MATHEMATICAL PROGRAMMING

Fall 2000 Qualifying Exam
September 18, 2000
Instructions: Answer 5 of the following 8 questions.

e A bookcase requires three hours of work, one unit of metal, and
four units of wood, and it brings in a profit of $19.

e A desk requires two hours of work, one unit of metal, and three
units of wood and it brings in a profit of $13.

e A chair requires one hour of work, one unit of metal, and three
units of wood, and it brings in a profit of $12.

e A bedframe requires two hours of work, one unit of metal, and
four units of wood, and it brings in a profit of $17.

e Only 225 hours of labor, 117 units of metal, and 420 units of wood
are available per day.

The optimal solution calls for 39 bookcases, 48 chairs, and 30 bedframes
to be produced every day. Solve the following variations:

(a) The profit brought in by each desk increases from $13 to $15.
(b) The availability of metal increases from 117 to 125 units per day.

(c) The company may also produce coffee tables, each of which re-
quires three hours of work, one unit of metal, two units of wood,
and brings in a profit of $14.

(You should assume that the changes are cumulative. Thus, for exam-
ple, the profit for desks is $15 in the second and third questions).

. Suppose that:

sup {—¢'u | M'u <0, u>0} = +oo.
u€R™

What can you say about the linear complementarity problem:
0<zxz L Mzx+p>0,

where M € R"*", p, ¢ € R" and p < q?
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3. Suppose that the problem:

mliqn P F(z)st.F(x) >0, x >0,
reER?

where I': R" — R" is differentiable on R", has a Karush-Kuhn-Tucker
point (Z,4,v) € R"™*" such that @ = Z, where @ is optimal multiplier
associated with F'(x) > 0. What can you say about the nonlinear
complementarity problem:

0<z L F(z)>07

4. Consider the problem:

min f(z),

where f : R" — Rand S € R", which may possibly be empty. Suppose
that some fixed ¥ € R" solves the penalty problem:

min P(z,a) = f(z) + aQ(x), for all a € {a’ 1 0o},

reER™

where Q(z) is some penalty function such that:
Q(z) =0forz € S, else Q(z) > 0.

What can you say about:

(a) Q(z)?
(b) f(z)?

Make sure that you consider the case when S is empty.



5. Suppose that f is an extended-real-valued convex function on R", and
let x be a point of ridom f with f(x) > —oo. Write S for the subspace
parallel to dom f.

(a) Show that df(x) # 0.

(b) Show from first principles that the set D := df(x)NS is nonempty,
compact, and convex. You may use without proof elementary re-
sults about dimensionality, relative interiors, and orthogonal de-
compositions, as well as the fact that f is continuous on ridom f.

(c) Show that df(z) = D + S*.

6. Consider the following (not necessarily feasible) complementarity prob-
lem (CP): determine an n vector x such that x has the minimum num-
ber of non-zero components subject to the constraints: 0 < z and
0 < Azx+band 2/(Ax +b) = 0, where A is a given n X n matrix and
b is a given n vector. Assume that a value M > 0 is known such that
any possible solution of (CP) must satisfy x < Me where e is a vector
of ones.

(a) Introducing an n vector u of binary variables, formulate (CP) as a
linear MIP (P) with objective min e'u and appropriate constraints
in  and u. (Discuss how any data needed to set up (P) may be
easily determined.) Show that (P) and (CP) are equivalent.

(b) If the integrality constraints on u are deleted, and the resulting
LP is solved, discuss two outcomes of this LP solution process
that would allow conclusions to be drawn about (CP) without
any additional computation.



7. Let N and A be non-empty sets of nodes and arcs, respectively, that
define a digraph. Let s # t be elements of N and consider the maximum
flow problem from s to ¢ corresponding to the digraph and flow vector
bounds 0 < x < ¢, where ¢ is non-negative.

(a) State the maximum flow problem, using divergence constraints
only at the intermediate nodes i (s # ¢ # t), and show that this
problem always has an optimal solution.

(b) Show that this problem always has an optimal solution in which
xy = 0 for all pairs (t,i) corresponding to arcs in the original
digraph. (Be sure to establish feasibility for any solution that you
construct. )

8. A company must complete three jobs. The amounts of processing time
(in minutes) required to complete the jobs are shown in the table below:

set machine /1x4/;
set job /j1*j3/;

table proctime(job,machine)

1 2 3 4
j1 20 25 30
j2 15 20 18
E 35 28

A job cannot be processed on machine m unless for all ¢ < m the
job has completed its processing on machine i. Once a job begins its
processing on machine m, the job cannot be preempted on machine m.
The flow time for a job is the difference between the job’s completion
time and the time at which the job begins its first stage of processing.
Formulate a GAMS or AMPL model whose solution can be used to
minimize the average flow time of the three jobs.

