may improve because as the branch prediction improves, the machine can fetch deeper
down the correct path and fill the instruction window with “legal” instructions. With more
“legal” instructions present in the window, the available execution bandwidth may not be
enough to exploit al the useful work present in the window — especially in the case of a nar-
row machine. Since reusing instructions can free up execution bandwidth, which can then be
utilized in executing other ready instructions, reuse may have a larger impact on the perfor-

mance when the branch prediction rate isimproved.

6.6.3 Results

In this section, we show how the reuse results are impacted when the branch prediction
rates are improved. To do this study, we run experiments with a perfect branch predictor —
where al branches get predicted correctly — and compare the results with those obtained with
gshare predictor. Using the perfect predictor, instead of any actual predictor, lets us see the
maximum impact on reuse results of the improvements in branch prediction accuracy. We
conduct the experiments for 2 pipeline widths: 4-way (our default pipeline) and 2-way. We

study the 2-way pipeline to show the variations in reuse results in a pipeline where execution

4. Thisisanalogousto why increasing the window size makes more reuses useful and, thereby, improves reuse
performance as discussed in Section 6.3

196

100, 100,
904 Reuse Rates 904 Reuse Rates

perfect perfect
80 W red 80 W red
704 704

60-{ 60-{

504 504

Per cent Reuse
Per cent Reuse

@ mesk ijpeg perl vort li goo comp HMean - @ mesk ijpeg perl vort li goo comp HMean

4-way machine @ 2-way machine
Zg’ perfect 304 perfect
267 Reuse Performance B actud 284 Reuse Performance B actud
- 264
244 244 %
224 224
204 204
%‘ 18 S 18] L
g 16 E 164
e 144 s 144 ve
13 13
§ 124 é 12
a a
- 104 10
8
6
4
24
[ol!
g mask ijpeg perl vort li gee comp HMean go m8gk ijpeg perl vort li gec comp HMean
4-way machine 2-way machine

(b)

Figure 6.6 Impact of perfect branch prediction on (a) reuserates, and (b) reuse performance.
Thereuse results are shown for both 4-way super scalar and 2-way super scalar machines.

bandwidth may be a bottleneck. The results are presented in Figure 6.6.

First, we discuss the impact on reuse rates (Figure 6.6 (a)). For the 4-way machine, the
reuse rates are not affected appreciably by the improvements in the prediction rate. This
implies that, in this pipeline, the problem of operands not being ready, which may be caused
by higher branch prediction rates (as described earlier), is not very severe (because of suffi-
cient execution bandwidth). However, we see a more pronounced decrease in the reuse rate for
the 2-way machine. Thisis because a better branch predictor improves the effective fetch rate,
and the low execution bandwidth of the machine is not able to execute instructions soon

enough to make the operand values ready before the instructions needing them arrive at the

197
reuse stage. Thus, we see that the reuse rate becomes sensitive to and decreases with branch

prediction accuracy when the underlying processor is not aggressive.

Next, we discuss the impact on reuse performance (Figure 6.6(b)). We see interesting
effects on reuse performance because of improvements in branch prediction accuracy. In the
case of the 4-way machine, we see a marked decrease in speedups with perfect prediction.
This is due to couple of reasons mentioned earlier, including the absence of sgquash reuse,
which is a significant factor in performance (as shown in Figure 4.14). Also, the ability of
reuse to free execution bandwidth is of little advantage in this case since a 4-way machine
potentially has enough execution bandwidth to exploit the available ILP. However, we see a
different story in the case of the 2-way machine. For several benchmarks (e.g., go, m88ksim,
compress), the reuse performance improves significantly with perfect prediction. This is
because in 2-way machine the execution bandwidth isin short supply, and the ability of reuse
to free up execution bandwidth (and thereby allow other ready instructions to execute) helps it
to impact the performance to alarger extent. The average reuse performances, in this case, for
the perfect and actual predictor are the same. Thus, we see that, overal, the reuse performance
is sensitive to branch prediction accuracy, but whether it increases or decreases with predic-

tion accuracy depends on the aggressiveness of the underlying machine.

6.7 Memory Latency

In our simulations, we have used a L1 miss latency of 6-cycles. In this section, we study
how varying this parameter may affect the reuse results. We begin with a qualitative discus-

sion.

198
6.7.1 Possibleimpact on reuserates

Increasing the memory latency may both improve or decrease the reuse rates. It may
improve the reuse rates for the same reason decreasing the instruction window size may
improve the reuse rates (Section 6.3). With higher memory latency, the instruction window
may get full more often. The resulting pipeline stalls may give source instructions in the win-
dow more time to execute and prepare the operands for the dependent instructions before the
latter reach the reuse stage. This may decrease the number of reuses that were missed due to
operands not being ready.

However, increasing memory latency can also delay the generation of operands and,
hence, can also hurt reuse rate. This may happen for instructions that depend on the load that
misses in the cache. Due to the long memory latency, the dependent instructions may not have

their operands ready in time and hence may miss reuse.

6.7.2 Possibleimpact on reuse performance

Increasing the memory latency may also either improve or decrease the reuse perfor-
mance. This may happen because of several reasons. The reuse performance may increase or
decrease according to whether the reuse rate increases or decreases with the increase in mem-
ory latency. However, there are other types of interactions that can take place, which may gov-
ern how the reuse performance is impacted. We mention them next.

As mentioned in the previous section, with higher memory latency, it is possible for the
window to fill up more often. The ensuing stall, apart from affecting the reuse rates in the way
described earlier, may also decrease the reuse performance by rendering many reuses usel ess.

The source instructions may be reused, but the dependent instructions may be stalled; by the

199
time the stall clears, the dependent instructions may not execute any earlier than they would

have in the base case (as in the case of smaller instruction windows).

The increase in memory latency may increase the impact reuse has on the bottom line per-
formance. This may happen in the unlikely case when the loads that miss the cache get reused.
Since this would amount to short-circuiting a very long latency operation, it will improve per-

formance significantly.

6.7.3 Results

In Figure 6.7, we show the impact of an increase of memory latency on reuse results. We
perform experiments with four memory latencies (which in our case is the same as the L1
miss latencies): 6 cycles, 10 cycles, 20 cycles, and 100 cycles. (The latency of 6 cyclesisthe
default for our baseline processor.) The size of the D-cache used in these experiments is the
same as that shown in Table 2.1. The reuse rates and the reuse performance are shown in

Figure 6.7 (a) and (b), respectively.

