University of Wisconsin-Madison

Computer Sciences Department

Database Qualifying Exam

Spring 04
3:00 to 7:00 PM, 2540 Engineering Hall
GENERAL INSTRUCTIONS

Answer each question in a separate book.

Indicate on the cover of each book the area of the exam, your code number, and the question answered in that book. On one of your books list the numbers of all the questions answered. Return all answer books in the folder provided. Additional answer books are available if needed.

Do not write your name on any answer book.

SPECIFIC INSTRUCTIONS

Answer any four (4) out of five (5) questions. Before beginning to answer a question make sure that you read it carefully.  If you are confused about what the question means, state any assumptions that you have made in formulating your answer.  Good luck!

Policy on misprints and ambiguities:
The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam sometimes contains misprints and ambiguities. If you are convinced a problem has been stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a representative of the area to resolve problems during the

first hour of the exam. In any case, you should indicate your interpretation of the problem in your written answer. Your interpretation should be such that the problem is nontrivial.

1. Disks and Storage
Consider a disk with a sector size of 512 bytes, a block size of  1024 bytes, 2000 tracks per surface, 50 sectors per track, five double-sided platters, and average seek time of 10 msec.  Suppose that a file containing 100,000 records of 100 bytes each is to be stored on such a disk and that no record is allowed to span two blocks.
a) How many records fit onto a block? You should allow for appropriate page-layout overheads in your answer; assume that page size is 1 block. Briefly explain your estimate.
b) How many blocks are required to store the entire file? If the file is arranged sequentially on disk, how many surfaces are needed?

c) How many records of 100 bytes each can be stored using this disk?

d) If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what page is stored on block 1 of track 1 on the next disk surface?  How would your answer change if the disk were capable of reading and writing from all heads in parallel?

e) What time is required to read a file containing 100,000 records of 100 bytes each sequentially?  Again, how would your answer change if the disk were capable of reading/writing from all heads in parallel (and the data was arranged optimally)?

f) What is the time required to read a file containing 100,000 records of 100 bytes each in a random order?  To read a record, the block containing the record has to be fetched from disk. Assume that each block request incurs the average seek time and rotational delay.
2. Query Languages
This question is based upon the Aho-Ullman paper.

a) The authors of this paper suggest that query languages should not interpret the data values appearing in the data base. How do they formalize this notion? (That is, what is the condition that should be satisfied if the query language does not interpret data values?)
b) Requiring data values to be uninterpreted precludes a number of interesting and useful queries. Give an example of such a query, and state how Aho and Ullman modified their condition from part 1 to include some of these interesting queries.
c) For every graph, there is a relational query that computes the transitive closure of that graph. Why does this statement not contradict Aho and Ullman's result that there is no way to express the transitive closure in relational algebra? 

d) How do the authors suggest extending relational query languages to capture the transitive closure? 
e) Compare Datalog with Aho and Ullman’s proposal.

3. Grid Files

a) Briefly describe how Grid files differ from R-trees by characterizing the kinds of data that the two indexing mechanisms are designed to handle.

b) Most B-tree indices support multi-attribute keys.  Consider the table Employee (Id, Name, Age, Salary).   Explain the difference between creating a B-tree index on (ID, Age, Salary) and a Grid file index on (ID, Age, Salary) in terms of the types of queries that the two indices can support.

c) A number of specialized concurrency control mechanisms have been developed for B-trees that are capable of providing higher throughput than would be possible with the standard two-phase locking protocol.  Design a non-2PL locking protocol for grid files that will the maintain consistency of the Grid file.
4. Distributed Concurrency Control: Two-Phase Commit

Your task in this problem is to design a distributed commit protocol in which the subordinates in a transaction can decide on their own if they want to follow the 2PC with presumed-abort or the 2PC with presumed-commit protocol. The idea is that in their initial response to the coordinator, the subordinates, in addition to voting "yes" or "abort", indicate which protocol they are following (i.e., presumed-abort or presumed-commit.) The coordinator may need to keep track of which subordinates are following which protocol, and may need to change its behavior depending upon what kinds of subordinates are involved in a transaction.

Sketch the protocol, being sure to cover the coordinator, presumed-abort subordinates, and presumed-commit subordinates. Be sure to include information about which log records are forced, and when the transaction can be "forgotten" by each participant.

5. Stream Data Management
In recent years, the DBMS research community has gotten very interested in stream processing.  The basic idea here is that instead of managing data stored on disk, a stream database system handles data that arrives from some remote source in an unending “stream”.  

a) In such systems, queries are typically processed over some window (possibly infinite) of each input stream.  Note that the queries in general can refer to recently received stream data as well as older data. Do you think existing relational database systems are well suited to answering such queries?  Why or why not?

b) Monitoring tasks involve continuously evaluating a collection of queries against new and arriving data.  What new challenges does such “continuous query” processing involve?  How is this related to earlier work on database triggers?

c) Are these new applications truly database applications?  Languages for processing in-memory streams have been proposed.  Consider the use of such languages, possibly in combination with a conventional relational DBMS.  For what kinds of tasks do you anticipate that a native stream DBMS would do better than such a hybrid solution?
d) Consider a temporal database, which supports the operations of inserting an object (modeled simply as a unique id that never changes and a value), deleting an object, and modifying an object’s value.  Conceptually, the values an object takes on over time can be modeled as a stream. What similarities and differences do you see with respect to the stream applications discussed above? 
