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PH.D. QUALIFYING EXAMINATION

Computer Architecture
Qualifying Examination

Monday, September 17, 2007

GENERAL INSTRUCTIONS: 

1.  Answer each question in a separate book. 

2.  Indicate on the cover of each book the area of the exam, your code number, and the question 
answered in that book. On one of your books list the numbers of all the questions answered. 
Do not write your name on any answer book. 

3.  Return all answer books in the folder provided. Additional answer books are available if 
needed. 

SPECIFIC INSTRUCTIONS: 

Answer all of the following SIX questions. The questions are quite specific. If, however, some 
confusion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES: 

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam 
sometimes contains misprints and ambiguities. If you are convinced a problem has been stated 
incorrectly, mention this to the proctor. If necessary, the proctor can contact a representative of the 
area to resolve problems during the first hour of the exam. In any case, you should indicate your 
interpretation of the problem in your written answer. Your interpretation should be such that the 
problem is non-trivial. 
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1. Designing FIFOs
You must design a FIFO that can hold 64-bit data.
a) Implement a 4-entry FIFO that can hold 64-bit data. The FIFO should implement the functional-
ity of a conventional first-in-first-out data structure. You may assume only edge-triggered D-flip-
flops (D, Q, and clock inputs only) and basic logic gates (AND, OR, and NOT), but you may build 
more complex logic using good hierarchical design. The FIFO accepts new input each cycle that 
data_in_valid is asserted, unless it is full (indicated by fifo_full). Data that is “inserted” into a full 
FIFO is ignored. The data_out signals always drive the data at the head of the FIFO (the oldest 
data). The head of the FIFO is popped when pop_data is asserted. An empty FIFO drives zeros on 
data_out and asserts fifo_empty. Popping an empty FIFO has no affect. Asserting reset makes the 
FIFO empty. All outputs should change only in response to the clock edge.

Inputs :  data_in[63:0] ,  data_in_val id ,  pop_fifo ,  c lk ,  reset
Outputs :  data_out[63:0] ,  f i fo_empty,  f i fo_ful l

b) Now consider implementing a large FIFO that can hold 128 or 1024 entries each being 64 bits. 
Discuss scalability tradeoffs of your design in section (a) and whether you will design a different 
structure if you had access to more design elements like register files, SRAMs, and CAMs.

2. Memory disambiguation
The von Neumann execution model dictates sequential semantics: namely that all instructions 
must appear to execute one at a time and in program order. Control dependences (e.g., branches) 
are the first challenge. To achieve instruction level parallelism, most high-performance processors 
predict branches and speculatively execute based on that prediction. But memory dependences 
(e.g., loads and stores to the same address) also present challenges to out of order instruction exe-
cution. All speculative processors must respect memory dependences to ensure sequential seman-
tics. More aggressive processors use additional prediction and speculation mechanisms to expose 
more parallelism.
(a) Give a pseudo-assembly-code example that illustrates a case where memory dependences 

might limit ILP (in the absence of additional prediction and speculation).
(b) Discuss hardware mechanisms that suffice to detect and enforce memory dependence order in 

out-of-order processors
(c) Discuss how prediction and speculation of memory dependences can increase instruction level 

parallelism.

3. Future commercial processors
For the past 30 years, computers targeting scientific computation have focused on architectures 
that exploit data parallelism (e.g., vectors and massively parallel machines) and provide fast float-
ing point computation. Conversely, computers targeting commercial workloads have focused on 
integer data, caching, random memory accesses, and I/O.
Some pundits predict that the rise in multimedia data types and the increased reliance on complex 
search will lead future commercial computers to look more like classical scientific computers.
(a) Argue why future commercial processors will look increasingly like scientific computers, 

leading to unified general purpose machines for both.
(b) Argue why commercial and scientific and scientific machines will actually diverge, leading to 

increasingly specialized machines for each target domain.
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4. Virtual Memory & Address Translation
Most computer architectures today support virtual memory with demand paging of, at least, fixed-
sized base pages. Most computer implementations support virtual memory address translations 
with translation lookaside buffers (TLB) logically before level one (L1) caches.  Assume that 
future code and data will actively use much more virtual memory than today's.
(a) What problems might the future use of more virtual memory cause if these workloads were 

run on today's computers?
(b) Compare and contrast options for dealing with larger memory use, assuming that the changes 

must be transparent to user- and system-mode software.
(c) Compare and contrast options for dealing with larger memory use, assuming that the changes 

must be transparent to user-mode software only.

5. Message-Passing vs. Shared-Memory Programming
Programmers of concurrent applications can use the message-passing and shared-memory pro-
gramming models.  In the past, message passing has been more commonly used on clusters and 
shared-memory more common on symmetric multiprocessors (SMPs).
(a) Why do programmers choose to author programs in message-passing rather than shared-mem-

ory?
(b) Why do programmers choose to author programs in shared-memory rather than message-pass-

ing?
(c) How might tradeoffs change as programers target 32-thread chip multiprocessors (CMPs)?  

What about CMPs supporting 1,000 threads?

6. Architecture Trends and Component Design
As the complexity of computers and computer architecture evolve, the concentration of design 
effort and innovation tends to move to components that are higher up in the component hierarchy. 
For example, several decades ago a considerable amount of research and design effort was devoted 
to components that carried out arithmetic, e.g., ALUs.  Even the design of integer ALUs was a sig-
nificant research topic.  With increasing resources, the design of such elemental resources becomes 
routine, and the effort shifts to the higher level design which consists of several such elemental 
components, in particular in designing and managing the interaction and use such elemental com-
ponents.
For the past 3 decades, the microarchitectural components of a processing core, and the processing 
core itself, have been the subject of extensive research and design efforts. Today we have multi-
core processors with a small number of processing cores.  Before too long we can expect to see 
chips with hundreds of processing cores, i.e., more than the number of integer ALUs that are 
present in a chip today.  Some have even gone so far as to say that a processing core is "the transis-
tor of the future" implying that the microarchitecture of a processing core will be inconsequential.
(a) Argue why the architecture and design of a processing core will continue to be important in 

the next two decades of semiconductor technology.
(b) Argue why the architecture and design of a processing core will become less relevant, or even 

inconsequential, in the next two decades of semiconductor technology.


