
OPTIMIZATION

Spring 2004 Qualifying Exam
February 2, 2004

Instructions: Answer any 5 of the following 8 questions.

1. (i) Solve the linear program:

min 6x1 +7x2−3x3

subject to:
−3x1 +2x2 +x3 ≥−6
−4x1 −3x2 +x3 =−4
−15x1 −5x2 +2x3 ≥−9

x1, x2 ≥ 0
x3 : free.

(ii) Write the dual to the above linear program.

(iii) By usingonly information from your answer to part (i) above, obtain
a solution to the dual problem.

2. Consider a one-period model of the evolution of a financial market having
finitely many asset types indexed bya = 1, . . . ,A. For each asset indexa,
the price now (at timet = 0) of theath asset is a given real numberqa.

One period in the future (at timet = 1), the market may be in any one of a
finite number of states indexed bys= 1, . . . ,S. For eacha ands, the price
of theath asset in states will be a given real numberdas.

A portfolio of assets (either at time 0 or at time 1) is described by a vector
w∈ RA such thatwa gives the number of units of asseta held in the port-
folio. This number may be positive (long holding), zero, or negative (short
holding). Thus, ifq∈ RA is the vector whose components are theqa, then
the price at time 0 of the portfolio described byw is the inner product〈w,q〉.
We say that a portfoliow is aweak arbitrageif its price at time 0 is strictly
negative and, for each states at time 1, the value∑A

a=1wadas is nonnega-
tive. (Thus, buying a weak arbitrage gives you a sure payoff now and also
guarantees that you cannot lose money at time 1.)

Show that the following are equivalent:
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• There is no weak arbitrage.

• There exists a system ofstate pricesgiven by nonnegative real num-
bersvs having the property that for each asseta, the current priceqa

of this asset equals∑S
s=1dasvs. (Thus, the state prices determine the

current prices ofall assets as nonnegative linear combinations of their
uncertain future values.)

3. The variabley represents the yield in a chemical process. There aren pro-
cess variablesx1,x2, . . . ,xn (such as temperature, flow rate, etc) which influ-
ence the yield. Data was collected to observe the yieldy for various values
of the process vectorxt − (xt

1,x
t
2, . . . ,x

t
n). It is believed thaty can be rea-

sonably approximated by a convex quadratic objective function. Formulate
the problem of finding the best convex quadratic approximationQ(x) for y
using the available data as a nonlinear program in AMPL or GAMS, and
discuss the important features of your formulation.

To test your model, ensure that you write AMPL or GAMS statements to
generate random inputs that are consistent with the above hypothesis. Also,
write statements to print out the results of the model to show how the solu-
tion relates to your random inputs.

4. Consider the following network flow problem in which two supply centers
S1 and S2 are to meet at minimum incremental cost an increased set of de-
mands at two demand centers D1 and D2 . Current demand is satisfied with
S1 supplying 5 units to D1 and S2 supplying 5 units to D2. The projected
demands to be met are 7 units (an increase of 2) at D1 and 8 units (an in-
crease of 3) at D2. S1 has 20 units of supply available, and can supply both
D1 and D2 with additional units at rate $ 2 or can reduce supply to D1 with
a saving of $ 1 per unit. S2 has 15 units of supply available, and can supply
both D1 and D2 with additional units at rate $ 4 or can reduce supply to D2
with a saving of $ 3 per unit.

(a) Formulate this problem as a linear network flow problem with a diver-
gence equation at each node. (Note: a dummy node is required.)

(b) Solve the problem, giving the optimal price at each node, and verify
optimality via these prices. State the optimal solution in terms of units of
demand supplied by each supply center to each demand center and state the
optimal incremental cost.
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5. Consider thecapacitated facility location problem(CFL) with mcustomers
andn facilities:

min
m

∑
i=1

n

∑
j=1

ci j xi j +
n

∑
j=1

f jy j (1)

subject to
n

∑
j=1

xi j = 1, for i = 1, ...,m (2)

m

∑
i=1

di j xi j ≤ K jy j , for j = 1, ...,n (3)

xi j ∈ {0,1}, for i = 1, ...,m, j = 1, ...,n; (4)

y j ∈ {0,1}, for j = 1, ...,n (5)

HereK j is a positive integer representing the capacity of each potential fa-
cility j, anddi j is a positive integer representing the capacity required to
satisfy the demand of customeri from facility j if facility j is opened. For
the questions below, consider an instance of CFL defined in part bym= 4,
n = 4, and

d11 = 4,d21 = 6,d31 = 7,d41 = 3

K1 = 12.

(You do not need to know the rest of the data to answer the questions.)