From Figure 6.7 (a), we see that for most benchmarks the reuse rates are not affected by an
increase in the memory latency. On average, we see the same reuse rate for al latencies. Sim-
ilarly, from Figure 6.7 (b), we see that for most benchmarks (and on average) the reuse perfor-
mances are the same for the memory latencies of 6, 10, and 20 cycles. For the memory latency
of 100, although we see a consistent decrease in performance for all benchmarks (for reasons
discussed earlier), on average the performance is comparable to that with other latencies. This
result shows that for the D-cache miss rates that we see (which are small), the reuse rates and

the reuse performance are largely insensitive to memory latency — only slight changes in

100+
90
80
70

60

@

Percent Reuse
8
1

(b)

Per cent Speedup
5
1

Reuse Rates

go m88k ijpeg perl vort

Reuse Performance

go m88k ijpeg perl vort

200

6 cycle mem-lat
10 cycle mem-lat
20 cycle mem-lat
100 cycle mem-lat

39393939

24242424

comp HMean

6 cycle mem-lat
10 cycle mem-lat
20 cycle mem-lat
100 cycle mem-lat

comp HMean

Figure 6.7 Impact of increase of memory latency on (a) reuse rates, and (b) reuse

performance.

results occur by increasing the latency. But, for applications that incur higher data cache

misses, the reuse results may get impacted more significantly in ways that were discussed in

the previous two sections.

6.8 Reuse L atency

In all our previous simulations, we had assumed that the reuse test — the test that estab-

201
lishes whether an instruction can be reused — completes within a single cycle. Depending on

which reuse scheme is used, it is possible that the reuse test may take multiple cycles to com-
plete, particularly in the case of the value based schemes, S, and S, 4, Which require that the
values of operands be compared to determine reuse.® In this section, we evaluate the impact
on reuse resultsif the latency of the reuse test — i.e., reuse latency — is more than one cycle.
However, in the next section, we first describe how IR with multiple cycle reuse latency inte-
grates in a pipeline. Then, in Sections 6.8.2 and 6.8.3, we qualitatively discuss how reuse
latency may affect reuse rates and performance. Finaly, in Section 6.8.4, we present the

results.

6.8.1 Pipelinewith reuse latency

The pipeline with IR, shown in Figure 4.6 (page 94), can be modified for multiple-cycle
reuse latencies as follows. At the read register stage, the pipeline is divided into two pipelines:
the regular pipeline and the reuse pipeline. The number of stages in the reuse pipeline is the
same as the reuse latency (e.g., if reuse latency is 2, the reuse pipeline will have two stages).
Thisis based on the assumption that the reuse test can be pipelined. Thefirst stage of the reuse
pipeline overlaps with the register read stage — thus, with reuse latency of 1, the modified

pipeline will be same as the original pipeline shown in Figure 4.6.

At the read register stage, the instructions are sent down both pipelines. If an instruction
gets reused before it is executed in the main pipeline, then the reused results are written to the

reorder buffer entry of the instruction, and are also forwarded to dependent entries in the

5. For S,4q, the value comparison is needed only for the independent instructions; the dependent instructions
are reused using the dependent information (Section 4.3.4, page 89).

202
instruction window. A reused instruction is not issued for execution in the main pipeline (if it

has already been issued for execution then its writeback isignored). If, on the other hand, the
instruction completes execution before it is reused, then the reused result, if generated, is

ignored.

6.8.2 Possible impact on reuserates

Whether the reuse rates are affected by the reuse latency, depends both on the details of
how the main and the reuse pipelines interact and on how the reuse test itself is partitioned
among the various stages of the reuse pipeline. Conceptually, the reuse rates may improve due
to the multiple-cycle latency of the reuse test because the requirement that the operand values
should be ready may now need to be met latter in the pipeline. But exploiting this opportunity
will require that the main pipeline be able to communicate results to the latter stages of the
reuse pipeline and, therefore, will also require us to make specific assumptions about the
structure of the reuse pipeline. We do not want to be so specific about the reuse pipeline struc-
ture in this study. Therefore, we only allow bypasses within the reuse pipeline from instruc-
tions that get reused to dependent instructions behind in the pipeline. With this assumption,
the reuse rate that we will achieve for the multiple-cycle reuse latency case will be exactly the
same as that for 1-cycle reuse Iaten(:y;6 only the reuse performance will be affected by the
increased reuse latency. (We can also infer this from the results of Section 6.5, where we

showed that non-stalling stages before the reuse stage will not affect reuse rate.)

6. We aso count the reused instructions that get ignored (because the instruction result was available from the
execution before the reuse pipeline) as part of total reuse.

203

6.8.3 Possibleimpact on reuse performance
Increasing the reuse latency may reduce the profitability of reuse and, hence, may
decrease the reuse performance for several obvious reasons. Due to an increase in reuse
latency, many instructions may get reused after they finish execution, making the reuses prof-
itless. An increase in reuse latency may delay the execution of the instructions dependent on
the reused value and, thereby, diminish the benefits of reuse. It may also degrade other bene-
fits of reuse (such as early resolution of branches), which arise because of IR’s ability to gen-

erate results early.

However, the reuse performance may be tolerant to some amount of reuse latency — i.e.,
the performance may not degrade completely when the reuse is delayed by few cycles. Some
of the reasons why this may be the case are described below. First, athough the execution
stage in apipeline may logicaly be afew cycles away from the register read stage (2 cyclesin
our pipeline), it may take many more cycles for instructions to get executed from the time they
get past the register read stage because of other instructions ahead of them in the window. In
such cases, if the reuse latencies are short, it may be possible for instructions to get reused
before they complete execution. This reuse may still improve performance. Second, some-
times, even after the reuse latency the reuse results may still become available to the depen-
dent instructions before they can use them. Hence, the execution of the dependent instructions
may not occur any later than with 1-cycle reuse latency. In such cases, an increase in reuse
latency may not affect performance at all. Finally, the reuse of the dependent chain of instruc-
tions in the same cycle may still be profitable since it is likely that the time taken to execute a

chain of dependent instructions is more than the reuse latency.

204
6.8.4 Results

In Figure 6.8, we show how increases in the reuse latencies affect the reuse performance.
(We do not show the reuse rates because, as discussed earlier, they are not impacted by the
increase in the reuse latency.) We present speedups for 3 reuse latencies. 1-cycle, 2-cycles,
and 3-cycles. The 1-cycle reuse latency is the reuse latency that we have used in our other IR
experiments so far. The speedups are shown for 4-way associative RBs with sizes ranging
from 256-entries to 16k-entries.

From the figure, we see that the impact of reuse on performanceislargely tolerant of small
increments in reuse latencies. For many cases, we see negligible difference in the speedups for
different reuse latencies (e.g., vortex for RB sizes 512 entries - 4k entries, perl for 2k entriesto
4k entries). In most cases, where there is a difference in speedups, the difference is small:
about 1%-point. The maximum degradation occurs in the case of compress, where the speed-

ups decrease from 5% to 2%.

