README

FYI: The Title Page, Abstract, Acknowledgements, Table of Contents, List of
Tables, and List of Figures are printed after the Chapters and the References.

Please move them to before the Chapters.

Chapter 1

INTRODUCTION

The supercomputers of a particular generation of machines are the computers
that provide the highest performance of that generation. Of the programs that require
supercomputer performance, a large subset has been and will continue to be large-
scale scientific and engineering applications. In this dissertation, we are interested in
the design of current supercomputers and in the characteristics of the large-scale
scientific and engineering programs that form almost the entire target workload of
current supercomputers.

The current nature of research in computer architecture as well as the current
realities of the computer marketplace are such that machine design is, for a significant
part, driven by the characteristics of the target workload, rather than the workload
being subject to massive restructuring so as to execute well on new machine designs.
Powerful high-level language compilers are as yet limited to restructuring programs
at only a very low level in the hierarchy of program design; algorithm-level changes,
or for that matter effective automatic restructuring of very coarse-grain parallelism in
the programs, is well beyond the foreseeable powers of compilers. Furthermore, the
effectiveness of even the low-level restructuring done by current state-of-the-art com-
pilers often falls much short of the effectiveness achievable via manual restructuring.
For example, we compare the performance of a state-of-the-art vectorizing compiler
on a benchmark suite with excellent manual restructuring of the suite, and find the
latter to be significantly more effective. Thus, machine design targeted at workload
characteristics will be more effective than designs that rely on massive automatic res-
tructuring of programs for high-speed execution. Understanding the behavior of
machines while executing target workloads, and understanding the characteristics of
the workloads themselves, is hence an integral part of the machine design process
today. Such understanding enables the design of machines that have features targeted
at workload characteristics, and consequently machines that provide improved per-
formance.

Experimental studies that provide such understanding of machine behavior and
workload characteristics of several von-Neumann architectures have been reported in
the literature. Studies of a non-vector CISC architecture, [Emer84, Clark88] previous
generation microprocessors|[Adams89, Rubins85], and current generation "killer
micro" RISC microprocessor architecture, [Gross88] have been reported to date. How-
ever, no similar study of a vector processor has been reported, although studies of just

the vector aspects of vector machines — carried out using only short kernels as work-
loads — have been reported[Tang88]. Furthermore, from the point of view of work-
load classes, all the studies reported are of "general-purpose” workloads or some mix-
ture of "general-purpose" programs and a few kernels from "scientific" programs.
Workloads consisting entirely of scientific programs have thus not been studied. This
dissertation fills this current void in the understanding of machine behavior and of
workload characteristics by reporting a study of several aspects of a state-of-the-art
vector processor executing complete scientific application programs. Specifically, we
study a single processor of the CRAY Y-MP[CRI88], and a benchmark set of
scientific/engineering application programs, the PERFECT Club benchmark
suite[Cybenk90].

1.1. WHY DO WE STUDY A VECTOR PROCESSOR?

Scientific and engineering applications (together referred to as scientific applica-
tions henceforth) usually operate on large quantities of data that are well-structured as
single-/multi-dimensional arrays or vectors. Program operations on these data are
also usually well-structured; for example, every data element might be manipulated
in precisely the same manner in a program segment. The result is a large amount of
well-structured parallelism among the operations in scientific programs. Often, how-
ever, significant portions of a scientific program does not contain such well-structured
parallelism, as will be illustrated in this dissertation. In general, the nature of parallel-
ism in scientific programs and in non-scientific programs varies. Several different
machine architectures have been proposed for exploiting different kinds of parallel-
ism.

Parallelism in programs is classified into coarse-grain and fine-grain
parallelism[Gajski85]. Coarse-grain parallelism is parallelism at the process level: a
program could consist of several logical subtasks that could largely be executed in
parallel asynchronously, except for some amount of coordination among the subtasks.
Fine-grain parallelism refers to parallelism at the instruction level within a single pro-
cess or subtask. Fine-grain parallelism can be further classified into reqular and irregu-
lar parallelism. Parallelism is said to be regular when a particular operation has to be
carried out on several independent data elements (such as the elements of an array).
This is also referred to as data parallelism in the literature[Hillis86]. Irregular fine-grain
parallelism exists when several different kinds of instructions, each of which operates
on a single data element, can be executed in parallel.

Several architectural models for exploiting parallelism have evolved from the
von-Neumann model of uniprocessor architecture. Shared-memory multiprocessing
and distributed computing are the two architectural models popular for exploiting
coarse-grain parallelism. Vector processing and array processing (including such pro-
cessing as in the Connection Machine [Hillis85]) exploit regular fine-grain parallelism
via pipelining and large-scale synchronous parallel operation. Pipelining, multiple

functional units, and multiple instruction-issue per clock cycle are commonly used
techniques for exploiting irregular fine-grain parallelism within a single processor.

The dataflow model[Trelea82], an architectural model that avoids the von-
Neumann model altogether in an attempt to avoid the associated limitations, exploits
parallelism of all kinds. Dataflow is an elegant architectural model, but efficient
implementations of dataflow architectures are still a topic of research. We do not con-
sider dataflow architectures further in this dissertation.

Since a large fraction of scientific code is either dominated by or has a large
amount of regular fine-grain parallelism, vector processing and array processing are
possibly the most desirable architectures, from among these alternatives, for process-
ing such code. Until recently, vector processing
[Thornt70, CRI76, CRI85, CRI84, CRI8S, CDC81, Eoyang88, Watana87, Miura83] has
dominated the supercomputer arena; in particular, the Cray series of machines and
their predecessor CDC machines have been the fastest supercomputers for over two
decades. Other than vector processing, massively parallel processing has also been
used for scientific codes (for example [Batche80]). However, the main drawback of
massively parallel processing (including that of systolic processing) is the poor perfor-
mance on the non-data-parallel portions of scientific code. More recently, the
massively-parallel SIMD Connection Machine [Hillis85] has made some headway in
providing improved performance on general scientific codes by adapting many algo-
rithms to this mode of computation[Hillis86]. On the high-performance single-
processor front, architectures that can issue more than one instruction per clock cycle
such as VLIW machines (for example [Fisher83, Fisher87, Rau88, Charle81] etc.),
decoupled access/execute architectures (for example [Smith82, Goodma85, Pleszk86]
etc.), and superscalar architectures (for example [Patt85, Oehler90] etc.) have been pro-
posed for scientific code.

Thus, numerous alternative architectures currently exist for executing scientific
code. What are the motivating factors for and benefits of studying a vector machine
from among the alternatives? Our goal is to understand the characteristics of scientific
workloads as well as the effectiveness of machine features targeted at such workloads.
It is important to observe in this context that, as mentioned before, scientific code has
scalar portions, although a large part of scientific code has data-parallelism. It is rela-
tively straightforward to speedup the execution of data-parallel code by using addi-
tional parallel hardware resources. On the other hand, ways of speeding up the exe-
cution of scalar code are much less obvious. Although the scalar code is usually con-
sidered to be a small fraction of scientific code, it ultimately limits the maximum
speedup of the workload achievable via parallelization (Amdahl’s Law). Further-
more, we will demonstrate in this dissertation that the fraction itself is often quite
significant. Thus, when studying scientific applications, we would be interested in
identifying the fraction of typical scientific programs that is scalar, and then in charac-
terizing the data-parallel and the scalar portions separately. Such separation of vector

and scalar code will facilitate the design of machine features targeted at the two indi-
vidual code types.

A vector machine provides an excellent environment for pursuing such goals,
since the data-parallel portion of code is executed by wvector instructions in such a
machine, while the scalar portion is executed by scalar instructions. A natural separa-
tion of scalar and data-parallel code is hence available on a vector machine. Further-
more, the compiler carries out a large part of the separation of code into the fine-grain
data-parallel portions and the scalar portions. The amount of such separation
achieved is crucial to the performance delivered by the system. Studying a vector sys-
tem that is equipped with a state-of-the-art vectorizing compiler provides us with the
additional advantage that the amount of such separation seen in the system is a
reflection of the current state of the art.

A study of a vector architecture and of workloads executing on such an architec-
ture is of interest and can be used to draw more general conclusions only if the perfor-
mance of the vector architecture is at least comparable to or better than that of the
alternative architectures. In chapter 2, we provide an overview of the various archi-
tectural models for exploiting fine-grain parallelism mentioned above, comparing
their costs and performance benefits. Then we discuss the execution of code on a vec-
tor machine and explain why we think it is currently a good model for executing
scientific code and why it is a good choice for a study such as the one done in this
dissertation. Specifically among the alternatives, superscalar and VLIW architectures
are often considered as alternatives to vector processing. These architectures can also
exploit data-parallelism, although with a different model for specifying the computa-
tion, and with different associated costs. We provide a comparative discussion of
these machines and vector machines in chapter 2.

1.2. CONTRIBUTIONS OF THE DISSERTATION

As mentioned earlier, the study reported in this dissertation is the first such
instruction-level study of a vector machine, carried out using complete scientific
applications compiled by a state-of-the-art vectorizing compiler as benchmarks. We
explore several aspects of vector machines in our studies. We list below the key con-
tributions of the study.

(I) We study the dynamic program usage of and the effectiveness of various archi-
tectural and implementation features of the CRAY Y-MP processor, as well as
several program characteristics that are of importance to machine design. The
study reflects the effects of a state-of-the-art vectorizing compiler on programs
and on machine utilization.

(2) We compare the characteristics of a hand-optimized version of our bench-
marks, optimized by a Cray Research team of programmers, that won the 1990
Gordon-Bell PERFECT Award, with the characteristics of the compiler-
optimized version. The effect of hand-optimization on instruction-level

program characteristics has not been studied to date.

(8) We separate out and study the characteristics of scalar code in the CRAY Y-MP
vector system. We discuss the impact of the characteristics of such scalar code
on machine design. The scalar code studied is one of two versions: code not
vectorized by a state-of-the-art compiler, and code not vectorized by excellent
hand-optimizations. Scalar code ultimately limits the speedup achievable via
exploiting parallelism (Amdahl’s Law), and hence it is important to execute
such code well. No identification or study of this type of scalar code has been
reported to date in the literature.

1.3. OVERVIEW OF THE STUDIES

Benchmarking is often used to compare various machines as well as to judge the
benefits of various architectural features. However, understanding the behavior of
benchmarks on existing machines is more useful in evolutionary machine design.
Such understanding enables one to identify, for example, bottlenecks in current sys-
tems, potential bottlenecks in future systems, frequently-occurring code sequences
which should be exploited, little-used machine features that could be removed, etc.
Beyond such evolutionary design, program understanding could also trigger
significantly new and different architectural ideas. A study of benchmark behavior is
usually more informative and useful when carried out a low level, i.e., the programs
have to be studied at a level close to machine code, rather than at the high-level-
language source-code level. Our study is such a detailed instruction level study of a
vector machine, addressing several issues with regard to program characteristics and
machine behavior. However, the studies are not all-encompassing, due to this being
the first such study of a vector machine, and also partly due to the relatively limited
access available to such machines.

In the chapter on study methodology (chapter 3) we provide an overview of the
important issues to be studied in a vector machine, and discuss the CRAY Y-MP pro-
cessor, the benchmarks, and our study methodology. Chapters 4 and 5 present stu-
dies of various issues addressed in this dissertation, as described below.

The studies reported in this dissertation pertain to a single processor of the vec-
tor machine; we focus on processor design in our studies. A significant fraction of the
study is directed at instruction mixes in the benchmarks. The frequency of various
instruction types is crucial to the design of the functional unit architecture (including
memory architecture). We discuss the various instruction types in detail individually.
For example, we focus on branches since branch-execution is crucial to fast program
execution, especially for scalar code. Further, since vector machines execute vector
instructions that execute several operations each, we also expand vector instructions
into operations and measure operation frequencies. These operation frequencies pro-
vide a better picture of machine utilization than instruction counts. We study the
sizes of basic blocks in the benchmarks, since these sizes are crucial to the kind of code

optimizations and scheduling techniques the compiler can employ. Instruction issue
rates and operation issue rates are the subject of much current research, and we inves-
tigate them for our machine. All the above studies are presented in chapter 4.

Hand optimization is still often critical to program performance on supercom-
puters today. In order to compare the performance of the compiler with that of hand-
optimization, and to contrast the characteristics of programs generated by the two, we
also study a hand-optimized versions of our benchmarks. This version was hand-
optimized by a team of Cray Research, Inc. programmers and won the 1990 Gordon-
Bell PERFECT Award for the fastest version of the PERFECT Club benchmarks. We
discuss the issue of hand optimization in more detail in the chapter on study metho-
dology (chapter 3). Throughout the study, we compare the hand-optimized and
compiler-optimized versions of the benchmarks.

We also separate out the scalar code in our benchmarks, and study several issues
that are specific to the fast execution of such codes. We discuss in the methodology
section of chapter 3 how scalar code is identified and separated. In chapter 4 we study
the instruction mixes and basic block sizes of the scalar basic blocks, in addition to
those of the entire programs. Then, chapter 5 is devoted to a detailed study of issues
relevant to the scalar code. Among the issues addressed are the data dependencies
seen between instructions, fast execution of branches, and the tradeoff of machine
pipelining and latencies for fast execution of scalar codes.

The final chapter (chapter 6) of the dissertation provides a summary of the stu-
dies carried out, and discusses some possible future directions for the work presented
here.

Chapter 2

ARCHITECTURES FOR EXPLOITING FINE-GRAIN PARALLELISM

2.1. INTRODUCTION

The goal of machine designers is to appropriately choose and organize the lim-
ited hardware resources available for a machine, so as to decrease program execution
time. The view of the machine provided to the compiler by the organization of the
hardware plays an important role in determining the effectiveness of the compiler at
utilizing the hardware. Here we first take a conceptual look at the execution of a pro-
gram on a single von-Neumann processor, in order to understand the performance
and cost implications of various processor organizations that exploit fine-grain or
operation-level parallelism in programs.

The execution of the operations of a program is constrained by data-
dependencies and control-dependencies amongst the operations. An operation can be
executed only after all operations that play a role in producing the operands of this
operation are completely executed. And, in a program for a von-Neumann machine,
an operation cannot be executed until control flow reaches that operation as a result of
all logically-preceding branch operations being fully executed. These constraints give
rise to a partial order of program operations, which has to be satisfied by any execution
of the program.

2.2. PROGRAM EXECUTION ON LIMITED RESOURCES

On a machine with infinite resources, determining the order of execution of
operations (i.e., the timetable of operation execution, or, the execution schedule) is
trivial: each operation is executed as soon as its constraints are satisfied, i.e., as soon as
all operations it is dependent on are executed. Hence, the execution time of the pro-
gram is determined by the longest sequence (or chain) of constraints in the program.
The sum of the latencies of all operations on this chain, the critical path, is the
program’s execution time. For example, consider the execution schedule shown in
figure 2.1. The arrows in the figure indicate (data or control) dependencies amongst
the operations (the destination operation of the arrow is dependent on the source
operation of the arrow). For simplicity, we do not distinguish between data- and
control-dependences in the example. Note that the effect of either dependence is the
same: an operation that is dependent on other operations cannot be issued until the
dependencies are resolved. The operations indicated in bold numbers form the criti-
cal path, and their execution time is the execution time of the program. Single-cycle
operation latencies are assumed in this example.

Time-Step Operations

— :dependence

Figure 2.1: Execution on Infinite Resources

Limiting the resources available to execute a program makes the scheduling of
operations for execution an NP-complete problem[French82, Garey79, Landsk80].
Consider figure 2.1 again. The schedule can be thought of as a set of operation slots
arranged in a rectangle, with several slots containing operations being executed, and
others being empty. Each row of slots is executed in a single timestep (clock cycle or
period); all the slots of a row are executed simultaneously. For an infinite resource
machine, the depth of the rectangle (the time axis) is the length of the critical path of
the program. The width of the schedule for such a machine is unbounded: at any point
in time, the width of the schedule determines the number of operations being

executed in parallel, and there is no bound on this number for an infinite-resource
machine. Limiting the resources available in the machine now bounds the width of
the schedule. Furthermore, it also bounds the quantity of operations of each type that
can be executing simultaneously. We will discuss these machine constraints on the exe-
cution schedule in detail shortly. The schedule for an infinite-resource machine will
usually violate, at several time points in the schedule, the constraints imposed by a
particular real machine because of its limited hardware resources. Operations that
violate these constraints have to be relocated into other slots, possibly requiring (in
order to satisfy program dependencies) the relocation of operations that do not violate
machine constraints in the schedule for the infinite-resource machine. Relocating the
operations in the slots to satisfy the constraints of a real machine will invariably
require an increase in the depth of the schedule, i.e., an increase in program execution
time. The problem of packing operations into this constrained rectangle while trying
to minimize the depth of the rectangle and while still satisfying the original data-

dependencies and control-flow constraints is NP-complete!. We note that several
heuristic algorithms that provide reasonably good performance have been developed
for the scheduling problem and have been incorporated in state-of-the-art compilers
[Landsk80, Ellis85, Hsu85].

From the scheduling point of view, it is easier to achieve high performance on a
machine that provides a schedule rectangle that is broader and has fewer machine
constraints. However, such a machine usually needs more hardware resources and is
hence costlier. In some cases, such a machine is also harder to build — it is hard to
achieve short clock cycle time on a machine that has complex hardware. For example,
one can build a register file that has more than a handful of ports, but it is very hard to
still maintain single-cycle selection of and access to the individual registers without
having a relatively-large clock cycle. Real machines hence involve tradeoffs among
cost, ease of building, and schedulability (schedulability directly determines achiev-
able performance). Importantly, the desirable optimum schedule rectangle that a real
machine should provide is heavily influenced by the nature of the programs that will
be run on the machine.

To illustrate the tradeoff for some given machine workload, let us consider the
example of figure 2.1 again. A machine that allows a maximum of three operations to
execute in parallel at any time performs as well for this program as a machine with
infinite resources though the schedule is actually different, as shown by the schedule
in figure 2.2. A machine that allows a maximum of only 2 operations to be executing
in parallel at any given time is only one clock period slower for this program, as
shown by the schedule in figure 2.3. The performance of these two realistic machines

!This is similar to the bin-packing problem.

10

Time-Step Operations

@
©
®
J,
T
8)
¢

— :dependence

— maximum of 3 operations/cycle

Figure 2.2: Execution on Limited Resources

— maximum of 3 operations/cycle

could however be quite different for some other program.

In this dissertation, the workload of interest is scientific programs. We will dis-
cuss machine design only in this context henceforth. Several processor architectures,
each imposing its own unique set of machine constraints on the schedule rectangle,
have been proposed for such workloads, and are discussed in the next section. We
first outline the schedule rectangles provided by each architecture, and compare and
contrast their cost and potential performance. Then we focus on the merits and dem-
erits of a particular architecture, the vector LOAD/STORE architecture, and discuss
why it is an interesting architecture for the study of scientific workloads. Finally, we

11

concentrate on the design aspects of the vector architecture.

2.3. EXECUTION SCHEDULES ON VARIOUS ARCHITECTURES

The main processor features that determine the nature of the schedule rectangle
presented by the processor are: instruction issue capability, the quantity and variety of
functional units, memory architecture, and pipelining. We discuss below the effects of

Time-Step Operations

— :dependence

o
i

2

Figure 2.3: Execution on Limited Resources

— maximum of 2 operations/cycle

12

these features in detail. The register file architecture and the operand/result buses
also play a role, albeit a less significant one. We mention their effects briefly.

Let us first consider architectures that issue only one instruction each clock cycle.
(In the rest of this chapter, we use the terms instructions and operations interchange-
ably, except when discussing vector instructions which execute multiple operations.
In this case, we explicitly use the term vector instruction.) The most basic processor
has a single non-pipelined ALU, and the schedule for such a processor is a simple
one-dimensional rectangle where operations execute strictly in sequence. Scheduling
for such a machine is trivial.

Suppose the ALU of the above machine is pipelined into 5 stages, and the clock

cycle is approximately one-fifth that of the previous machine!. Now each stage of the
pipeline can be executing an operation, resulting in a maximum width of 5 operations
for the schedule rectangle. However, the rectangle is further constrained by the fact
that the ALU can only accept one new operation ever clock: each row of the schedule
can only be a maximum of 1 operation wider than the previous row. Overall, com-
pared to the previous processor, program execution is much faster due to the possible
execution overlap of operations. (Note that the schedule rectangle is just the common
pipeline diagram of a single pipeline, the ALU).

Contrast the above processor with one that has 5 non-pipelined ALUs, has the
same clock cycle as the baseline non-pipelined single ALU machine, and can issue 5
operations per clock cycle. The rectangle here is a maximum of 5 operations wide,
and has no other machine constraints. A code fragment consisting of 5 independent
operations is executed by this machine in 1 clock cycle — all the 5 operations can be
issued in the same clock. To execute 5 independent operations, the pipelined machine
needs 9 clock cycles (5 to initiate the 5 operations + 4 more for the last operation to
complete), and is 1.8 times slower than this machine (the pipelined machine’s clock is
5 times faster). To execute 50 independent operations, the pipelined machine is only
1.08 times slower than this machine! However, the multiple ALU machine is probably
5 times more expensive due to the replicated hardware and the communication
crossbar necessary; pipelining is cheaper than hardware replication. On the other
hand, pipelining involves complex control hardware which is harder to build; it might
also affect overall functional-unit latencies[Kunkel86].

Scheduling in the presence of dependencies is non-trivial for both the above pro-
cessors. One has to appropriately choose operations for parallel execution so that the
overall execution time is minimized.

'Tt is hard to obtain exactly one-fifth the original clock cycle, due to various hardware im-
plementation difficulties associated with pipelining[Kunkel86]. We ignore this issue in the dis-
cussion here.

13

Let us get back to a single instruction issue machine, but one that has indepen-
dent, dedicated, pipelined functional units instead of a single ALU that executes all
types of operations. A fundamental advantage of this architecture is that all the dif-
ferent types of operations are not slowed down to the execution time of the slowest
operation type. A long latency operation can be issued first, and during its execution
several other operations can be issued and possibly short latency operations can even
be fully executed. Figure 2.4 shows the execution schedule, on such a machine, of the
example code fragment of figure 2.1. We assume four functional units a, b, ¢, d of pipe-
line depths 2, 2, 4, and 1 stages respectively. The operations of the example code frag-
ment are, as shown in the figure, assumed to be of certain types and issued to the
corresponding functional units. An operation is indicated in bold print in the clock
cycle in which it is issued; its execution in the rest of the pipeline stages of the func-
tional unit are indicated in normal print. For example, operation 1 is issued in clock
cycle 1 and completes execution in clock cycle 2, while operation 2 is issued in clock
cycle 2 and completes execution in clock cycle 3. Operation 3 has to wait until opera-
tion 2 completes execution, and hence is not issued until clock 5. Observe that short
latency operations 3 and 4 are issued and executed during the execution of the long
latency operation 5.

The width of the schedule rectangle of this architecture is equal to the sum of the
number of pipeline stages in each of the functional units (i.e., the maximum number of
operations that can be in execution simultaneously). The width of the example
machine is 9 (2+2+4+1) operations. Since only one instruction is issued per cycle, no
row of the schedule can be more than 1 operation wider than its preceding row. This
further reduces the number of pipeline stages that can be busy, since the first pipeline
stage of only one of the functional units can be busy at any time. Thus, the maximum
number of functional unit pipeline stages of the CPU that can be busy simultaneously
is equal to the number of stages in the deepest functional unit pipeline. Of course, the
maximum number of operations of a given type that can be executing simultaneously
(i.e., in any row of the schedule) is equal to the number of pipeline stages in the func-
tional unit that executes that operation type. For example, functional unit c can have a
maximum of 4 operations in execution, as in clock cycle 13. Scheduling in the pres-
ence of dependences for such a machine is again non-trivial. A machine that provides
such a schedule rectangle is the scalar unit of the CRAY Y-MP [CRIS8S].

Suppose one were able to issue an instruction to each functional unit of the above
machine every clock cycle. The schedule rectangle provided by this machine is dif-
ferent from that provided by the above machine mainly in the following way: each
row of the schedule can be n wider than the previous row, where 7 is the number of
instructions issued per clock cycle (and hence the number of functional units in the
machine). Of course, the functional units dictate the number of operations of each
type that can be in execution simultaneously. Figure 2.5 shows an execution schedule
of the same code fragment on a machine with the same functional units as in figure

14

functional-units
a b c d

4 3 bold: .
opern. issue

6 7| normal:
8 pipe. stage
9 8
10 9 8
11 10 9 8
12 11 10 9
12 11 10
11 13
14
15
16

ﬁ
'Somxlmm-hoomr—\g
w
Ul

e e N i e
0o ~No U wWNER

[ERN
O

Figure 2.4: Execution on Pipelined Functional Units

— single operation issue

2.4, but with a very long instruction word. In clock 4, for example, three operations
are issued by this machine. The example code takes 16 clock cycles to execute on this
machine, as opposed to the 19 clocks on the previous machine. A requirement for
better utilization of such machines is uniform parallelism across all instruction types.

15

time

© 00 N O O b~ W N B

= = B
> 6 R © Kk o

functional-units
b

c

12 8
12 9 8
10 9

8

11 10 9 8
11 10 9

11 10
11

13
14
15
16

bold:
opern. 1ssue

normal:
pipe. stage

Figure 2.5: Execution on Pipelined Functional Units

— very long instruction word

16

For example, although operations 8 through 11 are independent, they have to be
issued in series since they are of the same operation type and the machine is equipped
with only one functional unit that can execute that operation type. However, exploit-
ing the parallelism across operation types (as in clock 4 for example) enables this
machine to execute the code in fewer clock cycles. VLIW architectures|[Fisher83] pro-
vide such a schedule rectang]le.

Vector machines provide a schedule that lies, in the spectrum of machine con-
straints, in between the above two schedule rectangles. Although instruction issue is
limited to one per clock cycle, each vector instruction that is issued initiates an opera-
tion every clock cycle for VL clocks, where VL is the vector length of the instruction.
Thus, a restricted form of multiple operation issue is achieved. Figure 2.6 presents the
execution schedule of the code fragment on such a vector machine. Operations 8

through 11 of the code are bundled into a vector instruction! for this vector machine.
For ease of comparison, we represent this vector instruction as instruction 8, which is
issued on clock 10. This instruction in turn initiates operations 9, 10, and 11 in the
next three clocks. Note that instruction 12 can now be issued on clock 11 since the
instruction issue stage is not busy. Similarly, instructions 13 through 16 can be issued
earlier. We observe that the vector machine also executes the code in 16 clock cycles,
as opposed to the 19 clock cycles taken by the single-issue machine. We note that the
execution times achieved on the various machines are highly dependent on the work-
load.

So far we have considered the effects of the presence of pipelining, the resource
architecture, and the instruction-issue capability on the schedule rectangle. We will
not discuss in detail the effects of the register file architecture and the operand/result
buses. Suffice it to note that the these issues affect performance: for example, for a
fixed number of ports per register file, a split register file architecture allows more
operands to be read each clock cycle and hence allows more instructions to be issued
per cycle. If a register file has to be able to communicate with several functional units
that are geographically far apart, the length of the operand/result buses might limit
the clock rate.

An important factor, not yet discussed, that affects a schedule rectangle is the
degree of pipelining of the functional units of the processor. We have thus far only dis-
cussed the effect of the mere presence of pipelining. Let us now consider the effect of
various degrees of pipelining. Consider a machine with two functional units (say an
integer unit and a floating-point unit), each having 3 pipeline stages. Consider a pro-
gram that has 6 independent operations, 3 of each type. If we issue only one

'Usually, the vectorization of operations also results in the reduction of index and loop-
control operations. For clarity, we ignore these effects here.

17

functional-units

time 4 b\ C\ d
11
221
3
4 5
5 3 5
6 3 4 5
7 4 5
8|6
9 6 7 bold: .
10 8 opern. 1ssue
11 12 |9 8 o, age
12 1210 9 8 |13
13 1110 9 8 14
14 1110 9/ 15
15 11 10 16
16 11
\ \ \

Figure 2.6: Execution on Pipelined Functional Units

— single instruction issue, vector machine

instruction per clock, the program will execute in 8 clock cycles (6 to issue all the
operations + 2 for the last operation to complete). (Figure 2.7 shows the schedule.)
Now suppose the functional units have 6 pipeline stages each, and the clock cycle is

Integer FP
clock Unit Unit
1 i1
2 i2 il
3 i3 i2 il
4 i3 i2 | f1
5 i3 | 2 f1
6 f3 2 fl
7 3 f2
8 f3

Shallow-Pipelined Machine — single instruction issue

Integer
clock Unit Unit
1 i1
2 i2 il
3 i3 2 il
4 i3 i2 il f1
5 i3 i2 il 2 fl
6 i3 i2 i1 |3 f2 fl
7 i3 i2 3 f2 fl
8 i3 3 f2 fl
9 3 f2 fl
10 3 f2
11 f3

Deep-Pipelined Machine — single instruction issue

Integer FP
clock Unit Unit
1 i1l f1
2 i2 il 2 fl
3 i3 12 il | f3 2 fl1
4 i3 i2 3 f2
5 i3 3

Shallow-Pipelined Machine — very long instruction word

Figure 2.7: The Effects of Pipeline Depth and I ssue Bandwidth

on Program Execution Time

(all operations are independent)

18

19

approximately half the original cycle. Issuing one instruction per cycle, the program
will now execute in 11 clock cycles (6 to issue + 5 for the last to complete). Note that
operation f3 is now issued before operation i3 completes execution. Since the clock
cycles of this machine are half the original clock cycles, this machine takes only 5.5
clock cycles of the original machine to execute the program. Now consider the
machine with 3 stages in each functional unit, but with the capability of issuing an
instruction to each functional unit every cycle. The program now executes in 5 clock
cycles (3 for issue + 2 for the last two operations to complete). Note that the machine
with 6 pipeline stages and single instruction issue was not much slower (5.5 clocks vs.
5 clocks)! The difference between the schedule rectangles of the two machines is the
following. The shallow-pipelined machine with dual-issue has a schedule rectangle
that is a maximum of 6 operations wide, and each row can be 2 wider than the previ-
ous row. The deep pipelined machine with single issue has a schedule rectangle that
is also a maximum of 6 operations wide, since only one the two functional units gets
an instruction on a clock; each row of the schedule can only be 1 wider than the previ-
ous row. Importantly, if we consider the overall schedule of the program for this
machine, the schedule is divided into many more rows than that for the shallow-
pipelined machine. That is, the time interval at which a new instruction can be ini-
tiated is smaller, resulting in more choices for scheduling of operations within the
same time-frame. Such a schedule might in fact be more desirable than the one
offered by the shallow-pipelined machine. There is thus a tradeoff to be considered
between the level of pipelining and instruction issue parallelism. The design choices
are again obviously dependent on the nature of the programs run on the machines.

Thus far in this section we have discussed the schedule rectangles provided by
various architectures, and pointed out the respective tradeoffs involved in cost and
potential performance. The choice of a schedule rectangle is determined by its cost
and by its predicted performance on the intended workload. First, the machine need
only provide a schedule rectangle that is as spacious as the intended workloads can
use. Second, replicating hardware resources such as functional units and instruction
issue stages provide better schedule rectangles, but these are expensive options. Such
replication could also result in excessive pressure on the register-file interfaces (ports)
and operand/result buses of the machine. It could be very difficult to provide short
clock periods under such pressure; it is hard to build many-ported register file with a
short clock, for example. Deeper pipelining of the functional units, on the other hand,
might be able to provide schedule rectangles that perform almost as well, without
incurring the same costs. We discuss these issues in the next section.

