
MATHEMATICAL PROGRAMMING

Depth Exam: Answer any 6 of the following 8 questions

Breadth Exam: Answer any 3 of the following 8 questions

1. A textile firm is capable of producing 3 products in amounts x1, x2, x3 . Its
production plan for the next month must satisfy the constraints:

x1 + 2x2 + 2x3 ≤ 12

2x1 + 4x2 + x3 ≤ f

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

The first constraint is determined by equipment availability and is fixed. The
second constraint is determined by the availability of cotton, with f being the
amount of cotton available. The net profits of the products are 2, 3 and 3 per
unit respectively, excluding the cost of cotton.

(a) Find the optimal dual variable (shadow price) λ2 of the cotton input as a
function of f . Plot λ2(f) and the net profit z(f) , excluding the cost of
cotton.

(b) The firm may purchase cotton on the open market at a price of 1
6 . However,

it may acquire a limited amount s at a price of 1
12 from a major supplier

that it purchases from frequently. Determine the net profit of the firm Π(s)
as a function of s .

2. Consider the following linear system:

Ax = b

x ≥ 0

where A is an m×n real matrix with rank (A) = m and 0 �= b ∈ IRm . Let Ω =
{x ∈ IRn : Ax = b, x ≥ 0} �= ∅ and for each x let X := diag (x1, x2, . . . , xn) .
Show that the two following statements are equivalent:

(a) rank (AX) = m ∀x ∈ Ω

(b) b cannot be expressed as nonnegative linear combination of m− 1 or fewer
columns of A .

Hint: The matrix AX is comprised of positively-scaled columns of A and
columns of zeros.
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3. Let P (x) denote the pure network flow problem

min
x

cx

s.t. Ax = b

0 ≤ x ≤ u,

where A is a node-arc incidence matrix. Suppose that x̄ is a BFS (basic feasible
solution) of P (x) and that x1 and x2 correspond to two pivot-eligible arcs
(relative to x̄).

(a) State conditions under which x1 and x2 can be “simultaneously” (i.e. in
parallel) brought into the basis, producing the same new primal BFS that
would result if they were brought in sequentially (in either order).

(b) State corresponding conditions for the dual variable updates associated with
x1 and x2 .

(c) Give a numerical example in which the conditions of part (a) are satisfied
and the conditions of part (b) are violated.

4. Let k(s) be a “separation counter” defined by

k(s) =
{ 0 if s < δ

1 if s ≥ δ

where δ is a given positive constant. Formulate as a mixed integer
linear program the following pattern separation problem:

max
c,α,s,t

p∑
i=1

k(si) +
p∑

i=1

k(ti)

s.t. cxi − α ≥ si (i = 1, . . . , p)

cyi − α ≤ −ti (i = 1, . . . , p)

‖c‖∞ ≤ 1

where x1, . . . , xp and y1, . . . , yp are given sets of points in IRn ; and c (a row
vector), α , s = (s1, . . . , sp) , and t = (t1, . . . , tp) are unknowns. Be sure to define
any constants (which may depend on the xi and yi) used in the formulation.
(Note: Without loss of generality assume: si ≤ δ, ti ≤ δ, i = 1, . . . , p.)
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5. Consider the problem min
x≥0

f(x) where f : IRn → IR is differentiable and

convex on IRn . Assume that a solution x̄ exists. For z ∈ IRn define(
(z)+

)
i
= max {zi, 0}, i = 1, . . . , n .

(a) Suppose that for some x̂ ≥ 0, ∇f(x̂) > 0. Find an upper bound on ‖x̄‖1

in terms of x̂ and ∇f(x̂) , where ‖ · ‖1 denotes the 1-norm.

(b) Suppose, in addition, that f has a Lipschitz-continuous gradient, from
which you can assume that for some number L > 0:

L
∥∥y − x

∥∥2 ≥ (∇f(y) −∇f(x)
)
(y − x) ≥ 1

L

∥∥∇f(y) −∇f(x)
∥∥2

where ‖ · ‖ denotes the 2-norm. Obtain for any x ≥ 0 in IRn , an up-
per bound on ‖∇f(x) − ∇f(x̄)‖ in terms of L , x̂ and the quantities,
x∇f(x),

(−∇f(x)
)
+

. (The last 2 quantities measure the violations by
x ≥ 0 of the Karush-Kuhn-Tucker conditions for the problem).

6. Consider the proximal point algorithm defined by

xk+1 = arg min
x∈X

(
f(x) +

γ

2

∥∥x − xk
∥∥2)

where ‖ · ‖ denotes the 2-norm, γ > 0, f is differentiable and convex on IRn,

X is a convex subset of IRn .

Define

X̄ := arg min
x∈X

f(x) := set of minimizers of f on X

Suppose that for some k, xk ∈ X̄ . Prove that xk = P (xk−1
∣∣X̄) where

P (x
∣∣X̄) = arg min

y∈X̄
‖x − y‖ .

Hint: You may want to use the fact that:

z = P (x
∣∣X̄) ⇔ 〈x − z, y − z〉 ≤ 0 ∀y ∈ X̄
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7. Let the function f : IRn → IR have a Lipschitz continuous gradient on IRn with
constant L . You are given a point x ∈ IRn and a direction vector p ∈ IRn such
that ∇f(x)p < 0 and ‖p‖ = 1, where ‖ · ‖ denotes the 2-norm.

(a) For what interval of λ can you guarantee that f(x+λp) < f(x)? Establish
your claim.

(b) What specific value of λ will give you the biggest guaranteed decrease in
f ? Establish your claim.

(c) Suppose p = −∇f(x)
/‖∇f(x)‖ . What can you say about each accumula-

tion point x̄ of the sequence {xi} where xi+1 = xi +λipi , and λi is chosen
according to part (b)? Establish your claim assuming that ∇f(xi) �= 0 for
all i .

Hint: Assume f(x + λp) − f(x) − λ∇f(x)p ≤ Lλ2

2 ‖p‖2

8. Suppose f is a closed proper convex function on IRn , and ρ is a fixed positive
number. Let

fρ(x) = inf
y

g(x, y),

where
g(x, y) = f(y) + (2ρ)−1‖y − x‖2.

(a) Show that fρ is a convex function.

(b) Show that the infimum in y of g(x, y) is attained at a unique point of IRn .

Suggestion: As part of your answer for (b), consider establishing the following
intermediate facts: (i) g(x, ·) is lower semicontinuous; (ii) g(x, ·)
has bounded level sets; (iii) g(x, ·) is strictly convex.
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