6.9 Summary and Conclusions

In this chapter, we studied the sensitivity of reuse results — reuse rates and reuse performance
— to various processor parameters such as window size, pipeline width, pipeline length,
branch prediction accuracy, memory latency, and reuse latency. We vary these parameters
within reasonable limits and determine the impact that this change has on the reuse results. We

also discuss qualitatively, for each parameter, why and how we might expect the reuse results

205

20 S S 20 R S R S
18 J reuse-latency: 1 cycle —+— | L 1s "~ reuse-latency: 1 cycle — |
reuse-latency: 2 cycles ---x--- reuse-latency: 2 cycles
16 4- reuse-latency: 3 cycles —--%--- - 16 4~ reuse-latency: 3 cycle
i i H H H H 14 _‘ VVVVVVVVVVVV ,‘ VVVVVVVVVVVV , VVVVVVVVVV B

12 4 B S Y P
10 s]

O N b~ O
|

7 8 9 100 11 12 13 14 15 7 10 11 12 13 14 15
L |

| |
reuse-latency: 1 cycle —+—
reuse-latency: 2 cycles ---x---
reuse-latency: 3 cycles ---x---

R
©

reuse-latency: 1 cycle ——
reuse-latency: 2 cycles --->--- |
reuse-latency: 3 cycles ---*--- -

¥
7 8 9 10 11 12 13 14 15 7 8 9 10 11 12 13 14 15
20 ! — ! ! : ! . 4 : , :
reuse-latency: 1 cycle —+—
reuse-latency: 2 cycles ---x---
reuse-latency: 3 cycles --- -

reuse-latency: 1 cycle —+— |

18 1 reuse-latency: 2 cycles ---x-

7 8 9 10 11 12 13 14 15 7 8 9 10 11 12 13 14 15
20 ! ! ! ! ! ! ! 20 : : ! ! ! ! !
18 - reuse-latency: 1 cycle —+— i | 1] reusedatency:lcycle —— | i
reuse-latency: 2 cycle ---x--- reuse-latency: 2 cycles ---x---

16 - _ reuse-latency: 3 cycles k- - 16 - reuse-latency: 3 cycles -
,,,,,,,,,,,, e L
H H H H H H 12 4 : : : ! :

10 +-

%speedup

o N B O
|

7 8 9 10 11 12 13 14 15 7 8 9 10 11 12 13 14 15
Log_2(num of RB entries) Log_2(num of RB entries)
Figure6.8 Impact of reuselatency on performance. The speedupsare shown for different RB
sizes (in logy(num of entries)) with 3 reuse latencies: 1 cycle, 2 cycle, and 3 cycles.

206

to change with variations in the parameter values. We summarize the finding for each of these

parameters below.

We simulate three window size: 32, 64, and 128 instructions. We see that the reuse results
are fairly insensitive to this variation in window size: on average, the reuse rates and the
reuse performance are the same for all three window sizes.

We simulate four pipeline widths: 1-, 2-, 4-, and 8-way wide. Although we obtain compa-
rable reuse rates for al four widths, we see that the reuse performance can vary widely
depending on the pipeline width. The narrow machines (1- or 2-way) see significantly
more performance improvement with IR than do the wide machines (4- or 8-way). Thisis
because narrow machines do not have sufficient execution bandwidth to exploit all the
available ILP in the window. Reusing instructions frees up execution bandwidth that can
be used to execute other ready instructions. Also, the reuse performance for the 8-way
machine is consistently higher than that for the 4-way machine. This is because a wider
width facilitates the reuse of longer chains of instructions.

We vary the length of the pipeline by adding 1 or 2 extra stages before or after the reuse
stage. We find that the reuse rates and the reuse performance are fairly insensitive to these
changes in the pipeline length: on average, we see comparable resultsin all cases.

To study the effect of improving the branch prediction accuracy on the reuse results, we
simulate the effects of perfect branch prediction. We find interesting changes in the reuse
rates and reuse performance with the increase in the branch prediction accuracy. The reuse
rates reduce with the increase in branch prediction rate for 2-way machine, but they do not
change appreciably for 4-way machines. This implies that the reuse rates are sensitive to

branch prediction accuracy only when the execution bandwidth is a bottleneck (since

207
operands don’t become ready soon enough). The reuse performance, on the other hand, is

sensitive to branch prediction accuracy, but whether it improves or decreases for more
accurate predictors depends on the aggressiveness of the underlying machine: if the under-
lying machine is not aggressive then the reuse performance increases, otherwise, it
decreases.

We simulated four different memory latencies: 6, 10, 20 and 100 cycles. We see that for
the small D-cache miss rates that our benchmarks experience, these changes in memory
latencies do not impact the reuse results, on average, the results for all these memory
latencies are comparable. However, we note that with higher D-cache misses, the variation
in memory latencies may have a more pronounced impact on the reuse results.

Finally, we simulate 3 different reuse latencies: 1-, 2-, and 3-cycles. We see that the reuse
performance is largely insensitive to small changes in the reuse latency. For most pro-
grams we see no or avery small (1%-point) difference in the reuse performance with dif-

ferent reuse latencies.

208

Chapter 7

Conclusions

In this chapter, we first present a summary of this thesis and then discuss the various direc-

tions in which this work can be extended.

7.1 ThesisSummary

In this thesis, we performed two main tasks: (i) we studied a new phenomenon exhibited by
programs, called instruction repetition; and (ii) we introduced and studied a novel microarchi-

tectural technique, called instruction reuse, for exploiting that phenomenon.

The phenomenon of instruction repetition is that instructions often execute repeatedly with
the same input values and produce the same results. We observed that this phenomenon is very
pervasive, with the majority of dynamic instructions getting repeated for most of the bench-
marks. Instruction reuse (IR) is a non-speculative technique that exploits this phenomenon to
reduce the amount of work that needs to be done to execute programs and, therefore, to
improve performance. It obviates the re-execution of repeating instructions by reusing their
results from a hardware table, called the Reuse Buffer (RB), where they were stored previ-
oudly. Theinstructions get reused early in the pipeline (in our case, in the read register stage of

the pipeline), after which they skip the rest of the pipeline stages (such as, issue, execute and

209
writeback) and become ready for retirement.

We identified two broad reasons why instructions may get repeated: (i) due to speculative
execution, and (ii) due to the nature of programs themselves. The repetition due to the first
reason occurs when executed instructions that are squashed due to mis-speculation are re-exe-
cuted with the same input values (e.g., due to control independence). We called this form of
repetition, squash repetition. The repetition due to the second reason occurs because of the
way programs are normally written. We write programs to be concise (using loops), modular
(using functions), and generic in nature. To support the concise and modular ways of express-
ing computation, programs contain many “support” instructions such as, loop-control instruc-
tions and function prologues and epilogues. These instructions often end up performing the
same tasks repeatedly during execution. To make programs generic in nature, we write them
so that they are capable of operating on different data values. But, when generically-written
programs see the same input values repeatedly, many instructions in them end up producing
the same results again and again. We called this second form of repetition, general repetition.
The reuse engendered by these two forms of repetitions were called squash reuse and general
reuse, respectively.

We outlined several reasons why IR may improve performance. First, since a reused
instruction is not executed, it frees up several pipeline resources (e.g., issue ports, functional
units, cache ports, etc.). These resources can then be used for executing other waiting instruc-
tions. Second, reused results become available early in the pipeline, which allows instructions
dependent on them to execute sooner. Third, IR salvages useful work from mis-prediction
sguashes, which reduces the misprediction penalty. Fourth, IR reuses chains of dependent

instruction in the same cycle. This allows instruction sequences that would have otherwise

210
taken multiple cycles to execute, to complete in a single cycle (or reuse-latency number of

cycles) when reused.