2.4. CHOICE OF PROCESSOR ARCHITECTURE

Scientific workloads have larger amounts of fine-grain parallelism in general, as
compared to general-purpose programs. Usually a large amount of this parallelism in
scientific workloads is data parallelism. High-performance (supercomputer) proces-
sors have historically been providing extensive amounts of hardware resources to

20

exploit the fine-grain parallelism in scientific workloads. (For example, consider the
multiple vector as well as scalar functional units, multiple register sets, multiple
memory ports, etc., in a processor of the CRAY Y-MP). However, until the early
1980s, an instruction issue mechanism capable of issuing just one instruction per cycle
was considered adequate to exploit fine-grain parallelism. (Note that although vector
instructions can issue multiple operations per cycle, they are restricted to exploiting
data parallelism.) With significant improvements in the early 1980s in compiler tech-
niques for detecting and enhancing parallelism[Fisher81], VLIW architectures
[Fisher83] that could issue an instruction to every functional unit on each clock cycle
were proposed for programs in general, unlike vector architectures that are targeted
mainly at programs with data-parallelism. VLIW architectures provide a schedule
rectangle with the least amount of machine constraints, as discussed in the previous
section. Several other processor architectures (decoupled, superscalar) that can issue
multiple instructions per cycle but having less issue parallelism than VLIW machines
have also been proposed for programs in general irrespective of the vectorizability of
the programs.

There is no consensus as yet on the amount of operation level parallelism extract-
able from general programs, and consequently on the appropriate
architecture/organization to be used for exploiting such
parallelism[Nicola84, Sohi89, Jouppi89, Smith89, Wall91, Butler91]. However, it is folk-
lore that scientific code has large amounts of regular (data) parallelism and some
amount of scalar code (which is either mostly sequential or has some amount of irreg-
ular parallelism). Using additional hardware resources to exploit the large amount of
regular parallelism is simple and straightforward. Methods of speeding up the rest of
scientific code are, however, much less obvious. Since this scalar fraction of the code
ultimately limits the overall speedup achievable (Amdahl’s Law), it is important to
improve its execution speed.

This thesis attempts to provide a characterization of large scientific programs, in
order to aid the design of appropriate architectures for executing them. In addition to
characterizing the programs as a whole, we would like to separate the portions of the
programs that have regular parallelism from the rest of the code and characterize the
latter, for reasons discussed above. To carry out such a separation of code and charac-
terization, an appropriate experimental system of code generation and execution is
necessary. A vector machine provides an excellent setting for such characterization,
since it separates out the regular parallelism in the code from the rest — program por-
tions that have regular parallelism are executed via vector instructions, while the rest
of the code is executed via normal scalar instructions. Furthermore, while all of the
regular parallelism in the programs may not be thus separated and exploited, the
actual separation achieved is a reflection of the current state of the art of compiler and
processor technology.

21

In order to use a current vector machine as an experimental setup for characteriz-
ing scientific codes in general, it is necessary to show that vector machines are
currently a good paradigm for executing scientific code. A very active area of
research currently is the instruction-issue stage parallelism in uniprocessors. As men-
tioned earlier, there is no consensus yet on the amount of such parallelism necessary.
Given this situation, it is necessary to address this topic with regard to any particular
machine chosen for a study that aims to be useful beyond the scope of that particular
machine. In particular, for our study, if the single instruction issue limit in a current
vector machine is a performance bottleneck, then a VLIW machine or a superscalar
machine would provide a more appropriate setting for our studies. For example, if
the large issue bandwidth of a VLIW machine is well-utilized for a given resource
architecture throughout the execution of programs, then certainly vector machines
with instruction issue limited to one instruction per cycle do not exploit the parallel-
ism in programs well. Below we discuss in some detail the execution of programs by
vector machines, in an attempt to address the above question.

The work of a vector instruction is equivalent to that of several scalar instruc-
tions: a vector instruction executes several operations, one for each element of its result
vector. Thus, the peak operation issue bandwidth of a vector machine is much higher
than one. Every vector instruction in progress issues an operation each clock cycle;
thus, if n vector instructions are in progress simultaneously, we have an operation
issue rate of n operations per clock cycle. Furthermore, vector functional units impli-
citly carry out array indexing and loop control operations, thus avoiding the addi-
tional issue bandwidth that would have been necessary if the same work were imple-
mented by a non-vector code fragment. Thus, operation issue parallelism needed for
executing data-parallel code is available in a vector machine. Empirical evidence is
shown in [Tang88] which indicates that in the Cray machines the quantity of vector
hardware resources, rather than the instruction issue stage, is currently the perfor-
mance bottleneck (i.e., currently, additional instructions can not be issued on these
machines due to the lack of free vector functional units and vector registers).

The difference between the current vector machines and the multiple instruction
issue machines, with respect to peak instruction issue parallelism, lies in the number
of scalar instructions that can be issued simultaneously in a clock cycle. The vector
machines can only issue one scalar instruction per clock cycle, while the multiple-
instruction-issue machines can issue multiple scalar instructions per clock cycle.
Current vector machines, however, have comparatively deep pipelines even in the
scalar functional units (and in the memory pipeline, which is 14 clocks on the CRAY
X-MP, for example) as will be shown in the next chapter. As discussed earlier in this
chapter, deeper pipelines imply less need for parallelism in the instruction issue stage.
On the other hand, deeper pipelines imply slightly longer latencies for the functional
units (due to the effects of pipelining [Kunkel86]), and shallower pipelines might be
more desirable for relatively less-parallel code. We note that there has been no

22

quantification of the availability of parallelism in the scalar code of vector machines.

In conclusion, vector machines execute data-parallel code very efficiently. Super-
scalar and VLIW machines can also exploit such parallelism, although they use a dif-
ferent model to specify such computation, and incur different costs in exploiting such
parallelism. Since data-parallelism is the dominant form of parallelism in scientific
code, vector machines are a very good choice for studying such predominantly data-
parallel code. The execution of scalar code by current vector machines and current
multiple-instruction issue machines is a subject of ongoing research. The scalar por-
tions of current vector machines are not the best models for executing scalar code
(later in this dissertation we address some of the issues involved here). However,
choosing a vector machine provides us the opportunity of identifying and studying
code that is not vectorizable by current state-of-the-art systems.

Having chosen the vector architecture as a sufficiently good paradigm for the
execution of scientific code, we devote the rest of this thesis to understanding the
characteristics of programs compiled for such machines. These studies provide a basis
for designing the next generation of such processors, and could also provide insights
into the design of other architectures.

23

Chapter 3

STUDY BACKGROUND AND METHODOLOGY

3.1. INTRODUCTION

This chapter provides the background for the studies reported in this thesis.
First, in section 3.2, we give a very brief sketch of the studies we carry out in this
dissertation. Here we discuss some issues involved in the studies of a vector machine;
in particular, we discuss the desirability of a separate scalar unit in a vector machine
and motivate the study of the scalar code in vectorized programs. Next, in section 3.3,
since we study a specific machine, the CRAY Y-MP, we present an overview of the key
features of the machine that are of interest from the point of view of our studies. In
section 3.4, we discuss the benchmarks that we use in our study. In section 3.5, we
discuss the measurement methods we use to collect data and our metrics, and a few
caveats that have to be observed while using the data. We summarize the chapter in
section 3.6.

3.2. STUDY AND DESIGN OF VECTOR MACHINES

In the previous chapter we concluded that vector machines provide a good archi-
tectural paradigm for scientific workloads. The architecture design process involves
understanding the behavior of machines when running typical workloads, and we
attempt to provide such an understanding of vector machines in the rest of this disser-
tation. We concentrate on studying vector architectures at the instruction level, focus-
ing on an example machine, the CRAY Y-MP processor. The CRAY Y-MP is a state-
of-the-art vector supercomputer equipped with a state-of-the-art vectorizing and
optimizing compiler. We carry out our studies using the PERFECT Club programs as
benchmarks. Both the processor and the benchmarks are discussed later in this
chapter. No such study of a vector machine, using long-running applications as
benchmarks, has been reported in the literature to date.

We study several issues that are relevant at the instruction-level — the instruc-
tion mix, nature of basic blocks, data-dependences, and several others which we do
not list here. The importance of each of the several issues we study are discussed
along with the presentation of the study of the issue. Since vector instructions execute
several operations each, we distinguish between instructions and operations
throughout our study. Operations and instructions are discussed in more detail in
section 3.5 which discusses the study methodology.

The scalar and vector portions of programs have differing behaviors and
resource-needs due to their different characteristics. Vector portions need high
bandwidth due to the large amounts of data parallelism in them; long functional-unit

24

and memory latencies can be tolerated by exploiting the large amounts of parallelism
available in such code. Scalar portions, on the other hand, need short latencies since
they have tight control- and data-dependencies; they have comparatively less parallel-
ism, and hence find it difficult to tolerate long latencies via the technique of executing
independent instructions during long latencies. Shorter latencies enable quicker reso-
lution of dependencies and hence quicker instruction issue and program execution.
Pipelining a functional unit tends to increase the overall latency of the unit, due to the
additional overheads incurred such as the latching of results at the end of each pipe-
line stage[Kunkel86]. Therefore it would be desirable to have less pipelining in the
scalar functional units.

Thus, a separate scalar unit with limited pipelining, which is tuned to the scalar
code in the vectorized programs, seems desirable. Given this premise, we attempt to
separate the scalar code in our benchmarks from the vector code and provide a char-
acterization of the scalar code throughout our studies. We note that the Cray
machines have separate scalar and vector portions, with different functional units for
scalar and vector instructions and correspondingly different register sets. Thus it
would be possible to tune each portion differently, to cater to respective codes. How-
ever, currently, floating-point functional units are shared by the vector and scalar
instructions. This implies that these units have to be deeply pipelined for the benefit
of the vector instructions. Furthermore, even the scalar functional units are pipelined
to a fair extent, as will be shown in section 3.3, and this could hurt scalar performance,
as discussed above.

After studying overall programs characteristics in Chapter 4 of this dissertation,
we focus on several issues specifically relevant to scalar code in Chapter 5. We note
that in addition to scalar and vector codes having different characteristics, the scalar
code found in vector programs could have characteristics quite different from those of
non-vectorized programs. This is due to the fact that in vectorized programs the data
parallelism is eliminated, to an extent dependent on the level of vectorization
achieved, from the scalar portions of the programs. We note that similar suggestions
have been made in [Smith90]:

"the basic character of scalar codes processed by a vector supercomputer
may be quite different than in a computer without vectors, and this implies super-
scalar processing units that may also have a different character".

Several aspects of speeding up such scalar code in future vector supercomputers have
been commented upon in the above paper. We address some issues that are relevant
to such scalar code, in Chapter 5. Our experimental setting provides us with excellent
examples of such scalar code. The code for the CRAY Y-MP is vectorized by a state-
of-the-art compiler, and any scalar code in the programs is not currently automatically
vectorizable. A study of such scalar code has not been reported to date.

25

3.3. OVERVIEW OF THE CRAY Y-MP PROCESSOR

We highlight some features of the CRAY Y-MP processor architecture [CRI88], to
provide background for the discussion of our measurements. The processor architec-
ture of the CRAY Y-MP is very similar to that of the CRAY X-MP [CRI84a]; a major
difference is that the CRAY Y-MP processor can address a larger memory space (32
address bits in the Y-MP versus 24 bits in the X-MP). The CRAY-1[Russel78] and the
CRAY-2[CRI85] are also similar to the CRAY Y-MP in many respects. The most
significant differences among the different Cray machines are in the capacity, organi-
zation, and latency and bandwidth of the main memory system. The CRAY-2 also
has a local memory in addition to main memory. The functional unit latencies vary to
some extent among the machines, but functional unit architectures exhibit several
similarities otherwise. The significant difference of the CRAY-2 is that it can be
thought of as having double the clock rate for vector operations as compared to its
scalar instructions. While several other vector supercomputers such as the NEC SX
[Watana87], the HITACHI S-820 [Eoyang88], and the FUJITSU VP [Miura83] have data
caches, none of the Cray machines have a data cache. Also, the NEC SX-2 [Watana87]
and the NEC SX-X[HNSX89] have multiple pipes for each vector functional unit, i.e.,
there are for example 4 copies of each vector functional unit and when a vector
instruction is issued each of the pipes operates on a quarter of the operations in paral-
lel, thus reducing pipeline startup latency. However, on the whole, the vector super-
computers exhibit several similarities such as separate vector and scalar units, multi-
ple vector and scalar functional units, multiple vector registers, etc. Thus, our study
of the CRAY Y-MP sheds light on several issues common to many vector supercom-
puters.

We now discuss some features of the CRAY Y-MP that are of interest to our
study. Figure 3.1 [CRI84] shows some of the key features of the processor. The pro-
cessor is partitioned into vector and scalar portions; the memory interface of the pro-
cessor consists of four ports: three for data transfers, and one for I/O and for fetching
instructions. The vector and scalar portions of the processor share floating-point func-
tional units, but have separate functional units otherwise. The scalar portion can be
viewed as consisting of an address-computation unit (an address unit, henceforth) and
a scalar-computation unit, each comprising of its own set of functional units. The vec-
tor unit, address unit, and scalar-computation unit each have an individual primary
register set — a set of eight vector (V) registers with 64 elements each, a set of eight
32-bit scalar (S) registers, and a set of eight 24-bit address (A) registers, respectively.
Furthermore, the S and A register sets have corresponding backup register sets, T and
B, of 64 registers each. A backup register is used to temporarily hold values when the
corresponding primary register set is full and a register needs to be spilled to make
room for another value. The functional units of the processor are fully pipelined. We
would like to list the specific latencies of the CRAY Y-MP, but this information is, as of
date, considered Cray Research Inc. proprietary information. However, the CRAY Y-

Mem.

Pop/Parity
Shift

8 Vector Registers

64-elements each

Vector Mask ‘

Logica

Mem.

64 T Registers

Add

Vector
Functional
Units

Multiply

Add

F.P.
Functional
Units

Pop/Parity/LZC

Logica

8 Scalar Registers

Mem.

64 B Registers

Add

Scalar
Functional
Units

Multiply

8 Address Registers

Mem.

Add

Address
Functional
Units

Vector Length

Figure 3.1: The Processor Architecture of the CRAY Y-MP.

(based on the CRAY Y-MP Reference Manual)

26

27

MP latencies are very similar to, but slightly longer than, the latencies of the CRAY X-
MP. The specific functional unit latencies of the CRAY X-MP are listed in table 3.1.
We note that the functional units have deep pipelines, and the memory latency is 14
clock cycles.

The CRAY Y-MP processor has one-parcel (16 bits), two-parcel, and three-parcel
instructions. The architecture is a LOAD/STORE architecture — memory is accessed
explicitly, and only by data-transfer instructions. Data-transfer instructions are of
three types: scalar transfers of single words between the primary registers and main
memory, block-scalar transfers of a block of words between the scalar backup regis-
ters and main memory, and vector transfers of vectors between the vector registers
and main memory. All computation instructions are register-register instructions that
operate on primary registers. The secondary registers do not have direct data paths to
the functional units; they have to be transferred to the primary registers before they

Inst. Type I{calgecrllcs})I
FP_ADD 6
FP_MUL 7
S_ADD 3
A_ADD 2
A_MUL 4
S_SHIFT 3
RECIPR 14
POP_LZC 4
LOAD 14

Table 3.1: Functional-Unit Latencies for the CRAY X-MP

28

can be used by a computation instruction. The processor can issue one-parcel instruc-
tions at a peak rate of one per clock cycle; two-parcel and three-parcel instructions
need two clocks for issue. The processor has an instruction cache (called I-buffers),
but no data cache. The instruction cache is 512 parcels, or 1K byes, long, and is parti-
tioned into four instruction buffers (cache blocks) of 128 parcels or 256 bytes each. The
instruction cache has a dedicated port to the main memory.

Overall, the processor is highly pipelined to exploit fine-grain parallelism. The
compiler attempts to identify and increase fine-grain parallelism in the code to take
advantage of this hardware. For example, the compiler unrolls loops to increase
parallelism, and software pipelines memory operations to tolerate long memory laten-
cies (i.e., it pre-loads in the current iteration some of the memory values used in the
next iteration). Increasing parallelism in code, however, results in a need for more
registers. For scalar code, the compiler can take advantage of the backup registers
provided, to tackle the need for registers. Loop unrolling also results in a need for
large instruction caches. The Cray Research compiler limits the amount of loop unrol-
ling to the size of the instruction cache (512 parcels or 1K bytes), to avoid repeated I-
buffer misses for loop instructions [Smith83]. (The amount of unrolling is dependent
on the size of the original loop body.) All these factors affect the dynamic execution
characteristics of an application program; we identify some of the effects of the above
factors in the data presented in this thesis.

3.4. BENCHMARKS

We use the PERFECT Club [Cybenk90] programs as benchmarks in this paper.
Briefly, the PERFECT Club benchmark set is the result of a large-scale benchmarking
effort toward aiding supercomputer evaluation, and comprises of thirteen long-
running supercomputer application programs chosen to represent the spectrum of
characteristics of scientific applications. These benchmarks are becoming widely
accepted as standard benchmarks for supercomputer evaluation.

We choose these benchmarks as they are carefully-chosen long-running applica-
tion programs rather than short kernels or loops. Table 3.2 presents the execution-
time, in CRAY Y-MP clock cycles or pulses (CPs), and the number of instructions exe-
cuted for each of the benchmark programs. We observe that each program executes
hundreds of millions of CRAY Y-MP instructions, and takes hundreds of millions of
clock cycles to run. DYFESM has the shortest running time at 647 million CRAY Y-
MP clock cycles; FLO52 has the fewest number of instructions at 176 million. The
largest execution time is 9 billion clock cycles (for MDG), and the largest instruction
count is 3.4 billion instructions (for OCEAN). Overall, the benchmark set has 12.4 bil-
lion instructions and takes 49 billion clock cycles to execute. Thus, the benchmarks we
study are long-running applications, as opposed to the kernels or small benchmarks
that have been used so far for vector machine studies. For an instruction-level study
such as ours, it is essential to study long-running, real programs in order to obtain a

29

realistic picture of program behavior and machine utilization. While short kernels or
loops are easy to handle, they do not completely represent program behavior. For
example, the startup work prior to loop execution is not represented in such bench-
marks. Furthermore, the widely-used Livermore FORTRAN Kernels are representa-
tive of only one workload (i.e., the workload at LLNL), while the PERFECT Club pro-
grams are drawn from a wide variety of of application workloads.

Benchmark N Time Instfu‘ctions
(millions of CPs) (millions)
ADM 4,492 1,597
ARC3D 5,743 1,218
BDNA 1,550 300
DYFESM 647 217
FLO52 801 176
MDG 9,048 1,780
MG3D 8,750 911
OCEAN 8,008 3,387
QCD 2,297 896
SPEC77 3,131 550
SPICE 1,585 418
TRACK 1,719 500
TRFD 1,304 503
Total 49,075 12,453

Table 3.2: Benchmark Sizes — Compiler-Optimized Version

(as reported by the Hardware Performance Monitor)

30

Program performance on any system is determined by the abilities of both the
compiler and the processor. We compile our programs, for a single processor of the
CRAY Y-MP, using the Cray Research production FORTRAN compiler, CFT77, ver-
sion 3.0. CFT77 is an aggressive compiler that optimizes code and vectorizes it for
high performance. For example, the compiler makes special efforts to hide scalar
memory latency: memory load instructions for operands that are consumed in future
loop iterations are issued towards the end of the current loop iteration to hide
memory latency. Since we study compiled code, we view our study as one of the
PERFECT Club benchmarks executing on the CRAY Y-MP system comprising a state-
of-the-art vectorizing and optimizing compiler, and the fine-grain parallel CRAY Y-
MP processor.

Although the Cray compiler is a state-of-the-art vectorizing and optimizing com-
piler, current state-of-the-art compiler technology for supercomputers is still unable to
harness a significant portion of the power of the machines in many cases. It is very
common for supercomputer users to hand-tune programs to their machines to harness
more of the machine’s power. Such hand-tuning includes reorganizing code to sim-
plify the compiler’s job, and inserting explicit compiler directives in the code to aid
the compiler in its job. For example, consider a set of nested loops. Interchanging the
loops could provide a vectorizable innermost loop where the original program had a
non-vectorizable innermost loop. If the compiler cannot easily handle loop reorder-
ing, manually reorganizing the loops could provide tremendous performance
improvements. As another example, if a loop contains ambiguous array references,
usually the compiler has to be conservative and will not vectorize the loop. However,
if the programmer knows that array references will never conflict, inserting a compiler
directive that asserts that the loop is vectorizable enables the compiler to attempt vec-
torization. Since such hand-tuning of code is common for supercomputer applica-
tions, it would be interesting to compare and contrast code that is just compiler-
optimized to code that is hand-tuned first and then automatically compiled.

We carry out precisely such a comparison in this thesis. We study two versions
of the PERFECT Club benchmarks: one that is directly compiled by CFI77, and
another that is hand-tuned and then compiled by CFT77. For the hand-tuned version
of the PERFECT Club, we use the version, hand-tuned by a Cray Research, Inc. team
of programmers, that won the 1990 "Gordon Bell-PERFECT" Award for the fastest
supercomputer application. Thus, we study some of the best hand-tuned version of
the PERFECT Club programs available to us.

Table 3.3 provides the execution times and the instruction counts for the hand-
tuned version of the PERFECT Club programs. The execution times and the instruc-
tion counts of several programs show considerable improvement over their non-
hand-optimized versions. The last column of table 3.3 shows the speedup obtained by
hand-optimization. We note that DYFESM and FLO52 are excluded from the com-
parison of execution speeds. This is due to the fact that the hand-optimized versions

31

of DYFESM and FLO52 available to us from Cray Research, Inc. are run on larger data
sets than the compiler-optimized versions (the larger execution times we see for these
two programs are due to the larger data sets). Ideally, one would like to use the exact
same data-sets for both versions of the benchmarks. We tried to obtain runs of the
programs on the same data-sets as the original versions, without immediate success;
in the interests of time, we use the larger data-set versions. (We note that we do not
have access to Cray Research, Inc.’s machines, and have to rely on employees of Cray
Research for obtaining benchmarks or running programs.)

We note that the change in the two data-sets does not detract from our studies,
since the issues of interest to us are the proportions of various events in each of the pro-
grams, rather than the absolute values or counts of the events. When we compute
averages across programs, we use normalized values in order to provide equal impor-
tance to each program irrespective of its (execution) length, and hence the averages
are also not affected. The PERFECT Club benchmarks are chosen from a variety of
applications spread across several application centers and laboratories, rather than
from a single workload (as for example the Livermore Loops which is drawn only
from the application programs at the Lawrence Livermore Laboratories). The PER-
FECT Club report[Berry89] mentions such diversity to be one of its prime goals. Thus,
the relative importance of the individual programs is not clear, and hence we choose
to assign equal importance to all the programs.

The chief effect of data-set size on a vectorizable program is the following. As
data-sets increase in size, the level of vectorization of the program increases, and
hence program execution efficiency increases. The increase in data-size of the two
programs in our benchmark suite does not raise much concern on this front: FLO52
and DYFESM show very nearly the same level of vectorization both before and after
hand-optimization, as will be shown in the next chapter.

The speedups shown by the various programs reflect the efficacy of hand-
optimizations and the amount of machine-power left unharnessed even by a state-of-
the-art compiler. The set of programs as a whole shows executes 1.5 times faster,
while a couple of individual programs execute 4 times as fast as the compiler-
optimized versions.

In this dissertation we study the user routines of the benchmark programs. We
do not include in our study the library routines executed by the benchmark programs.
An important practical reason for this is the fact that the library routines are con-
sidered proprietary by Cray Research, Inc., and hence they are not available to us for
study purposes. Furthermore, the early version, used by us, of a Cray Research, Inc.
software tool necessary to study the programs did not provide information about
library routines (the software tool is discussed in section 3.5). Beyond these practical
factors, however, we consider the separation of library- and user-routines, in studies
such as ours, important from a technical viewpoint, for the following reason. Many of

32

Benchmark N Time Instfu.ctions Speedup
(millions of CPs) (millions)

ADM 1,245 421 3.60
ARC3D 5,712 1,167 1.01
BDNA 1,017 119 1.52
DYFESM 882 325 (NA)
FLO52 827 227 (NA)
MDG 6,066 933 1.49
MG3D 8,727 964 1.00
OCEAN 2,041 351 3.92
QCD 1,067 239 2.15
SPEC77 2,923 542 1.07
SPICE 390 96 4.06
TRACK 682 245 2.52
TRFD 779 343 1.67
Total 32,358 5,972 1.55%

(*: Speedup of the Benchmark Set with DYFESM and FLO52 excluded)

Table 3.3: Benchmark Sizes — Hand-Optimized Version

(as reported by the Hardware Performance Monitor)

the CRAY library routines are hand-coded in assembly language due to performance
considerations. This implies that library routines will utilize the processor better than
compiled code. Thus, by not including the library routines in the study, we focus on
the performance of compiled FORTRAN code. Even if library routines are studied, it
would be essential to present them separately from the user routines. When studying
hand-optimized code, however, this distinction between user- and library-routines
blurs to some extent. However, note that even the hand-optimized user-routines are

33

written in high-level language, while the library routines are coded in assembly
language which presumably provides more leverage over the machine.

3.4.1. Scalar Code in the Benchmarks

In section 3.2 we discussed the motivation for the design of a separate scalar pro-
cessing unit geared to execute the scalar code found in vectorized programs. Briefly,
the scalar code in vector programs limits the improvement attainable on the programs
(Amdahl’s Law), and hence it is important to speed up scalar code. Since the scalar
code left over after vectorization could exhibit behavior very different from both vec-
tor code and the scalar code found in general-purpose (i.e., non-engineering pro-
grams), as discussed in section 3.2, it is important to characterize such code and base
the design of the scalar unit in a vector machine on such characterization.

We attempt to provide a characterization of scalar code in this thesis. Here we
address the issue of isolating scalar code from our benchmarks for the purpose of
characterization.

One could define all the scalar instructions in the programs to comprise scalar
code. However, scalar instructions whose execution is overlapped with the execution
of vector instructions are essentially executed for free. One method of isolating "real"
scalar code would involve simulating program execution and isolating all the scalar
instructions that are in execution whenever all the vector units of the machine are idle.
Since our study methodology avoids complete program simulation given the large
programs we use as benchmarks, we use a different method for isolating scalar code.
Furthermore, scalar code chosen in such a manner is to some extent dependent on the
particular machine implementation being considered, while we are interested in a
more general choice of scalar code. For example, changing the functional unit laten-
cies or the number of vector pipes would change the amount of overlap between vec-
tor instructions and some scalar instructions.

Instead, we use the following method to isolate scalar code. We first observe that
scientific programs are dominated by loops. In our benchmark programs, for exam-
ple, the dynamic count of basic blocks is 3 to 4 orders of magnitude larger than the
static count. This suggests the presence of loops with large loop counts. Tables 3.4
and 3.5 provide the static and dynamic basic block counts in the compiler-optimized
and hand-optimized versions of our benchmarks. While the static block counts are in
the few hundreds to tens of hundreds, the dynamic block counts are in the tens of mil-
lions. For example, the compiler-optimized version of mdg has 655 static basic blocks
but the blocks are executed 84 million times. Thus, on the average, each loop is exe-
cuted a few thousand times. Such execution could be due either to a high iteration
count or to the nesting of the loop within other loops.

Furthermore, practically all of the vector computation instructions carry out the
core of the program’s computation and are executed inside loops. Such vector loops

Program || Static Blocks | Dynamic Blocks
ADM 1,325 52,329,814
ARC3D 1,199 48,984,993
BDNA 1,140 1,811,966
DYFESM 1,443 10,753,991
FLO52 1,234 8,219,900
MDG 655 84,305,047
MG3D 506 24,709,822
OCEAN 1,264 61,526,097
QCD 1,152 33,220,407
SPEC77 1,538 9,787,340
SPICE 1,699 29,117,818
TRACK 809 43,277,021
TRFD 316 40,845,277

Table 3.4: Static and Dynamic Basic Blocks Executed
— Compiler-Optimized Codes

35

Program || Static Blocks | Dynamic Blocks
ADM 1,736 10,618,381
ARC3D 1,225 55,954,584
BDNA 1,304 1,210,429
DYFESM 1,371 15,303,928
FLO52 1,298 11,818,539
MDG 542 29,049,143
MG3D 455 23,811,309
OCEAN 1,149 10,710,535
QCD 1,290 20,199,363
SPEC77 1,564 10,604,990
SPICE 2,814 5,640,153
TRACK 714 8,937,182
TRFD 258 27,810,474

Table 3.5: Static and Dynamic Basic Blocks Executed

— Hand-Optimized Codes

also contain some scalar instructions. It is very likely, however, that the execution of
these scalar instructions is overlapped with that of vector instructions (either of the
same loop iteration or of the previous iteration). For example, a vector addition of
two arrays of 1000 elements each has to be carried out using a vector addition within a
loop on the CRAY Y-MP since each vector instruction is limited to carry out a max-
imum of 64 operations (the maximum vector length). (We note that there could be a
few cases where there exists tight dependencies across loop iterations such that the
scalar instructions of the vector blocks are executed only when no vector instruction is
in execution. Such instructions should ideally be considered as scalar code; our
method of studying just the scalar basic blocks ignores these instructions.)

36

Other than the loops containing vector instructions, vectorized programs consist
of scalar basic blocks that either set up work for the vector loops, or complete the
work of a vector loop. In addition, the non-vectorized computations of the programs
of course are found in the scalar blocks. All these scalar blocks are usually executed
when no vector instruction is in progress (except that some times the vector instruc-
tions in the last loop iteration could overlap the execution of scalar code beyond the
loop to some extent). Thus, we choose scalar code to be all the scalar basic blocks (i.e.,
basic blocks that contain no vector instructions) in the program. We hence exclude
vector instructions and scalar instructions found in vectorized basic blocks. In the rest
of the thesis, whenever we refer to scalar code in the benchmarks, we refer to code
thus selected.

As pointed out by Amdahl’s law, even if the scalar basic blocks contribute only a
small portion of the program’s instruction count, they significantly limit the execution
speedup achievable. In chapter 4 we identify the fraction of basic blocks of our pro-
grams that are scalar, and discuss the reasons for the fractions seen, before proceeding
with the characterization of the scalar code. Since the proportions of scalar and vector
basic blocks are better understood given a perspective of overall program vectoriza-
tion, we delay this discussion till chapter 4. Suffice it to say that even a small propor-
tion of scalar code significantly limits performance improvement.

3.5. MEASUREMENT METHODOLOGY

We use two methods of data collection in our study. First, most of the data
presented in this paper are dynamic counts such as instruction frequencies, basic
block sizes, etc., which do not involve measurement of the time taken by the processor
to execute the program. Such data can be collected very quickly by the following sim-
ple, widely-used technique. Programs are composed of basic blocks of instructions.
The branch instructions in the program determine the number of times each basic
block in the program text is executed, and the sequence in which the basic blocks are
executed. Statistics that are affected only by the frequency of execution of individual
basic blocks, and not by the sequence in which they are executed, can be gathered
easily and quickly by first collecting data for the individual basic blocks in the pro-
gram and then scaling the statistics for each basic block by the execution frequency of
that basic block. The dynamic execution frequencies of the basic blocks need to be col-
lected first; instrumentation of programs to collect this information is routinely done
(for example, [Mitche88]). We use a Cray Research production software tool, JUMP-
TRACE [Kohn89], to obtain execution frequencies of the basic blocks in our bench-
marks. Another software tool analyzes the basic blocks in CRAY machine code and
uses the basic block execution frequencies to scale the data collected for each basic
block.

