Spring 2006 Qualifier Exam:
OPTIMIZATION

January, 2006

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number,
and the question answered in that book. On one of your books list the
numbers of all the questions answered. Do not write your name on any
answer book.

3. Return all answer books in the folder provided. Additional answer books
are available if needed.

SPECIFIC INSTRUCTIONS:

Answer 5 out of 8 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nev-
ertheless, the exam sometimes contains misprints and ambiguities. If you are
convinced a problem has been stated incorrectly, mention this to the proctor. If
necessary, the proctor can contact a representative of the area to resolve problems
during the first hour of the exam. In any case, you should indicate your interpre-
tation of the problem in your written answer. Your interpretation should be such
that the problem is nontrivial.



1. Solve:
maxy, min{2x+y+1,y—x—4}
subjectto x—y>3
x+y<l1
x>2

Is the solution unique? Describe all optimal solutions. What is the optimal
solution set if the constraint x > 2 is replaced by x > 1?7 Be sure to justify
any reformulations that you carry out.

2. Let p be a given row vector in R" and let B be a set of m > 1 given points in
R". Use duality to demonstrate that either (1) p is in the convex hull of B or
(2) there exists a vector v such that b'v < pv for all b’ € B. (Hint: consider
the problem max z s.t. bv+z < pvfori=1,...m.)

3. A load of 20 tonnes needs to be transported on a route passing through five
cities, with a choice of three different modes of tranportation: road, rail
and air. In any of the three intermediate cities it is possible to change the
mode of tranport but the load uses a single mode of transport between two
consecutive cites. The cost of transport in $ per tonne between the pairs of
cities is:

1-2 2-3 3-4 4-5
rail 30 25 40 60
road 25 40 45 50
air 40 20 50 45

The costs for changing the mode of transport in $ per tonne is:

rail road air
rail 0 5 12
road 8 0 10
air 15 10 0

Formulate a model in AMPL or GAMS that determines how to organize the
transport of the load at least cost. More credit will be given for solutions
that lead to a tighter linear programming relaxation.



4. Existence of a conformal decomposition of a given flow x on a digraph
G may be demonstrated by augmenting the original data by a node and
arcs with appropriate flows, and then applying a decomposition process to
the resulting flow % on the augmented digraph G (which is a circulation in
which all divergences are 0). For simplicity in the following parts, you may
assume x > 0 and that x was not a circulation.

(a) If c is cycle flow in the decomposition of X, show that the corresponding
path flow p in G conforms to the original flow x. (Be sure to consider the
two cases in which p is and is not a cycle flow and to verify all requirements
of conformance.)

(b) Show (by establishing an appropriate relationship to the decomposition
in part (a)) that a conformal decomposition of x can also be obtained directly
from G (without transforming it into a circulation) by using a decomposition
process that takes into account the minimum of the absolute values of source
and sink divergences as well as flow values.

(c) Give a two-node, two-arc numerical example that illustrates failure of
the modified version of the procedure in (b) in which the minimum of the
absolute values of source and sink divergences is not taken into account
when setting source-sink path flow values in the decomposition (i.e., source-
sink path flow values are set in a manner analogous to part (a), based on path
residual flow values only).



5. Consider the following two sets:

A = {(x,y)€R4xZ4:
X1 +x2 +x3+x4 < 20;
x1 < 13y1,x2 < 9y2,x3 < 8ys,xa < 6y4;
x>0,i=1,...,4,y,€{0,1},i=1,...,4}.

B = {(x,y)€R4><Z4:
X1 +xp +x3 + x4 < 20;
x1 = 13y1,x2 = 9y2,x3 = 8y3,x4 = Oy4;
%>0,i=1,.. 4y ¢e{0,1},i=1,..4}.

Note that the only difference in A and B is the change from inequalities to
equations in the third line of the definitions of the two sets.

(a) Is
yi+y2 <1

a valid inequality for A? For B? For both sets, either give a short
justification that the inequality is valid, or give a feasible point that
shows that the inequality is not valid.

(b) Consider the point

|
x1=y1=0x=9n=Ln=8,y3=Lxy=3y1= 5
Note that this point satisfies all the constraints of B except for the inte-
grality restrictions on y. Give a valid inequality for B that cuts off this

point (i.e., that this point does nof satisfy).

(c) Consider again the point

1
n=n=0n=9n=Ly=8y;=Ly=3,u=;
Give a valid inequality for A that cuts off this point (i.e., that this point

does not satisfy).



6. (a) Consider the following quadratic program in two variables:
min (x; — 1)? 4 (x, — 2)? subjectto —x; —xp > 0.

Find the function g(X) such that the (standard QP) dual of this problem
is

gy o)

(A is a scalar variable.)

(b) Solve this dual formulation from part (a) and use it to deduce a solution
to the original problem.

(c) By verifying the first-order necessary and second-order sufficient con-
ditions, solve the following nonlinear programming problem:

min —x1xy subjectto 1—x3 —x3 > 0.

7. Let C be a closed convex set in R” containing the origin in its relative inte-
rior, let O be a positive semidefinite n x n matrix, and let g be some element
of R". Consider the optimization problem

igf{qTx[xTng 1, x€C}. (1)
(a) Develop a duality structure for (1) based on the embedding

g'x ifxTOx<1l40,x€C
+oo  otherwise.

F(x,oc)z{

You must exhibit the Lagrangian and the dual objective function, show-
ing enough of your calculations to satisfy the grader that your analysis
is correct.

(b) Now assume that xg € R” attains the infimum in (1). Show that then
there is an oy € R such that for each x € C one has

qTxo = qTxo+OLS(ngxo -1 < qTx+ oc}“)(xTQx~ 1).

You may use standard theorems of convex analysis, but if you do so
then you must state the theorem you are using.



8. Let X be a solution of the minimization problem:
min {/(x) | g(x) <0}, (MP)

where f: R* — R! and g : R* — R™. Consider the associated unconstrained
penalty function minimization problems:

min P(x,0) = min f(x) + ol max(g(x),0)||1, (P1)
xR xR
min O(x,B) = min £(x) + Bl max(g(x), 0)][3, (P2)
XER" XER"

where || - |1, ||-||2 denote the 1-norm and 2-norm respectively.

(i) Do there exist finite values of o, § for which X solves (P1) and/or (P2)?

(i1) State precisely the conditions under which your answer to (i) holds
and the threshold values & and/or B if such exist, so that X solves (P1)
and/or (P2). Prove your claim.