The study conducted in this thesis was performed using a benchmark suite consisting of
21 programs. 8 of them were SPEC ‘95 integer programs, 10 were SPEC ‘95 floating-point
programs, and 3 were (self-picked) graphics programs — Viewperf+ Mesa, MPEG-2 decoder,
and POV-Ray. Viewperf is a benchmark that evaluates the performance of OPenGL" imple-
mentations (Mesais a publicly available OpenGL implementation that we evaluated). MPEG-
2 decoder plays an MPEG-2 format movie; and POV-ray is ascene renderer that uses ray-trac-

ing technique to create 3-D images.

Next, we summarize the work we performed on instruction repetition and reuse.

7.1.1 Analysisof Instruction Repetition

We studied the phenomenon of instruction repetition elaborately, for the purposes of
understanding it better. This study consisted of two parts. In the first part, we determined the
statistical characteristics of the phenomenon. We collected numerous results such as, percent
of dynamic instructions that get repeated, percent of static instructions that generate repeated
instances, fraction of static and dynamic instructions that account for most of the repetition,
number of different values with which repetition takes place, and so on. We found that thereis
significant repetition in programs — more that 75% of dynamic instructions are repeated for
severa benchmarks (e.g., 88% for gcc, 93% for vortex, 77% for viewperf, and 83% for pov-
ray). We also found that a very few static and dynamic instructions contribute to most of the
repetition — less than 20% of executed static instructions and less than 20% of unique

dynamic instances give rise to more than 90% and 80% of total repetition, respectively.

211
In the second part of this study, we tracked various sources of instruction repetition to bet-

ter understand its causes. For this purpose, we grouped instructions in programs in categories
based on the type of data they used (e.g., program input data and immediate values) and the
type of work they performed (e.g., global-address cal culation and function prologue and epi-
logue). We then determined how the total repetition was distributed across these categories.
We performed this analysis at two levels: (i) global-level, where we analyzed how repetition is
distributed over whole programs; and (ii) local-level, where we analyzed how repetition isdis-
tributed with functions. We also performed afunction-level analysis, where we determined the
degree of repetition in the argument values of functions.

Many different types of results were presented, some which are as follows. The global
analysis showed us that most of the repeated instructions used data that originated from the
program internal values (immediate values) and the global initialized data — i.e., from the
data that is hardwired in program binary — and less used data that originated from the pro-
gram inputs. This suggested that the phenomenon of repetition may be more a property of the
program itself than of the input data. The local analysis showed that most of the repetition was
due to values that originated as function arguments or global values. We also saw significant
repetition due to instructions that constitute function prologues and epilogues and those that
are involved in computing addresses of global loads. The function analysis showed that there
is a significant amount of repetition in function arguments, with most dynamic function calls
(e.g., 78% in go) being calls with the exact same set of argument values as previous calls to
the same function.

Although we performed a very elaborate analysis, we note that this was only an initial

attempt to understand this phenomenon. Our choice of instruction categories and types of

212
analyses (global, local, etc.) was largely empirical. Better insights into the phenomenon may

be gained by categorizing the instructions differently or by conducting the analysis at a differ-

ent level (e.g., algorithmic level).

7.1.2 Instruction Reuse

Substantial effort in this thesis was devoted to devel oping the instruction reuse techniques
and cultivating a better understanding of it. This work was divided into three categories: (i)
devising instruction reuse schemes, (ii) studying the storage issues for instruction reuse; and
(iii) investigating the different ways in which instruction reuse may interact with other

microarchitectural features. We summarize these categories below.

7.1.2.1 Reuse schemes

We studied four schemes for implementing instruction reuse. All these schemes reuse
instruction results from the RB by establishing that the current values of instruction operands
are the same as those used to calculate the results present in the RB. However, these schemes
differ in how they establish the sameness of operand values. Scheme S, stores the operand
values along with the resultsin the RB. To establish reusability, it compares the current values
of operands with those stored in the RB. The result is reused if the values are the same.
Scheme S;, stores operand register identifiersin the RB with the results. It invalidates resultsin
the RB whose operands registers are overwritten with a new value. A result is reused if it is
still valid. Schemes S, 4 and S;,4 extend the schemes S, and S, respectively, with the depen-
dence information, to facilitate the reuse of dependent instructions. The instructionsin the RB

are linked together according to their data dependences, with the dependent instruction point-

213
ing to the source. With this arrangement, the dependent instruction in the RB can be reused

simply by establishing that their source instructions are reused. The instructions for which no

dependent information is available isreused as in the base scheme S, or S,

Our results showed that, in general, a significant percentage of dynamic instructions get
reused — for several benchmarks (e.g., m88ksim, vortex, and perl) more than 50% of dynamic
instructions were reused. Comparing the different reuse schemes, we saw that scheme S, per-
formed the best (with average reuse rates of 48% for integer benchmarks with 4096 entry RB),
while scheme S,, performed the worst (the average reuse rates being 16%). Scheme S,
allowed the reuse of dependent instruction and, hence, improved the reuse rates over scheme
S, (with an average of 25%). Scheme S, 4 performed nearly as well as scheme S, even with
using only the dependent information to reuse the dependent instructions (with an average of
45%). We also presented other reuse characteristics such as reusability of different instruction
types, and contributions of each category to total reuse. These results showed that all instruc-
tions categories are amenable to repetition; however, loads (and their address calculation
micro-operation) make the largest contribution to total reuse. The speedups over the base case
due to IR were not as pronounced as the reuse rates; nevertheless, they were significant — in

several cases we saw more than 15% improvement in performance.

7.1.2.2 Sorageissuesfor IR

The RB is a centra hardware structure that is used in the IR technique. We studied three
main parameters of this structure — size, associativity, and management policy — in greater
detail. We presented the results on how reuse rates vary with size and associativity of the RB.

We presented the maximum (limit) reuse rates for a range of RB sizes and associativities —

214
or, aternatively, showed the minimum RB sizes and associativities required for capturing a

certain amount of reuse. The limit results showed that it is possible to capture significant
amounts of reuse with asmall RB, e.g., for several benchmarks, we saw that close to or more
than 50% of dynamic instructions can be reused with the RB with 1K entries. One of the
determinants of the degree of RB associativities is the number of instruction instances that
need to be buffered to reuse a significant number of instructions. We presented the number of
instances that we need to buffer to capture a certain level of reuse. The results showed that, for
most benchmarks more than 70% of dynamic instructions can be reused by just buffering the
last four instances. This showed that the RB need not be of a high associativity for capturing
large amounts of reuse.

The limit results aso showed the RB as being inefficiently utilized with the current man-
agement policies. Motivated by this result, we studied four RB management policiesto utilize
the RB space efficiently. Two of these policies, FnReused and FnReady, performed selective
insertion in the RB, filtering our instructions that are not likely to get reused. The third policy,
RR, performed selective eviction from the RB, evicting the likely unreusable instructions from
the RB before the reusable ones. The fourth policy, FiF, was a novel management policy
designed along the lines of the Belady’s optimal management policy. For each instruction, this
policy determined how far in the future that instruction islikely to get reused. Using thisinfor-
mation, it scheduled instructions in the RB, giving priority to instructions with shorter dis-
tance values.