The version of JUMPTRACE used in our studies could instrument only the user
routines of the programs. Partly due to this reason, and partly due to other reasons

37

that are discussed in detail in section 3.4, we study only the user routines of our pro-
grams. The limitation of JUMPTRACE is due to the fact that library routines are writ-
ten in assembly language (due to performance considerations). JUMPTRACE relies on
some instrumentation code that is incorporated during compilation from FORTRAN
down to the assembly language, and hence can not instrument assembly code. A
modified version of JUMPTRACE, available since around April 1991, has the capabil-
ity of tracing library routines. However, library routines are considered proprietary
by Cray Research, Inc., and are not available to us for study. Assuming library rou-
tines are available for study, it would still be desirable to separate user-routines and
library-routines in such a study; we discuss the reasons for this in section 3.4.

Second, we present some data regarding the time taken for program execution.
Such data are collected using the Hardware Performance Monitor (HPM) available on
the CRAY Y-MP. The HPM is a set of hardware counters that can be turned on during
program execution to collect certain statistics in a non-obtrusive manner. For exam-
ple, HPM monitors program execution time, instruction issue stage utilization, and
the number of floating-point, integer, and memory operations executed.

3.5.1. Instructions and Operations

The instruction set of a vector processor consists of scalar and vector instructions.
The scalar instructions of the CRAY Y-MP are similar to the instructions of any simple
LOAD/STORE architecture. Vector instructions, on the other hand, initiate work
equivalent to that initiated by several scalar instructions. For example, a vector load
instruction might initiate 64 memory load operations, a vector add might initiate 64
floating-point operations. A scalar instruction initiates only one operation, except
may be for an implicit indexing operation in memory instructions. Thus, when com-
paring vector machines with non-vector machines, it is desirable to compare operation
counts rather than instruction counts. Furthermore, in many cases operation counts
better reflect the utilization of machine resources. Hence, we distinguish between and
provide both instruction and operation measurements in our studies.

To obtain operation counts, we expand each vector instruction into VL opera-
tions, where VL is the vector length of the vector instruction. VL specifies to the vector
instruction the number of individual elements of the vector operands that are to be
operated upon, and hence the number of operations to be executed. We note that
scalar code that carries out the equivalent work of a vector instruction can require
2xVL or 3xVL operations, since it has to implement loop-control and array indexing in
software (whereas these are implicitly handled by the hardware for a vector instruc-
tion). For example, consider the following vector instruction:

V1=V2+V3.
An equivalent scalar loop (in pseudo-assembly language) is:

38

loopentr = 64;

LOOP Vl1[loopcentr] = V2[loopentr] + V3[loopentr];
loopentr = loopentr - 1; /* this instruction sets a condition code */
BrG LOOP /* branch to LOOP if (loopcentr > 0) */

Thus, for each operation in the vector instruction above, we have 2 additional opera-
tions in the scalar loop. But in our studies we assume no additional operations for
each vector operation; thus each vector instruction translates into VL operations.

3.5.2. Caveats

All the data collected for the CRAY Y-MP using our technique of profiling at the
basic block level are accurate, but for one exception that is due to the vector architec-
ture of the CRAY Y-MP. The number of operations executed by a vector instruction is
determined at runtime on the CRAY Y-MP, by the contents of a special Vector Length
(VL) register. Since we do not simulate program execution, the content of the VL
register during the execution of each individual vector instruction is not available to
us. Furthermore, since we do not simulate program execution in entirety, our study
methodology does not provide an opportunity for the use of such information even if
it were available. Instead, we use the average vector lengths reported by the HPM for
each of the benchmark programs. HPM reports the average vector length over the
execution of a program for three different vector instruction classes — floating-point,
integer, and memory instruction classes. Tables 3.6 and 3.7 present these measure-
ments of the vector lengths for the compiler-optimized and the hand-optimized pro-
grams. We see that the average vector length is usually much less than 64 — the max-
imum vector length supported by the CRAY Y-MP; in extreme cases the average is as
low as just a few elements (for example, in the case of SPICE, ADM, and TRACK).
The average vector lengths depend on the the size of the data set to be operated upon.
Often the number of elements to be operated on at a time can be much less than the
hardware-supported maximum of 64. Furthermore, short vector lengths can be gen-
erated in another context. Whenever an array to be operated on is larger than 64 ele-
ments in size, the array is strip-mined into 64-element chunks and into a smaller
chunk that accounts for any left over elements. This final chunk thus has a vector
length shorter than 64.

There exists a small margin for error in our methodology due to the problems
associated with using averages of numbers. One, the average vector lengths of the
individual instructions that form each instruction class could be significantly different
from the average for the whole class. Two, the average vector lengths reported by
HPM are averages over the execution of the entire program, while we use these aver-
ages to study only the user routines of the program. The average vector length of the

Average Vector Length

Program Integer | F.P. | Memory
Inst.s Inst.s Inst.s
ADM 25.44 7.02 11.52
ARC3D 38.33 32.12 31.81
BDNA 39.81 50.99 47.62
DYFESM 34.31 21.19 14.53
FLO52 43.62 40.52 40.89
MDG 37.16 41.53 45.44
MG3D 60.57 61.77 62.27
OCEAN 47 41.58 48.84
QCD 12.17 13.15 13.15
SPEC77 34.46 27.34 29.98
SPICE 13.05 2.01 17.03
TRACK 5.75 5.32 26.01
TRFD 18.44 22.13 22.20

Table 3.6: Average Vector Length as reported by HPM

— Compiler-Optimized Codes

39

40

Average Vector Length

Program | Integer | F.P. | Memory
Inst.s Inst.s Inst.s
ADM 16.42 18.56 18.73
ARC3D 38.40 31.78 31.39
BDNA 44.39 50.55 47.75
DYFESM 9.72 19.27 15.35
FLO52 41.73 39.69 40.58
MDG 36.55 48.38 47.76
MG3D 50.12 61.73 62.42
OCEAN 47.81 40.23 45.22
QCD 28.09 22.94 25.26
SPEC77 29.72 29.36 31.48
SPICE 42.92 41.15 43.95
TRACK 36.36 11.99 21.48
TRFD 21.39 22.27 20.99

Table 3.7: Average Vector Length as reported by HPM
— Hand-Optimized Codes

user routines could be quite different from the average for the library routines, and
thus quite different from the average for the entire program execution.

We note that if the distribution of vector lengths is highly skewed then using the
average vector length could result in comparatively larger errors. Such a situation is
precluded to a large extent due to the following reasons. The compiler incorporates a
rule that prevents the generation of vector instructions when very short vector lengths
are involved, since vector instructions are inefficient at very short vector lengths.

41

Instead, the compiler uses scalar loops coupled with loop unrolling to achieve good
performance. Regarding strip-mining, a vector length shorter than 64 is generated
only once for each strip-mined array, whereas a vector length of 64 is generated from
one to many times for the array depending on its size relative to 64. Therefore the
average vector length in this situation will more likely be closer to 64 on the average.
Therefore the vector lengths can be expected to be not highly skewed in the programs,
and thus the average can be expected to be a fairly accurate measure of the actual vec-
tor lengths. We note that a few of the average vector lengths reported are smaller than
10 instructions. This is due to the fact that when the vector length is not known at
compiler time the compiler generates code to dynamically determine the vector
length. In these situations, although the average vector length is small, the individual
vector lengths will be clustered close to that average, due to the heuristics used by the
compiler to generate vector instructions with dynamically computed vector lengths.
Furthermore, the compiler optimized versions of programs such as SPICE and
TRACK are essentially scalar programs that have few vector instructions in them, as
will be shown in the next chapter. Thus most of the very short vector lengths reported
also have very little impact on the data collected.

We note in passing that simulating the programs in their entirety — the alterna-
tive to using average vector lengths — would require enormous amounts of CPU
time, since simulations can be two to three orders of magnitude slower than the pro-
grams being simulated, and the programs themselves have long execution times
(Table 3.2). The assumptions made about vector lengths in order to avoid a full simu-
lation of the benchmarks are thus justified. The assumptions help us collect data rela-
tively quickly, and at the same time do not cause significant errors in the data col-
lected.

3.6. SUMMARY

We presented in this chapter a discussion of some aspects involved in the study
of a vector machine, to provide background to the study presented in this dissertation.
Then, we presented an overview of the specific machine we study, a single processor
of the CRAY Y-MP. We discussed the benchmarks we use, and the two optimization
levels of the benchmarks that we consider. Finally, we described our study methodol-
ogy and metrics, and discussed some caveats that have to be observed while using the
data presented.

The next two chapters present the various studies of the CRAY Y-MP carried out
using the methodology described here.

42

Chapter 4

CHARACTERIZATION OF VECTOR MACHINE PROGRAMS

4.1. INTRODUCTION

In this chapter we characterize the instruction-level behavior of programs execut-
ing on a single processor of the CRAY Y-MP. Our choice of the PERFECT Club pro-
grams as benchmarks for our studies was discussed in chapter 3. Throughout the
instruction-level characterization, we compare compiler optimized programs with
hand-optimized programs, in order to study the effects of hand-optimization on pro-
gram characteristics. Furthermore, we also separate out the scalar basic blocks of the
programs and study their characteristics in isolation. The motivation for such a study
is the desirability of a scalar processing unit exclusively executing scalar blocks, as
was discussed in chapter 3.

The methodology used in our study is discussed in chapter 3. This chapter is
organized as follows. In section 4.2 of this chapter, we discuss the usage of various
instructions and operations by the programs, and the level of vectorization of the
benchmarks. In section 4.3, we discuss the sizes and the vectorization of basic blocks
of the benchmarks. In section 4.4, we look at the number of user-routines and library-
routines invoked by the two versions of the benchmarks. In section 4.5, we investigate
instruction and operation issue rates. The significance of each of these issues is dis-
cussed in the sections that report the corresponding studies. In section 4.6, we sum-
marize the studies reported in this chapter.

4.2. INSTRUCTION AND OPERATION MIX STUDIES

We present in this section several measurements pertaining to program vectori-
zation, the CRAY Y-MP processor’s instruction set usage, and operation execution
counts. In the following subsections we point out the importance of these issues,
present and analyze data, and discuss their implications on machine design.

4.2.1. Program Vectorization

The vectorization of a program is one of the key determinants of performance on
a vector machine. Vector instructions, targeted at the data-parallel sections of a pro-
gram, each execute on a series of data elements in a pipelined fashion. They com-
pletely hide functional-unit latency with pipeline parallelism, except for the pipeline
startup overhead for the first operation of the instruction. Vector instructions perform
work more efficiently than a corresponding scalar loop, as discussed in chapter 3 (also
see, for example, Chapter 7 in [Hennes]). Therefore, the fraction of program execution
time spent executing vector instructions is a measure of the efficiency of program

43

execution. This fraction is related to the dynamic frequency of vector operations in the
program, although, as per our experience, the relationship may not be linear. The
fraction of program execution time spent executing vector instructions is the best
metric of the vectorization of a program since it directly represents program perfor-
mance. However, since we do not study statistics related to execution time in this
dissertation (as discussed in detail in chapter 3), we will rely on the dynamic fre-
quency of operations executed by vector instructions to measure program vectoriza-
tion.

Folklore has it that many scientific programs have as many as 90% of their opera-
tions executed by vector instructions (for example, this is the number quoted along
with the Lawrence Livermore Loops [McMaho86]). However, scientific programs
could be inherently unvectorizable due to the presence of recurrences (data-
dependencies across the iterations of a loop) in the code, ambiguous array subscripts
that prevent the resolution of data dependencies at compile-time, data-dependent
branches or subroutine calls inside loop bodies, etc. Furthermore, current limitations
of state-of-the-art compilers prevent vectorization of some code that could actually be
run in vector mode if it were compiled by hand. Hence, we first measure the vectori-
zation of a scientific workload by a state-of-the-art compiler, to determine the current
relative importance of the scalar and vector portions of a supercomputer. Then, we
examine the vectorization of the same programs after they are hand-optimized to
improve performance. Hand-optimization includes rewriting of portions of the pro-
grams to ease their vectorization by the compiler, and insertion of specific compiler
directives to vectorize portions that a compiler would otherwise not recognize as vec-
torizable. For example, a loop containing accesses to arrays via subscripts that are
ambiguous to the compiler will not be vectorized unless a compiler directive asserts
that the loop is vectorizable. Several techniques for improving the vetorization of and
parallelism in programs are discussed in the literature, for example in
[Padua86, Allen87].

As mentioned in Chapter 3, we study a version of the PERFECT Club bench-
marks that is hand-optimized by a group of Cray Research programmers. Thus, since
we are not privy to the optimizations carried out, we study only the behavior of the
hand-optimized codes and do not attribute any behavioral changes to specific optimi-
zations carried out. Throughout this chapter we study changes in program behavior
due to hand optimization. In particular, in this section we compare the vectorization
level of our benchmarks before and after hand-optimization; this study reflects the
gap between performance delivered by a current state-of-the-art vectorizing compiler
and performance achievable by excellent manual optimizations.

Table 4.1 presents the vectorization level of the automatically compiled pro-
grams. The last column of table 4.1 presents the fraction of all operations of each pro-
gram vectorized in the compiler optimized version of the programs. We observe that

Operation Class

Bench- Floating-Point Integer Memory All
mark % of FEP. | %of All || % ofInt. | % of All || % of Mem. | % of All %
Ops. Ops. Ops. Ops. Ops. Ops.

BDNA 99.4 52.1 97.1 4.4 98.4 39.6 96.1
MG3D 100.0 33.1 47.9 0.5 99.9 61.5 95.1
FLO52 99.9 42.4 60.9 15 99.8 47.7 91.5
ARC3D 99.8 45.2 25.6 0.3 99.7 45.5 91.1
SPEC77 98.3 37.3 74.8 1.9 99.0 51.1 90.3
MDG 95.5 25.6 95.5 20.1 96.0 41.9 87.7
TRFD 99.7 27.5 7.2 0.3 97.8 421 69.8
DYFESM 97.3 34.4 36.9 2.5 91.0 31.9 68.8
ADM 69.6 15.1 323 3.8 80.8 24.0 429
OCEAN 54.8 14.7 0.0 0.0 79.3 28.1 42.8
TRACK 11.6 14 1.2 0.1 48.6 12.9 14.4
SPICE 9.6 1.1 0.0 0.0 32.6 10.5 11.5
QCD 6.6 1.3 6.5 0.8 16.5 2.1 4.2
srithmetic | 775 37.4 80.0 62.0

Table 4.1: Percentage V ectorization of Various Operation Classes

— Compiler-Optimized Codes

44

45

Operation Class

Bench- Floating-Point Integer Memory All
mark % of % of || %of | %of || %of % of addnl.

F.P. All Int. All || Mem. | All % vect.

Ops. Ops. || Ops. | Ops. || Ops. | Ops.
BDNA 99.8 499 | 974 3.9 | 99.8 434 || 97.2 +1.1%
MG3D 100.0 329 || 45.0 0.4 | 99.9 61.2 || 94.5 -0.6%
MDG 99.7 355 | 959 17.8 || 99.7 41.0 || 94.2 +6.5%
ARC3D 99.9 46.6 | 25.7 0.3 | 99.8 452 || 92.0 +0.9%
OCEAN 99.3 29.2 || 78.6 32 | 99.3 589 || 91.2 +48.4%
SPEC77 98.5 373 || 743 1.6 || 99.2 51.4 || 90.4 +0.1%
FLO52 98.3 38.8 || 50.8 1.2 || 994 48.8 || 88.7 -2.8%
SPICE 96.8 15.8 || 874 20.8 || 94.2 433 || 799 +68.4%
QCD 96.4 259 || 271 1.5 || 95.8 47.7 || 75.1 +70.9%
TRFD 99.9 327 | 17.0 05 | 97.3 405 || 73.7 +3.9%
DYFESM 95.9 294 || 412 35 | 928 32.7 || 65.6 -3.2%
ADM 89.2 29.0 || 32.6 2.6 | 853 28.0 || 59.6 +16.7%
TRACK 59.2 13.7 || 86.7 16.8 || 78.5 24.0 || 54.6 +40.2%
AM. 94.8% 58.4% 95.5% 81.3%

Table 4.2: Percentage Vectorization of Various Operation Classes
— Hand-Optimized Codes

the vectorization level is not around the commonly-expected 90% level, but spans the
entire range, from about 96% all the way down to just 4% vectorization. BDNA is 96%
vectorized, while only 4% of QCD’s operations are executed by vector instructions.
The limited vectorization of some of the programs could be due either to dependen-
cies in the program or to the limitations of current state-of-the-art vectorization tech-
niques. To examine this, we measure the vectorization level of the same programs
when the compiler is supplemented with manual optimizations and

46

rewriting/reorganization/hints for vectorization. The prior-to-last column of table 4.2
presents the fraction of all operations of each program vectorized in the hand-
compiled programs. We see that the lowest vectorization level has jumped from 4%
in the compiler optimized version to 54% in the hand optimized version. The pro-
grams OCEAN, TRACK, SPICE, and QCD exhibit tremendous increases in vectoriza-
tion levels (as shown in the last column of table 4.2) — OCEAN improved from

43% vectorization to 91%, TRACK from 14% to 55%, SPICE from 11% to 80%, and
QCD from 4% to 75%. While most other programs exhibit the same level of vectori-
zation in the two versions, a few show a small drop. We note that this is quite possi-
ble when manual optimizations reduce the number of instructions executed by a pro-
gram, for example by using more efficient code constructs. An intermediate result
vector might be assigned to a register during hand-optimization, thus eliminating a
vector load and a vector store instruction that was required in the compiler optimized
version, and hence reducing the proportion of vector operations in the program. Also,
some of the vector work of the program might be replaced by calls to more efficient
vector library routines upon hand optimization; since we study only the user routines,
we will see a corresponding decrease in vectorization level of the user routines. Thus,
although the vectorization level is slightly lower for some programs, program execu-
tion is much faster due to the reasons just mentioned.

An important conclusion from the change in vectorization level seen is that per-
formance delivered by state-of-the-art compilers can be quite short of performance
achievable by manual optimizations. For some applications, the compiler may be
unable to even partially vectorize programs that are actually vectorizable to a large
extent (as, for example, in the case of SPICE and QCD). Knowledge on the part of the
programmer of the underlying vector architecture and implementation is thus still
essential to obtain the maximum performance from the machine, at least for some of
the applications. We note that it is quite common today for supercomputer users to
hand-tune applications to obtain better performance from the machine.

We have used the fraction of all program operations vectorized as our vectoriza-
tion metric above, since program performance is dependent on the vectorization of all
operations. Instead, the fraction of floating-point operations vectorized is sometimes
used as the vectorization metric, as done for example in [Hennes]. To investigate the
representativeness of this metric, we examine the vectorization of various classes of
operations in the compiler optimized version of the benchmarks (see table 4.1 again).
Note again that the fractions presented in table 4.1 are fractions of operations and not
of instructions. For example, for ARC3D, 99.8% of all floating-point operations are
executed in vector mode; these vectorized floating-point operations constitute 45.2%
(column 3 of the table) of all operations of the program. The data show a fairly good
correlation between the fraction of floating-point operations vectorized and the frac-
tion of all program operations vectorized in the compiler optimized version. (The
exceptions to this correlation are TRFD and DYFESM.) For example, for BDNA, 99.4%

47

of all floating-point operations and 96.1% of all operations are vectorized; for TRACK,
11.6% of all floating-point operations and 14.4% of all operations are vectorized.
However, for the hand-optimized programs, floating-point vectorization is much
higher than overall vectorization. Except for TRACK, all the hand-optimized pro-
grams have at least 90% of their floating-point operations vectorized. Thus, floating-
point vectorization is not a good metric of program performance. Furthermore, as
seen from tables 4.1 and 4.2 again, the fraction of neither integer nor memory opera-
tions vectorized is very correlated with the fraction of all operations vectorized for
either benchmark version, and neither is a very good metric of program vectorization.
For example, 48.6% of TRACK’s memory references are vectorized, but only 14.4% of
all of its operations are vectorized. Thus, the vectorization levels of individual classes
of operations are not representative of overall program vectorization.

We observe that the fraction of memory operations vectorized in the compiler
optimized version is quite high for ten of the thirteen original programs, with the
lowest level for them being 79.3%. Of the other three programs, TRACK has 48.6% of
its memory operations vectorized while SPICE has 32.6% of its memory operations
vectorized; QCD has only 16.5% of its memory operations vectorized. For the hand-
optimized programs, the fraction of memory operations vectorized is high for all pro-
grams; TRACK has the lowest vectorization of memory operations, at 78.5%. This
clearly emphasizes the need for large memory bandwidth in vector supercomputers,
even for programs that are not hand-optimized. Memory latency is relatively less
important for the vector memory operations — the latency is hidden by the parallel-
ism available, by pipelining memory accesses. One reason memory references of even
scalar programs are vectorized to a significant extent might be that vector loads can be
used to feed some of the data for scalar computations such as linear recurrences, as
shown in [Sohi90]. We note that the CRAY Y-MP has 3 memory ports dedicated to
data transfers, multiple memory banks, and pipelined memory access, to provide
large memory bandwidth.

The reason for the high level of vectorization of memory operations is of course
the high predictability of memory references. Such predictability can be exploited
even in non-vector machines via intelligent data-prefetching (either to a data-cache or
to registers) provided the memory bandwidth is available. When scalar programs
have predictable memory references, a programmable cache[Sohi90] that exploits the
knowledge of the memory access patterns can be used to reduce memory latency.
Thus, the data suggest that scientific applications in general can utilize large memory
bandwidth, even when compilers don’t vectorize the overall programs to the max-
imum extent possible. Long memory latency is consequently less of a concern when it
can thus be tolerated by using the parallelism in the predictable memory references or
reduced by exploiting the predictability of the memory references.

Let us consider the vectorization of integer operations. We observe that the vec-
torized integer operations constitute only a small portion of all program operations.

48

The vectorization of the integer operations is spread across a wide range, and shows
no correlation with the vectorization of either floating-point operations or the entire
program. (As mentioned in Chapter 3, integer operations do not include address
computations since a separate scalar address computation functional-unit is provided
on the Cray machines and they are hence classified separately.)

Overall, we can conclude that the average fraction of operations vectorized for
both hand-optimized and just compiler-optimized scientific programs is much less
than the usually assumed 90%, insofar as the benchmarks are representative of
scientific workloads. For our benchmark set, the average vectorization is 62% for the
compiler-optimized programs, and 81% for the hand-optimized programs. (As dis-
cussed in Chapter 3, we assume all programs are equally important when computing
the averages. Hence we use the arithmetic mean here.)

Considering the clustering of numbers in the overall vectorization columns of
tables 4.1 and 4.2, we partition the benchmark programs into various classes in the
rest of this dissertation: highly-vector, moderately-vector, and scalar programs for the ori-
ginal benchmarks, and highly-vector and moderately-vector classes for the hand-
optimized benchmarks. We will present data only for these three classes of programs
in the rest of this dissertation; space constraints and the volume of data prevent us
from presenting information for the individual programs. We believe that classifying
the programs as above minimizes the loss of information caused by considering only
averages of numbers, since each group contains programs with very similar charac-
teristics. Additionally, the classification helps us identify certain characteristics of the
individual classes. We classify the programs as follows. For the original benchmarks,
QCD, SPICE, and TRACK make up the scalar benchmarks; ARC3D, BDNA, FLO52,
MDG, MG3D, and SPEC77 are the vector benchmarks; and ADM, DYFESM, OCEAN,
and TRFD make up the moderately-vector benchmarks. (DYFESM and TRFD are on the
border line between two classes; we use information about instruction-issue stall
times, presented in section 4.5, to push them into the moderately-vector category.)
For the hand-optimized benchmarks, ARC3D, BDNA, FLO52, MDG, MG3D, OCEAN,
and SPEC77 are the vector benchmarks; and ADM, DYFESM, QCD, SPICE, TRACK,
and TRFD make up the moderately-vector benchmarks.

4.2.2. Instruction Usage and Operation Counts

In this subsection, we discuss the CRAY Y-MP instruction set usage by the bench-
marks and the operation mix in them. We consider both the compiler-optimized and
the hand-optimized versions of the benchmarks, as well as just the scalar basic blocks
of both the versions. As discussed in Chapter 3, we determine a benchmark class’s
usage of an instruction by averaging the normalized usage of the instruction by each of
the programs in the class; thus, all the programs of a class are given equal importance,
irrespective of the number of instructions executed by them individually. The
numbers for operation usage are computed by expanding each vector instruction into

49

the number of operations that it executes, by using the average vector length reported
by HPM for each program. (This was discussed in detail in chapter 3.) Since vector
instructions execute several operations each, the count of various operations executed
presents a better picture of a program’s utilization of machine resources.

Let us first consider the original compiler optimized benchmarks. Table 4.3
classifies the operations executed by the original benchmarks into various broad
operation classes that are present in several architectures. For example, from the table
we see that 27.82% and 1.52% of all operations in the moderately-vector benchmarks
are floating-point and branch operations, respectively. Data thus classified could be
compared to data obtained for other machines.

From table 4.3, we observe that overall the vector benchmarks consist almost
entirely of floating-point operations and memory references. On the other hand, the
scalar benchmarks have comparable amounts of floating-point and integer operations;
and, for the moderately-vector programs, floating-point operations are three times as
frequent as integer operations. We note that by integer operations we mean only
those operations that are executed by the scalar-computation unit. Address-

Operation Benchmark Subclass

Class Scalar | Moderate | Vector
All FP 14.29 27.82 39.66
All Memory 23.83 35.82 48.40
All Integer 10.73 8.83 5.48
Address Comp. 7.62 6.99 1.82
Miscellaneous 37.57 19.03 425
Branches 5.94 1.52 0.34
Total 100% 100% 100%

Table 4.3: Percentage of Operations in each Operation Class
— Compiler-Optimized Codes

50

computation instructions, while also being integer operations, are executed by the
address-computation unit and are classified separately. (Please see Chapter 3 for a
discussion of the processor.) However, scalar integer operations are sometimes used
to perform address computation work, since the address unit is only 32 bits wide
while the integer data-type supported by the architecture is 64 bits long. For example,
when array indices are passed as arguments to subroutines they are stored as 64-bit
integers, and they hence have to be manipulated by the scalar unit. Since there is no
easy way to determine whether an operation carried out in the scalar unit is for
address computation (as we do not keep track of cross-block dependences), we clas-
sify all integer operations carried out in the scalar unit as (non-address computation)
integer operations.

The address computation instructions, executed in the address unit, are used for
generating the memory addresses needed by all scalar memory operations; in addi-
tion, they are also used on the Cray machines for maintaining loop counters. We
observe that address operations are comparatively less frequent than scalar integer
operations in the scalar benchmarks, while the two are comparable in number for the
moderate benchmarks. On the whole, scalar programs can be expected to have a
higher proportion of address arithmetic operations since they also have a higher pro-
portion of scalar memory operations. When memory references are vectorized, the
vector memory instruction implicitly does address arithmetic, and hence we see fewer
explicit address arithmetic operations for highly vectorized code. The data presented
bear this out: scalar programs have about 7.5% address operations, while the vector
programs have less than 2%.

Miscellaneous operations, which are specific to the Cray machines, form a large
fraction of the scalar and the moderately-vector benchmarks. We will discuss these
operations in detail shortly. Branches, on the other hand, constitute a small fraction of
the overall operation count, even for the scalar programs. We will discuss these
operations also in detail shortly.

Let us now consider the effects of hand-optimization on the nature of the pro-
grams. Table 4.4 presents the operation distribution in the hand-optimized version of
our benchmarks. Interestingly, although hand-optimization includes additional vec-
torization that reduces the overall operation count (as discussed in chapter 3), and the
possible rewriting of code segments that might change the characteristics of the seg-
ments, we observe that the proportion of various operations within the individual
benchmark classes remains very similar to that in original version. (The program
operation counts and execution time have decreased with hand optimization, as dis-
cussed before in the previous chapter.) The moderately-vector benchmarks of the
hand-optimized version have a slightly higher vectorization level than that of the ori-
ginal version. There are no other significant differences between the operation distri-
butions in the two versions of each of the individual benchmark classes, except for the

51

Operation Benchmark Subclass
Class Moderate | Vector
All FP 27.02 38.83
All Memory 39.38 50.19
All Integer 11.35 4.72
Address Comp. 5.20 1.85
Miscellaneous 15.24 4.05
Branches 1.77 0.31
Total 100% 100%

Table 4.4: Percentage of Operationsin each Operation Class
— Hand-Optimized Codes

fact that more of the operations of each operation-type are executed by vector rather
than scalar instructions. Thus, the additional hand-optimizations have not changed
the overall proportion of various instructions and operations in the moderately-vector
and vector classes of programs. Note, however, that the scalar class of programs has
been eliminated by the hand optimizations. One significant implication of the above
data is that since the instruction and operation mix is not affected by hand-
optimization for a particular program class, processor design could be expected to be
not much affected by whether the processor is targeted at compiler optimized or hand
optimized programs of a particular class of programs. Note, however, that the hand-
optimized programs have no programs of the scalar class. An important caveat how-
ever is that this conclusion is drawn only for the hand optimizations carried out in the
programs we study here. As mentioned elsewhere, we are not privy to the optimiza-
tions carried out and hence are not able to discuss them.

Earlier in Chapter 3 we discussed the motivation for the design of a scalar pro-
cessor unit tuned to the scalar portions (in particular, the scalar basic blocks) in
scientific code. Towards aiding the design of such a unit, we examine the characteris-
tics of such scalar code in our programs, and compare it to the characteristics of the
overall programs and to that of non-vectorizable programs in general, throughout this

52

chapter. We examine several other aspects of these scalar basic blocks in detail in
chapter 5. Before examining the characteristics of the scalar basic blocks, let us exam-
ine their frequency in the programs, to put the scalar blocks in perspective with regard
to overall program size. Tables 4.5 and 4.6 show the fraction of static and dynamic
basic blocks of the programs that have no vector instructions in them. We observe
that these dynamic scalar blocks are the majority for 10 of the 13 programs. Even
among the vectorized programs, three of them (MG3D, BDNA, SPEC77) have approx-
imately an equal proportion of dynamic scalar and vector blocks, while the other three
(FLO52, MDG, ARC3D) have at least 70% dynamic scalar blocks. For the moderately-
vector programs, the proportion of dynamic scalar blocks is at least 80%, and for the
scalar programs, most of the blocks are of course scalar. Among the static basic
blocks, the proportion of scalar blocks is even more for most of the programs. When
the programs are hand-optimized the proportion of dynamic scalar blocks decreases

static | dynamic

pgm (%) (%)

MG3D 90.91 44.25
BDNA 85.26 53.74
SPEC77 81.99 57.95
FLO52 90.52 70.87
MDG 75.88 72.89
ARC3D 87.82 75.79

DYFESM | 91.20 80.27

TRFD 95.57 82.58
ADM 91.62 87.97
OCEAN 92.96 90.20
SPICE 98.35 97.42
QCD 95.49 97.77

TRACK 95.18 98.81

Table 4.5: Proportion of Basic Blocks that are Scalar

— Compiler-Optimized Codes

53

by various amounts for individual programs, but still shows very similar overall
characteristics for the two benchmark classes. (We remind the reader that the number
of basic blocks changes, as shown in Chapter 3). The vector and moderately-vector
programs still exhibit a high proportion of vectorized operations despite this propor-
tion of scalar blocks because most of the dynamic scalar blocks are small in size while
the dynamic vector blocks are large and contain many vector instructions. We will
discuss the sizes and vector instruction content of basic blocks in greater detail in the
next section (section 4.3).

