
FALL 2008

COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN—MADISON

PH.D. QUALIFYING EXAMINATION

Computer Architecture

Qualifying Examination

Monday, September 15, 2008

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and

the question answered in that book. On one of your books list the numbers of all

the questions answered . Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are

available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following SIX questions. The questions are quite specific. If, however,

some confusion should arise, be sure to state all your assumptions explici tly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,

the exam sometimes contains misprints and ambiguities. If you are convinced a problem

has been stated incorrectly, mention this to the proctor. If necessary, the proctor can

contact a representative of the area to resolve problems during the first hour of the exam.

In any case, you should indicate your interpretation of the problem in your written

answer. Your interpretation shou ld be such that the problem is non-trivial.

1. Designing priority selectors

An important component of the instruction issue logic is a priority selector that selects

which instruction to issue from the set of available and ready instructions. This priority

selector is connected to an instruction queue which includes status information like

ready, valid, issued, etc.

For this question, you must design just the priority selector for a 16-entry instruction

window. The main input to this module is one 16 bit-vector called "ready" that indicates

which instructions are ready to be issued . The output of this module is an instruction

number “inst_selected” pointing to the selected instruction which can be issued . A

“valid” signal should indicate if any such instruction is ava ilable. See detailed interface

below. The figure shows the context of this priority selector in the processor's hierarchy.

Inputs: ready[15:0], reset, clk

Outputs: inst_selected[3:0], valid

a) Implement the logic design for the priority selector (PS). This is a "static" priority

selector – i.e the earliest instruction is always instruction 0 in the ready vector . You

may use basic logic gates (AND, OR, NOT, NAND, XOR) and flip-flops. Use

hierarchy where you think it is necessary. You must submit a drawn schematic.

b) In a “dynamic priority selector”, the earliest instruction can change because the

instruction queue is maintained as circular buffer. In a processor, the instruction

queue is maintained as a circular buffer as instruction s are fetched and retired and

hence you need this dynamic priority. Describe how you would use your module as

a build ing block for such a "dynamic priority selector” (DPS). Also d iscuss the

interface signals to the rest of the processor for this “dynamic priority selector” if

you feel they need to be d ifferent from the static priority selector .

c) Discuss why this design may not scale to very large instruction windows like 1024

instructions.

2. ILP and Power

For the past decade or so, most high-performance processors have aggressively used

speculation and deep out-of-order pipelines to exploit instruction-level parallelism (e.g.,

the Intel Pentium IV). More recently, power concerns have lead to multicores with

shorter out-of-order pipelines (e.g., Intel Core 2) and even simple in -order pipelines

(e.g., Sun Niagara) that resemble the classic 5-stage MIPS pipeline. For a given chip area,

because of the design complexity that makes an out-of-order core larger than an in -

order core, you will be able to fit fewer out-of-order cores than in-order cores.

a) Argue why future chips will have hundreds of simple in -order cores.

b) Argue why future chips will have many fewer out-of-order cores.

c) If you were the lead architect on a multicore intended to ship in 2013, describe

what kind of cores you wo uld want to use and why.

3. Vector processing

a) Explain the motivation for vector processors as classically used in super-computers

(e.g., the CRAY-1).

b) Recently the vector processing techn ique has been adopted in the form of short-

vector ISA extensions (e.g., four 16-bit elements in a 64-bit word) in general purpose

microprocessors. Explain the rationale for this recent trend and what are the

architectural and microarchitectural enhancements required to implement such

short-vector extensions.

c) Graphics processing units (GPU) implemented as stream processors are also

extensions of the same idea. Discuss the d ifferences between the architectural

implementations of these processors compared to short-vector extensions in general

purpose processors.

4. Multicore Coherence

Most future processor chips will contain multiple cores whose references to shared

memory are accelerated by caches. These caches will usually be kept transparent to

software via a coherence protocol. Many protocols are based on snooping or d irectories.

Nevertheless, multicore chips will d iffer regarding interconect, small or large number

of cores, flat vs. hierarchical, etc.

a) Discuss what factors that favor snooping coherence an d why.

b) Discuss what factors that favor d irectory coherence and why.

c) What coherence protocols do you expect 2013 multicore chips to use and why?

5. Prefetching in Multicore Caches

Most single-core processors support some form of cache prefetching, either using ISA

extensions to allow software to d irect which data to prefetch or by using hardware

structures to detect and predict memory access patterns. Either prefetching approach

can be designed to prefetch to d ifferent levels of the memory hierarch (e.g., L1 or L2)

or to a dedicated prefetch buffer. With the move to multicore processors, caches and off-

chip bandwidth become shared resources, which introduce additional issues that

architects must consider.

a) Discuss the trade-offs between d ifferent destinations for prefetched data: a shared -

L2, a private-L1, and a private prefetch buffer.

b) Discuss the advantages and d isadvantages between using hardware-d irected and

software-d irected prefetching when shared off-chip bandwidth is a limited resource.

6. Non-Volatile Memory

Over the years, there have been many non -volatile memory technologies that provided

random memory access, promised cost per bit that is between DRAM and d isk, and

required no power to retain previously stored bits.

Consider a new technology NVM, inspired by Flash Memory, that achieves the above,

but also requires block writes (e.g., of 8KB) and limits the number of reliable writes to a

given block (say, 1 million times).

a) What are the opportunities and challenges of using NVM to replace/ augment

d isks?

b) How might the presence of NVM at the d isk level affect other system

components (e.g., DRAM size)?

c) What are the opportunities and challenges of using NVM to replace/ augment

DRAM?