The success of these new policies was mixed. For some benchmarks, we saw a significant
improvement in the reuse rates; for others, we saw only small improvement or, in some cases,

a dlight degradation in reuse rates. Overall, FiF showed potential to perform better than the

215
other policies; however, we noted that policies FnReady and RR may be less expensive to

implement and, hence, the reuse rate improvement caused by them may be noteworthy.

7.1.2.3 Sengitivity analysis

Finally, we studied the sensitivity of IR with several other microarchitectural parameters,
such as instruction window size, pipeline width, pipeline length, branch prediction accuracy,
memory latency, and reuse latency. We first discusses qualitatively how the IR results may
vary with each of the parameters. We then conducted experiments by changing the parameters
(within reasonable limits) to measure the extent of sensitivity. We saw that the reuse results
were largely insensitive to the window size and pipeline length for the range in which we var-
ied them. The reuse results were, however, quite sensitive to changes in pipeline width. For
example, we saw that IR was far more effective in improving the performance for narrow
machines (1- or 2-way superscalar) than for wide machines (4- or 8-way superscalar). The
reuse results were also sensitive to branch prediction accuracy, but the “direction” of sensitiv-
ity depended on the width of the underlying pipeline: for narrow machines, improving the
branch prediction accuracy improved reuse performance, but for wide machines, doing so
decreased reuse performance. Finally, we saw that the reuse results were largely insensitive to
small changes (by 1 or 2 cycles) in reuse latency. The differences in reuse performances with

1, 2, and 3 cycle reuse latency were negligible in most cases.

216

7.2 Future Work

This work is an initial effort in the area of instruction repetition and reuse. There is an
immense potential for further research in thisfield. In the next several sections, we present the

number of different ways in which thiswork can be extended further.

7.2.1 Reuseat higher granularity

In thisthesis, we performed reuse at instruction-level granularity — i.e., instructions were
individually checked for reusability. We have seen that very often groups of instructions get
reused together. The concept of reuse can be extended from instruction-level to group-level,
where each group is checked for reuse as a single entity. The inputs and outputs of groups of
instructions can be identified, and a group can be reused when its input values are repeated —

without having to check the individual instructions within the group.

The group-level reuse may have several advantages. For example, (1) instructions within
groups may be skipped altogether, i.e., not fetched at all, when the groups are reused. (2) The
reuse information may be stored more concisely at group-level than at instruction-level, since,
only overall group information needs to be stored instead of per instruction information. (3)
The group-level reuse may require less number of ports in the RB than the instruction-level
reuse for reusing the same number of instructions simultaneously: a single group access may
supply the same number of instructions from the RB for which several single instruction

accesses may be needed.

However, there may be several issues with implementing group-level reuse. We performed

some work in this area. Below, we discuss some of the issues that we discovered in the pro-

217
cess. Later in this section we also discuss some issues in performing group reuse when the

instructions within groups are not contiguous.

We implemented group-level reuse as follows. We constructed groups using instructions
that were dynamically contiguous and “reusable”’. Aninstruction was considered “reusable’ if
it got reused from a single-instruction RB. Each group consisted of a starting PC, a following
PC, inputs and outputs. The instructions themselves were not stored in the group. The starting
and the following PCs of a group were the PC of the first instruction in the group and the PC
of the instruction after the group, respectively. The inputs to a group were the registers or
memory locations that were read within the group without been first defined. While the out-
puts of agroup were the registers or memory locations that were defined within the group. The
groups were stored, indexed by their starting PC, in a group reuse buffer (GRB), from where
they were reused, in the register read stage of the pipeline, when the same starting PCs were
re-encountered with the same set of input values. When a group was reused, its output values
were used to set appropriate registers and memory locations, and the instruction fetch was
diverted to the following PC, thereby, skipping the instructions internal to the group.

We faced two main issues while studying the above group-level reuse implementation.
Below, we describe these issues and some ways in which they can be addressed in future
work.

» First, the problem of inputs not being ready at the reuse stage got aggravated for group
reuse, resulting in our implementation of group reuse not capturing significant amount of
repetition. This problem, which was not as severe for single instruction reuse (as sug-
gested by the high reuse rates in Figure 5.1), became acute for group reuse because when

reusing groups certain input values were required sooner than they would be when reusing

218
individual instructions. We illustrate this scenario in Figure 7.1, where we show a group

consisting of an instruction sequence, ‘A’, ‘B’, ‘C’. The externa inputsto ‘A’ and ‘C’, ‘I’
and ‘k’, become the inputs to the group. With this group formation, the input ‘k’, which
would have been required at time t+2 for instruction reuse (Figure 7.1 (a)), would be
required at timet for group reuse (Figure 7.1 (b)). This early requirement may thwart the

group reuse, if the input is not ready at the prior time.

We suggest a couple of ways in which this problem may be tackled in future work. (1) A
part of the reason why this problem arose was because we reused groups (and instructions)
in fixed pipeline stages only: if inputs were not ready in those stages then the reuse was
forgone. We can alleviate this problem to some extent by making the reuse “floating”, i.e.,
by alowing groups to get reused when ever all their inputs become ready (if their reuse is
still beneficial), irrespective of their position in the pipeline. (2) We may also aleviate this
problem by devising more sophisticated algorithms for constructing groups that do not
include those instructions in groups whose inputs are unlikely to be ready when the groups

are re-encountered.

The second issue we faced was the decrease in control prediction accuracies for several

benchmarks when performing group reuse, which neutralized the performance improve-

time | t+1 | t+2 - t|me t | t+1 | t+2 o
| | 4 | | >
k
AW Kk
Lee) i aee)
| group
(@ (b)

Figure 7.1 Input requirement times for an instruction sequence A, B, C: (a) when
instructions are separ ate, (b) when instructionsarein a group.

219
mentdueto reuse This decreaseccurredoecausehe predictionstructureslid not seethe

control instructionsthat were within the reusedgroups, since theseinstructionswere
skipped.The predictionaccuraciesuffered due to incompleteknowledgeaboutthe his-

tory.

Thisissuemay betackledin futurework by storingthe predictioninformationfor control
instructionsin groupsaspartof the grouprepresentationr his informationcanbe usedto
appropriatelyupdatethe predictionstructureswhena groupis reused.For example,the
directionsfor the branchegreseninsidea groupcanbe storedin the group’s GRB entry,
This information can be usedto updatethe branchhistory register when the groupis
reused.Similarly, the returnaddresse$or the calls andthe countof returnspresentn a
group canalsobe storedwith the group representationThis information canbe usedto
updatethe return addressstack when the group is reused:the return addressegan be
pushedon to the stack,while the countof returnscanbe usedto popthe right numberof

addresses bthe stack.

