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Abstract

In this paper we evaluate the effects of guarded (or conditional, or predicated) execution on the per-
formance of an instruction level parallel processor employing dynamic branch prediction. First, we
assess the utility of guarded execution, both qualitatively and quantitatively, using a variety of application
programs. Our assessment shows that guarded execution significantly increases the opportunities for both
a compiler, and dynamic hardware, to extract and exploit parallelism. However, existing methods of
specifying guarded execution have several drawbacks that limit its use. Second, we study the interaction
of guarding and dynamic branch prediction. No clear trends emerge regarding the ability of guarding to
uniformly eliminate branches with poor predictability. In some cases guarding eliminates branches with a
poor prediction accuracy, in other casesit eliminates branches with good predictability. However, the use
of guarding results in a significant increase in the dynamic window size (instructions between
mispredicted branches). Third, we present a new method of specifying guarded execution. The proposed
method uses special GUARD instructions, which can be used to incorporate guarded execution into exist-
ing instruction sets. GUARD instructions realize the full power of guarded execution, without the draw-
backs of existing methods of specifying guarded execution.

1. Introduction

Many recent microprocessors rely heavily on instruction-level parallelism (ILP) to achieve high perfor-
mance levels. Most of these processors employ dynamic parallelism detection and extraction techniques,
in which the hardware has to examine a (small) number of instructions, determine if their operands are
available and when they are available, issue the instructions to the available execution units.

Many studies have shown that the parallelism available within basic blocks is limited [2, 3,21, 23],
and it is clear that one has to look beyond basic block boundaries for more parallelism. The larger the
number of instructions that can be examined, the greater the parallelism that can be extracted.

To get past branch instructions, processor designers have two options. The first option is the use of
speculative execution. In this approach, the outcome of a branch instruction is predicted and instructions
from the predicted path are examined for execution. This technique requires a branch prediction mechan-
ism, which can be either static or dynamic, and the ability to undo the effects of instructions executed
after an incorrectly predicted branch. The second option is the use of guarded execution [13] (also called
conditional execution or predicated execution). By eliminating some branch instructions, the effective
block size (the number of instructions between branches) is increased, increasing opportunities for paral-
lelism extraction.

Traditionally, guarded execution and speculative execution (especialy speculative execution with
dynamic branch prediction), have been treated mutually exclusively. Furthermore, there have been very
few studies of the utility of guarded execution for general-purpose application programs [18]. Recent
microprocessors, however, have combined the two, offering simple guarded instructions such as the con-
ditional move instruction, while allowing for dynamic branch prediction [4,6]. The presence of both
guarded and speculative execution opens up many opportunities (both static and dynamic) to exploit ILP.
It also raises several questions regarding the interactions of the two techniques.



This paper has three purposes. The first purpose is to assess the pros and cons of guarded execution,
both qualitatively and quantitatively, for a variety of application programs. One result of this assessment
is that while guarding has tremendous potential, existing methods of specifying guarded execution have
major drawbacks that limit the use of guarded execution. The second purpose is to examine the interac-
tion of how guarding and dynamic branch prediction interact, and how guarding impacts dynamic branch
prediction. The third purpose is to present a new way of specifying guarded execution which eliminates
amost all the drawbacks of existing methods.

We present a qualitative discussion of guarded execution in section 2. In section 3, we present the
evaluation methodology, the benchmarks, and the metrics that we use to quantitatively assess guarding.
Section 4 presents quantitative results assessing the ability of guarded execution to enhance opportunities
for parallelism extraction. It also assesses the potential overhead of guarded execution. Section 5 evalu-
ates the interplay between guarded execution and dynamic branch prediction. In section 6, we present a
new method of specifying guarded execution. Our proposed technique allows guarded execution, in its
full form, to be integrated easily into existing instruction sets. We discuss how the proposed technique
overcomes the drawbacks of existing methods of specifying guarded execution, and also evaluate it quan-
titatively. Finally, section 7 presents concluding remarks.

2. Guarded Execution

Guarded execution (or simply guarding), for scalar processors was first proposed by Hsu and Davidson
[13,14] to alow better scheduling of decision trees. In the context of a decision tree, the conditional
branches are essential because they steer the flow of control to the correct branch of the decision tree.
These diverging control structures are not amenable to if-conversion [1], and guarding is used as a general
and powerful technique to fill multiple delay slots of branch instructions. Hsu and Davidson assume that
the instruction set supports guarded stores and guarded jumps and allow for guard conditions that are the
conjunction or disjunction of two operands in either true or complementary form. Computation instruc-
tions are not needed in a guarded form because a single assignment property is maintained in the code
generated for the decision tree.

The control structures of many common programs, however, are better represented by a DAG. For
these structures, if-conversion is more appropriate. If-conversion converts control dependencies to data
dependencies: a branch instruction and the instructions that are control dependent on it are replaced with
an instruction that sets a condition (if it is not already available in a register), and a sequence of instruc-
tions guarded by this condition. The semantics of a guarded instruction are as follows: evaluate the guard
condition; if it is met, then execute the instruction, otherwise treat the instruction as a NOP.

Vector processors have long benefited from guarded execution. Here vector masks are used to
express (multiple) guard conditions. Using these vector masks, loops with if-statements can be vector-
ized. Recently proposed VLIW machines, for example the Cydra-5 [20], and the IBM VLIW machine
[9], have also used guarded execution to facilitate the software pipelining of loops with conditional
branch instructions [7, 16].

To incorporate guarded execution into a scalar instruction set, we need to be able to specify a guard
condition for each (guarded) instruction. Proposed methods for specifying guarded execution suggest the
use of an additional operand field for each instruction. This operand field is used to specify aregister that
holds the guard condition; the register could either be a general-purpose register, or part of a special
predicate register file [18, 20].

Introducing guarded execution into scalar processors can be a very powerful concept; Figure 1
presents a small example. Figure 1(a) show the C-code for inner loop of the Cmppt function of the
SPEC92 benchmark Egntott. In Figure 1(b) we show the corresponding assembly code using a generic
MIPS-like assembly language. In Figure 1(c) we show the same code using guarded instructions (if-
conversion is used to transform the code). In Figure 1(c), ¢ move is a conditiona move, and c li is a
conditional load immediate. The last operand of the conditional instruction is the condition register.