Table 4.7 presents the operation mix in the scalar basic blocks of the original ver-
sion of the benchmarks. If we consider the scalar blocks of all the thirteen programs
together, then the floating-point, integer, memory, and address-computation opera-
tions are equally significant in number. In the scalar programs alone, however, the
scalar basic blocks expectedly carry out the bulk of the program’s work as there are

static | dynamic

pgr (%) (%)

MG3D 91.65 36.70
BDNA 85.81 44.59
MDG 74.54 49.07
OCEAN 92.08 59.09
SPEC77 81.33 60.31
FLO52 90.37 74.92
ARC3D 86.61 77.00

DYFESM | 92.56 78.10

TRFD 94.57 80.96
TRACK 91.60 86.81
ADM 91.01 88.64
QCD 91.01 91.29
SPICE 83.87 91.75

Table 4.6: Proportion of Basic Blocks that are Scalar
— Hand-Optimized Codes

54

less than 3% vector blocks. Hence we see a higher proportion of both floating-point
and memory operations in these blocks. We also observe that the scalar programs in
entirety had a high proportion of memory operations at 25% (table 4.3), while the pro-
portion is around 18% in the scalar blocks of these programs. This suggests that the
few vector blocks in the scalar programs contain a significant number of vector
memory instructions and operations.

The scalar blocks of the hand-optimized programs exhibit quite similar behavior
on the whole, as seen from table 4.8. We note that the floating-point operations are a
little less frequent when compared to compiler optimized codes. Most of the main
work of the programs is now done by the vector basic blocks since the vectorization
level of many of the programs has increased due to the hand-optimizations. Thus, for
the scalar basic blocks of the programs, the proportion of floating-point units is
smaller.

For the hand-optimized vector programs, branches are higher in proportion com-
pared to the compiler optimized version, for very similar reasons. If the miscellane-
ous operations, which are specific to the Cray machines, are discounted, the branch
frequency in the scalar basic blocks would increase to about 17%, comparable to the
branch frequency in general-purpose (i.e, non-scientific) scalar codes.

The miscellaneous operations, which are due to the register file architecture of
the Cray machines, are uniformly high in proportion in the scalar blocks for all classes
of both compiler-optimized and hand-optimize programs.

Let us now consider the frequencies of specific operation types in the programs.
These frequencies determine the importance of the different operations types and
functional units and thus have affect processor design greatly. Table 4.9 subdivides
the information presented in table 4.3 about operation frequencies in the compiler-
optimized programs into classes that correspond to the functional units present in the
CRAY Y-MP. It also presents instruction frequencies. Table 4.10 similarly presents
data for the hand-optimized programs. Before examining the data further, we note
that for BLK_LD and BLK_ST instructions, which move a block of words (up to 64
words long) between the scalar backup registers and memory, the number of words
transferred is determined at runtime by the contents of a general-purpose scalar regis-
ter. Since we do not simulate program execution, and since the HPM does not moni-
tor general-purpose registers, we do not have access to this value. Hence we are
unable to expand each BLK_LD/BLK_ST instruction into the equivalent multiple
operations it executes. We note that this might affect the measurements of the propor-
tion of the other operation types. However, we note that there are few
BLK_LD/BLK_ST instructions; also, for many of the BLK_ST instructions the number
of operations executed is one since these instructions are used as syncronization
instructions, as will be explained later. Thus, we expect the effect of this approxima-
tion on the data measurements to be small.

Operation Scalar | Moderate | Vector All

Class (%) (%) (%) (%)
FP 14.33% 9.83% 9.06% 10.51%
Memory 17.65% 10.67% 13.93% 13.78%
Integer 12.00% 18.25% 12.24% 14.03%
Address Comp. 8.28% 13.17% 15.02% 12.89%
Miscellaneous 40.80% 43.77% 43.72% 43.05%
Branches 6.96% 4.34% 6.02% 5.72%

Total 100% 100% 100% 100%

Table 4.7: Percentage of Operationsin Scalar Basic Blocks

— Compiler-Optimized Codes

Operation Moderate | Vector All

Class (%) (%) (%)
FP 7.29% 6.54% 6.89%
Memory 12.34% 8.97% 10.52%
Integer 13.61% 14.72% 14.22%
Address Comp. 14.54% 14.99% 14.78%
Miscellaneous 45.07% 45.59% 45.35%
Branches 7.14% 9.20% 8.25%

Total 100% 100% 100%

Table 4.8. Percentage of Operationsin Scalar Basic Blocks
— Hand-Optimized Codes

55

56

Furthermore, tables 4.11, 4.12, 4.13, and tables 4.14 and 4.15 list the frequencies of
individual operation types in the scalar basic blocks of the various classes of the
compiler-optimized and hand-optimized programs. (Note that instruction counts and
operation counts are identical for scalar basic blocks.) The last column of these tables
lists the fraction of operations of a particular operation type that occur in scalar basic
blocks. For example, from table 4.11, 96.77% of all the scalar memory loads of the
scalar programs (compiler-optimized version) occur in scalar basic blocks. Thus, the
remaining 3.23% of the scalar load instructions occur in the vector basic blocks of the
programs. The tables also list, in the last row, the fraction of all program instructions
and operations contributed by the scalar blocks. For example, from the last row of
table 4.11, 85.5% of all operations of the scalar programs are scalar operations that
occur in scalar basic blocks. We note here that vector basic blocks also contain a few
scalar operations in addition to the vector operations. Thus, not all of the remaining
14.5% program operations are vector operations. We discuss the individual operation
types below, and extensively refer to the above tables, several times without an expli-
cit pointer to the tables for the sake of clarity.

Register Transfers

Most strikingly, more than one-third of all operations of the scalar class of the ori-
ginal benchmarks are operations used to transfer values between the various register
sets in the processor (the miscellaneous category in tables 4.3 and 4.9). (Please refer to
Chapter 3 for a discussion of the register sets of the processor.) The proportion of
these register transfer operations decreases as we move to the vectorized programs.
For the scalar basic blocks of all classes of both the original and the hand-optimized
benchmarks, however, close to half the operations are of this category (tables 4.7 and
4.8).

There are several reasons for the high proportion of miscellaneous operations in
the programs. The backup registers on the CRAY Y-MP are used to temporarily hold
values whenever the primary register sets are full, resulting in several register spill
instructions. Register spilling normally refers to moving a live temporary value
present in a register to memory, in order to make room in the register set for another
value that will be accessed before the value being spilled. In the Cray machines, regis-
ter spilling usually only results in a movement of values between the primary (A or S)
register set and the corresponding backup (B or T) register set, and we term these
moves spill instructions. The pressure on the non-vector registers is of course higher in
scalar code since there are more scalar computations in such code, and hence we see a
higher proportion of spill instructions in scalar programs and in scalar basic blocks of
moderately-vector and vector programs. Apart from register shortage, another reason
for the register-register move instructions is the fact that conditional branches in the
CRAY Y-MP are based on the contents of registers A0 or S0. The compiler needs to

Benchmark Subclass

Operation Instruction
Scalar Moderate Vector
Class Class
Insts. Ops. Insts. Ops. Insts. Ops.
V_LOGIC 0.01 0.13 0.03 0.255 0.59 2.71
Vector Int V_SHIFT 0.00 0.03 0.07 0.98 0.19 0.79
V_INTAD 0.01 0.15 0.02 0.254 0.32 1.29
V_FPADD 0.13 0.61 1.71 12.257 4.96 18.80
Vector FP V_FPMUL 0.17 0.59 1.259 10.47 5.16 19.44
V_RECIP 0.03 0.06 0.00 0.05 0.26 1.04
V_LD 0.251 5.47 2.64 19.70 7.63 29.77
V_ST 0.17 3.02 1.40 11.63 4.01 15.64
Vector Mem
V_GATH 0.00 0.00 0.04 0.20 0.27 1.66
V_SCAT 0.00 0.00 0.00 0.00 0.13 0.81
S_ADD 5.11 4.69 8.11 4.01 3.10 0.251
I S_LOGIC 5.72 5.12 5.17 2.253 3.07 0.34
nt
S_SHIFT 0.63 0.59 1.255 0.77 0.28 0.03
POP_LZC 0.02 0.02 0.08 0.05 0.12 0.01
FP_MUL 6.80 6.24 3.03 1.78 1.251 0.17
FP FP_ADD 7.17 6.56 5.22 2.92 1.88 0.20
RECIPR 0.26 0.23 0.258 0.23 0.09 0.01
LD 10.250 9.22 5.13 2.55 3.46 0.39
ST 5.23 471 2.86 1.53 1.08 0.09
Mem
BLK_LD 0.90 0.84* 0.17 0.09* 0.03 0.00*
BLK_ST 0.62 0.57% 0.28 0.12* 0.257 0.04*
A_ADD 8.257 7.48 15.04 6.64 17.26 1.78
Addr. Comp.
A_MUL 0.16 0.14 091 0.255 0.41 0.04
Branches BR 6.66 5.94 3.68 1.52 3.27 0.254
MOV 12.14 11.00 14.12 5.88 21.85 223
Misc. A_SPILL 7.251 6.64 9.66 4.64 9.94 1.08
S_SPILL 21.75 19.93 17.49 8.51 8.82 0.94
TOTAL 100% 100% 100% 100% 100% 100%

Table 4.9: The Proportion of Instructions and Operations of Various Types

— Compiler-Optimized Benchmarks

57

Benchmark Class

Operation Instruction
Vector Moderate
Class Class
Insts. Ops. Insts. Ops.
V_LOGIC 0.85 2.53 0.50 4.98
Vector Int. V_SHIFT 0.18 0.57 0.15 1.14
V_INTAD 0.33 0.95 0.14 1.49
V_FPADD 5.41 19.27 1.76 12.50
Vector FP V_FPMUL 5.04 18.22 1.66 11.65
V_RECIP 0.30 1.10 0.03 0.25
V_LD 8.02 30.81 2.77 20.06
V_ST 4.58 17.64 1.44 10.69
Vector Mem
V_GATH 0.32 1.17 0.53 4.35
V_SCAT 0.10 0.36 0.10 0.96
S_ADD 3.12 0.31 4.88 1.62
, S_LOGIC 3.24 0.32 5.41 1.79
nt
S_SHIFT 0.37 0.04 0.80 0.29
POP_LZC 0.04 0.00 0.12 0.04
FP_MUL 0.98 0.12 2.98 1.32
FP FP_ADD 1.08 0.10 2.93 1.21
RECIPR 0.14 0.02 0.24 0.09
LD 0.97 0.10 5.02 1.77
ST 0.62 0.06 2.71 1.04
Mem
BLK_LD 0.05 0.00 0.45 0.18
BLK_ST 0.55 0.05 0.94 0.33
A_ADD 18.39 1.80 15.09 4.95
Addr. Comp.
A_MUL 0.50 0.05 0.70 0.25
Branches BR 3.10 0.31 5.35 1.77
MOV 24.21 2.29 20.98 7.07
Misc. A_SPILL 10.65 1.10 9.75 3.30
S_SPILL 6.70 0.66 12.45 4.87
TOTAL 100% 100% 100% 100%

Table 4.10: The Proportion of Instructions and Operations of Various Types

— Hand-Optimized Benchmarks

58

Inst. Percent of
Type Scalar Insts. | AllInsts. | All Ops. | This Inst.Type

LD 10.67 10.08 9.03 96.77
ST 5.39 5.09 4.59 96.84
BLK_LD 0.95 0.90 0.84 100.00
BLK_ST 0.64 0.61 0.56 97.22
FP_MUL 6.80 6.40 5.87 94.79
FP_ADD 7.27 6.85 6.27 95.74
RECIPR 0.26 0.25 0.22 97.47
S_ADD 5.32 5.01 4.61 98.03
S_SHIFT 0.65 0.61 0.57 95.34
S_LOGIC 6.01 5.65 5.06 98.53
POP_LZC 0.02 0.02 0.01 60.04
A_ADD 8.15 7.68 6.86 91.34
A_MUL 0.13 0.12 0.10 49.61
BR 6.96 6.54 5.83 97.93
MOV 11.53 1091 9.91 89.38
A_SPILL 7.40 6.96 6.32 95.29
S_SPILL 21.87 20.57 18.85 95.73
Total 100% 94.27% 85.50%

Table 4.11: Instruction Mix in the Scalar Basic Blocks

Scalar Programs — Compiler-Optimized Codes

59

Inst. Percent of
Type Scalar Insts. | AllInsts. | All Ops. | This Inst.Type

LD 6.73 5.07 2.51 98.84
ST 3.55 2.85 1.52 99.46
BLK_LD 0.23 0.17 0.09 100.00
BLK_ST 0.16 0.11 0.06 51.67
FP_MUL 3.58 2.94 1.72 97.73
FP_ADD 5.79 4.99 2.81 92.24
RECIPR 0.46 0.36 0.21 98.02
S_ADD 9.58 7.33 3.71 88.28
S_SHIFT 1.55 1.30 0.75 72.37
S_LOGIC 7.03 5.01 2.25 96.25
POP_LZC 0.09 0.08 0.05 86.98
A_ADD 12.51 8.98 4.19 63.34
A_MUL 0.66 0.44 0.17 45.55
BR 4.34 2.96 1.25 83.31
MOV 12.61 8.54 3.58 61.04
A_SPILL 9.50 6.70 3.15 71.92
S_SPILL 21.66 16.23 7.96 93.09
Total 100% 74.07% 35.98%

Table 4.12: Instruction Mix in the Scalar Basic Blocks

Mod.-Vec. Pgms. — Compiler-Optimized Codes

Inst. Percent of
Type Scalar Insts. | AllInsts. | All Ops. | This Inst.Type

LD 9.82 3.24 0.36 92.28
ST 3.92 1.01 0.09 95.40
BLK_LD 0.12 0.03 0.00 100.00
BLK_ST 0.07 0.01 0.00 22.66
FP_MUL 3.95 1.29 0.17 98.71
FP_ADD 4.72 1.50 0.17 80.14
RECIPR 0.39 0.09 0.01 90.69
S_ADD 5.38 1.61 0.17 48.89
S_SHIFT 0.09 0.02 0.00 18.00
S_LOGIC 6.77 2.11 0.21 61.56
POP_LZC 0.00 0.00 0.00 2191
A_ADD 14.79 4.89 0.56 31.38
A_MUL 0.23 0.07 0.00 38.57
BR 6.02 1.95 0.21 62.38
MOV 17.25 5.49 0.60 25.01
A_SPILL 8.61 2.83 0.32 28.98
S_SPILL 17.86 6.03 0.69 62.99
Total 100% 32.18% 3.55%

Table 4.13: Instruction Mix in the Scalar Basic Blocks

Vector Programs — Compiler-Optimized Codes

61

Instruction Percent of

Type Scalar Insts. | All Insts. | All Ops. | This Inst.Type
LD 7.23 4.69 1.62 94.25
ST 3.67 2.44 0.92 92.12
BLK_LD 0.68 0.45 0.18 100.00
BLK_ST 0.76 0.51 0.19 54.31
FP_MUL 3.77 2.62 1.15 91.75
FP_ADD 3.20 2.14 0.88 78.70
RECIPR 0.32 0.23 0.09 95.08
S_ADD 6.37 4.03 1.33 80.58
S_SHIFT 0.50 0.34 0.12 35.63
S_LOGIC 6.71 4.15 1.36 77.20
POP_LZC 0.03 0.03 0.00 39.36
A_ADD 14.09 8.61 2.72 54.45
A_MUL 0.45 0.24 0.08 31.07
BR 7.14 4.56 1.50 84.00
MOV 18.36 11.48 3.83 55.09
A_SPILL 11.18 7.07 2.36 72.16
S_SPILL 15.53 10.16 3.97 78.72
Total 99.99% 63.75% 22.3%

Table 4.14: Instruction Mix in the Scalar Basic Blocks
Mod.-Vec. Pgms. — Hand-Optimized Codes

62

Instruction Percent of

Type Scalar Insts. | All Insts. | All Ops. | This Inst.Type
LD 4.86 0.77 0.08 84.72
ST 3.73 0.55 0.06 87.24
BLK_LD 0.20 0.05 0.00 100.00
BLK_ST 0.18 0.04 0.00 6.51
FP_ADD 2.42 0.53 0.06 58.88
FP_MUL 3.60 0.96 0.12 96.05
RECIPR 0.52 0.14 0.02 92.94
S_ADD 5.31 1.23 0.13 36.20
S_SHIFT 0.22 0.06 0.00 18.36
S_LOGIC 9.19 2.25 0.24 65.87
POP_LZC 0.00 0.00 0.00 49.78
A_ADD 14.63 3.51 0.38 19.37
A_MUL 0.36 0.10 0.01 16.40
BR 9.20 1.63 0.17 55.48
MOV 19.14 4.61 0.50 19.26
A_SPILL 11.05 2.62 0.29 24.50
S_SPILL 15.40 3.98 0.45 57.43
Total 100.0% 23.0% 2.5%

Table 4.15: Instruction Mix in the Scalar Basic Blocks

Vector Programs — Hand-Optimized Codes

63

64

shuffle registers around so that the condition computed is finally stored in A0 or SO
before the branch is issued. We observe that about 27% of all operations in the scalar
benchmarks of the automatically compiled programs are spill operations (20% are
spills of the S registers, S_SPILLs, and 7% are spills of the A registers, A_SPILLs). The
pressure on the S registers is higher than that on the A registers, as is to be expected,
since there are more result-computation instructions than address-computation
instructions in the programs. Another reason for the lower pressure on A registers is
that address computation instructions operate on array addresses and loop counters
and these are available in and can be maintained in the registers most of the time.
Scalar computations, on the other hand, more often use data values loaded from
memory, and the latency of memory loads tie up the scalar registers for longer periods
of time. Similarly, some of the scalar computations themselves have longer latencies
than the address computations. Overall, the high amount of spill instructions is due
to the fact that eight primary registers are not sufficient to hold frequently-used local
data and to support deeply-pipelined functional units at the same time. Furthermore,
the compiler unrolls loops to exploit parallelism, resulting in more registers being live
simultaneously, which makes the problem worse.

We also note that MOV instructions, used to move values between A and S regis-
ters, are significant in number. MOV instructions constitute 11% of all operations for
the scalar benchmarks, and 6% of all operations for the moderately-vector bench-
marks. One could think of the MOV instructions as being akin to moving values
between the address and computation units of a decoupled architecture.

We note that the hand-optimized codes have comparatively few spill instructions
due to the fact that all the programs are at least moderately vectorized. We observe
that the spill instructions form a smaller fraction of the miscellaneous operations
(table 4.10), indicating possible improvement in register usage due to hand-
optimizations.

Although scalar programs have a high proportion of these miscellaneous opera-
tions, the contribution to execution time of these operations could be quite small, and
disproportional to their number. The deep pipelines in the CRAY Y-MP for computa-
tion instructions and for memory cause long waits in the instruction-issue stage for
dependencies to be resolved. Scalar code has a lot of control- and data-dependencies
and hence has frequent instruction-issue stalls. The compiler can hide the cost of the
single-cycle register-register move instructions by scheduling them for execution dur-
ing these data-dependence stalls if the spill instructions themselves are not involved
in the dependence, thus essentially executing them for free. This is one example of the
possibility of a large difference between the dynamic frequency of an instruction and
its contribution to program execution time. This difference is all the more important
in a machine that has several parallel, pipelined functional units, since several instruc-
tions can be executing simultaneously, thus making the attribution of program time to
individual instructions more difficult.

65

Larger register sets would naturally decrease the number of spill instructions.
However, larger register sets would not be worthwhile if they increase the machine
clock cycle, especially if the spill instructions incur little cost in execution time any-
way. MOV instructions, on the other hand, are mainly a result of the register-file and
functional-unit architecture of the processor. The functional units and the register
tiles have been separated into A and S sets to provide more parallel, decoupled execu-
tion, and MOV instructions are a necessary part of this separation. Also, in the current
Y-MP architecture, the A unit does not have shift, logic, and 64-bit integer calculation
functionalities. Therefore, many of the MOV instructions move data from the A unit to
the S unit to carry out these functions. The number of MOV instructions could be
reduced significantly if the A unit has a more complete computation capability. A few
of the MOV instructions are instructions that load immediate values into registers.

When we consider scalar basic blocks alone of any program class, the miscellane-
ous operations assume much greater significance, constituting close to 50% of all the
operations. When considering an exclusive scalar unit, it is important to either
efficiently execute or eliminate these operations. Several interacting factors are at play
in determining both the presence and the runtime cost of the miscellaneous opera-
tions. We discuss some of these factors below, to shed light on the issue. If a separate
scalar unit is designed for scalar blocks, it might be designed to have shallower com-
putation pipelines in order to decrease latencies, thus decreasing the number of stalls
in instruction issue and hence decreasing the opportunities for free issue of the miscel-
laneous operations. But, memory latency is still around 14 clock cycles for the CRAY
X-MP and slightly larger for the CRAY Y-MP; furthermore, the current trend is an
ever-increasing main memory latency. Hence sufficient opportunities could still exist
for such free issue of the miscellaneous operations. Note that when the pipelining
level is decreased, the life times of registers in terms of clock cycles is also decreased,
and thus the pressure on the register sets will decrease due to any decrease in the
pipeline levels of the functional units. However, the memory latency might be the
dominating effect on register lifetimes.

For a separate scalar unit, on the other hand, we need to consider the effects of
new issues. An exclusive data cache that does not have to deal with vectors is a viable
proposition[Smith90]. In this situation, the resulting shorter average memory latency
will further reduce the pressure on the registers (they will be tied up for shorter times
while waiting for a LOAD to complete). Thus, many of the miscellaneous operations
are likely to disappear. (We also note in passing that the data cache itself could be
used as the backup registers.) However, a note of caution is in order. If both compu-
tation and memory pipelines are made shallow, and memory latency is reduced, the
instruction issue stage has the potential of becoming a bottleneck, and even a few mis-
cellaneous operations might not be desirable. In this situation, having additional pri-
mary registers would avoid the need for issuing the miscellaneous operations. Shal-
lower pipelines imply a longer clock cycle, and hence the increase in register file

66

access time (due to an increase in register file size) would be less of a concern. Of
course, the effects of an increase of register space on the instruction format have to be
considered: larger instructions are necessary to address the extra register space.

To bring the issue full circle, if shallow pipelines are used along with a data
cache, a superscalar architecture could be viable to exploit instruction-level parallel-
ism. Since multiple instructions will be issued simultaneously, the number of live
registers will proportionally increase, thus increasing the pressure on the primary
registers again. Thus, all the issues discussed above have to be studied simultane-
ously, to determine the appropriate size of the primary registers. We suspect that for
shallow pipelines the clock cycle will be sufficiently large that an increase in the pri-
mary register set size will not adversely affect the clock cycle, thus solving the prob-
lem of spill instructions.

Block Loads and Stores (BLK_LD and BLK_ST)

The BLK_LD and BLK_ST instructions are used to transfer a block of words (up
to 64 words long) between the backup B/T registers and memory. The number of
words transferred is determined at runtime by the contents of a general-purpose
scalar register specified in the instruction. A common use of these instructions is in
the saving and restoring of registers during subroutine calls/returns. For scalar pro-
grams, subroutine calls are frequent (as will be shown later), and hence
BLK_LDs/BLK_STs are used quite frequently. BLK_ST is also used as a mini CMR
(Complete Memory References) instruction which blocks further instruction issue
until all outstanding memory references of the CPU are completed. The Cray
machines require the programmer to handle dependencies amongst vector instruc-
tions in software in certain situations, and hence the need for a CMR/mini-CMR
instruction. We observe from the tables on the scalar basic blocks that while all the
BLK_LD instructions occur in scalar basic blocks, quite a few of the BLK_ST instruc-
tions occur in vector basic blocks. These BLK_ST instructions are mostly used as mini
CMR instructions as discussed above. (The CRAY Y-MP requires memory overlap
hazards between block reads and block writes of memory to be detected in software,
and the CMR instruction can be used to ensure sequentiality of such memory refer-
ences.) Hence BLK_STs are much more frequent than BLK_LDs for the vector pro-
grams.

Floating-Point Operations

The scalar benchmarks have an equal number of floating-point additions and
multiplications. The vector benchmarks also have equal numbers of these operations,
with the difference that almost all of them are executed by vector instructions. We see
a fairly good balance of these operations again in the moderately-vector benchmarks.
Here we notice that a large fraction of the floating-point operations are vectorized.

67

Vector floating-point operations constitute 23% while scalar floating-point operations
constitute only about 5% of all operations for the compiler optimized moderately-
vector benchmarks. The scalar and vector portions of the CRAY Y-MP use common
floating-point ADD and MULTIPLY functional units. We observe that only the
moderately-vector benchmarks have any significant mix of scalar and vector floating-
point operations that might result in conflict for these shared functional units.

Division on the CRAY Y-MP is implemented using multiplication and reciprocal
approximation. We observe that there are very few reciprocal instructions (either
RECIP or V_RECIP), and hence there are very few division operations in the pro-
grams.

The scalar basic blocks of both versions of the programs show equal presence of
floating-point adds and floating-point multiplies. Furthermore, most of the scalar
floating-point instructions occur in the scalar basic blocks rather than in the vector
basic blocks (except for the floating-point adds in the hand-optimized codes). This
distribution is unlike that of the other scalar instructions, many of which are used in
vector blocks for setting up vector code execution.

Memory Operations

From table 4.9, we observe that memory operations are the single most frequent
class of operations for the vector and moderately-vector classes of both versions of the
benchmarks, and they are second only to the register-register move operations in the
scalar benchmarks. Considering that memory access is not a short latency operation,
this justifies the extra attention paid to the memory system in the CRAY X-MP and the
CRAY Y-MP (the CRAY-1 had a single memory port, while the X-MP and the Y-MP
have three data memory ports). We note from tables 4.1 and 4.2 that for the non-scalar
benchmarks, usually more than 90% of the memory operations are executed in vector
mode (V_LD and V_ST). Even for the scalar programs, a significant fraction (around
40%) of all memory operations are vectorized. When executed in vector mode, the
memory latency for an individual operation is hidden by the pipelined nature of
operations, and this is significant for performance. Therefore the machine has less
need to rely on a data cache for fast memory accesses. Vector scatter/gather instruc-
tions (V_GATH and V_SCAT), which transfer data from a set of memory locations
specified in a vector register, are used quite infrequently even in the highly-vectorized
benchmarks. The need for these instructions is, however, dependent upon the nature
of programs.

Across the benchmark classes, memory load operations (scalar and vector opera-
tions together) are roughly twice as frequent as memory store operations. This
justifies the presence of two memory load ports and one memory store port in the pro-
cessor. We note that the ratio of loads to stores is not necessarily a result of having
dyadic instructions in the architecture. The issue is complicated by the reuse of tem-
porary results in registers.

68

For the vector programs, we notice that, although all floating-point computations
are dyadic instructions, the memory operations are not three times as frequent as the
floating-point operations, which would be the case if each computation required two
memory loads and a memory store. This suggests temporary results are stored in
registers are reused quite frequently.

When we consider the scalar basic blocks of all programs in isolation, the fre-
quency of memory operations is the same as that of the floating-point, integer, or
address operations. LOADs are still approximately twice as frequent as STOREs. In a
separate scalar unit, memory latency becomes critical, and a data cache might be in
order[Smith90]. However, a detailed study of access patterns in these scalar basic
blocks is necessary to address this issue in more detail. For example, the backup
scalar and address registers (64 each) might be quite effectively used as data caches for
some access patterns, especially since they can be explicitly preloaded using the
BLOCK_LOAD instruction.

Address Computation

Most of the address computation instructions seen are additions (A_ADDs).
Address computation instructions are used, for example, to add an index to a base
register. Address computation instructions are also commonly used in the CRAY Y-
MP for incrementing the loop counter. Address multiplication operations are infre-
quent.

The proportion of address computation instructions is obviously higher in scalar
programs and in the scalar basic blocks of all programs, where memory references are
scalar. Vector memory references implicitly do a significant amount of address com-
putation, and have little need for a separate address unit that executes explicit address
computation instructions.

We notice from the tables on the scalar basic blocks that not all of the address
computation instructions are found in the scalar basic blocks. A significant fraction of
these instructions are used in the vector blocks, to set up the work of the vector
instructions.

Branch Instructions

Both the compiler-optimized and the hand-optimized versions of the bench-
marks have very similar frequencies of branch operations. As expected, branch
instructions are most frequent in scalar code. However, the branch frequency in the
compiler optimized version (table 4.9) is much less than the usual 20% of all instruc-
tions or so reported for general-purpose programs [Hwu89, Hennes, McFarl86]. A
significant reason for this is the fact that the compiler unrolls loops. First, this elim-
inates several loop-control branches. Second, loop-unrolling results in the compiler
generating several spill instructions because of the increased pressure on the primary
registers. These instructions are not present in other architectures, and they decrease
the proportion of branch instructions on the CRAY Y-MP. We also note that scientific

69

code inherently has fewer branches than non-scientific code. We discuss the fre-
quency of branches in more detail in the section on basic blocks. In addition to the fre-
quency of branches, the nature of the branches is important to machine efficiency in
executing programs. Unconditional branches, for example, need not cause bubbles in
the pipeline since the branch destination is known at compile time itself. Tables 4.16
and 4.17 provide categorization of the branches into different varieties.

Unconditional branches form a non-negligible 7.4% of all branch instructions for
scalar code; their proportion is much less in the other two benchmark classes. Subrou-
tine calls are implemented in the CRAY Y-MP by a special branch instruction that
saves the current program counter (PC) at a specific location and branches to the sub-
routine. Having a large number of subroutine calls can result in code that is less vec-
torizable. For example, loops with subroutine calls are usually not vectorizable
(except for some vector intrinsic function calls where a vector can be passed as an argu-
ment to the function and then the function is executed in vector mode). The data bear
this out: close to 25% of the branches in the scalar programs are subroutine calls, while
their proportion is around 10% of all branches for the other two benchmark sets. We
also note from table 4.9 that branches themselves are less frequent in the vector bench-
marks.

Conditional branches are the most frequent of all branches, across all programs.
Although conditional branches are detrimental to performance, the more predictable
loop-control conditional branches can be handled efficiently. Conditional branches in

Branch Type
Benchmark
Subclass Conditionals
Uncond. | Subroutine
Calls Loop Ctrl. | Data-Dep.

Scalar 7.4 24.8 19.6 48.2
Moderate 1.8 7.6 58.5 32.1
Vector 0.6 10.0 60.5 28.9

Table 4.16: Percentage of Branches of Various Types
— Compiler-Optimized Codes

70

Branch Type
Benchmark
Subclass Conditionals
Uncond. | Subroutine
Calls Loop Ctrl. | Data-Dep.
Moderate 3.7 13.6 35.8 46.9
Vector 0.4 13.0 61.4 25.3

Table 4.17: Percentage of Branches of Various Types
— Hand-Optimized Codes

the CRAY machines are decided based on the contents of a register; the register used
could be either A0 or SO. Usually the compiler uses conditional branching based on
AOQ for loop-control branches, since loop counters are maintained and incremented in
the A unit. Conditional branching based on SO is used for implementing data-
dependent branches, such as if-then-else constructs. Table 4.16 splits conditional
branches into the above two classes. The data indicate that 50% of all branches in the
scalar benchmarks are data-dependent conditional branches. Also, data-dependent
branches are about two-and-one-half times as frequent as loop control branches.
Given that scientific code is dominated by loops, one can expect most of these
branches to occur within loop bodies. Loops with data-dependent branches within
them are likely to be scalar; it is thus natural to find scalar code having a significant
fraction of these branches.