(a) Let (x̄, ȳ) be a fractional solution of the LP relaxation of this instance
of CFL defined in part by

x̄11 = 1, x̄21 = 1, x̄31 = 0, x̄41 = 0

ȳ1 = 5
6.

Write down a valid inequality for this instance of CFL that cuts off this
point.
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(b) Generalize the inequality you wrote down in (a) to define a family of
valid inequalities for the general model (2)–(5). (State the family in
general algebraic form, so that it is a family of valid inequalities for
the model CFL, andnot just for this instance.)

(c) Consider the inequality

x11+x21+x41≤ 2

Is this inequality valid for this instance of CFL? Why or why not?

(d) Does the inequality in (c) define a facet of the convex hull of feasible
solutions of this instance of CFL? Why or why not?

6. Let f : Rn → R andg : Rn → Rm be differentiable functions onRn, and
consider the following nonlinear program:

min f (x) s.t. g(x)≤ 0.

Suppose that(x̄, ū) is the solution to the KKT Saddlepoint Problem for this
nonlinear program, and suppose further thatf (x̄) > f (x̂) for somex̂∈ Rn.
Give a nonzerolower bound on‖ū‖1 in terms ofx̄ andx̂.

7. State a result linking the penalty function

φ(x,σ) = f (x)+
1
2

σ∑
i
[min(ci(x),0)]2

to the problem
min f (x) subject toc(x)≥ 0

In particular, detail how the objective function, constraint violation and
penalty terms vary as a function ofσ. When the penalty approach is ap-
plied to the problem

minx −x1−x2 +x3

subject to 0≤ x3≤ 1
x3

1 +x3≤ 1
x2

1 +x2
2 +x2

3≤ 1

the following data are obtained. Relate this data to the theory you quoted
above. Use it to estimate the optimum solution and multipliers, together
with the active constraints. Be sure to quote any results that you invoke
accurately.
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k σ(k) x1(σ(k)) x2(σ(k)) x3(σ(k))
1 1 0.834379 0.834379 -0.454846
2 10 0.728324 0.728324 -0.087920
3 100 0.709577 0.709577 -0.009864
4 1000 0.707356 0.707356 -0.001017

8. Consider a production facility that producesm goods, indexed byi, using a
process havingn nonnegative parameters, indexed byx. The manufacturer
has contracted to producebi of the ith good (i = 1, . . . ,m) within a certain
time period. It may be thatbi < 0, which we interpret as the manufacturer’s
having a stock|bi | of that good on hand and available for use in the produc-
tion process.

For i = 1, . . . ,m and a vectorx ∈ Rn
+ let ai(x) be an extended real-valued

closed proper concave function expressing the amount of goodi that the
facility produces by using the components ofx as the parameters of the
production process. Leta :Rn→Rm be the vector function whoseith com-
ponent isai(x), andb ∈ Rm be the vector whoseith component isbi . A
feasible production planis a nonnegative vectorx∈ Rn such thata(x)≥ b.
Assume that there is somex̂ > 0 that belongs to the relative interior of each
setdomai for i = 1, . . . ,n and for whicha(x̂) > b..

Suppose thatc is a closed proper convex function whose effective domain
is bounded and includeŝx in its relative interior. Forx≥ 0, c(x) gives the
cost (possibly+∞) of operating the facility over the time period in question.
Thus, a reasonable way for the manufacturer to determine a production plan
is by choosingx to solve the problem

min{c(x) | a(x)≥ b, x≥ 0}. (6)

Now let us suppose a contractor offers the manufacturer the following deal:
the contractor will quote pricesp∗i ≥ 0 for the goods, and at these prices
he or she will buy the manufacturer’s stock (those goods for whichbi < 0),
will take over responsibility for operating the manufacturing and will sell
back the quantities the manufacturer has contracted to produce (those goods
for which bi > 0). Thus, using the price vectorp∗ whose components are
the p∗i this contractor will receive from the manufacturer an amount〈p∗,b〉
(possibly negative, indicating a payment from contractor to manufacturer).
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The manufacturer contends that the contractor must also pay some com-
pensation for having control of the facility during the production period.
Specifically, for whatever price vectorp∗ ∈ Rm the contractor quotes, the
manufacturer requires a payment of

r(p∗) =

{
supx≥0{〈p∗,a(x)〉−c(x)} if p∗ ≥ 0

+∞ otherwise.
(7)

Show the following:

(a) The functionr is closed proper convex.

(b) There is a production plan̄x solving (6) and there is a price vector̄p∗
most advantageous to the contractor.

(c) One hasc(x̄) = 〈p̄∗,b〉− r(p̄∗).

(d) If the functionsc anda were linear, thenr(p̄∗) would be zero.

Suggestion.Introduce a suitable parametrization and look at the dual of (6).
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