
OPTIMIZATION

Spring 2003 Qualifying Exam
January 31, 2003

Instructions: Answer 5 out of 8 questions

1. Suppose thatf is an extended-real-valued, closed proper convex function
onRn, and thatx0 is a point in the relative interior of domf . We will call
a directionv 6= 0 adescent directionfor f at x0 if there is someµ< 0 such
that for all small positivet we havef (x0 + tv)≤ f (x0)+µt‖v‖.
Assume that someone has proposed the following idea for finding a descent
direction: “If x∗ is any nonzero element of the subdifferential∂ f (x0), the
direction−x∗ is a descent direction forf atx0.”

(a) Show by counterexample that this proposal is wrong (that is, produce
a function f and a pointx0 for which it doesn’t work).

(b) Prove that ifx0 is not a minimizer off and if, instead of any element of
∂ f (x0), one chooses the element closest to the origin (in the Euclidean
norm), then the negative of this element is a descent direction forf at
x0.

2. Let x̂ be an arbitrary point inRn and consider the minimization problem:

min f (x) s.t. b≤ x≤ c,

where f : Rn−→ R is a differentiable convex function onRn.

(a) Give a lower bound to the minimum value of the problem in terms of
x̂, b, c.

(b) If x̂ is feasible for the above problem, give your best estimate of the
minimum value of the problem in terms of ˆx, b, c.

3. Consider a maximum flow problem defined on a digraph (N,A) with flow
bounds 0≤ x≤ c , where the capacity on the feedback arc (t,s) is infinite.
Assume that an optimal basic feasible solution ˆx with positive optimal value
is given.
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(a) Assume that the price (dual variable)ps for node s is 0. Show that
all node prices are 0 or 1 and, using these prices, show that the for-
ward arcs of a corresponding minimum cut match the set of arcs with
reduced cost 1.

(b) Give a numerical example in which the set comprised of the arcs of ˆx
(the optimal BFS described above) that are at capacity do not form a
minimum cut.

4. (a) Consider the continuous knapsack problem defined by the linear pro-
gram

max
n

∑
j=1

c jx j

s.t.
n

∑
j=1

a jx j ≤ b (1)

x j ≥ 0,

wherebanda j for j = 1, ...,nare all positive integers. Give anO(nlog(n))
algorithm to solve this linear program.

(b) Now consider problem (1), but with the added restriction

x j ∈ {0,1} for j = 1, ...,n.

Why cannot your algorithm for (1) be modified to work for this case?

(c) Show how to reformulate the 0-1 integer program in (b) as a linear
program that hasO(nb) constraints andO(nb) variables, and for which
the extreme points of the feasible region have values that are integral.
(Hint: This linear program should model a longest-path problem on an
acyclic graph.)

5. A cooking oil manufacturer blends a product from five raw oils, whose cost
(in dollars per ton) and hardness (a physical property, measured in unspeci-
fied units) is given in the following table:

raw oil cost ($/ton) hardness
1 110 8.8
2 120 6.1
3 130 2.0
4 110 4.2
5 115 5.0
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The final blended oil sells for $150/ton. Equipment constraints require that
the total amount of oils 1 and 2 (combined) in the final blend cannot exceed
200 tons, while the total of oils 3, 4, and 5 (combined) cannot exceed 250
tons. The final blended oil must have a hardness of between 3 and 6 units.
(Hardness blends linearly.)

(a) Formulate a linear program to determine how much of each oil should
be included in the blend to maximize profit subject to the given con-
straints.

(b) Suppose that at most 3 oils can be included in the final blend. Suppose
also that if an oil is used in the blend, at least 20 tons of it must be used.
By modifying the linear program above, formulate a mixed integer
program that includes these restrictions.

(c) Suppose now that an additional fixed cost of $500 is incurred for each
raw oil used in the blend. However, since oils 2 and 4 come from
the same supplier, a total fixed cost of $750 (not the expected $1000)
is charged ifboth of these oils are used. Describe what additional
variables and constraints, and changes to the objective, are needed to
account for these additional conditions.

6. Consider the following problem:

min
x∈Rn

cTx subject toaTx = b, l ≤ x≤ u,

wherec, a, l , andu are all vectors inRn, all the components ofa andc are
positive, all the components ofl andu are finite, andb is a positive real
number.

(a) If x̃ is an optimal solution for this problem, prove that there exists
π̃ such thatπ̃a j < c j implies x̃ j = l j , π̃a j > c j implies x̃ j = u j , and
l j < x̃ j < u j implies π̃a j = c j .

(b) Suppose the variables are listed in the problem so that

(c1/a1)< (c2/a2)< .. . < (cn/an)

Prove that if a feasible solution exists, then there is an optimal solution
x̄ satisfying the following property that for somes:

x̄ j = u j , j = 1,2, . . . ,s−1,
ls≤ x̄s≤ us

x̄ j = l j , j = s+1,s+2, . . . ,n.
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7. (a) Without using the simplex method, show thatx∗ = (2,0,1) is an opti-
mal solution of:

min 4x1 +2x2−x3

subject to 2x1 +x2−x3≥ 3
6x1 +7x2−5x3≥ 6
6x1 +x2−3x3≥ 5
−x1−x2 +x3≥−1

x1,x2,x3≥ 0

(2)

(b) Is the solution of (2) unique? Justify.

(c) Write down the dual problem and a solution.

(d) Let p2 refer to the objective coefficient multiplyingx2. What is the
smallest valuep2 can take on such thatx∗ remains optimal?

(e) If we replace the objective of (2) by

ax2
1 +4x1 +2x2−x3

for what range of values ofa doesx∗ remains optimal?

Be sure to quote any theorems you use accurately.

8. Consider the quadratic program

min
x

1
2

xTGx+dTx s.t. Ax= b

whereA has full row rank. LetZ be a basis for the null space ofA.

(a) Show that the QP has a unique global minimizer at a pointx∗ satisfying
Gx∗+d = ATλ∗ (for someλ∗) if and only if ZTGZ is positive definite.

(b) What can you say about the (solutions of) QP ifGx∗+ d = ATλ∗ has
a solution andZTGZ is singular and positive semidefinite.

(c) What can you say if eitherZTGZ is indefinite, orGx∗+d = ATλ∗ has
no solution.

(d) Why in practice would you wish to orthonormalizeZ?

Be sure to prove your assertions and quote any results that you invoke ac-
curately.
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