We observe that for the moderately-vector and vector benchmarks the propor-
tion of loop-control branches has gone up, indicating fewer data-dependent branches
per loop. This is a good reason why these benchmarks are more vectorizable than the
scalar set.

For the moderately-vector programs of the hand-optimized codes (table 4.17),
close to half the branches are data-dependent branches. However, the frequency of
branches with respect to other operations is lower in these benchmarks, and hence
they exhibit higher vectorization levels.

Tables 4.18 and 4.19 present categorization of the branches in the scalar basic
blocks of the original and the hand-optimized codes. As expected, data dependent
branches are the most common type of branches; however, loop-control branches are

Benchmark || Uncond. | Subr.Calls Conditionals
Loop Ctrl. | Data-Dep.

ADM 29 254 40.7 31.0
ARC3D 0.0 3.9 49.9 46.3
BDNA 0.0 46.5 48.7 49
DYFESM 5.1 5.7 404 48.9
FLO52 0.9 2.0 422 55.0
MDG 1.2 12.7 46.5 39.6
MG3D 0.1 3.1 52.2 44.6
OCEAN 0.7 0.9 86.5 11.9
QCD 3.0 51.1 11.0 349
SPEC77 4.5 15.0 58.1 224
SPICE 19.8 16.6 4.7 58.9
TRACK 0.1 7.1 39.7 53.1
TRFD 0.0 3.3 33.7 63.1

Table 4.18: Percentage of Branches of Various Typesin Scalar Blocks
— Compiler-Optimized Codes

72

Benchmark || Uncond. | Subr.Calls Loop ((::?;.diti(;;laa’i—Dep.
ADM 43 18.5 25.6 51.6
ARC3D 0.0 3.3 50.8 459
BDNA 0.0 88.6 3.7 7.7
DYFESM 3.5 6.7 47.2 42.6
FLO52 0.3 1.3 53.5 448
MDG 0.0 20.6 45.8 33.6
MG3D 0.1 4.0 52.5 43.3
OCEAN 0.0 11.2 34.3 54.5
QCD 9.6 15.3 8.0 67.2
SPEC77 42 13.6 55.9 26.3
SPICE 5.7 4.6 43.8 459
TRACK 0.8 38.1 15.8 45.3
TRFD 0.0 0.0 49.9 50.1

Table 4.19: Percentage of Branches of Various Typesin Scalar Blocks
— Hand-Optimized Codes

also quite significant in number. We also see a fair share of subroutine calls, with
QCD and BDNA at the extreme, showing 50% of their branches to be subroutine calls.
Unconditional branches are only a small fraction, except for the automatically com-
piled version of SPICE which has about 20% unconditional branches. The frequency
of loop control branches suggests the presence of several loops with conditional
branches or subroutine calls within their bodies that prevents their vectorization.

4.3. BASIC BLOCKS

A basic block is defined to be a straight-line fragment of code with a single entry
point (the first instruction) and a single exit point (the last instruction). Once program
control enters a basic block, all the instructions in it are executed. The entry point

73

could be the start of a program or either the destination or fall-through location of a
branch; the exit point is either a branch or an instruction preceding the destination of a
branch (since the destination of a branch is the start of a new basic block).

The nature and sizes of basic blocks play an important role in determining pro-
gram performance, because several compiler optimizations (such as local register
assignment and code-scheduling) are conducted within basic block boundaries unless
the hardware or the compiler supports speculative execution of instructions that lie
beyond as-yet-unexecuted branches. Larger basic blocks provide better opportunities
for effective code scheduling. Folklore has it that basic blocks are small — papers in
the literature report average branch instruction frequencies of 15% to 20%, and thus
small basic blocks, in general-purpose programs [Hwu89, Hennes, McFarl86]. In addi-
tion to the size of the average basic block, the distribution of basic blocks with respect
to their sizes is important, since if both small and large blocks exist in significant
numbers and/or have equal impact on performance, the compiler could incorporate
different techniques to tackle the two varieties of basic blocks.

Figure 4.1 presents the cumulative (dynamic) distribution of basic blocks in the
three classes of the original benchmark set. The solid lines in the figure present the
cumulative frequencies of basic blocks of various sizes (in instructions), for each of the
benchmark classes. The dotted lines present the cumulative contribution to program
operations of basic blocks of various sizes. The general shape of the three solid curves
indicates that basic blocks range in size from one instruction to beyond a 100 instruc-
tions for all the benchmark classes. The basic blocks are distributed across the entire
range, instead of being clumped near the average block size. 90% of the basic blocks
of vector programs are spread over sizes from one to 64 instructions. About 8% of the
blocks of vector programs are larger than 80 instructions in size. For moderately-
vector programs, 90% of the blocks are spread over sizes from 1 to 45 instructions. For
scalar programs however, 90% of the blocks are shorter than 21 instructions. Scalar
programs, with more frequent branches, expectedly have smaller basic blocks.

Blocks that are larger than 125 instructions are non-negligible in number, for all
three program classes: they form about 3% of the instructions for vector programs,
about 2% for the moderately-vector programs, and about 1.5% for the scalar pro-
grams. The scalar programs have a large number of single-instruction blocks (about
11%). Surprisingly, the vector programs also have about 9% single-instruction blocks.
(The scalar code in vector programs, used to set up work for the vector instructions,

contain small blocks, as in scalar programs.) The median' block size is about 14
instructions for vector programs, about 18 instructions for the moderately-vector pro-

74

100 _
C 90 |
u
m 80 |
u
! 70 _
a
t
60 _|
i
\'
50
e
40 |
P i
X ,/ Vector
! ! S—bhA—bAHh—A
e /’ 8
r 30 | / ’,' Moderate
r'/ r
c ' ’,' Scalar
r‘ ’Q
€ 20 ~ ! /,” Operation Contribution
i
o/
n I F S N
t x/ Moderat
10 | X oy Modeme
e
S Scalar
A G----©----0----0
o X /
> //
0 _§;5 T T T T T T T T T T T T 1

0O 10 20 30 40 50 60 70 80 90 100 110 120 130
Basic Block Size (Instructions)

Figure 4.1: Basic Blocksin the Benchmarks

— Compiler-Optimized Codes

grams, and between 8 and 9 instructions for the scalar programs.

"Due to the large variance in the data, the arithmetic mean is somewhat undesirable in
characterizing the data. We prefer to use the median instead. This is where the graph crosses

100 _
C 90 |
u
m 80 _|
u
' 70 |
a
t

60 _|
i
\"

50 |
e
P 40 |
e
r 30 |
C
e 20 |
n
t 10

0

"Vector: Freg."

o—o6—6—9o "Mod-Vec.: Freg."

"Vector: Op.Contr."

,,,,,,,,,,,,,,,, "Mod-Vec.: Op.Contr."

10 20 30 40 50 60 70 80 90 100 110 120 130
Basic Block Size (Instructions)

— Hand Optimized Codes

Figure 4.2: Basic Blocksin the Benchmarks

— Hand Optimized Codes

the 50% mark on the y-axis.

75

76

Figure 4.2 presents the same data for the two classes of the hand-optimized
benchmarks. In the hand-optimized programs, 90% of the basic blocks of the
moderately-vector programs range from 1 to about 30 instructions, while for vector
programs they range from 1 to 70 instructions.

The sizes of the basic blocks in our benchmarks are distributed over a wide
range, as can be noticed from the cumulative frequency distributions in Figure 4.1 and
Figure 4.2. For example, we observe a significant number of blocks less than 10
instructions in size, and a significant number larger than 100 instructions in size in the
programs. This indicates that both small and large blocks are important on the CRAY
Y-MP. Two things are significant with regard to basic blocks on the CRAY Y-MP.
One, we are studying code vectorized by a production compiler; vector instructions
execute the equivalent of several scalar instructions. Most of the studies reported are
of branches in general-purpose code that have only scalar instructions. Two, we
notice large basic blocks in all the benchmarks, including code where only a small por-
tion of the operations are vectorized. We discuss below the reasons for such a distri-
bution of basic blocks on the Y-MP.

In addition to the nature of the application, the nature of the compiler and the
machine play a significant role in determining the size of the basic blocks. A major
reason for the large basic blocks is that the compiler unrolls loops to exploit parallel-
ism, and to tolerate the long pipeline latencies of the CRAY Y-MP, eliminating several
loop branches in the process and increasing basic block sizes. The exact amount of
loop unrolling, and hence the number of branches eliminated, is dependent on the size
of the original loop body since the compiler unrolls loops up to the size of the instruc-
tion buffer (1K bytes). Second, the compiler also generates in-line code for, or expands
in-line, several small subroutines, again eliminating branches and increasing basic
block sizes. Third, the presence of a Vector Mask (VM) register in the CRAY Y-MP
processor enables the compiler to vectorize loops that have conditional branches in
their bodies. The VM register is used to discard the results of operations of the vector
instruction that would not have been executed, due to control flow, in a scalar version
of the code. Similarly, the presence of a scalar merge instruction enables elimination
of several scalar conditional branches. Fourth, the spill and move instructions gen-
erated by the compiler account for a very significant fraction of the instructions gen-
erated, as we saw in the previous section. These instructions increase basic block
sizes. Finally, the scalar portion of the CRAY machines use simple instructions, and
hence naturally need more instructions to carry out the job.

Thus large basic blocks are present, in fair proportion, in all three classes of pro-
grams. However, if most of the program execution time is spent in small basic blocks,
the presence of large basic blocks would be immaterial to program performance. For
example, if most of the vector instructions were present in the smaller basic blocks,
then one would expect a very significant portion of the program execution time to be
spent in these small basic blocks. However, our measurements show that to be not the

77

case.

Figures 4.1 and 4.2 also indicate the cumulative proportion of program operations
contributed by basic blocks of various instruction sizes. We notice that the large basic
blocks of all three benchmark classes contribute heavily to the overall operation count.
It is interesting to note that even basic blocks larger than a 100 instructions in size con-
tribute significantly to the dynamic operation count. For the compiler optimized pro-
grams, blocks larger than 125 instructions contribute 25% of all operations for vector
programs, 11% of all operations for moderately-vector programs, and 13% of all
operations for scalar programs. The median of operation contributions is about 18
instructions for scalars, about 33 instructions for the moderately-vector programs, and
about 63 instructions for the vectors. These sizes are much higher than the medians
for instruction contributions. One can thus expect a significant fraction of the
program’s execution time to be spent in the large basic blocks. We still notice, how-
ever, that as we move from vector to scalar code, the blocks of smaller sizes increase
their operation contributions. This is due to the presence of fewer vector instructions
in scalar code.

When we consider only the scalar basic blocks in the programs (figures 4.3 and
4.4), we see that most of them are between 1 and 20 instructions in size, except for the
moderately-vector original programs, which have a larger spread of up to 40 instruc-
tions. Considering the fact that half the instructions in the scalar blocks are miscel-
laneous operations, eliminating them would result in a spread of block sizes between
1 and 10 instructions. Although the average block size would then be 5 instructions,
very similar to that of general purpose (non-engineering) programs, we will have a
good spread of basic block sizes between 1 and 10 instructions. In general purpose
programs, on the other hand, a spread of basic block sizes is not usually expected, and
the sizes of most blocks are expected to cluster around 5 instructions. Thus, we see
larger scalar basic blocks in our scientific benchmarks than in general purpose pro-
grams. This suggests better code scheduling opportunities and probably more
instruction level parallelism in these blocks compared to general purpose programs.

4.4. LIBRARY CALLS

Table 4.20 lists the number of user-routine and library-routine calls in the two
versions of the benchmarks. Usually, subroutine calls are detrimental to performance
since they prevent vectorization of the caller and also incur huge costs on the Cray
machines in terms of saving/restoring a large number of registers. However, library
routines are hand-tuned on the Cray machines to provide high performance, and
hence they are beneficial to performance. We observe that hand-optimization has
drastically reduced the number of subroutine calls in many programs. (The numbers
for the two versions of DYFESM and FLO52 are not to be compared since the hand-
optimized version was available to us only for a larger data set.) This could be
achieved either via in-line expansion of subroutines or by rewriting the code. We note

100 -

90 _
80 _
70 _
60 _
50 _
40 |
304!
20 _

10 |

I/ "PERFECT Suite"

- - — — — — — — - "ModVectorProgs"

iii - — — — "VectorProgs'

0O 10 20 30 40 50 60 70 80 90 100 110 120 130
Basic Block Size (Instructions)

Figure 4.3: Scalar Basic Blocksin the Benchmarks
— Compiler-Optimized Codes

78

100 _
C 90 |
u
m 80 |
u
' 70 |
a
t
60 |
i
\
50 |
e
P 40 | |
e
r 30
c ’J
e 20_/
I
n I
t 10
0

79

"PERFECT Suite"

"VectorProgs"

- - — — — — — — - "ModVectorProgs"

0

10 20 30 40 50 60 70 80 90 100 110 120 130
Basic Block Size (Instructions)

Figure 4.4: Scalar Basic Blocksin the Benchmarks

— Hand-Optimized Codes

that the subroutine calls in ADM and QCD are reduced to a very large extent. MDG,
MGS3D, and TRFD show marginal increases in user-routine calls, which might be due
to program modularization.

Benchmark

User-Routines

Library Routines

Orig. Hand-Opt. Orig. Hand-Opt.
ADM 2,760,607 178,002 6,046,461 966,474
ARC3D 24,005 303 927,850 868,632
BDNA 58 41 435,046 443,161
DYFESM 107,146 142,176 224,881 402,041
FLO52 10,668 10,670 59,196 59,245
MDG 121 219 5,926,880 | 2,261,764
MG3D 47,390 47,782 187,272 191,233
OCEAN 150,876 147,323 304,810 306,017
QCD 3,814,285 969,253 8,122,222 | 1,960,103
SPEC77 172,183 168,966 524,725 512,355
SPICE 1,485,177 51,501 2,215,681 126,727
TRACK 652,717 652,707 2,426,801 | 1,825,832
TRFD 16 17 814,474 174

Table 4.20: Subroutine Callsin the Benchmarks.

80

All the programs have many more library calls than calls to user routines.

Scientific programs invoke several standard computation functions (such as square
roots, etc.), and these are provided as optimized library routines on the CRAY Y-MP.

81

Also, we note that our benchmarks are written in FORTRAN; this could be a reason
for the relatively few subroutines in the programs.

4.5. INSTRUCTION AND OPERATION ISSUE

Parallel instruction issue is the focus of much current research (the current work
on superscalar and VLIW architectures). Parallelism in the issue stage and pipelining
of the processor are roughly equivalent in exploiting fine-grain parallelism
[Jouppi89, Sohi89]. A processor with deeply pipelined functional units has less need
for parallelism in the issue stage [Sohi89]. We discussed the above issues in some
detail in Chapter 2. In this section, we investigate the utilization of the instruction
issue stage of the deeply-pipelined CRAY Y-MP processor by the benchmark pro-
grams. (Please refer to Chapter 3 for the functional unit latencies and a description of
the processor).

Table 4.21 presents data collected by the HPM about the utilization of the
instruction issue stage of the CRAY Y-MP. The second column in the table presents
the instruction issue rate (instructions issued per clock cycle). Recall that the CRAY
Y-MP instructions occur in three sizes: one-parcel, two-parcel, and three-parcel
instructions, where a parcel is 16 bits long. The one-parcel instructions are issued in a
single clock cycle, while the others take two clock cycles to issue: the first parcel is
issued in the first clock, and the rest are issued in the second clock. Table 4.21
identifies the percentage of program execution time for which the instruction issue
stage is busy issuing the first parcel (column 3) and the second/third parcels (column
4) of instructions. The fraction of program time spent issuing the first parcel is the
same as the instruction issue rate, of course. The last column of the table identifies the
fraction of time the issue stage is busy overall (this is the sum of columns 3 and 4).

We first observe that the highest issue stage utilization is 42.3%, for OCEAN.
The issue stage utilization is not very high overall, ranging between 10% and 43%.
Table 4.22 presents the instruction issue rates for the hand-optimized programs, and
we see very similar overall behavior. Since the utilization of the issue stage is not very
high (on the average), we can say that the issue stage is not a bottleneck during pro-
gram execution. This is of course due to the fact that the deep pipelines exploit the
parallelism in the programs even with the small issue rate limit of 1 instruction per
cycle. For example, if the floating-point add unit has 7 pipeline stages, then after issu-
ing a floating-point add, 6 other instructions can be issued before the floating-point
add completes. Other factors, discussed later in this section, are also responsible for
the low utilization of the instruction issue stage. We note, however, that there may be
phases during program execution when the amount of parallelism is high and the
issue stage is a bottleneck.

As expected, the vector benchmarks have lower instruction issue rates than the
other benchmarks. Vector instructions execute several operations, and hence fewer

Issue Stage

Utilization

Program || Instruction

Issue Rate || by 1st | by 2nd/3rd | by all

parcel parcels parcels

MG3D 0.104 0.104 0.022 0.126
SPEC77 0.176 0.176 0.045 0.221
BDNA 0.193 0.193 0.118 0.311
MDG 0.197 0.197 0.075 0.272
ARC3D 0.212 0.212 0.056 0.268
FLO52 0.220 0.220 0.066 0.286
DYFESM 0.335 0.335 0.124 0.459
ADM 0.355 0.355 0.139 0.494
TRFD 0.386 0.386 0.078 0.464
OCEAN 0.423 0.423 0.121 0.544
SPICE 0.264 0.264 0.199 0.463
TRACK 0.291 0.291 0.200 0.491
QCD 0.390 0.390 0.217 0.607

Table 4.21: Instruction Issue Rate and I ssue Stage Utilization

— Compiler-Optimized Codes

82

Issue Stage
Utilization
Program | Instruction
Issue Rate || by 1st | by 2nd/3rd | byall
parcel parcels parcels
MG3D 0.110 0.110 0.024 0.134
BDNA 0.117 0.117 0.050 0.168
MDG 0.154 0.154 0.047 0.201
OCEAN 0.172 0.172 0.046 0.218
SPEC77 0.186 0.186 0.053 0.239
ARC3D 0.204 0.204 0.059 0.264
FLO52 0.274 0.274 0.075 0.350
QCD 0.224 0.224 0.237 0.462
SPICE 0.246 0.246 0.143 0.389
ADM 0.339 0.339 0.140 0.479
TRACK 0.359 0.359 0.178 0.537
DYFESM 0.368 0.368 0.162 0.530
TRFD 0.440 0.440 0.086 0.526

Table 4.22: Instruction Issue Rate and I ssue Stage Utilization
— Hand-Optimized Codes

83

instructions need to be issued for vectorized programs; if we were to consider opera-
tion issue rates instead, the numbers would be much higher for the vector bench-
marks. Tables 4.23 and 4.24 present very approximate estimates of operation issue
rates for the user routines of the benchmarks. These operation issue rates are arrived
at by the following approximate method: the execution of each static block is simu-
lated in isolation, and the execution time in clock cycles for that block is calculated.
Then, the execution time of each static basic block is multiplied by the frequency of
execution of that block, to obtain an estimate of its contribution to program execution
time. The sum of these estimates for all the blocks is used as the approximate

84

execution time of the user routines of the program; since we know the operation count
in the user routines, the operation issue rates are now calculated. We note that the
above is very approximate (as we are ignoring or approximating cross-block depen-
dences, memory bank conflicts, instruction cache misses, etc.). We present these esti-
mates only to give a feel for the operation issue rates on the machine.

We see that the vector programs have higher average operation issue rates than
the scalar programs, as expected. The scalar programs have operation issue rates
between 0.4 and 0.6 operations per cycle, while most of the vector programs have
between 2.0 and 2.5 operations issued per cycle. The moderately-vector programs lie
in between in the operation issue rate distribution. We note that an operation issue
rate of 2.5 for the vector programs suggests that, on the average, 2.5 vector instruc-
tions are in progress simultaneously with each issuing an operation every clock. Usu-
ally, there is much more parallelism among the vector instructions; we point out
below some of the reasons for the limited parallelism seen in the execution of vector
instructions.

An important reason for the low instruction and operation issue rates for the vec-
tor programs is the CRAY Y-MP hardware organization. There exists more parallel-
ism among the vector instructions of programs than among the scalar instructions, but
the CRAY Y-MP has a relatively limited amount of vector resources (vector registers,
memory ports, functional units), resulting in instruction issue stalls due to resource
conflicts. Empirical evidence to this effect is presented in [Tang88]. (Our approximate
study also confirms the above; we do not present any data here since our studies are
very approximate, with timing errors of up to 30% for the individual programs.) For
example, the vector registers could be a bottleneck since the processor has only 8 vec-
tor registers. If each vector instruction needs 2 operand vector registers and 1 result
vector register, only 2 vector instructions can be in progress simultaneously. (We note
that there is a little more potential for parallel vector instruction execution on the Cray
machines due to the presence of vector chaining which enables a dependent vector
instruction to start execution at the time the first element of each of its operands is
available. Also, vector LOADs and STORESs need just one register each.) The limited
resources result in long instruction issue stall times because each vector instruction
reserves all necessary resources for time proportional to the number of operations it
executes.

The stalls in instruction issue seen in scalar code are mainly due to control- and
data-dependences between instructions, since each instruction holds registers only for
time proportional to the latency of the instruction’s functional unit. The functional
units themselves are pipelined and are not a bottleneck, since they can collectively
accept scalar instructions at a much higher rate than the issue stage can issue them.
We note that despite having a large proportion of spill instructions, the issue stage is
not very highly utilized by scalar code. Thus, there is ample opportunity for the spill

Operation
Program Issue Rate
SPEC77 2.0
MG3D 2.0
FLO52 2.0
BDNA 2.0
ARC3D 2.0
MDG 1.6
TRFD 14
DYFESM 1.2
OCEAN 0.8
ADM 0.8
QCD 0.6
TRACK 04
SPICE 04

Table 4.23: Operation Issue Rate — Compiler-Optimized Codes

Operation

Program Issue Rate
SPEC77 25
BDNA 24
MG3D 2.2
FLO52 2.2
ARC3D 2.2
OCEAN 2.1
MDG 2.0
TRFD 1.8
SPICE 15
QCD 14
DYFESM 1.3
ADM 11
TRACK 1.0

Table 4.24: Operation Issue Rate — Hand-Optimized Codes

86

instructions to be issued for free during clock periods which would otherwise have
been stalls for data dependences to be resolved; of course, this is possible only when
the spill instructions themselves are not stalled due to dependences. The highly
optimizing compiler would in most cases be able to schedule the spills in this manner;
we note that in some cases the spill instructions could be on the critical path and hence
may not be executed for free. We also note that although the issue rate is less than
60% on the whole, considering the highly pipelined functional units in the CRAY Y-
MP and the long latency for memory, the utilization of the issue stage is quite high.

The fraction of time spent issuing the second and third parcels is small for most
of the non-scalar benchmarks. The scalar benchmarks, however, keep the issue stage
busy for an additional 20% of the time to issue second and third parcels of instruc-
tions. This is because the two-parcel and three-parcel instructions of the CRAY Y-MP
are all scalar memory operations, which are found in high numbers only in scalar
code. In a separate scalar unit, especially one with shallow pipelines, this could be
important since the instruction issue stage has the potential of being a bottleneck
when the pipelining is decreased.

In conclusion, the issue stage does not appear to be a bottleneck, on the average, in
the CRAY Y-MP for the PERFECT Club benchmarks. Improving the issue stage utili-
zation and program execution speed can be achieved by increasing the resources in
the vector unit (i.e., vector registers, functional units, and possibly memory ports) and
by cutting down the latency of scalar operations (i.e., the functional units and
memory).

4.6. SUMMARY

We presented in this chapter a study of the single processor of the CRAY Y-MP
using as benchmarks programs from the PERFECT Club set. We compared the
instruction-level behaviors of compiler optimized benchmarks, hand-optimized
benchmarks, and just the scalar basic blocks of both of these versions. We character-
ized the processor by studying program vectorization levels, instruction usage pat-
terns, and basic block sizes for our benchmarks. We also investigated user-routine
and library calls by both versions of the benchmarks. Finally, we studied the instruc-
tion and operation issue rates of the benchmarks. We present below some of the
important conclusions of the above studies.

4.6.1. Program Vectorization

The PERFECT Club benchmarks exhibit a wide range of vectorization, in contrast
to the usually expected high level of vectorization of scientific programs. Anywhere
between 4% and 96% of the operations of the programs are vectorized when vectoriza-
tion is carried out by the state-of-the-art Cray Research, Inc. FORTRAN compiler.
Upon hand-optimization of the benchmarks, the vectorization level improves consid-
erably for many programs, with the percentage of operations vectorized now ranging

87

from 55% to 97%. The hand-optimized version of the benchmarks studied is the ver-
sion that won the 1990 Gordon Bell-PERFECT award for the fastest supercomputer
applications, and was optimized by a team of Cray Research, Inc. programmers. Two
of the benchmark programs, SPICE and QCD, show as much as 70% additional vec-
torization thanks to hand optimizations.

Thus, the performance attainable using current state-of-the-art vectorizing com-
pilers is much less than the performance available via manual optimizations.
Knowledge of the underlying vector machine on the part of the programmer is still
very necessary to harness the full power of the machine.

4.6.2. Instruction and Operation Counts

We classify programs into vector, moderately-vector, and scalar classes when
studying their characteristics. While the compiler-optimized version of the bench-
marks has programs of all three classes, hand-optimization moves all programs into
either the moderately-vector or the vector class, thus completely eliminating the scalar
class of programs. Overall, the proportions of instructions and operations of each class
of programs is not affected by whether the programs were compiler-optimized or
hand-optimized. Thus, for example, the moderately-vectorized programs of both the
compiler-optimized and the hand-optimized versions have generally similar charac-
teristics.

The vector programs are predominantly floating-point operations and memory
accesses, with these forming close to 90% of all operations executed. The moderately-
vector and the scalar programs, with their lower vectorization levels, have significant
proportions of integer as well as address-computation operations (which, while being
integer calculations, are distinguished from other integer operations) in addition to
floating-point and memory operations. Very interestingly, spill operations that move
values between the scalar primary register sets and the corresponding backup register
sets and move operations that move values between the two scalar primary register
sets together constitute the largest fraction of operations in scalar programs as well as
in the non-vectorized basic blocks of the moderately-vector and vector programs. For
example, these miscellaneous operations, which are specific to the Cray machines,
constitute close to 40% of all operations of the scalar programs of the compiler-
optimized benchmarks. While the spill instructions can be eliminated by using a
larger register set, the impact on clock cycle, instruction format, etc., have to be con-
sidered when increasing the register set size.

While almost all the memory operations of the non-scalar programs are vector-
ized, a very significant fraction of the memory operations of even the scalar programs
are vectorized. For example, though only about 14% of all operations of TRACK are
vectorized by the compiler, close to 50% of its memory operations are vectorized.
Thus, many of the memory references are predictable, and large memory bandwidth
is desirable for these programs.

88

Branches form only about 6% of the operations of the scalar programs, and are
less than 2% of all operations in the other two program classes. Eliminating the spill
instructions from the scalar programs will increase the proportion of branches, but the
frequency is still much less than the 20% reported for non-scientific programs. In the
scalar programs close to half the branches are data-dependent branches, and about a
quarter are subroutine calls. The significant presence of loop control branches in
scalar blocks suggests the presence of loops with conditional branches and/or subrou-
tine calls that make them non-vectorizable. In the moderately-vector and the vector
programs, the majority of the branches are expectedly loop-control branches.

4.6.3. Basic Blocks

The sizes of basic blocks are important in the choice of compiler techniques for
code optimization and scheduling. Basic blocks in non-scientific applications are
reported to be around 5 instructions long, and heuristic compiler algorithms tuned to
this size are hence used in compilers. We find that in our benchmarks small blocks as
well as large blocks that are more than 100 instructions in size are frequent. Further-
more, the large blocks contain a number of vector instructions and hence contribute
significantly to the dynamic operation count and thus to program execution time. For
example, blocks larger than 125 instructions contribute more than 12% of the opera-
tions for the scalar programs and more than 25% of the operations of the vector pro-
grams in the compiler-optimized version of the benchmarks. Hence, code optimiza-
tion and scheduling techniques geared toward large blocks are desirable, in addition
to ones geared toward small blocks. Apart from the vectorized blocks, the blocks in
the scalar programs as well as the scalar blocks in the non-scalar programs have
median block sizes between 8 and 10 instructions, but are widely distributed in the
range of 1 to 20 instructions and beyond. In fact, for the compiler-optimized bench-
marks, 10% of the scalar basic blocks of all program classes are at least 20 instructions
in size.

4.6.4. Instruction and Operation Issue Rates

The instruction issue rates range between 0.1 instructions per cycle and 0.45
instructions per cycle for both the hand-optimized and the compiler-optimized ver-
sions of the programs. Since each vector instruction issues multiple operations, the
operation issue rates are expectedly higher, ranging between 0.4 and 2 operations per
cycle for the compiler-optimized benchmarks and between 1.0 and 2.5 operations per
cycle for the hand-optimized benchmarks. The deeply pipelined functional units and
the long memory latency result in much of the operation-level parallelism being
exploited by pipelining and hence we see comparatively less parallelism at the issue
stage. Furthermore, the quantity of vector resources in the Cray machines limits the
exploitation of the parallelism between vector instructions, as has been reported in the
literature.

89

This chapter has mainly focused on the vector program as a whole; the next
chapter deals with issues that are of importance specifically to the scalar portions of
vector programs.

90

Chapter 5

CHARACTERIZATION OF SCALAR BASIC BLOCKS

5.1. INTRODUCTION

The scalar code in vectorized programs has characteristics and consequently
resource requirements that are very different from those of the vectorized blocks of
the vectorized programs as well as from those of non-vectorized programs. We dis-
cussed this issue and its implications in detail in chapter 3. As discussed therein, we
are interested in understanding the characteristics and resource requirements of scalar
code in order to aid the design of a separate scalar processing unit targeted
specifically at scalar code. Towards this end, we studied the instruction mix and the
sizes of the scalar basic blocks in the previous chapter, and compared them with those
of the vector blocks. In this chapter, we focus on several other issues specifically
important to the fast execution of scalar basic blocks. In section 5.2, we discuss inter-
instruction data dependencies. In section 5.3, we discuss issues related to quick
branch execution. In section 5.4, we discuss functional-unit pipeline utilization. In
each of these sections, we discuss the importance of the issues addressed, present and
analyze relevant data collected, and draw conclusions about their implications on
scalar processor design.

5.2. DATA DEPENDENCIES

The data dependencies in a program determine the amount of instruction-level
parallelism in the program, the amount of communication between various types of
instructions, etc. Code segments that are not vectorized usually have a large amount
of data- (and control-) dependencies, which is the reason they are not vectorized. The
dependencies seen in these code segments are critical to the design of the scalar pro-
cessor. Understanding the nature of these dependencies enables one to design faster
scalar wunits, for example by providing more communication paths between
frequently-communicating functional units. Furthermore, the data-dependencies can
be exploited to provide faster instruction execution. For example, the IBM RS6000
[Oehler90] provides a compound multiply-add functional unit that executes (y = a*b +
c) faster than executing (x = a*b) followed by (y = x + ¢). Of course, such a functional
unit would be cost-effective only if a sufficient amount of such dependencies between
multiply instructions and add instructions exist in the programs. Also, when two sim-
ple instructions are combined into a compound instruction, the result of the first sim-
ple instruction may no longer be available for use by other instructions. This imposes
additional limitations on the use of compound functional units, as will be discussed
shortly. Thus, characterizing the dependencies in programs is key to making several
tradeoffs and design choices in the processor.