Somemoreinitial work on group-level reusehasalsobeenperformedby otherresearch-
ers.HuangandLilja [24] have studiedperformingreuseat basic-blocKevel, while Gonzalez,
et. al. [20], have evaluatedthe potentialof performingreuseat the dynamicinstruction-trace

level.

7.2.1.1 Non-contiguous-instruction group reuse

The groupsmay also constituteof non-contiguousnstructions.One example of such
groupsis a chainof dependeninstructions.The advantageof reusingdependenthainsover

reusingcontiguousinstructionblocks is that a contiguousblock may containunrelatedand

220
unreusable instructions that can thwart the reuse of the whole block. However, for dependent

chains, since the instructions are related, they are likely to exhibit same degree of reusability,
increasing the chances of the reusing the whole chain. However, a problem with the non-con-
tiguous group reuse may be the merging of the reused results back into the main pipeline.
Unlike in the case of contiguous instructions, all results cannot be merged immediately, since
there may be write-after-write hazards with the intermediate instructions not part of the group.
Some recent work [38] has shown how results from one computing subsystem can be inte-
grated into another using a technique that is similar in spirit to scheme S,,.4; such atechnique
can also be used to integrate the reused results from a non-contiguous group into the main

pipeline.

7.2.2 Compiler support for reuse

Compiler may be able to play an important role in making the reuse technology more
practical. It can do so in several ways. First, it may help manage the RB efficiently, and
thereby, help make the RB small. It can identify the likely reusable instruction and pass this
knowledge as hintsto the processor. These hints can then be used to choose which instructions
to place in RB. This way we may be able to reduce RB pollution and to achieve high reuse
rates from asmall size RB.

Similarly, compiler may facilitate group-level reuse by identifying (or by creating) reus-
able groups of instructions for the hardware to exploit. Some work has started in thisarea. In
[16], compiler creates regions of code that are likely reusable. The reuse of these regions in
this work is software controlled, the results of these regions are saved and reuse by instruc-

tionsinserted in the code by the compiler.

221
7.2.3 Low power

IR reduces the amount of work that needs to be performed for executing programs. For
example, the reused instructions don’t have to flow through many stages of the pipeline (e.g.,
issue, execute, and writeback), or the reused loads don’'t access the data cache. Due to this
work savings, IR may have the potential to reduce the amount of power consumed in proces-
sors (if, of course, the act of obtaining the results from the RB itself does not consume sub-

stantially more power). Further investigations are required in this area.

7.2.4 Other usesof IR

IR provides the ability to save work and reuse it later on. This ability can be put to several
other uses, some of which are described below.

The I-cache misses limit performance significantly, particularly because they cannot be
overlapped. IR can be used to perform some useful work while waiting for the missed line to
return. The instructions following the missed line can be fetched (if they are in the cache) and
executed assuming no data dependence from the missed line. These instructions are treated
differently than the normal instructions. They are neither inserted in the reorder buffer nor
renamed, and their results after execution are stored in the RB. If, later, the control reaches
these instructions (after the instruction fetch resumes), they can be reused if their resultsin the
RB are found to be valid. This approach can aso be used for performing potentially useful
work when the processor is stalled for other reasons, such as when the instruction window
becomes full.

Recently, many researchers have started working on using separate threads in processors

to optimize the performance of a main thread [13, 38]. One optimization that is being studied

222
isto let a subordinate thread run ahead and execute the performance-hurting events (such as,

cache misses and branch mis-prediction) in advance and communicate the results to the main
thread. The communication between the subordinate thread and the main thread can be pro-
vided using IR-like scheme. The subordinate threads may write the resultsin an RB, while the

main thread may selectively use (appropriate) results from the RB after checking the oper-

ands.

7.2.5 Further developing the FiF policy

The FiF policy, as we have mentioned earlier, is a general policy in that it can be used for
managing other forms of storage as well. Its use in managing the cache hierarchy can be par-

ticularly interesting and warrants further investigation.

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

223

Bibliography

OpenGL. http://wwwopengl.og/.

OpenGL Performance Benchmarks — Viewperf. http://wwwspecbenit.org/gpc/
opc.static/vp50.html

Persistence of Vision(tm) Ray-Tracer. http://wwwpovray.org.
SPEC CPU95 Benchmarks. http://wwwspecbent.org/osg/cpu95/

Harold Abelson and Gerald Jay Sussman. Structue and Interpretationof Computer
Programs MIT Press, Cambridge, MA, 1985.

J. Auslander, M. Philipose, C. Chambers, S.J. Eggers, and B. N. Bershad. Fast,
Effective Dynamic Compilation. In Symposiunon ProgrammingLanguae Design
and Implementatiarpages 149-159, May 1996.

L. A. Belady. A Study of Replacement Algorithms for a Virtual-Storage Computer.
IBM Systemsalirnal, 5(2):78-101, 1966.

Jon Louis Bentley. Writing Efficient Programs Prentice-Hall, Englewood Cliffs,
New Jersey, 1982.

Ratisav Bodik. Path-Sensitivéd/alue-FlowOptimizationsof Programs Ph.D. thesis,
University of Pittsburg, November 1999.

Ratislav Bodik, Rajiv Gupta, and Mary Lou Soffa. Complete Removal of Redundant
Expressions. In Proceedingof the SIGPLAN'98 Confeenceon PlrogrammingLan-
guage Design and Implementation (PLDppges 1-14, June 1998.

Doug Burger, Todd M. Austin, and Steve Bennett. Evaluating Future Microproces-
sors: The SimpleScalar Tool Set. Technical Report CS-TR-96-1308, University of
Wisconsin-Madison, July 1996.

Brad Calder, Peter Feller, and Alan Eustace. Vaue profiling. In Proc. of 30th Annual
international Symposium on Maarchitecture (MICRD-30), December 1997.

R. Chappel, J. Stark, S. Kim, S. Reinhardt, and Y. Patt. Simultaneous Subordinate
Microthreading (SSMT). In Proc. of the 26th Annual International Symposiunon
Computer Achitecture, pages 186195, May 1999.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

224

Yuan Chou, Jason Fung, and John Paul Shen. Reducing Branch Misprediction Penal-
ties Via Dynamic Control Independence Detection. In Proceeding of the Internation
Conference on Supercomputing(ICS), June 1999.

Daniel Citron, Dror Feitelson, and Larry Rudolph. Accelerating Multi-Media Pro-
cessing by Implementing Memoing in Multiplication and Division Units. In Proc. of
8th International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 252—261, October 1998.

Daniel A. Connors and Wen mei W. Hwu. Compiler-Directed Dynamic Computa-
tion Reuse: Rationale and Initial Results. In Proc. of the 32nd International Sympo-
sium on Microarchitecture (MICRO), November 1999.

C. Consel and F. Noel. A Genera Approach for Run-time Specialization and its
Application to C. In Symposium on Principles of Programming Languages, pages
145-156, January 1996.