Comparing Figures 1(b) and 1(c) we can see that four static branches were eliminated (corresponding to
the first, the second and the fourth if-statements and one of the return statements in the C-code), and that
the basic blocks are considerably larger: the MIPS-like assembly contains 10 non-branch and 7 branch
instructions, while the guarded version contains 13 non-branch and 3 branch instructions.

With guarded execution, code for a scalar processor has fewer branches, larger basic blocks, and no
control dependencies. This results in several important advantages. First, the compiler has a larger
(static) basic block, with more instructions to extract parallelism from. This alows the compiler to pro-
duce a better (and more parallel) schedule. Second, since the number of branches (static, and therefore
dynamic) is reduced, the number of instructions between mispredicted branches (or the window size) can
increase. A larger window size provides more opportunities for dynamic parallelism extraction.

Existing proposals for guarding, however, have several problems that inhibit its (widespread) use in
scalar processors. The first problem is that guarded execution, in its most general form, is not easy to
integrate into existing instruction sets. Since each (guarded) instruction needs a guard operand, existing
techniques for specifying guarding require each (guarded) instruction to have an additional source
operand specifier. With an existing instruction set, it is generally not possible to find a sufficient number
of bits to explicitly specify an additional source operand for alarge variety of instruction types. (An addi-
tional source operand specifier also implies an additional read port on the register file.) This problem has
forced instruction set designers to alow only a small number of guarded instructions. The DEC Alpha
[6] and the SPARC V9 [4] architectures are prime examples, offering a conditional move (CMOVE)
instruction. (Since a move instruction has only two operands (one source and one destination), bits to
specify the third operand (the guard register) explicitly can easily be taken from unused instruction bits
(the second source operand of computation instructions).)

The second problem is that guarding increases the total number of instructions executed dynami-
caly. Ingeneral, instruction from both paths (traversed and not traversed) of abranch instruction are exe-
cuted when they are transformed into guarded instructions; instructions from the not-traversed path are

for (i = 0; i < ninputs; i++) { LOIh  a0,0(al) LOIh  a0,0(al)
aa = a[0]—->ptand][i]; Ih  a2,0(al3) Ih  a2,0(a3)
bb = b[0]->ptand]i]; bne a0,t0,L1 set_eq ¢0,a0,t0
if (aa ==2) move a0,zero c_move a0,zero,cO
aa=0; L1 bne a2,t0,L2 set_eq cl,a2,t0
if (bb==2) move a2,zero c_move a2,zero,cl
bb =0; slt at,a0,a2 slt at,a0,a2
if (aa != bb) { L2 beq a0,a2,L4 beq a0,a2,L4
if (aa < bb) beq at,zero,L3 set_ne c3,at,zero
return —-1; li v0,-1 c li vO0,-1,c3
else jr ra cli v0,1,!c3
return 1; L3l vo,1 jr ra
} jr ra L4 addiu vO,v0,1
} /% rof */ L4 addiu vO,v0,1 addiu al,al,2
addiu al,al,2 addiu a3,a3,2
addiu a3,a3,2 bne vO,v1,LO
bne vO,v1,LO
@ (b) (©

Figure 1. The Cmppt inner loop. Part (a) shows the C-code, part (b) shows the corresponding
MIPS-like assembly, and part (¢) shows the same assembly using guarded instructions.



dynamically transformed into NOPs. That is, instructions from both paths are fetched and enter the pro-
cessor pipeline, even though some of them may be transformed into NOPs in the earlier stages of the
pipeline. The reason that the processor has to fetch and decode all these extra (non-useful) instructions is
that the processor has no way of knowing that an instruction is guarded until it is fetched and examined.
If the instruction is guarded, the processor can't determine if it should be transformed into a NOP until
both the condition (name) and the condition value are known. These extra instructions, from the not-
traversed path, could be scheduled to execute in parallel with other useful computation, if the processor
has a sufficient number of resources. If sufficient resources do not exist, these additional instructions can
actually degrade the overal execution time. Execution time can also be degraded if the paths are of
unequal lengths: when the longer path cannot be scheduled in parallel with other useful computation, the
shorter path might have to be lengthened and performance along that path will suffer.

A third concern is that guarding uses additional architecturally visible registers to hold the (guard)
conditions for the subsequent guarded instructions. Without guarding, the register that holds the condi-
tion is used once, to decide the branch outcome and set the correct PC value; instructions that are control
dependent on that condition will be discarded or fetched according to this target PC value. With guard-
ing, the condition register is used as a source operand in al the instructions it covers. Therefore, the life-
time of this register must span up to the last guarded instruction; this increases the register pressure. The
problem is exacerbated by the instruction scheduler which, by rearranging the instructions, can increase
the register lifetime. A possible solution to this problem is to add a separate predicate register file
[18, 20], to relieve the pressure on the architectural registers. This solution, however, may result in extra
instructions to transfer values between the two register files and clearly cannot be easily incorporated into
existing architectures.

Because of these drawbacks, instruction set support for guarding is expected to be limited (unless
one has the luxury of designing a new instruction set) and guarding can be profitably applied only in cer-
tain cases. Mahlke et al addressed some of these issues for statically scheduled machines (such as VLIW),
taking in account mainly the basic block size and the execution frequency [18]. In their scheme, a Hyper-
block of instructions is formed, using trace selection based on branch frequencies, such that the Hyper-
block has a single entry point and one or more exit points. Branches that are not amenable to static pred-
iction are eliminated using if-conversion. Finally, after the Hyperblock formation, the instructions are
scheduled using conventional parallelism enhancing techniques.