91

In this chapter we examine instruction dependencies within individual scalar
basic blocks. It would be interesting to also examine such dependencies across basic
blocks. However, our methodology, discussed in detail in chapter 3, does not provide
us such data. We note that to exploit dependencies across basic blocks, it is essential
that both branch-prediction techniques and recovery mechanisms be available, as for
example in a system that uses trace-scheduling[Fisher81]. For example, suppose
instruction "x" of basic block A feeds its output to instruction "y" of basic block B
which is a potential successor of block A. If we were to replace instruction "x" with
the compound instruction "xy", and if branch-prediction were to go wrong and some
basic block C is executed instead of block B, then block C has to have appropriate
compensation code to undo "xy" and redo "x". Thus, exploiting dependencies within a
basic block is a more-easily implementable first step in exploiting dependencies.

We also do not study memory dependencies (i.e., STORE -> LOAD dependen-
cies), since we do not deal with address traces in our studies. Such dependencies exist
due to two reasons: (i) the memory address accessed by the operations, and hence the
exact data-dependencies between the operations, are not known at compile-time,
resulting in the value that causes the memory dependence not being assigned to a
register, or (ii) when such dependencies are known at compile-time, the compiler is
unable to allocate the value being accessed to a register due to either register shortage
or to limitations of the register allocation algorithm. In the latter case, if an improved
compiler were to allocate the value to a register we might see additional exploitable
dependencies between computation instructions. For a given compiler, however,
ignoring memory dependencies does not affect a study such as ours.

In our study we eliminate the Cray-specific spill instructions so as to obtain more
general results. Spill instructions are eliminated in the following manner. If the result

n_n n__n

of instruction "x" is relocated by spill instructions and then used by instruction "y",
this is accounted for as a direct dependence of instruction "y" on instruction "x". Thus,
we are able to study a scenario where the effect of effect of spill instructions, which are

present due to a shortage of primary registers, has been eliminated.

Before we examine the frequency of various dependencies, let us consider some
factors that influence the effectiveness of exploiting data-dependencies via compound
functional units. Suppose an instruction has multiple dependents, either within the
same basic block as the instruction or otherwise. If the instruction is incorporated into
a compound instruction for a compound functional unit, all the other dependents of
the instruction have to be provided the result of this instruction. This can be accom-
plished in several ways, and the appropriate choice is dependent on the particular
number of dependencies, functional unit latencies, etc. For example, each dependent
of the instruction could be replaced by a compound instruction. Or, some of the
dependents could be replaced by compound instructions, and the instruction also exe-
cuted separately once to provide its result to the other (non-combined) dependents.
This approach might be effective for exploiting the dependencies of an instruction

92

within a basic block even when it has additional dependents in other blocks. In some
implementations, the result of the instruction might also be available for free from the
compound functional unit, thus eliminating the need for executing the instruction
separately to take care of its non-combined dependents. Of course, the simplest
approach overall is to combine an instruction into a compound instruction if it has
exactly one dependent and that dependent is in the same basic block. The compiler
can play a significant part in such exploitation of dependencies between instructions.

To illustrate some of the above points, consider the following two simple expres-
sions:

m=b*c+d
n=b*c+e

Suppose the multiply operation takes 3 clocks and the add operation takes 2
clocks, but the compound operation (p*q+r) takes only 3 clocks. A naive compiler
might compute x = b*c followed by m = x+d and n = x+e. This takes (3+2+2)=7 clocks,
assuming the three operations are executed strictly in sequence, for simplicity. How-
ever, using the compound instruction (s=p*q+r) for both m and n results in an execu-
tion time of only 6 clock cycles, again assuming strictly sequential execution, for sim-
plicity. Clearly, the appropriate choice of expression formation is dependent on func-
tional unit latencies, scheduling considerations, etc.

We note that the compiler might be able to move instructions across loop itera-
tions to exploit compound functional units. This could be quite simple and very effec-
tive, since the loop control branch is taken most of the time, and for many cases only
very simple compensation code needs to be inserted into the post-loop basic block to
correct for the error at the end of the loop. Furthermore, when complex expressions
are involved within a basic block, the parsing of the expressions could play a role in
the dependencies that are seen between instructions.

Thus, although our study presents an initial overview of the exploitable depen-
dencies in the programs, code compiled appropriately for specific proposed mechan-
isms have to be studied before drawing firm conclusions.

Tables 5.1, 5.2, 5.3, 5.4, & 5.5 present statistics of data dependencies in both the
hand-optimized and the compiler-optimized versions of our benchmarks. The tables
are read as follows. The "Isolated" row of the tables presents the percentage of
instructions in the programs whose results are not consumed within the same basic
block. For each instruction type, the corresponding column lists the distribution (per-
cent) of all the dependents of that instruction type, with the column summing to
100%. For example, from Table 5.1, 14.3% of all the floating-point add instructions of
the scalar benchmarks feed no instructions within the same basic block that they occur
in. Thus, these isolated instructions can not be used to exploit a compound multiply-
add functional unit without branch-prediction and recovery support. On the other

LD I\ilr}_L AFSI_D ASD_D AIE)_D M?.}L LOSC_;IC SI—?I_FT RECIP | MOV PL(;I();
LD 0.50 - - - 24.25 42.72 - - - 19.55 -
ST 3.69 9.25 21.43 31.16 5.63 7.18 3.66 - - 11.80 -
FP_MUL 35.21 40.79 25.66 - - - 1.62 33.40 99.44 1.64 -
FP_ADD 21.47 49.11 35.66 8.74 - - 438 2.09 - 6.46 -
S_ADD 19.29 0.21 2.68 10.72 - - 36.51 58.61 0.56 12.54 -
A_ADD 3.79 - - - 7.98 50.10 - - - 29.81 -
A_MUL 0.02 - - - - - - - - 2.90 -
S_LOGIC 11.50 0.10 222 14.14 - - 19.17 1.38 - 0.70 -
BR 1.29 0.21 9.76 10.84 32.05 - 30.83 1.27 - - -
BLK_LD - - - - 13.84 - - - - 8.05 -
BLK_ST - - - - 13.95 - - - - 5.33 -
S_SHIFT 0.17 - 1.83 1.76 - - 0.75 3.24 - 0.43 66.67
RECIPR 0.84 0.23 0.77 - - - 0.21 - - 0.02 -
MOV 224 0.11 - 22.64 2.30 - 2.34 - - 0.77 33.33
POP_LZC - - - - - - 0.53 - - - -
TOTAL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Isolated(%) 8.73 9.13 14.33 9.67 28.93 - 17.17 9.10 9.60 35.23 -

Table 5.1: Data Dependenciesin Scalar Programs

— Compiler Optimized Codes

93

LD I\}:[II}_L :gi) ASD-D AIE_D M[;L LOSC-QIC SHSI_FT RECIP | MOV 1;21():-
LD 0.43 - - - 34.57 - - - - 2.60 0.05
ST 4.84 3.67 35.00 471 7.27 - 0.68 0.05 0.04 10.39 -
FP_MUL 24.71 31.78 34.27 0.01 - - 0.33 0.75 99.79 1.07 -
FP_ADD 33.74 62.78 12.64 6.98 - - 221 1.81 0.14 6.30 -
S_ADD 6.63 1.24 10.86 28.18 - - 33.97 65.18 0.04 18.91 -
A_ADD 3.10 - - - 20.70 60.04 - - - 53.30 -
A_MUL 0.63 - - - 0.09 1.80 - - - 2.98 -
S_LOGIC 22.62 0.26 2.70 16.45 - - 27.36 3.98 - 0.46 -
BR 0.09 - 0.71 5.75 19.94 - 10.79 25.02 - - -
BLK_LD - - - - 1.76 - - - - 1.47 -
BLK_ST - - - - 1.85 - - - - 1.00 -
S_SHIFT 0.02 - 0.47 6.64 - - 3.69 3.20 - 0.54 99.95
RECIPR 0.16 0.19 3.08 - - - 0.05 - - 0.04 -
MOV 3.04 0.08 0.27 31.10 13.82 38.17 20.02 - - 0.95 -
POP_LZC 0.01 - - 0.18 - - 0.88 - - - -
TOTAL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Isolated(%) 33.63 3.55 29.63 24.65 49.03 2.40 24.63 13.73 0.05 36.13 -

Table5.2: Data Dependenciesin Moderately-Vector Programs

— Compiler Optimized Codes

94

LD I\f[II}_L ;gi) ASD-D AIE-D M[;L LOSC_QIC SHSI_FT RECIP | MOV I;%I():
LD 0.23 - - - 30.93 - - - - 3.93 3.52
ST 13.03 9.84 27.64 18.88 8.66 - 10.39 9.32 - 591 -
FP_MUL 25.26 19.81 35.34 - - - 0.05 3.87 98.13 0.19 -
FP_ADD 33.94 65.99 17.68 6.72 - - 0.25 4.09 0.80 1.66 -
S_ADD 13.40 0.27 8.92 17.61 - - 19.56 53.51 - 18.77 -
A_ADD 2.97 - - - 11.75 66.30 - - - 64.64 -
A_MUL 1.28 - - - 0.01 - - - - 1.99 -
S_LOGIC 2.95 2.96 0.74 3.81 - - 22.98 8.75 - 0.26 -
BR 1.57 0.45 4.87 21.92 32.48 - 17.71 12.10 - - -
BLK_LD - - - - 1.02 - - - - 0.71 -
BLK_ST - - - - 1.06 - - - - 0.45 -
S_SHIFT - - - 0.92 - - 0.08 5.75 - 0.18 80.74
RECIPR 1.78 0.16 2.74 - - - - - 0.07 - -
MOV 3.56 0.52 2.06 30.14 14.08 33.70 28.98 213 1.00 1.30 15.74
POP_LZC 0.05 - - - - - - 0.48 - - -
TOTAL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Isolated(%) 18.72 16.33 10.43 46.45 54.65 0.08 33.78 14.33 - 47.03 -

Table 5.3: Data Dependenciesin Vector Programs

— Compiler Optimized Codes

95

LD I\}:[II}_L /fgi) ASD-D AIE-D M[;L LOSC_QIC SHSI_FT RECIP | MOV I;%I():-
LD 0.42 - - - 25.03 9.36 - - - 6.18 0.25
ST 12.81 9.14 34.38 15.88 8.18 6.68 5.52 0.14 - 9.21 -
FP_MUL 18.85 37.96 30.62 - - - 3.13 0.71 94.15 0.59 -
FP_ADD 20.43 48.70 13.42 2.96 - - 2.33 3.36 5.40 2.25 -
S_ADD 20.97 - 10.18 17.08 - - 26.65 84.21 - 10.83 -
A_ADD 8.14 - - - 18.61 81.18 - - - 50.50 -
A_MUL 1.58 - - - - - - - - 2.88 -
S_LOGIC 7.88 3.16 0.67 10.84 - - 21.61 7.43 - 1.45 -
BR 2.46 0.08 3.02 31.47 13.88 - 19.33 4.04 - - -
BLK_LD - - - - 7.82 - - - - 5.49 -
BLK_ST - - - - 8.01 - - - - 6.29 -
S_SHIFT 0.17 - 2.38 0.47 - - 1.00 - - 1.25 78.68
RECIPR 0.46 0.51 511 - - - 0.20 - - - -
MOV 5.73 0.43 0.21 21.30 18.46 2.78 19.80 0.10 0.45 3.07 21.07
POP_LZC 0.09 - - - - - 0.41 - - - -
TOTAL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Isolated(%) 33.47 6.90 6.98 30.72 34.13 0.22 28.77 24.57 0.23 34.12 0.97

Table 5.4: Data Dependenciesin Moderately-Vector Programs
— Hand-Optimized Codes

96

LD I\}:[II}_L Afgi) ASD-D AIE-D M[;L LOSC-QIC SHSI_FT RECIP | MOV Iligl():-
LD 0.26 - - - 16.71 - - - - 8.76 0.62
ST 6.92 32.24 28.52 23.93 8.01 - 10.82 1.02 - 12.99 -
FP_MUL 27.75 25.26 41.81 0.01 - - 0.88 1.07 99.45 1.88 -
FP_ADD 24.65 38.82 9.30 8.93 - - 1.24 3.05 0.19 3.98 -
S_ADD 16.06 0.22 10.96 15.05 - - 17.25 61.73 0.18 14.55 -
A_ADD 9.22 - - - 17.79 91.62 - - - 48.92 -
A_MUL 1.28 - - - - - - - - 1.85 -
S_LOGIC 3.49 0.44 1.79 8.00 - - 23.76 6.65 - 0.64 -
BR 1.12 1.58 1.05 9.57 25.60 - 18.98 25.31 - - -
BLK_LD - - - - 1.18 - - - - 1.62 -
BLK_ST - - - - 1.20 - - - - 1.66 -
S_SHIFT 0.05 - 1.48 1.74 - - 0.06 0.73 - 0.43 93.04
RECIPR 3.74 1.43 5.08 - - - - - - - -
MOV 5.47 0.01 - 32.77 29.50 8.38 27.00 0.15 0.17 270 6.35
POP_LZC - - - - - - - 0.29 - - -
TOTAL 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Isolated(%) 24.29 18.63 23.96 38.56 4491 441 29.60 25.94 6.84 46.80 -

Table 5.5: Data Dependenciesin Vector Programs
— Hand-Optimized Codes

97

hand, from the same table we see that no address-multiply (AMUL) instructions of the
scalar programs are isolated; each AMUL instruction of the scalar programs feeds at
least one instruction within the same basic block.

98

Tables 5.6 and 5.7 present the average fanout of the results of various instructions
for our benchmarks. These are fanouts within the basic block of the instruction;
fanout beyond the basic block are not accounted for. We observe that the average
fanout for the floating-point instructions is larger than 1 instruction on the average.
For example, with an average fanout of 1.25 instructions, one out every five instruc-
tions will have multiple dependents and hence more involved mechanisms, as dis-
cussed above, are necessary to use that instruction in compound functional units.
Note that both the dependence tables and the fanout tables present approximate
figures in this respect since they ignore any additional dependencies the instructions
might have across blocks.

Now let us examine in detail the dependencies of instructions of each instruction
type. The dependencies of all instructions of each instruction type are listed in a
column in each of the tables 5.1 through 5.5, with each column summing up to 100%.
If an instruction has multiple dependents within its basic block, each of the dependen-
cies is accounted for when computing the columns. In the discussion below, we term
an instruction to be non-isolated if it has at least one dependent within its basic block.

A significant fraction of the instructions fed by address adds are, naturally, scalar
memory operations. We note that in some of these memory operations the final

Inst. Average Fanout (insts.)
Type Scalar | Mod-Vec. | Vector
LD 1.50 1.38 1.25
FP_MUL 1.60 1.22 1.13
FP_ADD 1.21 1.19 1.17
S_ADD 1.38 1.32 1.23
A_ADD 1.26 1.47 221
A_MUL 1.16 1.36 1.92
S_LOGIC 1.15 1.40 1.39
S_SHIFT 1.09 1.14 1.32
RECIPR 2.32 212 2.09
MOV 1.85 1.94 1.60
POP_LZC 1.00 1.00 1.21

Table 5.6: Average Fanout of Various Instructions

— Compiler Optimized Codes

99

Inst. Average Fanout (insts.)
Type Mod-Vec. Vector
LD 1.49 1.32
FP_MUL 1.16 1.18
FP_ADD 1.24 1.23
S_ADD 1.18 1.09
A_ADD 1.27 1.39
A_MUL 1.64 1.20
S_LOGIC 1.18 1.32
S_SHIFT 1.06 1.06
RECIPR 2.23 2.05
MOV 1.50 1.65
POP_LZC 1.06 1.01

Table 5.7: Average Fanout of Various Instructions

— Hand-Optimized Codes

memory address is obtained by adding an immediate value to the specified address
register. One might considering exploiting this dependence between the explicit and
implicit address calculation. However, additional complications such as having to
assign a register to the immediate value and having to issue an additional instruction
to move the value to the register might negate any advantages of exploiting the
dependence. Another significant fraction of the dependents of address adds are
MOVE instructions which move the result of the address adds to the scalar registers.
This is because the address unit lacks some amount of functionality (as discussed in
the previous chapter), and data has to be moved to the scalar unit to carry out those
functions. We also see that LOADs are more dependent on address computations
than STOREs. Finally, address adds are used on the Cray machines to increment loop
counters. Loop-control branches testing the loop counters before branching results in
a significant fraction of the dependents of address adds being branches.

From Table 5.1, for example, we see that 50.1% of the non-isolated address multi-
ply instructions feed address add instructions. A significant fraction of the address
multiplication instructions of all benchmark classes feed address adds. However,
there are few address multiplication instructions in the programs, as shown in the pre-
vious chapter. Hence a combined multiply-add address functional unit may not be

100

worthwhile.

A significant fraction of floating-point multiplies feed floating-point adds, and
vice-versa. Also, a significant fraction of floating-point multiplies feed other floating-
point multiplies. The same is true for floating-point adds, except that the fraction is
smaller. Thus, one might conclude that various compound floating-point add-
multiply units have the potential to be very effective. However, two issues need to be
considered. First, up to 25% of the floating-point instructions could have no depen-
dents within the same basic block, as seen from the tables. Second, we observe from
tables 5.6 and 5.7 that the average fanout for the floating-point instructions is
significantly greater that 1, thus necessitating some "smarts" in the compiler to exploit
the dependencies.

The results of most of the remainder of the floating-point instructions are just
stored back in memory. For the scalar programs alone, a good fraction (9.76%) of the
floating-point adds determine branch conditions.

Upon examining the scalar add, shift, and logic instructions, we find similarly
frequent inter-dependencies which might suggest the desirability of compound func-
tional units. However, the same arguments presented above for the floating-point
units apply here.

Let us now consider memory LOAD instructions. The highest fraction of LOAD
instructions that have no dependents within that block is around 33%. The higher this
fraction the lesser the impact of the relatively long memory latency on program execu-
tion speed. This is due to the fact that if the instructions that are dependent on
LOADs are in other basic blocks (especially those that are "farther away" in the
dynamic trace of basic blocks) there will be more independent instructions available
to cover the LOAD latency with parallel work. We note that the Cray compiler
attempts to move LOADs across loop-iterations to hide the relatively-long memory
latency, thus implementing a restricted form of software pipelining[Lam88], for the
memory operations alone. The fact that the majority of the LOAD instructions are not
of this type despite this compiler optimization indicates that memory latency might
play a large role in slowing down scalar code execution. This is especially true since
the scalar blocks are relatively short when compared to memory latency, thus having
fewer instructions available for issue during the latency of the load.

Most of the dependents of LOADs are naturally computation instructions. How-
ever, some of them are other LOADs as well as address computation instructions, sug-
gesting the indirect accessing of memory (akin to pointer-chasing in C programs for
example). Several of them are STOREs, suggesting data relocation in memory and
also indirect memory accesses.

Finally we see a small fraction of the dependents of LOADs being branches. This
is again significant for execution speed. Considerable execution overlap of instruc-
tions of different basic blocks can be achieved when the branches of the basic block are

101

dependent on only a small portion of the instructions of the basic block. Suppose the
branch instruction of the basic block can be issued while several of the instructions of
the basic block are still being executed (though they were issued prior to the branch),
or even when some instructions of the block are yet to be issued. One the branch
instruction is executed, the successor basic block is determined. Now instructions
from the subsequent basic block can also be issued, and these will overlap with those
instructions of this block that are still in flight. However, to achieve this, the instruc-
tions of a basic block that affect the branch condition need to be few in number and
have short latencies. If a LOAD were to affect the branch condition, inter-block paral-
lelism would be hampered on a Cray machine due to the long memory latency.

Table 5.8 shows the distribution of instructions that play a role in determining
branch conditions. Specifically, these are instructions, within the same basic block as
the branch, that occur in the dependence chain that finally produces the branch condi-
tion. As discussed before, branches use registers S0/AQ0 to hold conditions, with A0
being used mostly for loop-control and SO mostly for data-dependent branches. We
see that LOADs form a significant fraction (13% and 16%) of these instructions for SO,
and to that extent limit execution parallelism as discussed above. Among the other
instructions that affect SO, the relatively short latency scalar adds and scalar logic
instructions, together with spills and moves, form almost all of the instructions. We
note that the long latency floating-point instructions form about 8% of the instructions
that play a role in determining the branch condition. All the above instruction types
affect SO since the branches are data-dependent branches which test values involved
in the computation work of the program. On the other hand, almost all the instruc-
tions that affect AO are just address adds and spills, since most of these branches just
test the loop counter which is maintained in a register. Hence these branches can be
executed relatively quickly compared to the execution time of the basic blocks con-
taining them.

A related issue is the latency of the final instruction in the dependence chain that
produces the branch condition. For example, if a scalar add instruction produces the
branch condition, it might be possible to obtain the branch condition by just determin-
ing the sign bit of the result of the add instruction instead of waiting for the entire
result. For example, in a floating-point unit the sign bit can be calculated much more
easily and much more quickly than the entire result. Thus the branch does not have to
be stalled for the entire latency of the add instruction. Table 5.9 shows the instructions
that produce the final branch condition. For branches based on the value in register
AQ, half of such instructions are address adds, while the rest are MOVs and SPILLs.
Obtaining the sign bit of the result quickly from the address adder will hence decrease
the waiting time of the loop control branches, and will be worthwhile. For condition
register SO, the scalar logic unit produces a large fraction of the final branch condition;
however, the latency of this unit is just one clock, and hence there might not be much

SO A0
INST. Original | Hand-Opt. | Original | Hand-Opt
(%) (%) (%) (%)

LD 16.26% 13.26% 0.23% 1.60%
FP_MUL 2.85% 4.03% - -
FP_ADD 5.29% 4.70% - -
S_ADD 13.77% 15.68% - -
A_ADD 0.68% 0.38% 75.67% 58.70%
A_MUL - - - -
A_SPILL 0.26% 1.07% 23.86% 31.90%
S_SPILL 20.84% 17.74% - -
S_LOGIC 29.86% 33.18% - -
S_SHIFT 2.10% 2.19% - -
RECIPR 0.61% 0.94% - -
MOV 7.44% 6.84% 0.23% 7.80%
POP_LZC 0.03% - - -

100% 100% 100% 100%

Table5.8: Instructions that play arolein determining the Branch Condition Register

102

103

SO A0
INST. Original | Hand-Opt. | Original | Hand-Opt
(%) (%) (%) (%)
LD 7.57 5.67 0.01 0.00
FP_MUL 0.00 0.13 0.00 0.00
FP_ADD 6.44 5.20 0.00 0.00
S_ADD 24.89 26.65 0.00 0.00
A_ADD 0.00 0.00 58.96 44.71
A_MUL 0.00 0.00 0.00 0.00
A_SPILL 0.00 0.00 8.40 10.07
S_SPILL 19.51 16.84 0.00 0.00
S_LOGIC 40.18 42.00 0.00 0.00
S_SHIFT 1.41 3.51 0.00 0.00
RECIPR 0.00 0.00 0.00 0.00
MOV 0.00 0.00 32.63 4522
POP_LZC 0.00 0.00 0.00 0.00
100% 100% 100% 100%

Table5.9: Instructions that produce the final Branch Condition

opportunity to improve the branch-stall time here. Scalar adds produce a quarter of
the SO branch conditions, however, and it might be worthwhile to provide fast sign-bit
determination in the scalar functional unit to enable earlier issue of branch instruc-
tions.

104

Several other issues affect the execution speed of branches and instruction over-
lap. We examine some of them in the next section.

5.3. BRANCH EXECUTION

In this section we study some factors specific to the Cray machines that affect
branch execution speed. First, we examine the distances of the branch targets from the
branch instructions. Given the presence of instruction buffers on the CRAY Y-MP, the
distance of the branch-target instruction from the branch instruction determines the
likelihood of a cache-hit for the target instruction if a branch is taken. (We note that
the penalty for a cache-miss on the CRAY Y-MP is high because of the long memory
latency.) These distances determine the range of instruction buffer sizes that would be
most effective. Instructions on the CRAY Y-MP can be 1, 2, or 3 parcels (16 bits per
parcel) long, and the instruction cache is 512 parcels in size. Furthermore, the instruc-
tion cache is partitioned into four buffers of 128 parcels each; when the next instruc-
tion to be fetched is in a different buffer than the current instruction, a 2 clock-cycle
delay is incurred in fetching the next instruction.

Tables 5.10, 5.11, 5.12, and 5.13 show the branch-target distances for various
kinds of branches. The targets of subroutine calls are, as expected, very far from the

compiler-opt. hand-opt.
Target (parcels)
Scalar | Moderate | Vector | Moderate | Vector
1-25 0.0 0.3 0.0 0.0 0.0
26-63 0.0 0.3 04 0.0 0.3
64-127 0.0 0.3 0.4 0.2 0.6
128-255 0.5 0.5 0.9 0.5 0.6
256-511 0.6 0.6 1.0 3.7 0.9
512-1023 3.6 24 1.5 4.7 1.3
1024-2047 5.9 4.5 2.7 74 24
2048-4095 6.2 54 4.2 13.1 3.7
>=4096 100.0 100.0 100.00 100.0 100.0

Table 5.10: Subroutine-Call Branches

105

calling instructions. However, although each instruction buffer has consecutive
memory locations stored in it, different buffers can contain instructions from different
parts of memory (i.e., each buffer can be thought of as a cache-block). Thus, if a sub-
routine is called frequently in a tight loop, it could exist in one of the buffers while the
calling loop can exist in a different buffer, thus preventing a cache miss on each sub-
routine call/return.

A very large fraction of the targets of unconditional branches (table 5.11) are
within the cache size of 512 parcels, and a significant fraction is within half the cache
size. This provides a good chance of the target being available in one of the buffers,
given that spatial locality is exploited. Instruction-prefetching is an obvious solution
for cache-misses for such branches. We note that unconditional branches form less
than 10% of all branches (tables 4.16 and 4.17), and hence are not very critical to

compiler-opt. hand-opt.
Target (parcels)
Scalar | Moderate | Vector || Moderate | Vector
1 0.0 0.0 0.0 0.0 0.0
2 0.7 0.0 0.0 0.0 0.0
3-4 1.1 0.0 0.0 0.1 0.0
5-7 1.1 0.0 1.6 8.3 0.0
8-10 18.3 253 5.0 8.8 7.4
11-15 19.3 25.3 5.4 10.3 7.5
16-25 35.1 25.5 25.5 10.9 15.3
26-63 48.8 51.2 38.3 37.3 26.8
64-127 54.8 76.0 48.5 40.6 41.6
128-255 68.9 83.5 59.5 47.0 51.4
256-511 75.5 97.9 85.1 75.1 69.2
512-1023 95.5 99.7 99.8 90.2 99.6
1024-2047 98.8 99.7 99.9 100.0 99.9
2048-4095 99.2 99.7 100.0 100.0 100.0
>=4096 100.0 100.0 100.0 100.0 100.0

Table 5.11: Unconditional Branches

compiler-opt. hand-opt.
Target (parcels)
Scalar | Moderate | Vector || Moderate | Vector
1 0.0 0.0 0.0 0.0 0.0
2 0.7 0.0 0.0 9.8 9.8
3-4 1.1 0.0 0.0 12.5 11.8
5-7 1.1 0.0 1.6 13.7 11.8
8-10 18.3 253 5.0 13.8 12.4
11-15 19.3 253 54 13.9 12.4
16-25 35.1 255 255 16.5 12.7
26-63 48.8 51.2 38.3 48.4 43.2
64-127 54.8 76.0 48.5 80.0 72.9
128-255 68.9 83.5 59.5 86.3 79.4
256-511 75.5 97.9 85.1 94.8 85.5
512-1023 95.5 99.7 99.8 99.5 87.3
1024-2047 98.8 99.7 99.9 100.0 94.1
2048-4095 99.2 99.7 100.0 100.0 94.1
>=4096 100.0 100.0 100.0 100.0 100.0

Table 5.12: Branches based on Register A0

106

107

compiler-opt. hand-opt.
Target (parcels)
Scalar | Moderate | Vector || Moderate | Vector
1 0.3 0.2 0.2 1.3 0.0
2 2.2 0.6 0.6 2.6 0.3
3-4 14.8 1.5 1.3 5.7 0.7
5-7 17.4 1.9 1.5 6.4 1.3
8-10 19.3 3.2 1.6 7.7 1.9
11-15 23.7 9.8 5.5 9.7 5.6
16-25 33.2 12.3 7.1 21.2 6.2
26-63 50.6 55.6 46.8 52.1 50.4
64-127 56.8 69.9 76.1 71.0 72.0
128-255 67.8 78.7 81.5 83.5 84.8
256-511 97.4 83.4 86.7 90.6 88.0
512-1023 99.5 98.2 91.7 96.6 91.5
1024-2047 99.6 99.9 94.5 99.8 94.4
2048-4095 99.6 100.0 100.0 99.8 100.0
>=4096 100.0 100.0 100.0 100.0 100.0

Table 5.13: Branches based on Register SO

performance. The CRAY machines do not prefetch targets of unconditional branches.

From table 5.12, we observe that most of the targets of loop-control branches are
less than 512 parcels (the cache size) away. This is due to the fact that the compiler
limits loop unrolling so that the unrolled loops fit in the cache. This prevents cache
misses on each loop iteration which would be extremely detrimental to performance
on a long-memory-latency machine like the CRAY Y-MP.

For the data-dependent branches (table 5.13), we again observe that a majority of
them are within the instruction cache size. We notice several short branches, espe-
cially in the scalar programs. In fact around 70% of the targets have the potential of
being found in the same instruction buffer (each of which is 256 bytes long).

Having examined branch target distances, we look at another aspect of branch
execution on the Cray machines. On the Cray Y-MP, a branch instruction cannot be
issued until 5 clock cycles after the corresponding S0/A0 register has been written.
This is an implementation necessity, and could become a detriment to performance

108

unless sufficient number of independent instructions are found to fill the time
between when the branch condition is determined (i.e., when S0/A0 is written) and
the branch is issued. Table 5.14 shows the number of instructions scheduled between
the instruction that produces the branch condition and the branch instruction. We see
that although the average is not always equal to or greater than 5 instructions, the
compiler is usually successful in filling atleast 3 of the 5 stall cycles, except for the
data-dependent branches of the unoptimized codes. Also, usually the distance

SO A0
Program Original Hand-Opt. Original Hand-Opt.
Benchmarks | Benchmarks || Benchmarks | Benchmarks
ADM 6.97 5.89 9.76 8.22
ARC3D 2.96 3.12 3.84 5.08
BDNA 1.74 6.42 9.15 6.58
DYFESM 3.65 3.84 3.78 4.50
FLO52 2.58 3.16 3.67 9.35
MDG 1.74 5.83 3.57 3.84
MG3D 2.72 4.26 2.04 3.85
OCEAN 3.27 3.06 8.85 3.17
QCD 2.28 2.23 7.42 4.12
SPEC77 3.28 3.54 6.15 9.80
SPICE 2.66 2.82 3.31 5.99
TRACK 1.38 5.10 5.52 6.15
TRFD 2.32 3.16 4.00 6.03

Table 5.14: Distance (insts.) between Condition Register update

and corresponding branch

109

between the the update of A0 and the corresponding branch is larger than the distance
between the update of SO and the corresponding branch. This is because most A0-
based branches are loop-control branches as discussed before, with only a loop-
counter increment involved in updating A0. Thus all the computation of the basic
block can be interspersed between the counter update and the branch. S0-based
branches are data-dependent branches, and hence many more instructions of the block
are involved in determining S0, thus leaving fewer instructions to fill the gap between
the update of SO and the branch.