Freddy Gabbay and Avi Mendelson. Speculative Execution based on Value Predic-
tion. Technical Report EE Department TR 1080, Technion - Isragl Institute of Tech-
nology, November 1996.

Freddy Gabbay and Avi Mendelson. Using Value Prediction to Increase the Power of
Speculative Execution Hardware. ACM Transaction on Computer Systems (TOCS),
August 1998.

Antonio Gonzalez, Jordi Tubella, and Carlos Molina. Trace-Level Reuse. In Proc. of
Internation Conference on Parallel Processing(ICPP), September 1999.

B. Grant, M. Mock, M. Philipose, C. Chambers, and S.J. Eggers. Annotation-
Directed Run-Time Specialization in C. In Proc. of Symposium on Partial Evalua-
tion and Semantics-Based Program Manipulation, pages 163-178, June 1997.

Samuel P. Harbison. A Computer Architecture for the Dynamic Optimization of
High-Level Language Programs. Ph.D. thesis, Carnegie Mellon University, Septem-
ber 1980.

Samuel P. Harbison. An architectural alternative to optimizing compilers. In Proc. of
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 57—65, March 1982.

Jian Huang and David J. Lilja. Exploiting Basic Block Vaue Locality with Block
Reuse. In Proc. of 5rd Annual International Symposium on High-Performance Com-
puter Architecture, January 1999.

Gerry Kane. MIPS R2000/R3000 RISC Architecture. Prentice Hall, 1987.
Mikko H. Lipasti and John P. Shen. Exceeding the Dataflow Limit Via Vaue Predic-

tion. In Proc. of 29th International Symposium on Microarchitecture, pages 226—
237, December 1996.

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

225

Mikko H. Lipasti, Christopher B. Wilkerson, and John P. Shen. Vaue Locality and
Load Vaue Prediction. In Proc. of 7th International Confeenceon Architectuial
Supportfor ProgrammingLanguagesand Opeiating Systemgpages 138-147, Sep-
tember 1996.

Scott MacFarling. Combining Branch Predictors. Technical Report TN-36, WRL,
June 1993.

D. Michie. Memo Functions and Machine Learning. Nature, 218:19-22, 1968.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standad ML
(Revised) MIT Press, Cambridge, MA, 1992.

Carlos Molina, Antonio Gonzalez, and Jordi Tubella. Dynamic Removal of Redun-
dant Computations. In Proc. of Internation Confeenceon Supecomputing(ICS)
June 1999.

E. Morel and C. Renviose. Global optimizations by suppression of partial redundan-
cies. Communications of theGM (CACM), 22(2):96—-103, 1979.

MPEG Software Simulation Group. MPEG-2 Encoder/Decoder. http://
wwwmpey.org/MSSG/

Stuart F. Oberman and Michael J. Flynn. On Division and Reciprocal Caches. Tech-
nical Report CSL-TR-95-666, Stanford University, April 1995.

Brian Paul. Mesa Library. http://mesa3d.sogefoge.net/

Stephen E. Richardson. Caching function results: Faster arithmetic by avoiding
unnecessary computation. Technical Report SMLI TR-92-1, Sun Microsystems L ab-
oratories, September 1992.

Stephen E. Richardson. Exploiting Trivial and Redundant Computation. In Proc. of
the 11th Symposium on Computer Arithmetages 220-227, July 1993.

Amir Roth and Gurindar S. Sohi. Speculative Data-Driven Sequencing for Impera-
tive Programs. Technical Report UW CS TR #1411, University of Wisconsin-Madi-
son, February 2000.

Yiannakis Sazeides and James E. Smith. The Predictability of Data Values. In Proc.
of 30th Annualinternational Symposiunon Microarchitecture (MICRO-30), pages
248-258, December 1997.

Yiannakis Sazeides and James E. Smith. Modeling Program Predictability. In Proc.
of 25th Annual International Symposiunon ComputerArchitectue (ISCA) pages
73-85, July 1998.

J. E. Smith. Decoupled Access/Execute Computer Architecture. In Proc. of the 9th
Annual International Symposiunon ComputerArchitecture, pages 112-119, April
1982.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

226

J.E. Smith and A.R. Pleszkun. Implementing precise interrupts in pipelined proces-
sors. |[EEE Transactions on Computers, 37(5):562-573, May 1988.

Avinash Sodani and Gurindar S. Sohi. Dynamic Instruction Reuse. In Proc. of 24th
Annual International Symposium on Computer Architecture, pages 194-205, July
1997.

Avinash Sodani and Gurindar S. Sohi. An Empirical Analysis of Instruction Repeti-
tion. In Proc. of 8th International Conference on Architectural Support for Program-
ming Languages and Operating Systems, October 1998.

Avinash Sodani and Gurindar S. Sohi. Understanding the Differences Between
Vaue Prediction and Instruction Reuse. In Proc. of 29th International Symposiumon
Microarchitecture, pages 205-215, December 1998.

G. S. Sohi. Instruction issue logic for high-performance, interruptible, multiple func-
tional unit, pipelined computers. |EEE Transactions on Computers, 39-3:349-359,
March 1990.

L. Sterling and E. Shapiro. The Art of Prolog, 2nd Ed.. MIT Press, Cambridge, MA,
1992.

Ka Wang and Manoj Franklin. Highly Accurate Data Value Prediction using Hybrid
Predictors. In Proc. of 30th Annual international Symposium on Microarchitecture
(MICRO-30), pages 281-290, December 1997.

N. Weste and K Eshraghian. Principles of CMOS VLS Design, 2nd edition. Addi-
son-Wesley Publishing Company, 1993.

T. Y. Yeh and Y. N. Patt. Alternative implementations of two-level adaptive training
branch prediction. In Proc. 19th Annual International Symposium on Computer
Architecture, pages 124-134, May 1992.

Appendix A

Additional Results

A.l1 Repetition Resultswith second set of inputs

We show the repetition rates and the global analysis results for the second set of inputs

(shownin Table 2.5) in Table A.1 and Table A.2, respectively

A.2 Additional squash reuseresults

We show the breakdown of percentage of instruction reused and total performance
improvement in terms of general and squash reuse. In Figure A.1, we present the breakdown
for the Specint ‘95 and the graphics benchmarks for schemes S, and S;,. In Figure A.2, we
show the breakdowns for the SpecFP * 95 benchmarks for schemes S, S;,, and S;,+4- The num-

bers for scheme S,y match those of scheme S, closely, and hence are not shown separately.

Dynamic Instructions Dynamic I nstructions
Specint *95 Total Repeat SpecFP 95 Total Repeat

(millions) (%) (millions) (%)

go 1000 94.1 tomcatv 1000 56.0

m88ksim 100.1 94.9 swim 1000 25.1

ijpeg 1000 74.6 su2cor 729.4 47.8

perl 12,396 97.7 hydro2d 623.0 439

vortex 1000 95.2 mgrid 1000 16.2

li 1000 85.6 applu 1000 52.6

gce 400 89.4 turb3d 1000 90.0

compress 1000 51.8 aps 212.8 68.7

Graphics fpppp 226.4 374

Viewperf+Mesa 485.8 835 waveb 826.1 36.7
M peg-2 decoder 38.1 69.0
POV-Ray 1000 815

228

Table A.1 Total number of dynamic instructions executed and percentage of them repeated
with the second set of benchmark inputs (Table2.5). Most results tally very well with the
results with the first set of inputs, shown in Table 3.1 (except of wave5, where the repetition
ratesarelower dueto thelimited per instruction buffering availablein our repetition tracking

buffer).