The problem of wasted computation resulting from if-conversion was addressed by Warter et al
[24]. They propose the use of if-conversion before the instruction scheduling phase of the compiler, to
eliminate the control dependencies and expose parallelism to the optimizer. After the optimization phase,
a reverse if-conversion transformation is proposed, in which guarded computation is transformed back
into normal instructions covered by conditional branches. This technique improves the static schedule
without increasing the execution time of any of the paths. However, reverse if-conversion can increase
the static size of the program significantly and can cause high instruction cache miss ratios. Reverse if-
conversion can also increase the number of executed branches: if instructions that were control dependent
on a single branch instruction before if-conversion and scheduling, are moved apart during scheduling,
the reverse if-conversion technique will introduce multiple branch instructions to ensure the correct exe-
cution in the new schedule. (In general, these branches will be executed in parale with other, useful
computation, given sufficient resources.)

We believe that guarded execution is very useful to ILP processors (and will conform our beliefsin
the following sections), as it allows the compiler and the hardware to exploit more of the available
instruction level parallelism. The potential drawbacks of guarding, however, are bothersome. We believe
that the potentia disadvantages of guarded execution, which we have outlined above, are not a funda-
mental disadvantage of the guarding approach. Rather, we believe that they are a problem caused by
existing methods of specifying guarded computation. In section 6, we will present and evaluate a dif-
ferent scheme for specifying guarded computation, one that does not have the drawbacks mentioned
above. Before doing that, however, a performance assessment of the guarding concept isin order.



3. Evaluation of Guarded Execution

In this section we describe the experimental framework that we used to quantitatively assess the guarding
concept. Most of the work is done by a trace-driven simulator that simulates the execution of programs,
with and without guarded instructions, and collects the necessary statistics.

3.1. Benchmarks

For benchmark programs, we used the entire integer SPEC92 benchmark suite, namely the programs
Compress, Egntott, Espresso, Gee, Sc and Xlisp. We also used three architecture simulators, Tycho, a
cache simulator [12], Supermips, a superscalar processor simulator based on the MIPS instruction set, and
Thissim, atrace driven simulator similar to the one we used for this study. Finaly, we used the TeX text
formatter and the Y acc parser generator, as well as two Object Oriented Database benchmarks, Sunbench
and Tektronix. We did not use Fortran programs since (numeric) Fortran programs typically have very
regular (and uninteresting) control structures. (Guarded execution is of little interest for numeric pro-
grams with regular control structures since it is comparatively easy to extract significant amounts of ILP
for such programs with existing techniques.)

Our benchmark programs were compiled for a MIPS based DECstation 3100, using the version 2.1
of the MIPS compiler. Table 1 shows our 13 benchmark programs and their basic statistics, including the
number of instructions (excluding NOPs) that we allowed for execution, and the ratio of conditional and
unconditional branches in the dynamic instruction stream.

3.2. Metrics

The best metric for evaluating any concept in processing is the total execution time. However, this metric
requires many implementation assumptions, including the exact hardware configuration, functional unit
latencies, etc. Other direct metrics, such as CPU time and speedup also require implementation assump-
tions that limit the utility of results (for example, an ideal memory system is assumed in many studies).
To avoid making implementation assumptions, which introduce another set of parameters into the perfor-
mance equation, we use indirect measures of performance. While these measures may not translate easily
into adirect metric for an implementation, they do provide insight into the utility of the concept.

Dynamic Branch Ratio
Program I nst(ug:tl ONS 1 Conditional | Unconditional

(Millions)
Compress 78.59 0.149 0.040
Eqntott 300.00 0.306 0.012
Espresso 300.00 0.176 0.014
Gce 128.78 0.156 0.042
Sc 300.00 0.207 0.037
Sunbench 300.00 0.148 0.067
Supermips 300.00 0.111 0.056
Tektronix 300.00 0.136 0.082
TeX 214.69 0.143 0.055
Thissim 300.00 0.105 0.046
Tycho 300.00 0.123 0.061
Xlisp 300.00 0.157 0.091
Yacc 26.37 0.237 0.020

Table 1. Benchmark Program Characteristics




Our first metric is the effective guarded block size. Thisis the (dynamic) average size of the blocks
after guarding. In this size we count only instructions from the original program that contribute to useful
computation. We do not count any instructions required to set the condition registers. We aso do not
count any (static) NOPs or any guarded instructions that are dynamically transformed into NOPs. The
advantages of this metric are (i) it is highly correlated with parallelism that can be extracted [5, 11, 18]
and (ii) it is dependent only on the program and the compiler and not on the underlying hardware imple-
mentation.

Our second metric is the static guarded block size. This is the total number of instructions in a
block, including instructions that contribute to useful computation, aswell as instructions that are dynam-
ically transformed into NOPS. This metric gives an indication of the instruction fetch bandwidth required
during the program execution. Again, we only count instructions from the original program that were
transformed into guarded instructions in this metric. We do not count any additional instructions that
might be required to set condition registers.

When guarding is combined with dynamic branch prediction and speculative execution, two more
metrics are of interest. These are: (i) the accuracy of the branch prediction scheme, and (ii) the number of
instructions that contribute to useful computation, between mispredicted branches. We refer to the latter
as the dynamic window size.

3.3. Guarded Instruction Use

To decide which instructions can be guarded, and what the guard condition should be, we apply the fol-
lowing algorithm. Starting at a node in the control flow graph (CFG) of a program, we traverse the CFG
collecting nodes from al the possible paths in an attempt to create a single large block (of non-branch
instructions) containing guarded instructions. This guarded block is terminated by a (possibly condi-
tional) branch instruction. We also restrict the construction of guarded blocks so that they contain no

more than 15 basic blocks of the original code®. Effectively, the guarded block formed by this algorithm
is the maximal subgraph of the CFG, containing less than 15 nodes, and having at most two targets (that
can be described by a single branch).

