MATHEMATICAL PROGRAMMING

Spring 1998 Qualifying Exam February 2, 1998

Instructions: Answer 5 of the following 7 questions.

1. Glassco manufactures wine glasses, beer glasses, champagne glasses and whiskey glasses. Each type of glass uses time in the molding shop, time in the packaging shop, and a certain amount of glass. The resources required to make each type of glass are given in the following table:

	· · ·	0		0
	x_1	x_2	x_3	x_4
	WINE	BEER	CHMPGNE	WHISKEY
	GLASS	GLASS	GLASS	GLASS
Molding time	4 minutes	9 minutes	7 minutes	10 minutes
Packaging time	1 minute	1 minute	3 minutes	40 minutes
Glass	3 oz	4 oz	2 oz	1 oz
Selling price	\$6	\$10	\$9	\$20

At present, 600 minutes of molding time, 400 minutes of packaging time and 500 oz of glass are available.

- (a) Write down the LP that Glassco should solve, assuming the company wishes to maximize revenue.
- (b) Write down the dual of this LP problem.
- (c) Glassco claims that the optimal solution to the (primal) problem is z = 2800/3, $x_1 = 400/3$, $x_2 = 0$, $x_3 = 0$ and $x_4 = 20/3$. Is this the case? Justify, and quote any relevant theory you use accurately.
- 2. (i) Set up a single linear program to find a "largest" element in the set:

$$X := \{x \mid Ax \ge b, \ x \ge 0\},\$$

where A is an $m \times n$ matrix and b is an $m \times 1$ vector, using some norm ||x|| on \mathbb{R}^n that makes this possible.

(ii) Set up a finite number (not exponential in n) of linear programs to do the same for the set:

$$Y := \{ y \mid Ay \ge b \},\$$

using some norm ||y|| on \mathbb{R}^n that makes this possible.

3. Let

$$x(A, a) \in \arg \min f(x)$$
 s.t. $Ax \le a, x \ge 0,$
 $x(B, b) \in \arg \min f(x)$ s.t. $Bx \le b, x \ge 0,$

where A, B are $m \times n$ matrices, a, b are $m \times 1$ vectors, $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ is a differentiable convex function on \mathbb{R}^n , and

$$B \ge A$$
, and $a \ge b$,

where $B \ge A$ means that B is componentwise greater than or equal to A. Relate f(x(A, a)) and f(x(B, b)) by an inequality and justify.

4. For the problem

$$\min f(x)$$
 subject to $g(x) \leq 0$

where $f: \mathbf{R}^n \to \mathbf{R}$ and $g: \mathbf{R}^n \to \mathbf{R}^m$, consider the Absolute Value penalty

$$p_a(g(x)) = ||g(x)_+||_1,$$

and the Courant penalty

$$p_c(g(x)) = ||g(x)_+||_2^2,$$

where for $y \in \mathbf{R}^m$, y_+ denotes $(y_+)_i = \max \{y_i, 0\}$, $i = 1, \dots m$. Consider now the problem

$$P1 : \min x^3 - x \text{ subject to } 0 \le x \le 1$$

- (a) Sketch the Absolute value and Courant penalty terms for P1.
- (b) For each positive integer k, compute the minimizer x_k of

$$P_k(x) = f(x) + kp_c(g(x))$$

for the f and g defined in P1.

(c) For each positive integer k, compute the minimizer x_k of

$$F_k(x) = f(x) + kp_a(g(x))$$

for the f and g defined in P1.

(d) Use P_k to solve

$$P2 : \min x_1 + x_2 \text{ subject to } x_1^2 - x_2 \le 2$$

(e) Show that F_k has no stationary points off the parabola

$$x_1^2 - x_2 = 2$$

for problem P2 with k > 1 and compute the minimizer of $F_k(x)$.

- 5. For i = 1, ..., m let a_i be elements of \mathbb{R}^n , let α_i be scalars, and for $x \in \mathbb{R}^n$ define $f_i(x)$ to be $\langle a_i, x \rangle \alpha_i$. Let $f(x) = \max_i f_i$.
 - (a) Show that f is a closed proper convex function that is finite on all of \mathbb{R}^n .
 - (b) Given $x^* \in \mathbb{R}^n$, show how one can compute the conjugate function $f^*(x^*)$ by using linear programming.
 - (c) Determine the effective domain of f^* (Explain geometrically how to find it given the data a_i and α_i . Does it depend on the a_i ? On the α_i ?)
 - (d) Suppose x_0 is a point of \mathbb{R}^n . Explain how to find the set of "weak descent" directions z having the property that for each $\lambda \geq 0$, $f(x_0 + \lambda z) \leq f(x_0)$. Determine, in particular, whether or not this set depends on x_0 and, if so, how.
 - (e) For the case in which n = 2, $x_0 = (1,2)$, the a_i are (-2,-1), (-5,-5), and (1,-3), and the α_i are all equal to 1, determine the set of weak descent directions.

Justify your answers.

6. Construct a linear mixed-integer program to model the following "avoid 1" problem:

$$min \quad \sum_{i=1}^{n} f(x_i) \qquad s.t. \quad Ax = b, \quad 0 \le x \le 2e,$$

where x is an n-vector, e is a vector of 1's, and $f(x_i) = 2 - |1 - x_i|$. "Check" your model by demonstrating that it yields the correct objective value at x = 2e if 2Ae = b. What is this value?

- 7. Consider a network with n nodes and a set of values d_{ij} assigned to the arcs that give the "distances" between all pairs of distinct nodes i and j.
 - (a) Assuming all $d_{ij} > 0$, and using a node-arc incidence matrix, construct a single linear program that represents the problem of determining a set of shortest paths from node 1 to all other nodes. (Be sure to specify the RHS of the LP.) Discuss how the shortest paths may be obtained from an appropriate optimal solution of the LP.
 - (b) Construct a numerical example with all $d_{ij} < 0$ in which the algebraic LP constructed in part (a) fails to correctly represent the shortest path problem and demonstrate the non-equivalence of the two problems by stating a feasible solution of the LP whose objective value is less than the optimal value of the shortest path problem.

Note: In both parts (a) and (b) above, "paths" are assumed to be simple paths in which no arc appears more than once.