MATHEMATICAL PROGRAMMING

Depth Exam: Answer 6 questions, with at most 2 questions from 1,2,3. **Breadth Exam:** Answer 3 questions, with at most 2 questions from 1,2,3.

1. Consider the following LP:

maximize
$$16x_1 + 24x_2 + 32x_3$$
 subject to
$$3x_1 + 4x_2 + 6x_3 \le 200$$

$$5x_1 + 6x_2 + 5x_3 \le 288$$

$$8x_1 + 6x_2 + 5x_3 \le 400$$

$$x_1, x_2, x_3 \ge 0$$

The points

$$x^* = \begin{bmatrix} 0 \\ \frac{91}{2} \\ 3 \end{bmatrix} \qquad u^* = \begin{bmatrix} \frac{9}{2} \\ 1 \\ 0 \end{bmatrix}$$

are an optimal primal-dual solution of the above LP. Determine

- (a) the range of values for the **coefficient of** x_1 in the objective (currently set at 16) such that x^* remains optimal;
- (b) the range of values for the **rhs in the third** inequality (currently set at 400) such that u^* remains optimal.
- 2. Given an n-vector \bar{x} and a set $Y := \{y \mid Ay \geq b\}$, formulate as a linear program the problem of finding a point in Y that minimizes $||y \bar{x}||_1$ over all y in Y, where $||t||_1$ is the sum of the absolute values of the components of t. In addition, prove that the dual of this linear program is always feasible (even if Y is empty).
- 3. In a Newton method for solving $F(x) \ge 0$, $F: \mathbb{R}^n \to \mathbb{R}^m$, a direction from the point x is normally found from within D(x), which is given by

$$D(x) := \{d \mid F(x) + F'(x)d \ge 0\},\,$$

where F'(x) denotes the $m \times n$ Jacobian of F. In general, assuming that $D(x) \neq \emptyset$, there may be more than one direction in this set, so that the following is normally required in addition:

$$d \in D(x), ||d|| \le \eta \operatorname{dist}(0 \mid D(x)),$$

where $\eta \geq 1$ and dist $(x \mid D) := \inf_{y \in D} ||y - x||$. By choosing a particular norm and a particular η , show one way to find such a d by solving either a single linear or a single quadratic program.

4. Consider the convex problem

$$\min \ f(x) \qquad s.t. \ Ax \le b$$

where $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable and convex on \mathbb{R}^n , A is an $m \times n$ matrix and $b \in \mathbb{R}^m$. Suppose that for some \hat{x} the Karush-Kuhn-Tucker conditions are **not** satisfied but $A\hat{x} = b$. Show how to use the solution of an appropriate linear program to determine a feasible \bar{x} such that $f(\bar{x}) < f(\hat{x})$.

5. Suppose \bar{x} is a solution of the monotone complementarity problem:

$$F(x) \ge 0, \quad x \ge 0, \quad xF(x) = 0 \tag{NCP}$$

where $F: \mathbb{R}^n \to \mathbb{R}^n$ is monotone on \mathbb{R}^n , that is

$$(y-x)(F(y)-F(x)) \ge 0 \quad \forall y, \ x \in \mathbb{R}^n$$

Give a precise condition which guarantees that the following function:

$$\theta(x) := xF(x) + ||(-F(x), -x)_+||_1$$

has a global minimum at \bar{x} . Here $||z||_1$ denotes the 1-norm on \mathbb{R}^{2n} and

$$(z_+)_i = \max\{z_i, 0\}, i = 1, \dots, 2n, z \in \mathbb{R}^{2n}.$$

6. Let $\alpha_1, \ldots, \alpha_n$ be a collection of nonzero real numbers, and consider the problem

minimize
$$\sum_{i=1}^{n} e^{\alpha_i x_i}$$
, subject to $\sum_{i=1}^{n} \alpha_i^3 x_i = \beta$, $\sum_{i=1}^{n} \alpha_i^4 x_i = \gamma$, (1)

where β and γ are given real numbers. Assume that (1) is feasible. Does it necessarily have an optimal solution? Be sure to specify any general theorems or other results that you use.

- 7. Consider the constraints Ax = s, $b \le x \le c$, where A is an $m \times n$ node-arc incidence matrix with corresponding flow vector x and s, b, c are constant vectors. Assume that these constraints have a feasible solution. Let \bar{x} be a vector such that $b \le \bar{x} \le c$, but $g := s A\bar{x} \ne 0$.
 - (a) Prove that g has at least one positive component and at least one negative component.
 - (b) Choose j such that $g_j > 0$ and define $T := \{(j,k) \mid \bar{x}_{jk} < c_{jk}\} \cup \{(k,j) \mid \bar{x}_{kj} > b_{kj}\}$. Prove that by adjusting \bar{x} on T only, we may obtain a new flow vector x' such that $b \le x' \le c$ and $A_j x' = s_j$, where A_j is the the jth row of A.

8. Consider the following IP:

$$z_{IP} = \max \left\{ c^T x \mid A^{(1)} x \le b^{(1)}, A^{(2)} x \le b^{(2)}, x \ge 0, \text{ } x \text{ integer } \right\}$$

where all data are integer. Let

$$Q = \left\{ x \text{ integer} \mid x \ge 0, \ A^{(2)}x \le b^{(2)} \right\}$$

$$z_{LR}(\lambda) = \max \left\{ c^T x + \lambda^T \left(b^{(1)} - A^{(1)} x \right) \mid x \in Q \right\}$$

$$z_{LD} = \min \left\{ z_{LR}(\lambda) \mid \lambda \ge 0 \right\}$$

$$z_{LP} = \max \left\{ c^T x \mid A^{(1)}x \le b^{(1)}, x \in \text{conv}(Q) \right\}$$

- (a) What is the relationship between z_{IP} , z_{LD} and z_{LP} ?
- (b) Suppose that for some positive scalars δ_1 , δ_2 and some $\lambda \geq 0$

$$\lambda^{T} \left(b^{(1)} - A^{(1)} x^{*} \right) \leq \delta_{1} \text{ and } c^{T} x^{*} + \lambda^{T} \left(b^{(1)} - A^{(1)} x^{*} \right) \geq z_{LR}(\lambda) - \delta_{2}$$

for some x^* feasible for the original integer problem. Show that

- (i) $c^T x^* \ge z_{IP} (\delta_1 + \delta_2),$
- (ii) x^* solves the original IP if $\delta_1 + \delta_2 < 1$.