Ensure that you carefully describe the purpose of each variable and
equation in your model. (Hint: two types of contraints will be needed:
one to ensure a job cannot begin to be processed until all earlier portions
of the job are completed. The other ensures that only one job will
occupy a machine at a given time.)
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Fall 2000 Qualifying Exam Solutions

525Theory The LCP is infeasible, and hence unsolvable, because by the Strong
Duality Theory of Linear Programming the following linear program is
infeasible:

min {0’z | Mz > —q, x > 0},
X
and so is:

min {0’z | Mz > —p, = > 0}.

726 solution The point Z solves the NCP, because the KKT conditions are:
FZ)+VF@)(z—u)—1v=0,0<ual F(z)=0,0<0v 1Lz >0,
from which follows:
TF(z)=7'v=0,
if we set @ = Z in the KKT conditions.

730 solution (a)

Q(Z) = min Q(z)

(b)
f(z) = min{f(z) | Q(x) = min Q(x)}

zERT zeR™
Proof:
(a) Fix x € R" and let o' — oo. Then:
f(@) 4+ a'Q(z) < f(z) + 'Q(X)

or:

f(@) = f(z)

ot

Q(z) < Q) +

Letting o’ — oo gives (a).



(b) Let

x € argm}zn Q(x).
TER™

Then:

fx) = flx) +a°(Qx) - Q(x)) =
P(z,a’) — a’Q(7) >

This gives (b).

727 solution If f were improper it would take —oo everywhere on ridom f, but we
are told that its value at = is not —oo. Therefore f is proper convex, and
such a function is subdifferentiable everywhere on the relative interior
of its effective domain. Therefore Of (x) # (). This also shows that f(x)
must be finite.

The set Of(x) is the intersection over all z € R” of the sets

{d] f(z) = f(z) +{d,z — 1)},

each of which is closed and convex. This shows that Jf(x) is closed and
convex, and as S is also closed and convex so is the intersection D. For
compactness, we need only show that D is bounded. Let V' be the set
of points in S having unit length. As z € ridom f, for small positive
€ we have z + €V C ridom f. Accordingly, f takes a maximum ¢ on
x + €V. If d is any nonzero point of D, then the point y := (¢/||d||)d
belongs to €V, so

¢ 2> flz+y) = f2) +{dy—x) = f(z) + el|d]]

This yields the bound ||d|| < e '[¢— f(x)], and therefore D is bounded.

[
Next, let w be any point of df(z) and let ¢ be any point of S*. For
each z € R* we have f(z) > f(z) + (w + ¢,z — ) (consider the two
cases z € dom f and z ¢ dom f). So S is contained in the lineality
space of df(x), and then

Of(x) =S+ +[0f(x)nS] =S+ +D.

\_/H

This shows simultaneously that D # () (because df(x) is nonempty)
and that Of(z) = D + S+.



720 solution

719 solution

First compute a K > 0 such that Ax + b < Ke for 0 < z < Me.
This may be done by choosing K to the be the largest k; such that
k; = max{A;x + b;|0 < x < Me}. If the value for any k; is negative,
(CP) is infeasible and no further computation is needed.

The required MIP may then be written as:
min eu sit. 0 <z < Mu,0< Az+b< K(e—u), u binary.

It is easy to verify this is equivalent to (CP) since the objective of the
MIP simply counts the non-zeroes in x and the constraints of MIP only
allow complementary solutions.

When the integrality constraints on u are relaxed and the LP is solved,
a conclusion about (CP) is available if the LP is infeasible (implying
the infeasibility of (CP)) or if the LP has an integer solution, in which
case the x values will be optimal for (CP).

The maximum flow problem is always feasible (0 is always feasible)
and is bounded above by the sum of the capacities, so it always has an
optimal solution. To show that there is an optimal solution with all
x4;=0, consider an optimal solution with an x;; # 0. Use the conformal
decomposition theorem (or logically trace flows beginning with this
arc) to obtain a path flow containing this arc. Since t is the only
node at which divergence may be negative in an optimal solution, this
path must be a cycle, and flow on the cycle can be reduced (and zy;
eventually driven to 0 by repeated applications of this process) without
affecting the objective.