In our guarded block formation we do not perform any function inlining or loop unrolling; the MIPS
compiler would aready have unrolled for-loops four times. Should aggressive loop unrolling and func-
tion inlining be performed, the potential of guarded execution would be enhanced. The guarded blocks
constructed by our algorithm differ from the ones constructed in the Hyperblock formation of [18] in two
ways. First, we require that all branches internal to the block (except the last one) are eliminated by the
if-conversion; a Hyperblock is allowed to contain multiple branches and exit points. We treat what would
be aHyperblock in [18] as a sequence of basic blocks and guarded blocks. Our metrics, namely the effec-
tive and the static guarded block size, are not affected by these differences as the useful computation
remains the same, and the number of branches and the non-useful guarded computation depend solely on
the if-conversion transformations. Second, the Hyperblock’ s heuristic basic block selection function may
decide to apply if-conversion in different parts of the control flow graph than our smpler algorithm.

The above describes how the program flow is taken into account in the guarding process. Another
input to the guarding process is the nature of the guarded instructions available in the instruction set. We
distinguish between two types of guarding: full guarding and restricted guarding.

3.3.1. Full Guarding

In full guarding, we assume that all instructions are available in guarded form, and that the guard condi-
tions can be set by the normal computation without any overhead. Under these two assumptions, if-

1 This limit was set to ensure that the size of the guarded blocks will be reasonable, in that they do not contain too much unused computa-
tion. We observed that the effects of this limitation on the performance were negligible.



conversion is only limited by the structure of the CFG; any sub-graph meeting our restrictions can be
transformed into a guarded block. The results obtained under these assumptions are an indicator of the
best performance (according to our metrics) that one can expect from guarding.

3.3.2. Restricted Guarding

Because of opcode space limitation, many instruction set architectures cannot be extended to include
guarded versions of al instructions. For partial guarding support, the most important subset of instruc-

tions are the ALU instructions, because they usually require fewer bits to encode?; the unused bits can be
used to specify that the instruction is guarded and encode the condition register. Load and Store instruc-
tions usually contain an immediate field and two register specifiers, and do not leave any space to specify
the condition register. In restricted guarding, only blocks with ALU operations can be guarded; memory
accessing instruction can only appear in an unconditional part of the guarded block. Guarded blocks con-

structed with restricted guarding are therefore a subset of the blocks constructed with full guarding®.

One way to provide support al instructions in guarded version is to synthesize them using normal
instructions that store their results into temporary registers, and then using the supported conditional
instructions (such as conditional moves) to commit these results. This method can be used as long as the
compiler can guarantee that none of the unconditional instructions used in the synthesis will ever generate
an exception. However synthesis of guarded instructions entails additional overhead, and it is not clear if
this overhead will be more than compensated by the improvement in the effective basic block size. A
compact and efficient way to specify guarded instruction, that does not suffer from these limitations will
be described in section 6.

4. Branch Elimination Potential and Overhead of Guarding

We first consider the branch elimination potential of guarding. Table 2 presents the percentage of
(dynamic) branches that are eliminated from the instruction stream with full and restricted guarding. On
average, full guarding is able to eliminate an average of 30.74% of all dynamic branches, eliminating
over half the branches in some cases. Restricted guarding is not as powerful as full guarding, for obvious
reasons, in amost all cases; on the average, it is able to eliminate only 14.26% of all dynamic branches.
An exception is Egntott, which spends most of its time in an inner loop that is amenable to restricted
guarding.

Figure 2 presents the basic block size, the effective guarded block size, and the static guarded block
size, for each of the benchmark programs when full guarding is used; Figure 3 presents the same when
restricted guarding is used. From Figure 2 we can see that full guarding is quite effective in increasing
the effective guarded block size, increasing the block size by 52% on average (from 4.82 useful instruc-
tions in a basic block to 7.33 useful instructions in a guarded block). In most cases the effective block
size is increased by at least 25%; in one case (Thissim), it is more than doubled. The increase in the
effective block size, however, come with a price— an increase in the total number of instructions that are
executed. Thisincreaseis measured by the static guarded block size. Comparing the static guarded block
Size to the effective guarded block size, we see that 33% of al instructions that would be executed (or at
least fetched and decoded), with full guarding, do not contribute to useful computation. For most pro-
grams, 20-50% of the instructions executed are non-useful instructions. We feel that this overhead is
significant, and needs to be dealt with, for guarding to become widely accepted.

2 In the MIPS instruction set, an ALU instruction is specified with the 6-bit opcode SPECIAL, a 6-bit function field and three 5-bit register
specifiers. That leaves 5 bits unused, exactly as many as we need for the guard register specifier.

% Our choice for restricted guarding is one meaningful way of restricting the guarding process. Clearly other meaningful ways are possible;
we do not consider them in this paper.



Percent of Eliminated Branches

Program Full Restricted
Compress 24.86 18.24
Eqgntott 40.53 40.03
Espresso 16.76 10.17
Gcee 31.56 9.16
Sc 41.46 8.02
Sunbench 35.68 11.33
Supermips 50.70 17.15
Tektronix 36.54 15.77
TeX 12.80 5.99
Thissim 62.31 23.26
Tycho 15.05 6.45
Xlisp 13.64 13.63
Y acc 17.82 6.22
Arithmetic 30.74 14.26
Mean

Table 2. Percent of Dynamic Branches Saved by Full and Restricted Guarding

The magnitude of the overhead is not as large with restricted guarding: only 8% of the instructions
do not represent useful computation, on average. However, restricted guarding also does not increase the
effective guarded block size aswell as full guarding (8% versus 52%, on average).

From Table 2 and Figures 2 and 3 we can conclude that full guarding is a powerful technique able
to eliminate a significant fraction of the branches of a program and achieve a significant increase in the
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Figure 2. Performance of Guarding with Full Instruction Set Support
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Figure 3. Performance of Guarding with Restricted Instruction Set Support

(guarded) block size. These results suggest that instruction set support for guarding is desirable. They
also suggest that alimited support for guarded execution in the instruction set may not be sufficient.