Given that branches are frequent in scalar blocks, the unfilled slots between the
branch condition determination and the issue of the branch instruction could be quite
costly. In addition, each branch itself has a minimum execution time on the CRAY Y-
MP of 2 clock cycles in the best case, which is a not-taken branch with the fall-through
instruction in the same instruction buffer. For other cases where the branch is taken,
or the fall-through instruction is not in the same instruction buffer as the branch, or
the target instruction is not in the instruction buffers at all, there can be from 4 to 18
cycles of branch execution time. The current CRAY implementations stall instruction
issue during these clock cycles. Thus, in the CRAY Y-MP, all instructions of a basic
block are issued in program order before the final branch instruction is issued, and
after the branch is issued no further instructions can be issued until branch execution
is complete. Consequently, although previously-issued instructions can be in execu-
tion during the execution of a branch, branches can still prove to be quite costly.
Thus, reducing branch-delay is important to improving the speed of scalar-code on
the CRAY machines. One scenario where this branch execution cost can be reduced is
if a dynamic window of instructions with out-of-order issue from the window is used.
In this scenario, if the window is filled with instructions from a basic block, the
instructions that determine the branch and subsequently the branch itself could be
issued much before the rest of the instructions of the block are issued. Even if the
branch takes more than the minimum of 2 clock cycles for execution, there could be
instructions from the branch’s basic block that can still be issued, thus filling the
"branch-delay slot" that was created at runtime due to slower branch execution.
Needless to say, however, such a dynamic dataflow window is not a straightforward
extension to the Cray architecture, given the issues of dynamic dependence resolution,
maintenance of precise interrupts, etc., that need to be addressed. Note that this
"branch-delay slot" is created at runtime, and the function of the dynamic instruction
window cannot be moved to the compiler. For the compiler to fill "branch-delay
slots", the delay would have to be architecturally specified. Such architectural
specification of the branch delay slot does not address the problem discussed above of
dynamic variation in branch execution latency.

5.4. FUNCTIONAL-UNIT PIPELINE PARALLELISM

Scalar code is dominated by data- and control-dependencies, and hence shorter
latencies rather than larger bandwidths are essential to its fast execution, given some

110

minimum amount of bandwidth. Shorter latencies enable faster completion of the
individual instructions and hence earlier issue and execution of all the dependents of
an instruction. Large bandwidths will remain unused since dependencies prevent
instructions from being issued.

As discussed in chapter 3, the scalar functional units of the CRAY Y-MP are dee-
ply pipelined. The specific latencies of the CRAY Y-MP functional units are, as of
date, considered Cray Research Inc. proprietary information. However, the functional
units of the CRAY Y-MP have similar pipelines to the CRAY X-MP, except that they
are somewhat deeper. Table 5.15 lists the latencies of the individual functional units
of the CRAY X-MP.

Kunkel and Smith [Kunkel86] discuss the overheads associated with pipelining a
functional unit; as the number of pipeline stages increases, the overall latency of the
functional unit increases (in terms of wall-clock time, rather than clock periods). For

Inst. Type I{calt)ec:rll(;})f
FP_ADD 6
FP_MUL 7
S_ADD 3
A_ADD 2
A_MUL 4
S_SHIFT 3
RECIPR 14
POP_LZC 4
LOAD 14

Table 5.15: Functiona-Unit Latencies for the CRAY X-MP

111

example, if the number of pipeline stages in a functional unit is doubled, the func-
tional unit can only be run at a clock rate that is a little less than twice the original
clock rate, due to factors such as clock skew and data skew. Similarly, if the clock rate
is doubled, the number of pipeline stages may more than double with respect to the
original number, not only due to clock skew but also due to the fact that partitioning
the combinational logic involved into exactly twice the number of pipeline stages may
not be possible. (Note that, conversely, if the clock rate is halved, the number of pipe-
line stages needed in the functional unit may sometimes be one more than half of the
original number.) On the whole, shorter pipelines provide shorter real-time func-
tional unit latencies, which is desirable for scalar code.

In this section we examine the utilization of the deep pipelining of the CRAY Y-
MP by the scalar code in our benchmarks, to determine whether the current pipelining
levels are appropriate. We use the interarrival times of instructions to each of the func-
tional units as a measure of the utilization of the pipelining of the unit. The pipelining
of a given functional-unit is being fully utilized when that pipeline sees new instruc-
tions arriving every clock cycle. In this case, 100% of the interarrival times for the
functional unit are 1 clock cycle in duration. A vector instruction achieves such func-
tional unit utilization of its functional unit. In the scalar portion of the Cray machines,
such utilization of the functional units is clearly not possible, since on each clock only
one instruction is issued while any of the numerous functional units can accept an
instruction. Therefore, what we are interested in studying is whether, during certain
phases of program execution, the deep pipelining of the functional units is necessary.
This would be the case if there exist, in certain stages of program execution, a number
of instructions of the same type that can be executed in parallel and hence are issued in
consecutive clock cycles. The distribution of operations in such parallel phases of the
programs plays an important role in determining the utilization of pipelining. If such
parallelism is across instruction types, then consecutive instructions will be issued to
different functional units, and hence we will see few back-to-back arrivals for any
given functional unit type. Back-to-back arrivals imply data-parallelism across the
instructions of a particular instruction type. Such data parallelism is not expected to
be of a high degree in the scalar portions of a vectorized program, since code seg-
ments with such parallelism are expected to be vectorized. Of course, if the compiler
fails to vectorize such portions either due to its current limitations or due to the neces-
sity of dynamic information for such vectorization, we will see back-to-back arrivals
of instructions to a particular instruction type.

Since we do not simulate program execution, we obtain approximate measure-
ments of the interarrival times as follows. We time each of the scalar basic blocks in
isolation (i.e., ignoring the effects of dependencies on other basic blocks as well as
memory dependencies, stalls due to memory conflicts, etc.), and measure the interar-
rival times within each isolated basic block. We use just these measures in our study.
Note that we also ignore interarrivals across basic blocks. The error introduced by

112

ignoring the additional stalls due to memory conflicts and similar factors only
strengthen our results, since the presence of these factors will only increase the fre-
quency of the longer interarrivals while decreasing that of the shorter ones. Now, the
error introduced by ignoring the effects of dependencies of the instructions in a basic
block on those in other basic blocks also strengthen our results, as explained below.
For example, if inter-block arrivals were to be considered, one would have to consider
the branch at the end of each basic block. The fastest a branch can execute on the
CRAY Y-MP/X-MP is 2 clock cycles, which implies that all interarrival times that span
basic blocks will be at least 3 clock cycles. Furthermore, for every two basic blocks
that are adjacent to each other in the dynamic execution trace, only one instruction
type can see this 3-clock interarrival across the blocks, since at most one instruction is
issued per clock. All the other instruction types will see interarrivals that are even
longer. Since scientific code is dominated by loops, we expect such interarrival
periods that are spread across loop iterations to in fact be common and high in
number. Furthermore, if data dependencies exist across the two basic blocks (or loop
iterations), the interarrival times will dilate further. Thus, considering interarrivals
across basic blocks will only decrease the fraction of the shorter interarrivals in our esti-
mates.

Consider, for example, a 10 cycle loop, including the branch, that issues an
S_ADD instruction on clocks 3, 6 and 7, as shown in figure 5.1. Without counting
cross-block arrivals, the interarrival period distributions are: 1 clock (between instruc-
tions 5 and 6) - 50%, 3 clocks (between instructions 3 and 5) - 50%. However, consider-
ing cross-block arrivals, the fractions are: 1 clock (between instructions 5 and 6) -
33.3%, 3 clocks (between instructions 3 and 5) - 33.3%, 6 clocks (between instruction 6
of one loop-iteration and instruction 3 of the next iteration) - 33.3%. Hence, the con-
clusions of our study will be made stronger by eliminating the approximations in our
measurements.

Tables 5.16 and 5.17 present the interarrival times seen in the scalar codes of the
two versions of the benchmarks. First, column 2 ("Isolated" column) presents, for each
instruction type, the fraction of all instructions of the type that is the only instruction
of that type in its scalar basic block. For example, for the compiler-optimized codes,
29.69% of all the FP_MUL instructions that occur in scalar basic blocks are the only
FP_MUL instructions in their basic blocks. These instructions can only contribute to
interarrival times that span basic blocks, and such interarrival times are 3 clock cycles
or longer, as discussed above. Hence these instructions do not exploit the current
level of pipelining of the FP_MUL functional unit. Next, columns 3 through 9 of the
tables present the interarrival times for the rest of the instructions (i.e., the non-
isolated). Columns 3 through 9 of each row thus sum to 100%.

We observe that, even among the non-isolated instructions, usually only a small frac-
tion arrive back-to-back (i.e., have 1 clock-cycle interarrival time). For the floating-

113

CLOCK INST. INST.-TYPE

1 1 some_other_inst_type

2 2 some_other_inst_type

3 3 S_ADD

4 /* stall issue */

5 4 some_other_inst_type

6 5 S_ADD

7 6 S_ADD

8 /* stall issue */

9 7 BRANCH /*loops back to inst.1; two-cycle execution */

—_
e}

/* wait for branch to complete execution */

Figure5.1: Example: Measuring Interarrival Times

Inter-Arrival Times (%)

Functional || Isolated
Unit CPs
(%) 1 2 3 |4 5 |6 | >=7

FP_MUL 29.7 7.3 8.3 9.0 | 5.1 79 | 3.7 58.8
FP_ADD 32.2 9.5 9.5 23 | 5.7 43 | 29 65.8
S_ADD 43.2 30.1 | 11.6 | 20.6 | 6.2 58 | 79 17.8
A_ADD 36.9 509 | 12.0 92 | 7.8 27 | 1.5 16.0
A_MUL 85.2 18.1 1.1 | 306 | 2.6 03 | 53 42.0
S_LOGIC 48.2 40.0 | 141 72 | 25 22 | 1.6 32.5
S_SHIFT 53.9 18.4 9.3 14 | 6.6 | 171 | 3.6 43.6
RECIPR 85.7 9.3 | 13.8 0.0 | 0.0 0.1 | 0.0 76.8
POP_LZC 81.2 20.0 8.3 34 | 0.0 0.0 | 0.7 67.5

Table5.16: InterArrival Times for the Scalar Basic Blocks

— Compiler-Optimized Codes

114

115

. Inter-Arrival Times (%)
Functional || Isolated

Unit (%) CPs
1 2 3 4 5 6 >=7

FP_MUL 39.2 13.1 | 104 6.4 4.8 27 | 1.4 61.2
FP_ADD 35.5 8.5 9.9 3.7 3.5 2.6 | 0.3 71.5
S_ADD 52.2 30.9 | 106 | 18.4 9.8 | 10.0 | 34 17.0
A_ADD 38.9 309 | 129 | 13.8 | 16.2 82 | 5.7 12.3
A_MUL 84.9 55.2 9.3 3.8 0.0 23 | 0.0 29.5
S_LOGIC 51.5 33.7 | 17.1 | 25.8 3.1 2.8 | 0.8 16.8
S_SHIFT 64.5 18.0 | 249 7.9 9.8 88 | 4.1 26.6
RECIPR 80.2 4.8 7.7 0.6 5.6 21 | 25 76.6
POP_LZC 90.4 186 | 12.3 2.8 1.1 51 | 0.3 59.8

Table5.17: InterArrival Times for the Scalar Basic Blocks
— Hand-Optimized Codes

point instructions, at least 60% of the non-isolated instructions arrive more than 7
clocks, the functional unit latency, apart. Thus, any pipelining of the floating-point
functional units is immaterial to the execution of these instructions. (We will further
discuss the pipelining of the floating-point units shortly.) We note again that while
some of the instruction types exhibit between 30% and 50% back-to-back interarrivals,
these fractions apply only to the non-isolated instructions. For example, in the hand-
optimized codes, while 30% of the interarrival times of S_ADDs are 1 clock cycle, we
are not considering the 52% of S_ADD instructions that are isolated within their basic
blocks when computing this fraction. Similarly, the 55% back-to-back arrivals of the
A_MUL instruction apply only to 15% of the instructions; 85% of the A_MUL
instructions are isolated in their basic blocks. Thus the reported proportion of back-
to-back arrivals is a large upper bound on the back-to-back arrivals seen by the func-
tional units.

Among the functional units, the pipeline with the largest proportion of back-to-
back arrivals, and hence the highest utilized pipeline, is the address add pipeline.
Note that for each of the functional units, a large fraction of the interarrivals are larger
than the latency of the respective functional units. Now, if a functional unit saw no
back-to-back (1 clock) interarrivals, we could halve its pipelining level without affect-
ing performance. Similarly, if the functional unit saw 7o 1-clock and 2-clock

116

interarrivals, the level of pipelining can be reduced to a quarter without affecting per-
formance. From the tables, however, we do see a non-negligible fraction of the
interarrivals being back-to-back and a non-negligible fraction being 2 clocks apart.
Despite this, cutting down the pipelining level to half or quarter may still actually
improve performance due to the resulting reduction in latency. We note that some of
these back-to-back arrivals might be in a critical phase of the program where the pipe-
lining is important. If the back-to-back arrivals are not in such critical phases, they
can be rescheduled for the shallower pipelines without incurring a cost in program
performance. However, we note again that our estimates err in favor of pipelining.
Of course, the best way to test the importance of the back-to-back arrivals is to
reschedule the code for the reduced functional unit latencies and evaluate the reduc-
tion, if any, in program execution speed. We do not carry out such a study here. We
focus on pointing towards the desirability of reducing pipelining levels, without try-
ing to estimate the best pipelining levels.

An important issue to be remembered is that even though the individual func-
tional units do not have their pipelines well utilized, such pipelining enables the issue
stage to issue an instruction to any functional unit every clock cycle. When reducing
the number of pipeline stages, the issue stage could still be run at the current speed if
busy-bits are used to identify functional units that cannot currently accept an instruc-
tion. If the clock rate of the issue stage is reduced in proportion to the reduction in
pipelining level of the functional units, the issue stage could become a bottleneck at a
certain stage, thus warranting multiple instruction issue. However, we note that the
current issue stage utilization is a maximum of 0.4 instructions/cycle (i.e., an instruc-
tion is issued only every 2.5 clocks) even in the scalar programs of both versions of the
benchmark set (see tables 4.21 and 4.22). Thus the instruction issue stage is unlikely to
become a bottleneck for quite significant reductions in the pipelining level. Finally,
we note that the floating-point units in the Cray machines are currently shared by the
vector and the scalar instructions. In order to improve scalar code performance, pro-
viding separate floating-point functional units that have shallow pipelines is essential.
Of course, the vector instructions need dedicated floating-point units that have deep
pipelines.

An important reason for the low pipeline utilization and the low instruction
issue rates could be the fact that the memory latency is relatively very large on the
Cray machines (14 clocks on the CRAY X-MP). When a separate scalar processing unit
that executes only scalar code is being designed, a data cache for the scalar data might
be a viable option[Smith90]. Providing a data cache could result in tremendous
improvements in the average memory latency, which in turn might boost instruction
issue rates as well as pipeline utilization. To explore this situation, we measured
interarrival times for the same benchmarks assuming memory latency to be just 1
clock cycle (tables 5.18 and 5.19), which is extremely short latency for the Cray
machines. As expected, the shorter interarrivals have become more frequent with the
reduction in memory latency. Surprisingly, however, the increase in such frequency is
nominal, and the data lead to the same conclusions as in the case of the long memory
latency machine. With respect to the shorter memory latency, however, we caution
that if the code were rescheduled by the compiler for this latency the interarrival fre-
quencies might change. Our results are obtained by using code that was scheduled
for the original memory latencies only.

Inter-Arrival Times (%)

Functional || Isolated
Unit o CPs
(%) 1 2 3 |4 5 |6 |>=7

FP_MUL 29.7 12.0 8.8 80 | 44 41 | 49 57.9
FP_ADD 32.2 15.8 6.4 39 | 31 23 | 24 66.2
S_ADD 43.2 309 | 11.3 | 20.0 | 6.1 59 | 79 17.9
A_ADD 36.9 51.1 | 11.9 9.1 | 80 27 | 23 14.8
A_MUL 85.2 18.1 1.1 | 306 | 2.6 03 | 53 42.0
S_LOGIC 48.2 414 | 14.0 75 | 2.6 25 | 1.7 30.4
S_SHIFT 53.9 18.6 9.8 14 | 5.8 | 204 | 3.6 40.9
RECIPR 85.7 18.7 43 1.0 | 0.0 0.1 | 05 75.3
POP_LZC 81.2 20.0 8.3 34 | 0.0 0.0 | 0.7 67.5

Table5.18: InterArrival Times for the Scalar Basic Blocks

— Compiler-Optimized Codes, 1 cycle LD

117

118

. Inter-Arrival Times (%)
Functional || Isolated

Unit (%) CPs
1 2 3 4 5 6 >=7

FP_MUL 39.2 17.6 8.6 3.7 44 27 | 1.5 61.5
FP_ADD 35.5 14.2 8.4 5.7 1.6 2.0 | 0.5 67.6
S_ADD 52.2 329 | 102 | 185 | 100 | 102 | 2.6 15.6
A_ADD 38.9 31.0 | 132 | 139 | 16.2 84 | 6.1 11.2
A_MUL 84.9 55.2 9.3 | 149 0.0 23 | 0.0 18.3
S_LOGIC 51.5 344 | 17.0 | 26.1 3.1 2.8 | 1.0 154
S_SHIFT 64.5 19.2 | 242 76 | 13.7 49 | 5.2 25.2
RECIPR 80.2 8.5 2.2 0.6 5.6 1.8 | 4.6 76.6
POP_LZC 90.4 186 | 12.3 2.8 1.1 53 | 0.0 59.8

Table5.19: InterArrival Times for the Scalar Basic Blocks
— Hand-Optimized Codes, 1 cycle LD

Thus, we believe a very strong case is made for reducing the pipeline stages in
the scalar functional units. The resulting increase in pressure on the instruction issue
stage might warrant either an increase in the issue bandwidth, or running the issue
stage at a faster clock rate than the functional units. Scalar code can be executed
significantly faster by thus reducing the functional-unit latencies.

5.5. SUMMARY

In this chapter we presented a characterization of scalar code to evaluate and aid
scalar processor design. In particular, we examined data dependencies in the scalar
programs from the point of view of exploiting them to improve instruction latencies.
Among other things, we observed that up to 25% of all floating-point operations in
our benchmarks have no dependents within the same basic block. Among those that
do, however, data dependencies between floating-point add and multiply instructions
are frequent. The average number of instructions that consume the result of a
floating-point operation ranges between 1.15 and 1.6, thus complicating the combina-
tion of individual instructions into compound instructions.

Memory load operations frequently feed instructions within the same basic
block; at least two-thirds of all memory loads in the scalar blocks of our benchmarks
do so. This indicates that the scalar basic blocks suffer from the long memory latency,
since it is hard to find 10 or 15 independent instructions from the same block that can
be issued during the latency of the load, even though the blocks in our programs are

119

larger than those in non-scientific programs.

With regard to data-dependent branches, memory loads, floating-point opera-
tions, and scalar operations are all usually involved in producing the branch condi-
tion. Thus, the condition for the data-dependent branch is not likely to be available
early in the execution of the basic block compared to the execution of instructions of
the basic block not involved in determining the branch, since the floating-point and
the memory operations have long latencies. On the other hand, loop control branches
mostly involve just address adds, and hence they can be determined very early in the
execution of the basic block if desired. Such early determination of the branch can be
used for example to allow early issue of instructions from the successor basic block.

We further studied various aspects of branches to understand factors affecting
their execution speed on the CRAY Y-MP. In particular, we examined the distances of
branch targets, and the hiding of the latency between condition-setting and the
corresponding branch. The distance of the target instruction of a branch from the
branch determines the likelihood of the target being found in the cache, given that
spatial locality is exploited by the cache. For non-subroutine calls, we find more at
least 75% of the branch targets are less than 512 parcels (the cache size) away, and at
least 60% are less than half the cache size away from the branch instruction. We note
that, for the loop control branches the compiler restricts loop-unrolling to the cache
size.

On the Cray Y-MP a conditional branch cannot be issued, due to implementation
considerations, until 5 clocks after the condition has been written to the register. We
find that on the average 3 of these 5 clocks are utilized to issue independent instruc-
tions from the same basic block. However, for the data-dependent branches alone,
many programs have only around 2 of these cycles used for instruction issue. The
hand-optimized benchmarks have more of the cycles used for instruction issue.
Overall, reducing this stall time between the condition update and the branch is desir-
able.

Finally, we examined the utilization of the current pipeline levels of the scalar
functional units, and suggested improving their latencies by reducing the pipelining
levels, in order to speed up scalar code. We find that only a small fraction (usually
much less than 20%) of the arrivals to any particular functional unit are back-to-back,
thus suggesting that decreasing the pipelining of the functional units will not hurt the
instruction issue rate and at the same time will improve functional unit latency by
eliminating pipelining overheads. Such latency reduction is important to speed up
scalar code.

The long memory latency of the Cray machines could be largely responsible for
instruction issue stalls and the resultant poor utilization of pipelining. To explore this,
we reduced the memory latency to 1 clock cycle to model a data cache, and examined
the interarrival times at the various functional units. Although the back-to-back
arrivals to individual functional units did increase, the change was marginal and the

120

overall data still suggested the same conclusions as above. Thus, we believe that a
scalar processing unit with shallower pipelines than the ones found in the CRAY Y-
MP would be beneficial to scalar code.

121

Chapter 6

SUMMARY AND CONCLUSIONS

We summarize in this chapter our study of the CRAY Y-MP processor and some
of the more important conclusions drawn in this dissertation. Due to the number of
issues studied and the volume of data presented, not all conclusions of the study are
mentioned below.

At the end of this chapter, we discuss potential directions for future work on the
topic of this dissertation.

6.1. SUMMARY OF STUDY

We carried out a study of program characteristics and machine behavior of a vec-
tor processor, the CRAY Y-MP processor, executing a set of scientific applications, the
PERFECT Club benchmark suite. We studied two versions of the programs: a version
optimized only by the Cray Research, Inc. production FORTRAN compiler, and a
hand-optimized version, optimized by a team of Cray Research programmers, that
won the 1990 Gordon-Bell PERFECT Award. We examined various aspects of code
behavior for both the program versions. We classified the programs based on vectori-
zation level, and examined the behavior of the individual classes. Furthermore, we
also examined the behavior of just the scalar basic blocks in all the benchmarks, in
order to aid the design of a scalar processing unit tuned to scalar code. Our study
sheds light on long-running scientific programs, both compiler-optimized and hand-
optimized, executing on vector machines. A characterization of scientific programs
has not been reported to date in the literature. Our study also characterizes scalar
code found in vectorized programs; such code, while important to program execution
speed, has not been studied to date.

6.1. IMPORTANT RESULTS AND CONCLUSIONS

We list below the results obtained pertaining to several specific
architectural/implementation issues studied and the conclusions drawn from them.
Each subsection below is devoted to a particular issue studied in the dissertation.

6.1.1. Program Vectorization

Program vectorization levels are the key indicators of program speed and
efficient execution on a vector machine. The PERFECT Club benchmarks exhibit a
wide range of vectorization, in contrast to the usually expected high level of vectoriza-
tion of scientific programs. The fraction of operations of the benchmarks vectorized
when vectorization is carried out by the state-of-the-art Cray Research, Inc. FOR-
TRAN compiler ranges from as low as 4% to as high as 96%. Upon hand-optimization

122

of the benchmarks, the vectorization level improves considerably for many programs,
and the percentage of operations vectorized now ranges from as low as 55% to as
high as 97%. The hand-optimized version of the benchmarks studied is the version
that won the 1990 Gordon Bell-PERFECT award for the fastest supercomputer appli-
cations, and was optimized by a team of Cray Research, Inc. programmers. Two of
the benchmark programs, SPICE and QCD, show 70% additional vectorization thanks
to hand optimizations.

An important conclusion is that the performance attainable using current state-
of-the-art vectorizing compilers is much less than the performance available via
manual optimizations. Knowledge of the underlying vector machine on the part of
the programmer is still very necessary to harness the full power of the machine.

6.1.2. Instruction and Operation Counts

Dynamic instruction and operation frequencies drive the choice of and the organ-
ization of the functional units and of the memory ports in the processor. When
measuring these frequencies, we classify our benchmarks into vector, moderately-
vector, and scalar classes, based on the proportion of vector operations in the pro-
grams. Importantly, we observe that the proportions of instructions and operations of
each class of programs is not affected by whether the programs were compiler-
optimized or hand-optimized. Thus, for example, the moderately-vectorized pro-
grams of both the compiler-optimized and the hand-optimized versions have gen-
erally similar characteristics. Thus, for our benchmarks and for the hand-
optimizations carried out on them, instruction and operation counts are determined
by the vectorization level and not by how the vectorization level was achieved. Con-
sequently, machine design vis-a-vis operation frequency is not affected by the pres-
ence of hand-optimization beyond the fact that the hand-optimized codes contain no
programs in the scalar class.

The vector programs are predominantly floating-point operations and memory
accesses, as expected. The moderately-vector and the scalar programs, with their
lower vectorization levels, have significant proportions of integer as well as address-
computation operations (which, while being integer calculations, are distinguished
from other integer operations) in addition to floating-point and memory operations.
Thus adequate attention needs to be paid to these instruction types in processor
design. Very interestingly, on the CRAY Y-MP, spill operations that move values
between the scalar primary register sets and the corresponding backup register sets
and move operations that move values between the two scalar primary register sets
together constitute the largest fraction of operations in scalar programs as well as in
the non-vectorized basic blocks of the moderately-vector and vector programs. For
example, these miscellaneous operations, which are specific to the Cray machines,
constitute close to 40% of all operations of the scalar programs of the compiler-
optimized benchmarks. While the spill instructions can be eliminated by using a

123

larger register set, the impact on clock cycle, instruction format, etc., have to be con-
sidered when increasing the register set size. Furthermore, these miscellaneous opera-
tions are single-cycle operations whereas most other operations are multi-cycle opera-
tions. Hence there is an opportunity for most of these operations to be executed for
free by being overlapped with the execution of the multi-cycle operations.

Almost all the memory operations of the moderately-vector and vector programs
are vectorized; furthermore, a very significant fraction of the memory operations of
even the scalar programs are vectorized. For example, though only about 14% of all
operations of TRACK are vectorized by the compiler, close to 50% of its memory
operations are vectorized. Thus, many of the memory references are predictable, and
large memory bandwidth is critical to the fast execution of these programs. Latency is
consequently a secondary concern for the predictable memory references. We address
memory latency issues for scalar blocks in a later section.

Branches form only about 6% of the operations of the scalar programs, and are
around 2% of all operations in the moderately-vector programs, and only around 0.3%
of all operations in the vector programs. Eliminating the spill instructions from the
scalar programs will increase the proportion of branches to about 10%, but the fre-
quency is still much less than the 20% reported for non-scientific programs. In the
scalar programs close to half the branches are data-dependent branches, and about a
quarter are subroutine calls. In the moderately-vector and the vector programs, the
majority of the branches are expectedly loop-control branches.

6.1.3. Basic Blocks

The sizes of basic blocks are important in the choice of compiler techniques for
code optimization and scheduling. Basic blocks in non-scientific applications are
reported to be around 5 instructions long, and heuristic compiler algorithms tuned to
this size are hence used in compilers for general-purpose programs. We find that in
our benchmarks small blocks as well as large blocks, including those that are more
than 100 instructions in size are frequent. Furthermore, the large blocks contain a
number of vector instructions and hence contribute significantly to the dynamic
operation count and thus to program execution time. Hence, code optimization and
scheduling techniques geared toward large blocks are desirable for compilers of
scientific code, in addition to techniques geared toward small blocks. The Cray
Research, Inc. compiler already incorporates several such algorithms.

Apart from the vectorized blocks, the blocks in the scalar programs as well as the
scalar blocks in the non-scalar programs have median block sizes between 8 and 10
instructions, but are widely distributed in the range of 1 to 20 instructions and
beyond. In fact, for the compiler-optimized benchmarks, 10% of the scalar basic
blocks of all program classes are at least 20 instructions in size. Thus, large basic
blocks are seen even in scalar codes.

124

6.1.4. Instruction and Operation Issue Rates

Parallel instruction issue is the topic of much current research in the area of
uniprocessor performance. The instruction issue rates on the CRAY Y-MP lie between
0.1 instructions per cycle and 0.45 instructions per cycle for both the hand-optimized
and the compiler-optimized versions of the programs. This suggests that instruction
issue is not a bottleneck in the CRAY Y-MP, on the average, for current compiler capa-
bilities of exploiting instruction level parallelism. Since each vector instruction issues
multiple operations, the operation issue rates are expectedly higher, ranging between
0.4 and 2 operations per cycle for the compiler-optimized benchmarks and between
1.0 and 2.5 operations per cycle for the hand-optimized benchmarks. The deeply pipe-
lined functional units and the long memory latency result in much of the operation-
level parallelism being exploited by pipelining and hence we see comparatively less
parallelism at the issue stage. Furthermore, the quantity of vector resources in the
Cray machines limits the exploitation of the parallelism between vector instructions,
as has been reported in the literature.

6.1.5. Data Dependencies in Scalar Code

We studied data dependencies in the scalar portions of the programs to investi-
gate the potential for using compound functional units to speed up the execution of
scalar code. We restrict our study to dependencies within basic blocks, due to the lim-
itations of our methodology. At the same time, however, it is more difficult to exploit
dependencies that cross basic block boundaries. We discussed the difficulties in
Chapter 5.

Compound functional units can be used to exploit frequent data dependencies
seen in programs. For example, the IBM RS6000 has a compound multiply-add unit to
exploit dependencies between floating-point adds and multiplies. Up to 25% of all
floating-point operations in our benchmarks have no dependents within the same
basic block. Among those that do, however, data dependencies between floating-
point add and multiply instructions are frequent. When considering a compound
floating-point functional unit to exploit these dependencies, it is important to observe
that the average number of instructions that consume the result of a floating-point
operation ranges between 1.15 and 1.6, necessitating a smart compiler to handle the
combination of instructions into compound instructions. The difficulties involved in
the exploitation of instructions that have multiple dependents are discussed in section
5.2.

Memory load operations frequently feed instructions within the same basic
block; at least two-thirds of all memory loads in the scalar blocks of our benchmarks
do so. This indicates that the scalar basic blocks suffer from the long memory latency,
since it is hard to find 10 or 15 independent instructions from the same block that can
be issued during the latency of the load, even though the blocks in our programs are
larger than those in non-scientific programs.

125

With regard to data-dependent branches, memory loads, floating-point opera-
tions, and scalar operations are all usually involved in producing the branch condi-
tion. Thus, the condition for the data-dependent branch is not likely to be available
early in the execution of the basic block compared to the execution of instructions of
the basic block not involved in determining the branch, since the floating-point and
the memory operations have long latencies. On the other hand, loop control branches
mostly involve just address adds, and hence they can be determined very early in the
execution of the basic block if desired. Such early determination of the branch can be
used for example to allow early issue of instructions from the successor basic block.

6.1.6. Branch Execution in Scalar Code

Fast execution of branches is one of the critical factors for speeding up scalar
code execution. We studied two important issues related to fast branch execution on
the CRAY Y-MP.

