Fall 1999 Qualifier Exam:

MATHEMATICAL PROGRAMMING

Instructions: Answer 5 of the following 7 questions.

. 3a?
min TI—xlxg—i—xqule—xg
subject to:
ry + 1 > 2
ry , T3 = 0

What is the minimum value and where is it attained?

. A number of power stations are committed to meeting the following
electricity load demands over a day:

12 pm to 6 am
6 am to 9 am
9 am to 3 pm
3 pm to 6 pm
6 pm to 12 pm

15,000 megawatts
30,000 megawatts
25,000 megawatts
40,000 megawatts
27,000 megawatts

There are three types of generating units available, twelve of type 1,
ten of type 2, and five of type 3. Each generator has to work between
a minimum and a maximum level. There is an hourly cost for each
generator at minimum level. In addition there is an extra hourly cost
for each megawatt at which a unit is operated above minimum level.
To start up, a generator also involves a cost. All this information is

given in the table below:

Min Lev  Max Lev

Cost at Cost per MW Startup

minimum above minimum cost
Type 1 850 MW 2000 MW 1000 2 2000
Type 2 1250 MW 1750 MW 2600 1.3 1000
Type 3 1500 MW 4000 MW 3000 3 500



In addition to meeting the estimated load demands there must be suf-
ficient generators working at any time to make it possible to meet an
increase in load of up to 15%. This increase would have to be accom-
plished by adjusting the output of generators within their permitted
limits.

Construct a (GAMS or AMPL) model whose solution would tell you
which generators would be working in which periods of the day to
minimize total cost. Be careful to be precise in your model formulation,
particularly with the equations and variables that define the model.

. Suppose that an N x N grid is given, and is to be partitioned into
N subdomains with the properties that each subdomain is of equal
size and the total number of internal edges of the partition is as large
as possible. (An internal edge is defined as one that is not part of
the boundary between two subdomains or the boundary of the original
grid.)

(a) Model this problem as a linear integer programming problem using
the binary variable a? to represent the decision of whether or not
to assign grid cell ¢ to subdomain p . Discuss why your model
correctly represents the given problem.

(b) Consider the continuous relaxation of the problem in part (a) .
Discuss whether or not the solution corresponding to setting all
assignment variables to 1/N is feasible for the relaxation. If this
solution is feasible for the relaxation, determine its objective value.

(c) Discuss the relationship between your best estimates for the op-
timal values of the original integer program and its continuous
relaxation.

. Suppose that a network flow (minimization) problem is given with a lin-
ear objective with non-negative coefficients, non-negativity constraints
on the variables, but with divergence equations specified at only a
proper subset N’ of the node set N (and no other constraints). (A
divergence equation at a node 7 is a constraint of the form: total flow
out of node i - total flow into node i = constant).

(a) If this problem has an optimal solution, what is an optimal flow
value for any arc internal to the complement of N’ (that is, an arc



incident only to such nodes)?

Discuss how this problem may be converted to a equivalent stan-
dard network flow problem with divergence equations at all nodes
(be sure to discuss how the nodes and arcs in the new problem
are related to the nodes and arcs of the original problem — do not
assume that these sets coincide). What is the rank of the matrix
in the set of equality constraints in the new problem if the graph
of the original problem was connected (in the usual undirected
path sense) ?

5. Consider the nonlinear program:

min {f(z) [ g(z) < 0},

z€R®

where f : R® — R! and ¢ : R® — R™, are convex functions on R™®.
Suppose that f is nonnegative on R™ and that g(&) < 0 for some 7 in

R™.

Give an upper bound in terms of & on the 1-norm, ||@l|; , of any

optimal Lagrange multiplier 7 € R™ associated with any solution Z to
the problem.

6. Consider the problem of minimizing (locally) the function

flx,y) = (1/2){p(a® + y* — 2z — 2y) + (zy — 1)*},

where = and y are real numbers and p is a real parameter. Answer
the following questions, justifying your answers. You may use known
theorems, but if you do then you must clearly describe them.

What are values zy and gy such that f has a stationary point at
(20, 1yo) for every value of p?

For which value(s) of p does (xg, 3o) satisfy the second-order nec-
essary condition?

For which value(s) of p does (xg,yo) satisfy the second-order suf-
ficient condition?

For which values(s) of p can you be certain that f is convex in a
neighborhood of (g, yo)?

For which value(s) of p can you be certain that Newton’s method,
if started sufficiently close to (xg,yp), will converge quadratically
to (o, %0)?



7. Suppose f is a closed convex function on R2? that has finite values
at the origin and at the points (1,1), (1,—1), (—=1,—1), and (—1,1).
Complete the following requirements, justifying your answers. If you
appeal to general theorems, describe them carefully.

(a) Show that f is proper.

(b) Let f* denote the conjugate function of f. Show that whenever
p is a vector in R? with ||p|| < 1, there exists an 2} € R? that
minimizes the function f*(z*) — (z*, p).

(c) Let g be the recession function of f*. Show that for each z* € R2,
g(x*) > ||z*||, where the norm is the Euclidean norm.