5. Interaction of Guarding and Dynamic Branch Prediction

We now consider the interplay between guarding and dynamic branch prediction. There are two main
issues that we address here. First, how does guarding impact the prediction mechanism. Guarding can
impact the prediction mechanism in two (not entirely unrelated) ways. One, it can reduce the number of
branches that are predicted. If the branches that guarding eliminates are ‘‘bad’’ branches, i.e., branches
with poor predictability, guarding can improve prediction performance (as measured by the branch pred-
iction accuracy); if they are ‘‘good’’ branches, guarding can degrade prediction performance. Two, since
the number of (static and dynamic) branches that need to be predicted is changed, the mechanics of the
prediction mechanism could change completely. For example, if the prediction mechanism is counter-
based [17, 22], a prediction mechanism with a smaller number of table entries may suffice. If the predic-
tion mechanism is pattern-based [19, 25], its behavior might be radically atered since the pattern of
dynamic branchesis changed. Second, what is the impact of guarding on the dynamic window size (use-
ful instructions between mispredicted branches) that can be established, and how the size of this window
varies with the guarding and the prediction strategy.

We use two different prediction mechanisms: a 2-bit counter-based mechanism, and a GAS(8,x)
pattern-based mechanism [25]. For either case, we used three different table sizes: 1K, 4K, and 16K
entries. (These trandate into prediction tables of 2K, 8K, and 32K bits, respectively.) The above
configurations are chosen since they are reasonable in terms of size and hardware complexity while
achieving respectable performance.

We first address the issue of the branch prediction accuracy. Table 3 presents the branch prediction
accuracies without guarding, with restricted guarding, and with full guarding, for counter-based predictors
with 1K, 4K, and 16K entries. Table 4 presents the same for pattern-based predictors. Unfortunately,
there are no (monotonic) trends in the tables that allow us to make concrete statements about the (positive
or negative) impact of guarding on the prediction mechanism. In some cases guarding improves the
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prediction accuracy, in other cases it does not. In one case (Espresso), full guarding improves the predic-
tion accuracy wheress restricted guarding does not. The results also do not alow us to conclude much
about the impact of guarding on the sizes of the prediction tables. Even though we had expected larger
table sizes to be less beneficial than smaller table sizes, in the presence of guarding (especially for
counter-based mechanisms which hash the address of the static branch to access the prediction table), this
expectation was not borne out by the data present in the tables. It appears that both pattern-based and
counter-based prediction mechanisms will continue to be beneficial (but not to a point where they do not
need further improvement) even in the presence of guarding, and that larger table sizes will continue to be
beneficial (at least in the range of sizes that we considered).

Size 1K entries Size 4K entries Size 16K entries
BB Full Restr. BB Full Restr. BB Full Restr.

Compress || 87.20 | 8857 | 89.00 | 87.20 | 8857 | 89.00 | 87.20 | 88.57 | 89.00
Egntott 83.76 | 9753 | 97.04 | 8376 | 9754 | 9754 | 8376 | 97.54 | 9754
Espresso 90.29 | 92.09 | 89.54 | 90.30 | 92.11 | 89.55 | 90.30 | 92.12 | 89.55
Gcece-ccl 85.89 | 86.13 | 86.25 | 87.65 | 87.15 | 87.75 | 8824 | 87.81 | 88.29
Sc 94.70 | 94.24 | 9452 | 9491 | 9443 | 94.87 | 9495 | 94.37 | 94.89
Sunbench 91.30 | 8751 | 90.21 | 91.35 | 89.34 | 91.39 | 91.36 | 89.34 | 91.39
Supermips || 96.13 | 97.76 | 95.67 | 96.53 | 97.77 | 95.81 | 96.53 | 97.77 | 95.81
Tektronix 90.60 | 86.44 | 87.01 | 91.15 | 89.28 | 90.24 | 91.15 | 89.28 | 90.24

Program

TeX 9412 | 9483 | 9401 | 9472 | 9520 | 9450 | 94.79 | 9525 | 9456
Thissim 96.03 | 9359 | 9524 | 96.03 | 9359 | 9524 | 96.03 | 9359 | 95.24
Tycho 0341 | 9430 | 9324 | 9341 | 9430 | 9324 | 9341 | 94.30 | 93.24
Xlisp 8801 | 87.16 | 87.35 | 88.16 | 87.20 | 87.40 | 8831 | 87.21 | 87.40
Yacc 0366 | 9461 | 9357 | 9368 | 9478 | 9369 | 93.68 | 94.78 | 93.69
Qg?}me“c 9116 | 91.90 | 91.74 | 9145 | 9240 | 92.32 | 9151 | 92.45 | 92.37

Table 3. Branch Prediction Accuracies for a Counter-based Predictor

Size 1K entries Size 4K entries Size 16K entries
BB Full Restr. BB Full Restr. BB Full Restr.

Compress || 88.46 | 90.38 | 90.34 | 88.71 | 90.38 | 90.76 | 89.23 | 90.48 | 90.77
Eqgntott 9273 | 97.95 | 97.71 | 93.15 | 98.09 | 98.09 | 9397 | 98.16 | 98.16
Espresso 96.03 | 96.50 | 95.68 | 96.56 | 96.84 | 96.20 | 96.74 | 96.95 | 96.43
Gcece-ccl 83.82 | 84.82 | 8419 | 88.76 | 89.13 | 88.96 | 9148 | 91.63 | 91.62
Sc 9433 | 9442 | 9439 | 9590 | 95.64 | 9587 | 96.60 | 96.25 | 96.49
Sunbench 9661 | 9539 | 9418 | 98.03 | 96.84 | 97.35 | 98.07 | 9745 | 97.77
Supermips || 93.76 | 93.46 | 93.62 | 96.00 | 96.35 | 95.58 | 97.20 | 98.12 | 96.89
Tektronix 93.81 | 9440 | 9314 | 96.01 | 9595 | 96.25 | 9691 | 96.68 | 96.82

Program

TeX 9164 | 9252 | 9219 | 9480 | 9512 | 94.76 | 95.87 | 96.03 | 95.86
Thissim 96.48 | 95.96 | 95.17 | 96.87 | 96.06 | 96.09 | 97.04 | 96.14 | 96.33
Tycho 94,15 | 9541 | 93.83 | 95.16 | 96.34 | 9524 | 95.16 | 96.34 | 95.23
Xlisp 92.82 | 93.90 | 9390 | 95.21 | 9537 | 9533 | 95.63 | 9545 | 9541
Yacc 9487 | 95.80 | 95.10 | 9560 | 96.36 | 95.64 | 95.84 | 96.56 | 95.79
Arithmetic

93.04 | 9391 | 9334 | 9467 | 9526 | 95.08 | 9536 | 9586 | 95.65

Mean

Table 4. Branch Prediction Accuracies for a Pattern-based Predictor
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We now address the issue of dynamic window size. The dynamic window size is influenced both
by the prediction mechanism, as well as the number of useful instructions between branch predictions®.
Figure 4 presents the dynamic window sizes® without guarding (basic blocks), with restricted guarding,
and with full guarding, for each of the benchmark programs, using the counter-based prediction mechan-
ism; Figure 5 presents the same for the pattern-based prediction mechanism. The predictors in Figures 4
and 5 have 4K entries each.