229

Categories go ma88k ijpeg perl vort li gce comp
Overall % of all dynamic instructions
internals 80.2 42.6 58.3 58.7 54.2 46.1 57.9 63.3
globa init data 19.3 279 224 30.2 28.3 124 25.7 29.3
externa input 05 29.3 194 8.0 175 40.7 16.4 7.4
uninit 0.0 0.2 0.0 31 0.0 0.8 0.1 0.0
Repeated % of all repeated dynamic instructions
internals 80.5 42.8 57.3 60.1 55.2 47.3 61.4 774
global init data 19.0 26.3 24.4 30.9 28.8 14.4 28.4 21.2
external input 04 30.7 18.3 5.8 15.9 374 10.1 14
uninit 0.0 0.2 0.0 32 0.0 0.9 0.1 0.0
Propensity % of all dynamic instructionsin each category
internals 94.5 95.4 733 99.9 96.9 87.8 94.8 63.3
global init data 92.7 89.4 815 99.9 97.0 99.6 98.8 374
external input 90.0 99.3 70.58 718 86.7 785 55.3 9.7
uninit 0.0 100.0 0.0 99.9 0.0 99.8 100.0 0.0
(Speclnt)

Categories |tomcatv | swim | su2cor |hydro2d| mgrid | applu | turb3d apsi fpppp | waveb

Overall % of all dynamic instructions
internals 37.2 33.6 23.0 436 4.7 24.6 16.4 9.7 8.2 17.7
globd initdata| 37.8 6.3 24.7 16.9 95.3 18.2 835 9.1 13.0 15.8
external input | 24.6 59.9 51.9 39.3 0.0 57.2 0.0 80.9 788 66.5
uninit 05 0.2 04 0.2 0.0 0.0 0.1 0.3 0.0 0.0
Repeated % of all repeated dynamic instructions
internals 58.4 47.0 31.2 37.3 13.9 33.6 13.6 13.3 219 39.8
global init data| 30.8 19 28.8 20.0 86.1 26.8 86.4 114 345 12.2
external input 10.8 51.2 40.0 2.7 0.0 39.6 0.0 74.9 43.6 48.0

uninit 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.0 0.0
Propensity % of all dynamic instructions in each category
internals 879 352 64.9 37.6 48.3 717 74.3 939 99.6 82.3

global init data| 45.6 7.5 55.8 51.9 14.6 775 93.0 86.2 99.2 28.4
external input 247 215 36.9 47.7 0.0 36.4 0.0 63.6 20.7 26.5
uninit 0.0 0.0 0.0 2.3 0.0 0.0 89.9 100.0 0.0 0.0

(SpeckP)

Table A.2 Global analysis results for the second set of inputs (Graphics benchmarks on the
next page).

Categories viewper f mpeg-2 povray
Overall % of al dynamic instructions
internals 29.8 60.3 26.4

global init data 12.6 11.6 24.2
external input 56.8 281 47.2
uninit 0.8 0.1 21

Repeated % of all repeated dynamic instructions

internals 34.6 60.6 30.4
global init data 15.0 16.7 29.7
externa input 49.5 226 374

uninit 0.9 0.1 2.6

Propensity % of all dynamic instructions in each category

internals 97.0 69.3 93.7
global init data 99.2 99.6 99.8
external input 727 55.6 64.5

uninit 100.0 92.0 99.8
(Graphics)

230

Table A.2 (contd) Global analysisresultsfor the second set of inputsfor graphics benchmarks

100

804

Breakdown §
ol

Integer Benchmarks

of %reuse & wollf||H
0] [H al
0 Em B || B B H H
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
o ijpeg vortex gec viewperf mpeg
mesksim perl li compress povray
Scheme Sv 100 Benchmarks
804
Breakdown of &
] H
performance & -
o 404 H
20| [I i
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
go ijpeg vortex gee viewper f mpeg
ma88ksim perl li compress povray
Benchmarks
L ——— T —
80
= 604
Breakdown %
of %reuse &]
204 1T
0 H L - HH
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
go ijpeg vortex gee viewperf mpeg
m88ksim perl li compress povray
Benchmarks
Scheme Sn e o Bemcmaks
804
~ 604
Breakdown of %
o]
performance & «||| AL
20 - | |
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
ijpeg vortex gee viewper f mpeg
mesksim perl li compress povray
Benchmarks

general reuse

squash reuse

general reuse

Squash reuse

general reuse

squash reuse

general reuse

Squash reuse

231

Figure A.1 Breakdown of percentage instruction reused and performance in terms of
general and squash reuse for schemes Sv and Sn. Bar ‘A’ isfor a 256-entry RB, ‘B’ isfor a 1k-
entry RB, and ‘C’ isfor a 4k-entry RB.

Breakdown &
of % reuse &

Scheme S, 100,
804

Breakdown of ¢*
performance 3

404

204

04

Breakdown 3
of % reuse ?

Scheme S,

100+

804

Breakdown of § "]
performance £ 4|

204

04

Floating Point Benchmarks

"ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC

tomcatv su2cor mgrid turb3d
swim hydro2d applu apsi fpppp waves
Benchmarks

ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
tomeatv su2cor mgrid turb3d
swim hydro2d applu aps fpppp waves
Benchmarks

ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
tomcatv su2cor mgrid turb3d
swim hydro2d applu aps fpppp waves
Benchmarks

ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
tomeatv su2cor mgrid turb3d
swim hydro2d applu aps fpppp waves
Benchmarks

[general reuse
Squash reuse

[genera reuse
squash reuse

[generd reuse
Squash reuse

[general reuse
Squash reuse

232

Figure A.2 Breakdown of percentage instruction reused and performancein terms of general
and sguash reusefor schemes S, and S;,. Bar ‘A’ isfor a 256-entry RB, ‘B’ isfor a 1k-entry RB,

and ‘'C’ isfor a 4k-entry

RB.

233

Floating Point Benchmarks

[genera reuse
squash reuse
Breakdown §
of % reuse
ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
tomeatv su2cor mgrid turb3d
swim hydro2d applu aps fpppp waves
Benchmarks
Scheme S 14 .
[generd reuse
80 squash reuse
Breakdown of £
performance §
Q404
204

-ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC
tomcatv su2cor mgrid turb3d

swim hydro2d applu aps fpppp waveb
Benchmarks

Figure A.2 (continued) Breakdown of percentage instruction reused and performance in

terms of general and squash reuse for scheme S,4. Bar ‘A’ isfor a 256-entry RB, ‘B’ isfor a
1k-entry RB, and ‘C’ isfor a 4k-entry RB

