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GENERAL INSTRUCTIONS:  

1.   Answer each question in a separate book.  

2.   Indicate on the cover of each book the area of the exam, your code number, and  

the question answered  in that book. On one of your books list the numbers of all 

the questions answered . Do not write your name on any answer book.  

3.   Return all answer books in the folder provided. Additional answer books are 

available if needed.  

SPECIFIC INSTRUCTIONS:  

Answer all of the following SIX questions. The questions are quite specific. If, however, 

some confusion should  arise, be sure to state all your assumptions explici tly. 

POLICY ON MISPRINTS AND AMBIGUITIES:  

The Exam Committee tries to proofread  the exam as carefully as possible. Nevertheless, 

the exam sometimes contains misprints and  ambiguities. If you are convinced a problem 

has been stated  incorrectly, mention this to the proctor. If necessary, the proctor can 

contact a representative of the area to resolve problems during the first hour of the exam. 

In any case, you should  indicate your interpretation of the problem in your written 

answer. Your interpretation shou ld  be such that the problem is non-trivial.  

 

 

 

 

 

 



1.   Designing priority selectors 

An important component of the instruction issue logic is a priority  selector that selects 

which instruction to issue from the set of available and ready instructions. This priority 

selector is connected  to an instruction queue which includes status information like 

ready, valid, issued, etc. 

 

For this question, you must design just the priority selector for a  16-entry instruction 

window. The main input to this module is one 16 bit-vector called  "ready" that indicates 

which instructions are ready to be issued . The output of this module is an instruction 

number “inst_selected” pointing to the selected  instruction which can be issued . A 

“valid” signal should  indicate if any such instruction is ava ilable. See detailed  interface 

below. The figure shows the context of this priority selector in  the processor's hierarchy. 

 

Inputs:   ready[15:0],  reset,  clk 

Outputs:  inst_selected[3:0],  valid 
 

a) Implement the logic design for the priority selector (PS). This is a "static" priority 

selector – i.e the earliest instruction is always instruction 0 in the ready vector . You 

may use basic logic gates (AND, OR, NOT, NAND, XOR) and flip-flops. Use 

hierarchy where you think it is necessary. You must submit a drawn  schematic. 

 

b) In a “dynamic priority selector”, the earliest instruction can change because the 

instruction queue is maintained  as circular buffer. In a processor, the instruction 

queue is maintained  as a circular buffer as instruction s are fetched  and retired  and 

hence you need this dynamic priority. Describe how you would  use your module as 

a build ing block for such a "dynamic priority selector” (DPS). Also d iscuss the 

interface signals to the rest of the processor   for this “dynamic priority selector” if 

you feel they need  to be d ifferent from the static priority selector .   

 

c) Discuss why this design may not scale to very large instruction windows like 1024 

instructions. 



2.   ILP and Power 

For the past decade or so, most high-performance processors have aggressively used  

speculation and deep out-of-order pipelines to exploit instruction-level parallelism (e.g., 

the Intel Pentium IV). More recently, power concerns have lead  to multicores with 

shorter out-of-order pipelines (e.g., Intel Core 2 ) and  even simple in -order pipelines 

(e.g., Sun Niagara) that resemble the classic 5-stage MIPS pipeline. For a given chip area, 

because of  the design complexity that makes an out-of-order core larger than an in -

order core, you will be able to fit fewer out-of-order cores than in-order cores. 

 

a) Argue why future chips will have hundreds of simple in -order cores. 

 

b) Argue why future chips will have many fewer out-of-order cores. 

 

c) If you were the lead  architect on a multicore intended to ship in  2013, describe 

what kind  of cores you wo uld  want to use and why. 

3.   Vector processing 

a) Explain the motivation for vector processors as classically used  in  super-computers 

(e.g., the CRAY-1). 

 

b) Recently the vector processing techn ique has been adopted  in the form  of short-

vector ISA extensions (e.g., four 16-bit elements in a 64-bit word) in general purpose 

microprocessors. Explain the rationale for this recent trend  and what  are the 

architectural and  microarchitectural enhancements required  to implement such 

short-vector extensions. 

 

c) Graphics processing units (GPU) implemented  as stream processors are also 

extensions of the same idea. Discuss the d ifferences between the architectural 

implementations of these processors compared  to short-vector extensions in general 

purpose processors. 



4.   Multicore Coherence 

Most future processor chips will contain multiple cores whose references  to shared  

memory are accelerated  by caches.  These caches will usually  be kept transparent to 

software via a coherence protocol.  Many protocols are based  on snooping or d irectories.  

Nevertheless, multicore chips will d iffer regarding interconect,  small or large number 

of cores, flat vs. hierarchical, etc. 

 

a) Discuss what factors that favor snooping coherence an d why. 

  

b) Discuss what factors that favor d irectory coherence and why. 

 

c) What coherence protocols do you expect 2013 multicore chips to use and why? 

5.   Prefetching in Multicore Caches 

Most single-core processors support some form of cache prefetching, either using ISA 

extensions to allow software to d irect which data to prefetch or by using hardware 

structures to detect and  predict memory access patterns. Either prefetching approach 

can be designed to prefetch to d ifferent levels of the memory hierarch (e.g., L1 or L2) 

or to a dedicated  prefetch buffer. With the move to multicore processors, caches and off-

chip bandwidth become shared  resources, which introduce additional issues that 

architects must consider. 

 

a) Discuss the trade-offs between d ifferent destinations for prefetched data: a shared -

L2, a private-L1, and  a private prefetch  buffer. 

 

b) Discuss the advantages and d isadvantages between using  hardware-d irected  and 

software-d irected  prefetching when shared  off-chip bandwidth is a limited  resource. 



6.   Non-Volatile Memory 

Over the years, there have been many non -volatile memory technologies that provided  

random memory access, promised  cost per bit that is between DRAM and d isk, and  

required  no power to retain previously stored  bits. 

 

Consider a new technology NVM, inspired  by Flash Memory, that achieves the above, 

but also requires block writes (e.g., of 8KB) and limits the number  of reliable writes to a 

given block (say, 1 million times). 

 

a) What are the opportunities and  challenges of using NVM to replace/ augment 

d isks? 

 

b) How might the presence of NVM at the d isk level affect other system  

components (e.g., DRAM size)? 

 

c) What are the opportunities and  challenges of using NVM to replace/ augment 

DRAM? 

 