With the counter-based predictor, awindow size of about 101 instructions, on average, can be esta-
blished without guarding. With restricted guarding, the average window size increases to about 123
instructions, and with full guarding it further increases to about 193 instructions. Almost all programs
(the exception being Xlisp), benefit significantly from guarded execution, especialy full guarding. The
benefits for Egntott are especially impressive, with the window size increased by over afactor of 10.

Dynamic Window Size (Instructions)
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Figure 4. Effects of Guarding on the Window Size for a Counter-based Predictor with 4K Entries

With a pattern-based predictor, the results are even more impressive. A pattern-based predictor can
establish a respectable window size (about 156 instructions, on average), even without guard instructions,
because of its superior prediction abilities. With full guarding, it can establish a window size of about
258 instructions, on average; for amost all programs the (average) window size is greater than 150 useful

‘It isinteresting to compare the dynamic window sizes that can be established with guarding and dynamic branch prediction with the win-
dow sizes that can be established with trace scheduling, which uses static branch prediction [10].

5The window size for each program is the average of all window sizes that are established dynamically.
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instructions.

One program, Sunbench, has an anomalous behavior with a pattern-based predictor: the window
size with guarding is (dightly) smaller than the window size without guarding! The reason for this
behavior is that, after the if-conversion, the dynamic pattern of taken and not-taken branches is dramati-
cally changed. This modified sequence is less predictable using a pattern based predictor, resulting in a
larger number of mispredicted branches, and a smaller window size. Since counter-based prediction is
sengitive to the identity of the branch, and not the dynamic taken/not-taken pattern, it does not display
this anomal ous behavior.

Dynamic Window Size (Instructions)
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Figure 5. Effects of Guarding on the Window Size for a Pattern-based Predictor, with
a Single 8-bit Shift Register in the First Level and 4K Entriesin the Second Level

6. An Alternate Specification of Guarded Execution

The previous sections suggested that guarded execution is avery useful concept, especially when coupled
with a good dynamic branch prediction scheme, both in increasing the block size available for software
optimizations, as well as in increasing the (dynamic) window size from which parallelism can be
extracted. However, as we saw, guarded execution, as specified using explicit guard condition operands
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with each (guarded) instruction has several drawbacks. First, the specification of a guarded instruction
requires valuable instruction space that may not be available without a complete rehaul of the I1SA.
Second, the implementation of guarding requires an additional read port in the register file. Third, the
number of instructions that have to be executed is increased, thereby increasing the required instruction
fetch and decode (and possibly execute) bandwidth. Fourth, there could be increased pressure on the
architectural register file, if it is used to hold guard conditions.

Aswe had alluded to earlier, many of these drawbacks are an artifact of how guarding is specified.
The performance problems, in particular, are due to the fact that the processor has no idea of what instruc-
tionsit is going to encounter (soon) in the dynamic instruction stream. Without this information, the pro-
cessor hasto fetch and decode all the instructions in a block to determine their guarding status.

The solution that we propose below alows the guarding concept, in its full form, to be integrated
easily into existing instruction sets (it requires the addition of a very small number of instructions, and no
modifications to existing instructions), and also overcomes the performance problems mentioned above.
The solution makes use of two observations. First, instructions guarded by the same condition are likely
to be in close proximity in the static and dynamic instruction stream. (Our results indicated guarded
blocks of a few tens of instructions. Even very aggressive code motion techniques are unlikely to
increase this considerably, into the many tens, or hundreds of instructions.) Second, most instructions in
close proximity are likely to be guarded by the same guard condition (in true or complement form), or by
avery few number of guard conditions; many are likely to have the same guard condition.

Given the close proximity of guarded instructions, and the low information content of the guard
condition specification, we can specify a block of guarded instructions directly using one or more
“*GUARD"’ instructions. A GUARD instruction has two operands, a register that specifies the guard condi-
tion, and a mask that specifies which of the instructions following this GUARD instruction (in the static
and also dynamic code) are guarded by the specified condition. A GUARD instruction, therefore, provides
an (implicit) specification of the guard operands of each guarded instruction.

Figure 6 presents a small example illustrating the use of the GUARD instruction. The simple control
flow graph in Figure 6 consists of four basic blocks forming two nested if structures. The column labeled
PREDICATE indicates the condition that has to hold for a basic block to execute. To specify the guarded
execution of basic blocks B and C we need two GUARD instructions for each of the conditions A and A &
B. The corresponding guard masks are shown vertically in Figure 6. In these masks, a 1 indicates that
the corresponding instruction is guarded by the condition register, and a O means that the instruction is
not dependent on that condition. The figure also shows the assembly code without guarding, and with
guarding specified using the GUARD instruction. Natice that the non-branch instructions in both cases are
identical in every respect; the only difference between the two codes is the elimination of the branch
instructions, the use of the and instruction to set a guard condition in r3, and the use of GUARD instruc-
tions to specify guarding.

