
Fall 2009 Qualifier Exam:
OPTIMIZATION

September, 2009

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code
number, and the question answered in that book. On one of your
books list the numbers of all the questions answered. Do not write
your name on any answer book.

3. Return all answer books in the folder provided. Additional answer
books are available if needed.

SPECIFIC INSTRUCTIONS:

Answer 5 out of 8 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible.
Nevertheless, the exam sometimes contains misprints and ambiguities. If
you are convinced a problem has been stated incorrectly, mention this to the
proctor. If necessary, the proctor can contact a representative of the area to
resolve problems during the first hour of the exam. In any case, you should
indicate your interpretation of the problem in your written answer. Your
interpretation should be such that the problem is nontrivial.
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1. Consider the following linear program:

min 2x1 − x2

s.t.
x1 − x2 ≥ 4,

3x1 + 2x2 ≥ 10,
x1, x2 ≥ 0.

(a) Write down the dual of this problem.

(b) Find solutions for the primal and dual. (Hint: you could use
tableaus labeled with both primal and dual variables.)

(c) Suppose the right-hand side of the first constraint is changed from
4 to 10. Without performing any additional simplex iterations or
referring to the tableau, give a lower bound on the optimal primal
objective for the modified problem. Explain.

(d) Does the solution of the primal problem change if you change the
right-hand side of the second constraint to 12 (while leaving the
right-hand side of the first constraint at 4)? Explain.

(e) Suppose we modify (a) by changing the coefficient of x1 in the
objective from 2 to −2. What can you say about the properties
of this modified problem and its dual?

2. (a) Suppose that the polyhedron

P (b) =
{

x ∈ Rn
+ | Ax ≤ b

}
,

is bounded and non-empty ∀b ∈ T ⊂ Rm. Consider the function
v : T → R defined as

v(b)
def
= max

x∈P (b)
{cT x}.

What is the shape of v(b)? Prove your answer.

(b) Prove that if the set

F = {x ∈ Rn
+ | Ax ≤ b}

is unbounded, then there exists k ∈ {1, 2, . . . n} such that the
linear program:

(LP )k max
x∈F

xk

2



has an unbounded optimal solution value.

Recall: A set T is unbounded if and only if ∃z ∈ T such that
‖z‖p ≥ M ∀M ∈ R (for any norm p).

3. I am a business person in Phoenix, Arizona with a need for an applied
statistics solution, and was wondering if you could assist me.

We are a Steelcase Office Environments distributor. Our sales by month
are variable and have “peaks and valleys”. We have our own employees,
which when fully loaded for benefits and taxes, cost us $17.50 per hour.
We have the option of using labor from an ourside agency at the cost
of $25 per hour.

What I am looking for is a model that will tell me the optimum base
employee staffing level to maintain throughout the year, which can be
added to from time to time with agency labor when our sales require
additional staff over this employee base. Here are our projected sales
and manhour needs by month for the year 2010:

SALES HOURS

MO. LEVEL REQUIRED

JAN 3900 390

FEB 4200 420

MAR 3400 340

APRIL 3200 320

MAY 3100 310

JUNE 5900 590

JULY 3400 340

AUG 5800 580

SEPT 5500 550

OCT 3600 360

NOV 4200 420

DEC 6000 600

(a) Can you provide me with the appropriate GAMS or AMPL model
to use for this purpose?

(b) What model would you use to minimize the expected cost if the
hours required are instead +50 hours of the given value with prob-
ability 2/3, and -100 hours with probability 1/3?
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(c) How would your proposed solution technique change if instead
you were simply told that the hours required lie somewhere be-
tween the given value and +50 or -100 hours (without distribution
information)?

4. Consider the following linear programming formulation of the n × n
assignment problem: maxx aT x s.t. Ax = e, x ≥ 0, where e is a
vector of ones and Ax = e represents the usual set of 2n assignment
constraints (note: it is assumed that all n2 arcs are present). For this
problem suppose that there exists a non-optimal basic feasible solution
(BFS) comprised of a numerical flow vector y and a set of basic arcs S.

(a) Show that yij = 1 for all basic arcs ij with non-zero flow.

(b) Prove that there exists a simple cycle flow with flow vector c and
corresponding set of cycle arcs T with |cij|=1 for all arcs ij in T
and such that y+c is a feasible assignment with a better objective
value.

(c) Show that there is a set of arcs U such that y + c and U comprise
a BFS.

(d) Can it be guaranteed that y + c can be obtained from y in a single
simplex pivot? Answer yes or no and explain your answer.

5. Consider the following precedence-constrained knapsack set:

X =
{

x ∈ {0, 1}n
∣∣∣ n∑

i=1

aixi ≤ b, xi ≤ xj, ∀(i, j) ∈ A
}

where ai > 0 for all i ∈ N = {1, . . . , n} and A ⊆ N × N . For i ∈ N
define Di = {j ∈ N | (i, j) ∈ A} and for a set C ⊆ N , define D(C) =
C ∪

(
∪i∈CDi

)
.

(a) A set C ⊆ N is called an induced cover if
∑

j∈D(C) aj > b. Prove
that if C is an induced cover, then the inequality∑

i∈C

xi ≤ |C| − 1

is valid for X.
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(b) Now consider the specific instantiation of this set

X =
{
x ∈ {0, 1}4

∣∣ 7x1 + 5x2 + 4x3 + 4x4 ≤ 12, x2 ≤ x4

}
and the inequalities

x1 + x2 + x4 ≤ 2 (1)

x2 + x3 ≤ 1 (2)

which are valid for X (you may take this as given). For each of
these inequalities, state whether or not it is facet-defining for the
convex hull of X, and provide a proof of your answer. You may
also take it as given that the convex hull of X is full-dimensional.

6. Suppose that f is a continuously differentiable function on Rn. Write
down (in concise form) first-order necessary conditions for the problem
minx∈Ω f(x), where Ω is each of the following closed convex subsets of
Rn:

(a) Ω = Rn
+ := {x |xi ∈ [−1, 1], i = 1, 2, . . . , n}.

(b) Ω = {x |Ax = b} for some matrix A ∈ Rm×n and vector b ∈ Rm.
(Assume that Ω 6= ∅.)

(c) Ω = {γv | γ ≥ 0}, where v is a given vector in Rn.

(d) Ω = {x | ‖x‖2 ≤ 1}.
(e) Ω = {x | ‖x‖1 ≤ 1}.

7. Let f be a closed proper convex function on Rn. Suppose that there
exist a real number β and a positive ε such that for each z ∈ Rn with
‖z‖ < ε we have for every x the inequality f(x) ≥ 〈z, x〉 − β.

Must f then have a minimizer? Either prove that it does, or exhibit a
counterexample.

8. Suppose H ∈ Rn×n and A ∈ Rm×n. Prove the following are equivalent:

(a) Az = 0 and z 6= 0 implies 〈z, Hz〉 > 0

(b) There exists γ̄ such that H + γ̄AT A is positive definite
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Show if either of these holds, then H + γAT A is positive definite for all
γ ≥ γ̄.

Suppose now that H is symmetric and positive semidefinite on the null
space of A, i.e. Az = 0 implies that 〈z, Hz〉 ≥ 0. Is it true that there
is some γ̄ > 0 so that H + γAT A is positive semidefinite for all γ ≥ γ̄.

Finally, give one or two sentences explaining why this result might be
useful for min f(x) subject to Ax = b.
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