Mathematical Programming Qualifying Exam

Fall 1994

Answer any 6 out of the following 8 questions.

1. The following optimal tableau has been obtained by processing a linear programming problem whose objective function was c^Tx and whose constraints were of the form $Ax \leq a$, $x \geq 0$. Here s is a vector of non-negative slack variables. The tableau represents a set of linear equations, of which the right-hand side is shown in the rightmost column. The first equation began as $z - c^Tx = 0$.

z	x_1	x_2	x_3	x_4	s_1	s_2	s_3	=
1	2	5	0	0	0	1	3	48
0	3	-1	0	0	1	2	1	4
0	1	4	1	0	0	-1	4	1
0	2	-2	0	1	0	1	0	2

Answer the following questions, justifying your answers.

- (a) What were the dimensions of c, A and a? Was the original problem a maximization or a minimization problem?
- (b) What are the optimal values of the decision variables $x_1, \ldots x_4$, and what is the optimal objective value z_* ?
- (c) Suppose that a_2 were increased to $a_2' := a_2 + 0.5$. What are the new values of x_1, \ldots, x_4 and z_* ?
- (d) Suppose that a_2 were increased to $a_2'' := a_2 + 2.0$. What are the new values of x_1, \ldots, x_4 and z_* ?
- 2. Suppose that the problem

$$\min_{x} cx \qquad s.t. \ Ax = b, \ 0 \le x,$$

where x is a vector in \mathbb{R}^n and b is a vector in \mathbb{R}^m , has an optimal solution. Prove that the problem

$$\min_{x,y} cx \quad s.t. \ Ax - y = 0, \ 0 \le x, \ -|b| \le y \le |b|$$

(where |b| is the vector whose components are $|b_i|$) also has an optimal solution.

3. Consider the problem

$$\min_{x} f(x)$$
 s.t. $g(x) \le 0, -b \le x \le b$

where $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$ are differentiable convex functions on \mathbb{R}^n and $b \in \mathbb{R}^n$. Suppose that the feasible region is nonempty. Can the minimum value be lower than $f(0) - b[(\nabla f(0))_+ + (-\nabla f(0))_+]$? Justify your answer. (For a vector $c \in \mathbb{R}^n$, $(c_+)_i = \max\{c_i, 0\}, i = 1, \ldots, n$.)

4. Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ be convex functions on \mathbb{R}^n , let b and c be points in \mathbb{R}^m , such that b < c and such that there exists a point in \mathbb{R}^n satisfying g(x) < b. Suppose that

$$x_b \in \arg\min_{x} \left\{ f(x) | g(x) \le b \right\} \tag{1}$$

$$x_c \in \arg\min_{x} \left\{ f(x) | g(x) \le c \right\} \tag{2}$$

Give an upper bound on $||u_c||_1$, the 1-norm of the optimal Lagrange multiplier of (2),

in terms of $f(x_b)$, $f(x_c)$, b, and c, and nothing else. **Hint:** Use the KKT saddlepoint optimality criteria.

5. Suppose that $(\bar{x}, \bar{u}) \in \mathbb{R}^{n+m}$ is a stationary point of the augmented Lagrangian

$$L(x, u, \alpha) = f(x) + \frac{1}{2\alpha} [\|(\alpha g(x) + u)_{+}\|^{2} - \|u\|^{2}]$$

where $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ are convex, differentiable functions on \mathbb{R}^n , $\|\cdot\|$ denotes the 2-norm, $(z_+)_i = \max\{z_i, 0\}, i = 1, \dots, m \text{ for } z \in \mathbb{R}^m, \text{ and } \alpha > 0.$ Relate \bar{x} to

$$\min_{x} f(x) \qquad s.t. \ g(x) \le 0,$$

and establish your claim.

6. Consider the piecewise-linear optimization problem

$$\min_{x} \sum_{i,u,j,v} f(x_{iu}, x_{jv}) \qquad s.t. \ Ax \le b$$

where x is a vector of flows on a digraph, $Ax \leq b$ is a set of linear constraints which imply $0 \leq x_{kl} \leq M$ for some constant M for all flow variables x_{kl} , and $f(x_{iu}, x_{jv})$ is an interaction penalty defined to be 1 if $x_{iu} \cdot x_{jv} > 0$ for $i \neq j$ and $(u, v) \in R$, where R is a given set of "related" nodes, and defined to be 0 otherwise.

Formulate this problem as a linear mixed-integer program.

7. Consider the network flow problem (with n nodes):

$$\min_{x} cx$$
 s.t. $div(i) = b_i$ $(i = 1, ..., n - 1), div(n) \ge b_n, 0 \le x$

where $\operatorname{div}(\mathbf{i}) = \sum_{j} x_{ij} - \sum_{j} x_{ji}$.

Show that the existence of an optimal solution to this problem implies

- 1) $\sum_{i=1}^{n-1} b_i \le -b_n$, and
- 2) that there exists an equivalent problem involving n nodes in which all of the node constraints are divergence equations (state this problem and explain why it is equivalent).
- 8. Let f be a proper convex function on \mathbb{R}^2 . You are given that f is finite at the origin and at the points (1,2) and (2,1). Answer the following questions, justifying your answers.
 - (a) Prove that there exist numbers α_1 and α_2 such that the function

$$g(x) := f(x) - \alpha_1 x_1 - \alpha_2 x_2$$

has a minimum at the point (1,1).

- (b) Prove that f satisfies a Lipschitz condition on some neighborhood of (1,1).
- (c) Give the best lower bound you can for the value of the recession function of the conjugate f^* at the point (0,5). Exhibit a function f satisfying the above conditions, for which your bound actually equals the value in question.