One way to implement the GUARD instruction isto treat it as a meta-instruction, whose sole effects
are to specify the condition register of subsequent guarded instructions. In this case, the instruction can be
interpreted by the hardware which will expand al the instructions specified in the guard mask adding the
condition register, and will keep the expanded guarded instructions close to the execution stages in a
decoded instruction cache [8]. This'‘macro’’ expansion can take place on demand, when the instruction
cache misses, so it will not affect the critical path of instruction fetching or execution. This implementa-
tion overcomes the opcode space limitations and enables the processor designer to explore the full spec-
trum of possible implementations of guarding and exploit its potential.

However, the GUARD instruction has even more potential. By defining the semantics of the GUARD
instruction such that the condition is evaluated by the processor when the GUARD instruction is executed,
the processor is allowed to evaluate the guard condition for all instructions guarded by this condition at
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Assembly Code Assembly Code Using GUARDS

PREDICATE GUARDA GUARDA&B and r3, r7, r5
GUARD r7, 0001110000
o] [0l GUARD r 3, 000001100
A il: Id ré, 0(r2)
aways 0 0 i2: add rl, r2, #2
i3 Id r3, 0(rl)
F 0 0 i4: or ri7, ri7, r3
T il: Id ré, 0(r2) i5: sw rl7, 0(r1l)
i2: add rl, r2, #2
1 0 beq r7, zero, Label i6: mov rl, r3
B i3 Id r3, 0(r1 i7: sub ré, r6, #1
A 1 0 i4: or rl7, r17, r3 i8: add r7, r7, 1
i5 sw rl7, 0(r1) i9: add r5 r5 1
beq r5, zero, Label
F 1 0 i6: nov rl, r3
T i7: sub ré, r6, #1
Label :
i8 add r7, r7, 1
c 0 1 i9: add r5, r5 1
A& B
0
0 0
D
aways 0 0
0] O]

Figure 6. Example of the Use of the GUARD Instruction

once®. The benefits of this definition are twofold. First, since the condition is evaluated only once,
instructions guarded by the condition do not need to specify and read the condition register, eliminating
the decoded instruction format, the decoded instruction cache, and the additional read port in the register
file. Second, the processor is informed in advance that some of the instructions will be squashed, and can
avoid even fetching them, proceeding with the fetching of instructions that will be useful. This, early-out
capability is very important, because it alows the compiler to use guarding aggressively, relying on the
hardware to ensure that extensive use of guarding does not result in too much dynamic overhead. (For
example, in the (guarded) code of Figure 6, if the condition in r7 evaluates to false, then the processor
could jump to i8 after it isdone with i2, sincei3-i7 will dynamically be transformed into NOPs.)

To support the GUARD instruction, the processor has to maintain a mask of active and inactive
instructions. This mask, called the active mask, is just a shift register: if the i-th bit in the shift register is
1, thei-th instruction (starting from the current program counter) is to be executed; if the i-th bit is O, the
i-th instruction must be treated as a NOP. When an GUARD instruction is executed, its mask and guard
condition (cond) are used to update the mask as follows:

active_mask; = active_mask; & ((mask; & cond) | (! mask;))
The intuition behind this equation is that for every GUARD instruction, a set bit in the guard mask indi-
cates that the instruction is to be executed only if the condition holds. A reset bit in the guard mask indi-
cates that the state of the instruction is unaffected by this GUARD instruction. After an instruction is com-
pleted, the active_mask is shifted by one position, with aone being shifted in.

The active mask is key in permitting the processor to effectively squash unnecessary computation.
The processor can identify such unnecessary computation by performing a population count (count) on

& Assuming, of course, that the number of instructions to be guarded is less that the number of bits in this mask. If there are more instruc-
tions than bits in the mask, we would have to use several, suitably-placed, GUARD instructions.
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the leading zeros of the active mask, and can execute a short branch, changing the fetch address to
PC +count * 4 (count gives the offset from the current PC to the the next useful instruction). Therefore,
instructions that will dynamically be transformed into NOPs are not even fetched into the pipeline.

The GUARD instruction alows for two additional optimizations. First, when multiple GUARD
instructions cover the same instruction, the conditions are implicitly AND-ed in the active mask. This
ability can reduce the amount of logic manipulation instructions required to set all the necessary condi-
tions. Second, since the condition register is evaluated exactly once when the GUARD instruction is exe-
cuted, the register holding the condition can be reused immediately after the GUARD instruction. This
ability, coupled with the implicit AND ability of the GUARD instruction, could alleviate the register pres-
sure problem.

Figure 7 illustrates the use of the implicit AND property of the GUARD instruction on the simple
example of Figure 6. Note that the conjunction of conditions A and B that guards basic block C is
achieved by setting the mask bits in both GUARD instructions, obviating the need to perform the logical
AND instruction that was required to compute the A & B condition in Figure 6.

The active_mask is part of the processor state, and has to be saved and restored on interrupts and
context switches. The saved active mask, together with the saved program counter value provide
sufficient information to restart the process correctly. It is fairly straightforward to introduce user-level
instructions to save and restore the active_mask. An aternative to exposing the active mask to the pro-
cessor state, is to require that interrupts will be accepted only on PC values that correspond to a‘‘clear’”
state (i.e. to an active mask with all the bits set), in which case the PC value is sufficient to fully describe
the state of the processor and to restart the process. In this approach, handling of traps (which cannot be
deferred until the state of the processor becomes clean) requires that processor reverts to the last PC for
which the state was clean, in amanner similar to the checkpoint repair of [15].