The distance of the target instruction of a branch from the branch instruction
determines the likelihood of the target being found in the instruction cache, given that
spatial locality is exploited by the cache. For non-subroutine calls, we find at least
75% of the branch targets are less than 512 parcels (the cache size) away, and at least
60% are less than half the cache size away from the branch instruction. We note that,
for the loop control branches the compiler restricts loop-unrolling so as to fit in the
cache.

On the Cray Y-MP a conditional branch cannot be issued, due to implementation
considerations, until 5 clocks after the condition has been written to a register. We
find that on the average 3 of these 5 clocks are utilized to issue independent instruc-
tions from the same basic block. However, for the data-dependent branches alone,
many programs have only around 2 of these cycles used for instruction issue. The
hand-optimized benchmarks have more of the cycles used for instruction issue.
Overall, reducing this stall time between the condition update and the branch is desir-
able.

6.1.7. Scalar Functional Unit Pipeline Parallelism

We examine the necessity and the effectiveness of the pipelining of the scalar
functional units by studying the interarrival times of instructions to each of the func-
tional units. We find that only a small fraction (usually much less than 20%) of the
arrivals to any particular functional unit are back-to-back, thus suggesting that
decreasing the pipelining of the functional units will not hurt the instruction issue rate
and at the same time will improve functional unit latency by eliminating pipelining
overheads due to clock skew and data skew. Such latency reduction is important to
speed up scalar code.

The long memory latency of the Cray machines could be largely responsible for
instruction issue stalls and the resultant poor utilization of pipelining. To explore this,

126

we reduced the memory latency to 1 clock cycle to model a perfect data cache, and
examined the interarrival times at the various functional units. Although the back-to-
back arrivals to individual functional units did increase, the change was marginal and
the overall data still suggested the same conclusions as above. Although this study
did not change instruction scheduling to cater to the 1-clock memory latency, we
believe that a scalar processing unit with shallower pipelines than the ones found in
the CRAY Y-MP would be beneficial to scalar code due to resulting lower latencies.

6.1.8. Conclusions

We studied several issues related to program behavior and machine features in
our experimental CRAY Y-MP vector environment. The important contributions of
the studies are two-fold in nature:

(1) providing quantitative studies of several hitherto unexplored aspects of vector
machines and discussing the impact of these issues on machine design, and

(2) providing quantitative support for several issues that are currently part of
"folklore" in computer architecture.

This work sheds light on several different aspects of vector machines, vector pro-
grams, the effects of compiler and hand optimizations, and scalar code found in vector
systems.

6.2. FUTURE WORK

Architectural changes suggested by the studies reported in this dissertation need
to be explored. Most such explorations have to incorporate compiler techniques for
exploiting the new architectural features, since the role of the compiler is critical in
harnessing the power of the machine.

An extension of the study of vector machines is to consider execution-time based
behavior, such as the fraction of time instruction issue is stalled waiting for a particu-
lar operation type to complete execution. Such studies have not been done in this
dissertation due to the limitations of the methodology used. Exact cycle-by-cycle
simulations are necessary for such studies, and such simulations are extremely time-
intensive when we study benchmarks such as the PERFECT Club programs which
execute for hundreds of millions of clock cycles on the CRAY Y-MP.

127

References

[Adams89]
T. L. Adams and R. E. Zimmerman, ““An Analysis of 8086 Instruction Set Usage
in MS DOS Programs.,” in Third International Conference on Architectural Support
for Programming Languages and Operating Systems, Boston, MA, April 1989.

[Allen87]
R. Allen and K. Kennedy, ““Automatic Translation for FORTRAN Programs to
Vector Form,” ACM Transactions on Programming Languages and Systems, vol. 9,
October 1987.

[Batche80]
K. E. Batcher, “Design of a Massively Parallel Processor,” IEEE Transactions on
Computers, vol. C-29, 1980.

[Berry89]
M. Berry, et al, “The PERFECT CLUB Benchmarks: Effective Performance
Evaluation of Supercomputers,” International Journal of Supercomputing Applica-
tions, vol. 3, May 1989.

[Butler91]
M. Butler, T. -Y. Yeh, Y. Patt, M. Alsup, H. Scales, and M. Shebanow, “Single
Instruction Stream Parallelism Is Greater than Two,”” in The 18th Annual Interna-
tional Symposium on Computer Architecture, Toronto, Canada, May 1991.

[CDC81]
CDC, “CDC Cyber 200 Model 205 Computer System Hardware Reference
Manual,” Control Data Corporation, Arden Hills, MN, 1981.

[Charle81]
A. E. Charlesworth, “An Approach to Scientific Array Processing: The Archi-
tectural Design of the AP-120B/FPS-164 Family,” Computer, vol. 14, September
1981.

[Clark88]
D. W. Clark, P. J. Bannon, and J. B. Keller, “Measuring VAX 8800 Performance
with a Histogram Hardware Monitor,” in Proc. 15th Annual Symposium on Com-
puter Architecture, Honolulu, Hawaii, 1988.

[CRI76]
CRI, “Cray Computer Systems: The CRAY-1 Computing System,” Cray
Research Inc., Publication No. 2240008B, 1976.

[CRI84]
CRI, Cray Computer Systems: CRAY X-MP Model 48 Mainframe Reference Manual.
Mendota Heights, MN: Cray Research, Inc., HR-0097, 1984.

128

[CRI84a]
CRI, “The CRAY X-MP Series of Computer Systems,” Cray Research Inc., Publi-
cation No. MP-2101, 1984.

[CRI85]
CRI, Cray Computer Systems: CRAY-2 Hardware Reference Manual. Mendota
Heights, MN: Cray Research, Inc., HR-2000, 1985.

[CRI8S]
CRI, “The CRAY Y-MP Series of Computer Systems,” Cray Research Inc., Publi-
cation No. CCMP-0301, February 1988.

[Cybenk90]
G. Cybenko, L. Kipp, L. Pointer, and D. Kuck, “Supercomputer Performance
Evaluation and the Perfect Benchmarks,” in CSRD Report No. 965, University of
Illinois, March 1990.

[Ellis85]
J. R. Ellis, “Bulldog: A Compiler for VLIW Architectures,” Research Report
YALE/DCS/RR-364, Department of Computer Science, Yale University, Seat-
tle, WA 98195, February 1985.

[Emer84]
J. S. Emer and D. W. Clark, “A Characterization of Processor Performance in
the VAX-11/780,” in Proc. 11th Annual Symposium on Computer Architecture,
Ann Arbor, MI, 1984.

[Eoyang88]
C. Eoyang, R. H. Mendez, and O. M. Lubeck, “The Birth of the Second Genera-
tion: The Hitachi S-820/80,” Supercomputing ‘88, November 1988.

[Fisher81]
J. A. Fisher, “Trace Scheduling: A Technique for Global Microcode Compac-
tion,”” IEEE Transactions on Computers, vol. C-30, July 1981.

[Fisher83]
J. A. Fisher, “Very Long Instruction Word Architectures and the ELI-512,” Proc.
10th Annual Symposium on Computer Architecture, June 1983.

[Fisher87]
J. A. Fisher, “A New Architecture for Supercomputing,” Digest of Papers,
COMPCON Spring 1987, February 1987.

[French82]
S. French, Sequencing and Scheduling: An Introduction to the Mathematics of the
Job-Shop. Chichester, England: Ellis Horwood, 1982.

129

[Gajski85]
Daniel D. Gajski and Jih-Kwon Peir, “Essential Issues in Multiprocessor Sys-
tems,” Computer, June 1985.

[Garey79]
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness. San Francisco: Freeman and Company, 1979.

[Goodma85]
J. R. Goodman, J. T. Hsieh, K. Liou, A. R. Pleszkun, P. B. Schecter, and H. C.
Young, “PIPE: a Decoupled Architecture for VLSL,” Proc. 12th Annual Symposi-
um on Computer Architecture, June 1985.

[Gross88]
T. R. Gross, et al, ““Measurement and Evaluation of the MIPS Architecture and
Processor,”” ACM Transactions on Computer Systems, August 1988.

[Hennes]
J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative Ap-
proach. San Mateo, CA: Morgan Kaufmann Publishers, Inc.

[Hillis86]
W. Daniel Hillis and Guy L. Steele, Jr., “Data Parallel Algorithms,” CACM, Dec.
1986.

[Hillis85]
W. D. Hillis, The Connection Machine. Cambridge, MA.: MIT Press, 1985.

[HNSX89]
HNSX, “HNSX Supercomputers Inc.: SX-X Series System Overview ,” June
1989.

[Hsu85]
W. -C. Hsu, “Register Allocation and Code Scheduling for Load/Store Archi-

tectures,” Computer Sciences Technical Report #722, University of Wisconsin-
Madison, Madison, WI 53706, November 1985.

[Hwu89]
W. W. Hwu, T. M. Conte, and P. P. Chang, “Comparing Software and
Hardware Schemes for Reducing the Cost of Branches,” in Proc. 16th Interna-
tional Symposium on Computer Architecture, Jerusalem, Israel, June 1989.
[Jouppi89]
N. P. Jouppi and D. W. Wall, “Available Instruction-Level Parallelism for Su-

perscalar and Superpipelined Machines,” in ASPLOS-III, Boston, MA, April
1989.

130

[Kohn89]
J. Kohn, “JUMPTRACE,” Cray Research Inc. Report, April 1989.

[Kunkel86]
S. R. Kunkel and J. E. Smith, “Optimal Pipelining in Supercomputers,” Proc.
13th Annual Symposium on Computer Architecture, June 1986.

[Lam88]
Monica Lam, “Software Pipelining: An Effective Scheduling Technique for
VLIW Machines,” SIGPLAN 1988 Conference on Programming Language Design
and Implementation, June 1988.

[Landsk80]
D. Landskov, S. Davidson, B. Shriver, and P. Mallet, ““Local Microcode Com-
paction Techniques,” Computing Surveys, 1980.

[McFarl86]
S. McFarling and]J. Hennessy, “Reducing the Cost of Branches,” in Proc. 13th
Annual Symposium on Computer Architecture, Tokyo, Japan, June 1986.

[McMaho86]
F. H. McMahon, The Livermore FORTRAN Kernels: A Computer Test of the Numer-

ical Performance Range. Research Report: Lawrence Livermore Laboratories, De-
cember 1986.

[Mitche88]
C. L. Mitchell and M. J. Flynn, “A Workbench for Computer Architects,” IEEE
Design and Test of Computers, Feburary 1988.

[Miura83]
K. Miura and K. Uchida, “FACOM Vector Processor System: VP-100/VP-200,”
Proc. NATO Advanced Research Workshop on High-Speed Computing, June 1983.

[Nicola84]
A. Nicolau and J. A. Fisher, “Measuring the Parallelism Available for Very
Long Instruction Work Architectures,” IEEE Transactions on Computers, vol. C-
33, November 1984.

[Oehler90]
R. R. Oehler and R. D. Groves, “IBM RISC System/6000 processor architec-
ture,”” IBM Journal of Research and Development, vol. 34, January 1990.

[Padua86]
D. A. Padua and M. J. Wolfe, “Advanced Compiler Optimizations for Super-
computers,” CACM, vol. 29, December 1986.

131

[Patt85]
Y. N. Patt, W. W. Hwu, and M. Shebanow, “HPS, A New Microarchitecture:
Rationale and Introduction,” in Proc. 18th Annual Workshop on Microprogram-
ming, Pacific Grove, CA, December 1985.

[Pleszk86]
A. R. Pleszkun, G. S. Sohi, B. Z. Kahhaleh, and E. S. Davidson, ““Features of the
Structured Memory Access (SMA) Architecture,” Digest of Papers, COMPCON
Spring 1986, March 1986.

[Rau88]
B. R. Rau, “Cydra 5 Directed Dataflow Architecture,” Digest of Papers, COMP-
CON Spring 1988, February 1988.

[Rubins85]
J. Rubinstein and D. MacGregor, “A Performance Analysis of MC68020-based
Systems,” IEEE Micro, December 1985.

[Russel78]
R. M. Russel, “The CRAY-1 Computer System,” CACM, vol. 21, January 1978.

[Smith82]
J. E. Smith, “Decoupled Access/Execute Architectures,” Proc. 9th Annual Sym-
posium on Computer Architecture, April 1982.

[Smith83]
J. E. Smith and J. R. Goodman, “A Study of Instruction Cache Organizations
and Replacement Policies,”” Proc. 10th Annual Symposium on Computer Architec-
ture, June 1983.

[Smith90]
J. E. Smith, W. -C. Hsu, and C. Hsiung, “Future General Purpose Supercomput-
er Architectures,” Supercomputing '90, November 1990.

[Smith89]
M. D. Smith, M. Johnson, and M. A. Horowitz, “Limits on Multiple Instruction
Issue,” in Proc. ASPLOS-III, Boston, MA, April 1989.

[Sohi89]
G. S. Sohi and S. Vajapeyam, “Tradeoffs in Instruction Format Design For Hor-
izontal Architectures,” in ASPLOS-III, Boston, MA, April 1989.

[Sohi90]
G. S. Sohi and W.-C. Hsu, “The Use of Intermediate Memories for Low-Latency

Memory Access in Supercomputer Scalar Units,” The Journal of Supercomputing,
1990.

132

[Tang88]
J. Tang and E. S. Davidson, ““An Evaluation of Cray-1 and Cray X-MP Perfor-
mance on Vectorizable Livermore Fortran Kernels,” Proc. 1988 International
Conference on Supercomputing, July 1988.

[Thornt70]
J. E. Thornton, Design of a Computer -- The Control Data 6600. Scott, Foresman
and Co., 1970.

[Trelea82]
P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, “Data-Driven and

Demand-Driven Computer Architecture,” ACM Computing Surveys, vol. 14, No.
1, March 1982.

[Wall91]
D. W. Wall, “Limits of Instruction-Level Parallelism,” in ASPLOS-IV, Santa
Clara, CA, April 1991.

[Watana87]
T. Watanabe, ““Architecture and Performance of NEC Supercomputer SX Sys-
tem,” Parallel Computing, vol. 5, 1987.

INSTRUCTION-LEVEL CHARACTERIZATION
OF THE CRAY Y-MP PROCESSOR

by

Sriram Vajapeyam

A thesis submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN — MADISON
1991

ii

Abstract

Evolutionary computer architecture fundamentally relies on information obtained from
empirical characterizations of the nature of programs and of dynamic program usage of
machine features. While vector architectures have dominated the supercomputer arena for
over two decades and promise to continue to provide superior single processor performance
on a large class of scientific and engineering applications, detailed empirical characterizations
of these architectures and their workload has not been reported to date in the literature. This
dissertation fills this void in the empirical understanding of machines by reporting an
instruction-level study of a single processor of the CRAY Y-MP, using as benchmarks the
scientific and engineering application programs that comprise the PERFECT Club benchmark
suite.

The capability of the compiler is key to harnessing the power of a machine today. Hence
we study a version of the benchmarks that is automatically optimized and vectorized by the
Cray Research, Inc. production FORTRAN compiler. Furthermore, several optimizations that
are easily implementable manually provide significant performance improvements over the
best efforts of the compiler today. Therefore we also study a version of the benchmarks,
hand-optimized by a team of Cray Research, Inc. programmers, that won the 1990 Gordon Bell
— PERFECT award for the fastest version of the PERFECT Club benchmarks on any machine.
In both cases, we study only the user routines of the benchmarks.

We observe that the vectorization level of the user routines of the programs varies widely
for the compiler-optimized version of the programs, as opposed to being uniformly high.
While hand optimizations do improve the vectorization level, several benchmarks still have
vectorization levels below 80%. Consequently, the performance of the non-vector features of
vector machines are important to program performance. We observe that the scalar code in
the programs contain several address calculation operations and Cray-specific miscellaneous
operations, in addition to the floating-point operations. Hence adequate attention needs to be
paid to these instruction types. Towards exploiting the data dependencies in the scalar code
for faster execution, we characterize the dependencies within the scalar basic blocks of the pro-
grams. We observe that the utilization of the pipeline parallelism of the functional units by
scalar code is low. Thus, any latency improvements that result from lower levels of functional
unit pipelining will enhance scalar performance.

For the overall programs, we observe that large basic blocks are significant in number
and are important to program performance. Thus compiler optimization techniques geared
towards large basic blocks are desirable. The level of vectorization of memory operations is
usually very high, thus emphasizing the need for memory bandwidth. We observe that for
the CRAY Y-MP hardware and for the techniques currently employed by the Cray Research
compiler, the peak instruction issue rate of the CRAY Y-MP is quite adequate, especially
because of the presence of vector instructions. In addition to all the issues mentioned above,
several related issues are discussed and explored in the dissertation.

Acknowledgements

I would like to thank my Ph.D. adviser, Guri Sohi, for his guidance of this disser-
tation and his support. He has spent a significant amount of time on this work. The
members of my thesis committee, Jim Goodman, Mark Hill, Parmesh Ramanathan,
and John Beetem, offered several useful comments on this dissertation; Jim Goodman
and Parmesh Ramanathan, the "readers" on my committee, provided several detailed
comments. Over the years of my graduate studies, Jim Goodman has always had the
time to say an encouraging word; he has encouraged this work in particular, and I
would like to thank him for that. I would be remiss if I were to fail to thank Wei Hsu,
of Cray Research Inc., who initiated this project when I worked as a summer intern at
Cray in 1989; but for him this work would not exist. Wei has been a constant source of
knowledge and advice since then: he has pointed out many of the issues involved in
this work and influenced the directions taken, explained several aspects of the Cray
hardware and the compiler, educated me about architecture research in the real
world, and spent numerous hours discussing research in general and providing
encouragement whenever needed.

I would like to thank the Computer Sciences Department of UW—Madison for
providing me a teaching assistantship at the start of my graduate studies and thus
enabling me to study at Madison, far away from home. My adviser, Guri Sohi, has
supported me with a research assistantship several semesters. Cray Research sup-
ported me as a summer intern in 1989 and 1990, and also supported me at Madison a
semester; the internships with the "FAST" group at Cray have contributed
significantly to my education. I am deeply indebted to IIT-Madras, to Govinda Dasa
College and Vidyadayinee High School in Surathkal, and to the other educational
institutions in India that laid the foundations of my education. I am also indebted to
many excellent teachers I have had in various places over the years.

The friendship of many people in Madison and elsewhere has been invaluable
over the years. I would like them to consider this a personal note of thanks; they are
far too numerous to list here. Over the last six years in Madison, several people have
eased the adaptation to a new environment, helped recreate "India" in a far off place
when direly needed at times, and made life enjoyable. I would like to thank them
here: my ex-apartment-mates Balu, Jayant, and Srini, and all the other guys at "Erin
Street", for all the camaraderie; Gopal, especially for being an excellent apartment-
mate during the last year of my graduate studies; Naren, for tolerating my far too fre-
quent "chai" breaks at his place over the years, for patiently listening to (or probably
sleeping through!) numerous monologues of mine, and for being ever helpful; KRS,
for the invaluable music, and also Sesh.

Finally, I would like thank my parents, sister and brother, and relatives, for their
encouragement and support over the years. Most importantly, this thesis is for my

iii

mother — my first teacher — for her continuing encouragement, guidance, care, and
many sacrifices over the years.

Table of Contents

AADSELACE .ottt ettt ettt e et e e s et e e e se ettt e s e bt eesabteeseaateeseiraeesns

Acknowledgements ...

Chapter 1: INTRODUCTIONcooiriiiiriiinieirieenieienieeste ettt saeseees

1.1. WHY DOWE STUDY A VECTOR PROCESSOR?cccccevemereeiineneeeenenne
1.2. CONTRIBUTIONS OF THE DISSERTATIONcooinirieienienieneeieneeeeeeeenne
1.3. OVERVIEW OF THE STUDIESc.ccooiiiiiiiiinieciciceceeeee

Chapter 22 ARCHITECTURES FOR EXPLOITING FINE-GRAIN PARAL-
LELISM ettt ettt ettt e s st sbe e e st e naes

2.1 INTRODUCTION ...oouiiiiiiiiiiiitinieicieteesiestee ettt
2.2. PROGRAM EXECUTION ON LIMITED RESOURCES.cccccceevinireerenns
2.3. EXECUTION SCHEDULES ON VARIOUS ARCHITECTURES
2.4. CHOICE OF PROCESSOR ARCHITECTUREccocoiiiiiiiiiiiiiicicics

Chapter 3: STUDY BACKGROUND AND METHODOLOGYccccccuveineenreinnenennes

3.1 INTRODUCTION ...oootiiiitieteeieteeteetete ettt te e sae e s esaesve e essesbesreesnensansens
3.2. STUDY AND DESIGN OF VECTOR MACHINEScoceoiiieieieceereeteeie
3.3. OVERVIEW OF THE CRAY Y-MP PROCESSORc.ccceevvinieieieierenreieneenes
3.4. BENCHMARKS ..ottt ettt ete et se st e ss e se et e sessessnensansens
3.4.1. Scalar Code inthe BENChMArkSccevvieieieieniieeeieeceeceeie e
3.5. MEASUREMENT METHODOLOGYcccveetiiiierieieiiereeeeeesreeveeresre e enesenaens
3.5.1. Instructions and OPEratioNScccccveeeeeieeieeieeieseeseesee e seeseessaeseeesseens
B.5.2. CAVEALS ...ovieiieeieeeteeet ettt ettt e et e et e e b e e e ae e e be e e beeebeeenaeeennaenareas
3.6. SUMMARY ..ottt ettt sttt ettt be b aese s e b e b esseseesessensenseseas

Chapter 4: CHARACTERIZATION OF VECTOR MACHINE PROGRAMS

ii

iv

11
19

23

23
23
25
28
33
36
37
38
41

42

4.1. INTRODUCTION

4.2. INSTRUCTION AND OPERATION MIX STUDIESccccoovioiniinienccnanes
4.2.1. Program VECLOr ZaLIONc.ccoveevieieiieiiesrecresteseeseeseeesraesteesseessaesenesseens
4.2.2. Instruction Usage and Operation COUNESccceeereeerenenenieeeerenienneeenes

4.3. BASIC BLOCKS

4.4. LIBRARY CALLS ..ottt
4.5. INSTRUCTION AND OPERATION ISSUEcccociiiriiiiiiinececieeeeecneen

4.6. SUMMARY

4.6.1. Program VECIONZAIONcc.ceveeveieuiririenieteeeientesteee et eeeenes
4.6.2. Instruction and Operation COUNESccecueeeererienieineneneeieeeeseesieeeeenes

4.6.3. Basic Blocks

4.6.4. Instruction and Operation 1SSUE RALEScccveverveeeeecieriecieeieieie e

Chapter 5: CHARACTERIZATION OF SCALARBASICBLOCKScccceinieieenens

5.1. INTRODUCTION

5.2. DATA DEPENDENCIESccootriiiiinitcietseseteeee et
5.3. BRANCH EXECUTIONooiiiiiiriiieienentetereereeeetesntet et eeesne s eeeaesne
5.4. FUNCTIONAL-UNIT PIPELINE PARALLELISM .c.cooieieiirinircceneeecicnne

5.5. SUMMARY

Chapter 6: SUMMARY AND CONCLUSIONSccoviimiiiniiiinicincteiceseeeseeenaeneeen

6.1. SUMMARY OF STUDY ..ottt aeneas
6.1. IMPORTANT RESULTS AND CONCLUSIONSccooeiiiiirieineeieeeeieeeenes
6.1.1. Program VECIOMZAIONc.coevuerieieuerienieieieiteresientetese sttt ebe e eeneas
6.1.2. Instruction and Operation COUNLScceeeeerierienieeerieneeeeressesreeeesennens

6.1.3. Basic Blocks

6.1.4. Instruction and Operation [SSUE RELEScccceeveereiereereereereereeeeree e
6.1.5. Data Dependenciesin Scalar Codeocveveeerierenieieeeeee e
6.1.6. Branch Execution in Scalar COAEccocveviereeienieieeeeeeeeee et
6.1.7. Scalar Functional Unit Pipeline Parallelismcceceeeeviniecieneneeieieen,

6.1.8. Conclusions
6.2. FUTURE WORK

vi

42
42
42
48
72
77
81
86
86
87
88
88

90

90
90
104
109
118

121

121
121
121
122
123
124
124
125
125
126
126

List of Tables

Chapter 1: INTRODUCTION

Chapter 22 ARCHITECTURES FOR EXPLOITING FINE-GRAIN PARAL-
LELISM

Chapter 3: STUDY BACKGROUND AND METHODOLOGY

3.1 Functional-Unit Latenciesfor the CRAY X-MPcccccooovrinnininnnns
3.2 Benchmark Sizes— Compiler-Optimized Version
(as reported by the Hardware Performance Monitor)ccocevvueunnnne.
3.3 Benchmark Sizes— Hand-Optimized Version
(as reported by the Hardware Performance Monitor)cooceecucunnns
3.4 Static and Dynamic Basic Blocks Executed
— Compiler-Optimized Codescccovuvvcvrununnnn.
3.5 Static and Dynamic Basic Blocks Executed
— Hand-Optimized Codescccccoeeevevceinirenucnnne.

3.6 Average Vector Length asreported by HPM
— Compiler-Optimized Codescccoevvvvveununnene.

3.7 Average Vector Length asreported by HPM
— Hand-Optimized Codesccccoccvvvvvuvucucennne.

Chapter 4. CHARACTERIZATION OF VECTOR MACHINE PROGRAMS

4.1 Percentage Vectorization of Various Operation Classes
— Compiler-Optimized Codescccccuvvueuevevvunucnnnee.

4.2 Percentage Vectorization of Various Operation Classes
— Hand-Optimized Codescccocvvvinniiiiinnnnnn.

4.3 Percentage of Operationsin each Operation Class
— Compiler-Optimized Codescccccovvueueveirunucnnnne.

4.4 Percentage of Operationsin each Operation Class
— Hand-Optimized Codesc.cocovveerereeiniiierenenne.

4.5 Proportion of Basic Blocks that are Scalar
— Compiler-Optimized Codesccccoeu....

4.6 Proportion of Basic Blocksthat are Scalar

vii

27

29

32

34

35

39

40

44

45

49

51

52

— Hand-Optimized Codes

4.7 Percentage of Operationsin Scalar Basic Blocks

— Compiler-Optimized Codesccco.......

4.8 Percentage of Operationsin Scalar Basic Blocks

411

412

4.13

414

4.15

4.16

4.17

4.18

4.19

4.20
421

4.22

4.23
4.24

Chapter 5:

— Hand-Optimized Codesccccccoeuvuvuneec.
4.9 The Proportion of Instructionsand Operations of Various Types
— Compiler-Optimized Benchmarksccccccc.....
4.10 The Proportion of Instructions and Operations of Various Types
— Hand-Optimized Benchmarksccccccecvevnennnes

Instruction Mix in the Scalar Basic Blocks

Scalar Programs — Compiler-Optimized Codesc.c........

Instruction Mix in the Scalar Basic Blocks

Mod.-Vec. Pgms. — Compiler-Optimized Codes

Instruction Mix in the Scalar Basic Blocks

Vector Programs — Compiler-Optimized Codescccccc.....

Instruction Mix in the Scalar Basic Blocks

Mod.-Vec. Pgms. — Hand-Optimized Codes

Instruction Mix in the Scalar Basic Blocks

Vector Programs — Hand-Optimized Codesc.cocoveueununne.

Per centage of Branches of Various Types

— Compiler-Optimized Codes

Per centage of Branches of Various Types

— Hand-Optimized Codes

Per centage of Branches of Various Typesin Scalar Blocks

— Compiler-Optimized Codesccccccevvvvuvuirvnnnnnnns

Per centage of Branches of Various Typesin Scalar Blocks

— Hand-Optimized Codescccccoovuvuviriveininunnnnnns
Subroutine Callsin theBenchmarks.ccoooeveeeiiiveeoieieeeeeeeenees

Instruction I'ssue Rate and | ssue Stage Utilization

— Compiler-Optimized Codescccccoevvevuvueuicenennnnns

Instruction I ssue Rate and I ssue Stage Utilization

— Hand-Optimized Codesccccccvuvivuvivciiununnnnnns
Operation I ssue Rate — Compiler-Optimized Codes
Operation I ssue Rate — Hand-Optimized Codes

CHARACTERIZATION OF SCALAR BASIC BLOCKS

5.1 Data Dependenciesin Scalar Programs

viii

53

55

55

57

58

59

60

61

62

63

69

70

71

72
80

82

83
85
85

— Compiler Optimized Codes

5.2 Data Dependenciesin M oder ately-Vector Programs

— Compiler Optimized Codes

5.3 Data Dependenciesin Vector Programs

— Compiler Optimized Codes

5.4 Data Dependenciesin M oder ately-Vector Programs

— Hand-Optimized Codescc........

5.5 Data Dependenciesin Vector Programs

— Hand-Optimized Codes ...

5.6 Average Fanout of Various Instructions

— Compiler Optimized Codes

5.7 Average Fanout of Various|Instructions

— Hand-Optimized Codes ...

5.8 Instructionsthat play arolein determining

the Branch Condition RegiSterccceeevevveevecevenenenne.

5.9 Ingtructionsthat producethefinal Branch Condition

5.10
511
512
513
514

5.15
5.16

517

5.18

5.19

Chapter 6:

Subroutine-Call Branchesccoceeeeeeeeceenieeeennnne
Unconditional Branchesccccecevevveiecieneneennen.
Branchesbased on Register AOccoevvvevevevieceeenennn.
Branches based on Register SOcceoeevivecrveieeieennen,

Distance (insts.) between Condition Register update

and corresponding branchc..cccccevvevenennenenens
Functional-Unit Latenciesfor the CRAY X-MP

InterArrival Timesfor the Scalar Basic Blocks

— Compiler-Optimized Codes

InterArrival Timesfor the Scalar Basic Blocks

— Hand-Optimized Codes

InterArrival Timesfor the Scalar Basic Blocks

— Compiler-Optimized Codes, 1 cycle LD

InterArrival Timesfor the Scalar Basic Blocks

— Hand-Optimized Codes, 1 cycle LD

SUMMARY AND CONCLUSIONS

ix

93

94

95

96

97

98

99

102
103
104
105
106
107

108
110

114

115

117

118

List of Figures

Chapter 1: INTRODUCTION

Chapter 22 ARCHITECTURES FOR EXPLOITING FINE-GRAIN PARAL-
LELISM

2.1 Execution on INFfINITE RESOUICES ...cooeueeeeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeens
2.2 Execution on Limited RESOUICESoooovviiiiiiiieiieeieeieetee ettt

2.3 Execution on Limited Resour ces
— maximum of 2 operations/cycle

2.4 Execution on Pipelined Functional Units
— single operation iSSueccceeeueernne.

2.5 Execution on Pipelined Functional Units
— very long instruction word

2.6 Execution on Pipelined Functional Units
— single instruction issue, vector machine

2.7 The Effectsof Pipeline Depth and |ssue Bandwidth
on Program Execution Time ...

Chapter 3: STUDY BACKGROUND AND METHODOLOGY
3.1 TheProcessor Architectureof the CRAY Y-MP. ...ccovvoiiviiiiiiiieeeeenenn.
Chapter 4: CHARACTERIZATION OF VECTOR MACHINE PROGRAMS

4.1 Basic Blocksin the Benchmarks
— Compiler-Optimized Codes

4.2 Basic Blocksin the BeNChMarksooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e

4.3 Scalar Basic Blocksin the Benchmarks
— Compiler-Optimized Codes

4.4 Scalar Basic Blocksin the Benchmarks
— Hand-Optimized Codesccccovueunees

Chapter 5: CHARACTERIZATION OF SCALAR BASIC BLOCKS

5.1 Example: Measuring Interarrival Times

Chapter 6: SUMMARY AND CONCLUSIONS

xi