Assembly Code Using GUARDs

Assembly Code

PREDICATE GUARD A GUARDA & B
[0] [0]
A
aAways 0 0 GUARD r7, 0001111100
GUARD r 3, 000001100
F 0 0 i1 Id 16, 0(r2)
T il Id r6, 0(r2) i2: add rl, r2, #2
i2 add rl, r2, #2
1 0 beq r7, zero, Label i3 Id r3, 0(rl)
B i3 Id r3, 0(ri1) i4: or ril7, r17, r3
A 1 0 i4 or rl7, r17, r3 i5 sw ril7, 0(r1l)
i5 sw rl7, 0(r1)
beq r5, zero, Label i6: nmov rl, r3
F 1 0 i6: nov rl, r3 i7: sub r6, r6, #1
T i7: sub ré, re6, #1 i8: add r7, r7, 1
Label : i9: add r5 r5 1
i8 add r7, r7, 1
c 1 1 i9: add r5, r5 1
A& B
1 1
0 0
D
always 0 0
O] 0]

Figure 7. Example of the Implicit AND-ing of Guard Conditions
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The exact number of GUARD instructions that need to be added to an instruction set, and the nature
of encoding of the mask field, are something that need more study. In this paper, we evauate the utility
of two flavors of GUARD ingtructions. The first flavor uses a unary encoding of the mask: bit i specifies if
the ith instruction following the GUARD instruction is guarded by the specified condition. Opcodes of
GUARD_TRUE and GUARD_FALSE are needed to specify true and false guard conditions for a guarded code
block (since a guarded block will contain instructions from both the taken and the not-taken path). (The
GUARD instructions in Figures 6 and 7 are GUARD_TRUE instructions.) The second flavor uses a single
opcode, GUARD_BOTH, but encodes the mask so that the guard conditions (true, false, and unconditional)
of 3 instructions can be specified in 5 bits. For a MIPS-like instruction format, up to 21 bits can be com-
fortably used for a mask. With this mask size, a GUARD_TRUE (or GUARD_FALSE) instruction can guard
up to 21 instructions (but both guard instructions will be required to guard instructions from the taken and
not taken paths of a branch in general). A single GUARD_BOTH instruction can guard up to 12 instruc-
tions (4 sets of 5 bits each) from both paths of a single branch.

Table 5 presents the overhead of GUARD instructions to achieve full guarding as we did in Section
3. Guarding using GUARD_TRUE/GUARD_FALSE instructions increases the dynamic instruction count by
13.9%, on average; guarding using a GUARD_BOTH instruction by 9.72%. This is a significant savings
when compared to the (average) 33% overhead that we had with the traditional way of specifying guard-
ing’. A point worth mentioning regarding the results of Table 5 is that we did not attempt to optimize the
use of GUARD instructions in our experiments. In particular, we did not attempt to use the implicit AND
property that we illustrated in Figure 7, and we also restricted our use to a single flavor
(GUARD_TRUE/GUARD_FALSE or GUARD_BOTH, but not a mixture of the two) of GUARD instructions.
We are experimenting with these optimizations; we expect they will decrease the overhead of specifying
guarded execution even further.

Program GUARD_TRUE/GUARD_FALSE GUARD_BOTH
Overhead (Percent) Overhead (Percent)

Compress 12.35 10.80
Eqntott 39.28 29.51
Espresso 7.24 6.92
Gcece 11.33 7.91

Sc 17.46 14.96
Sunbench 18.81 9.74
Supermips 7.33 4.62
Tektronix 17.91 8.46
TeX 7.85 5.59
Thissim 11.41 5.95
Tycho 11.03 6.37
Xlisp 7.95 6.82
Yacc 10.79 8.74
Arithmetic 13.90 9.72
Mean

Table 5. Overhead of the GUARD Instructions

" A point to keep in mind is that even if the 33% overhead was deemed to be tolerable, the traditional way of specifying guarding can’t
easily be integrated into existing instruction sets.
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7. Conclusions

We studied the use of guarded execution, or guarding, in dynamic ILP processors in this paper. We had
three goals in mind. One, a qualitative and quantitative assessment of the guarding concept using a
variety of application programs with complex control structures. Two, the interaction of guarding and
dynamic branch prediction. Three, proposing a new way of specifying guarded computation that allevi-
ates (or even eliminates) many of the drawbacks of existing methods of specifying guarded execution.

Our evaluation of guarding suggested that guarding is a very powerful concept, and can be of great
use to dynamic ILP processors. Specifically, the use of an arbitrary set of guarded instructions (or full
guarding) can increase the effective block size, measured as the number of instructions between branches
that actually contribute to useful computation, by about 52%, on average, for our benchmark programs.
This increased size provides more flexibility for software optimizations. Using full guarding also allows
a dynamic ILP processor to establish dynamic windows (or useful instructions between mispredicted
branches) of about 193 and 258 instructions, on average, using counter- and pattern-based predictors
(with 4K entries in the prediction table), respectively. Without any form of guarding, counter- and
pattern-based predictors could establish windows of only 101 and 156 instructions, respectively. How-
ever, with full guarding, the processor has to fetch and decode 33% more instructions, on average; these
instructions do not contribute to useful computation. Restricted guarding, in which only blocks with no
memory instructions are guarded, results in only 8% additional instructions, but it also does not allow us
to reap the benefits of guarding fully: the effective block size is increased by only 8%, and the dynamic
window sizes are increased to 123 and 184 instructions, on average, with counter- and pattern-based pred-
ictors, respectively.

The impact of guarding on the dynamic branch prediction is harder to quantify. We found no uni-
form patterns. in some cases guarding eliminated branches that resulted in a poor prediction accuracy
(and thereby improved the overall prediction accuracy), in other cases guarding eliminated branches with
a high prediction accuracy. The impact of guarding on the size of the prediction table was also hard to
quantify. We had expected that because guarding eliminates many static branches, the size of the tables
required by a branch prediction strategy, to achieve it best prediction accuracy, will decrease. This
expectation was not borne out by our results, at least in the range of table sizes that we considered (1K,
4K and 16K entries).

Finally, we proposed a new way of specifying guarded execution using GUARD instructions.
GUARD instructions can easily be added to existing instruction set architectures, and alow the full power
of guarding to be realized with asmaller overhead than existing methods of specifying guarded execution.
(It is possible to redlize the full power of guarding with as few as three additional instructions: a
GUARD_BOTH, and move instructions to save and restore the active_mask, as compared to tens of instruc-
tions to incorporate guarding using a traditional specification [18] ). For our benchmark programs, two
flavors of GUARD instructions allowed the full power of guarding to be realized (large effective block
sizes and large dynamic windows), with an overhead of about 13.9% and 9.72%, respectively. We are
carrying out more studies to reduce this overhead even further.
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