
Programming Languages and Compilers
Qualifying Examination

Monday, September 21, 2009

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover ofeachbook the area of the exam, your code number, and the question
answered in that book. Ononeof your books list the numbers ofall the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if
needed.

POLICY ON MISPRINTS AND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you are convinced that a problem has been stated
incorrectly, mention this to the proctor. If necessary, theproctor will contact a representative of the
area to resolve problems during thefirst hourof the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Your interpretation should be such that the
problem is nontrivial.

1



Question 1.

Suppose that we have a collection of recursive equations

xi = Fi(~x) (1)

or, alternatively,
~x = F (~x) (2)

whereFi defines the value of thei-th component of tuple~x. (You can assume that the domain
and range of each of theFi is a pointed chain-complete partial order(D⊥,v), and that each of the
functionsFi is continuous.)

Consider the related collection of recursive equations

xi = xi t Fi(~x) (3)

or, alternatively,
~x = ~x t F (~x) (4)

This problem concerns what happens when a set of equations ofthe form Eqn. (2) is converted to
one of the form Eqn. (4). To distinguish between the two forms, we will use the subscript “old”
for the right-hand side of Eqn. (2); i.e., we rewrite Eqn. (2)as

~x = Fold(~x)

and use the subscript “new” for the right-hand side of Eqn. (4); i.e., we rewrite Eqn. (4) as

~x = Fnew(~x)
= ~x t Fold(~x)

Part (a)
Show that every fixed point of Eqn. (2) is also a fixed point of Eqn. (4).

Part (b)
Explain why the converse of Part (a) does not necessarily hold—i.e., a fixed point of Eqn. (4) may
not necessarily be a fixed point of Eqn. (2). (You can either give a specific counter-example, or
you can explain where an attempt to show the converse of Part (a) breaks down.)

Part (c)
Show that the least fixed point of Eqn. (4) equals the least fixed point of Eqn. (2).

Part (d)
Show that, for every value~v, we have the following two properties:

1. The sequence of values[F i

new
(~v) | i ∈ Nat] forms a chain (hence

∞
⊔

i=0

F i

new
(~v) is a well-

defined value).

2.
∞
⊔

i=0

F i

new
(~v) is a fixed point ofFnew.

(Note thatF 0

new
(~v) equals~v; it doesnot equal~⊥.)

2



Part (e)
Explain how the ideas from Parts (a)–(d) can be used in incremental dataflow analysis, where the
goal is to use the results from a previously computed dataflow-analysis solution~v0 to compute a
conservative—but possibly not optimal—solution after a program has been changed.

To simplify the situation, assume that a program modification does not cause the dataflow
lattice (or semi-lattice) to change.

3



Question 2.

A regular tree grammaris a formalism for specifying languages of trees. For instance, the follow-
ing grammarG

exp ::= PlusExp(exp, exp)
| TimesExp(exp, exp)
| IntExp(natNum)
| Variable(ident)

wherenatNum= {0, 1, 2, . . .} andident is some finite or infinite set of allowable identifiers (e.g.,
{A, B, . . . , X, Y, Z}), defines a languageL(G) of trees (or terms).L(G) includes the trees

Variable(A), Variable(B), . . . , Variable(Z),
IntExp(0), IntExp(1), . . . ,
PlusExp(Variable(A), IntExp(0)), PlusExp(Variable(B), IntExp(0)), . . . ,
TimesExp(Variable(A), IntExp(0)), TimesExp(Variable(B), IntExp(0)), . . . ,
PlusExp(IntExp(0), Variable(A)), PlusExp(IntExp(0), Variable(B)), . . . ,
TimesExp(IntExp(0), Variable(A)), TimesExp(IntExp(0), Variable(B)), . . . ,

Let us now introduce some terminology:exp, natNum, and ident are callednonterminals
(or types); PlusExp, TimesExp, IntExp, andVariable are calledoperators. It is useful to con-
sider 0, 1, 2, . . . as nullary operators of typenatNum(in which case we might write them as
0(), 1(), 2(), . . .) andA, B, . . . , X, Y, Z as nullary operators of typeident(in which case we might
write them as A(), B(), . . . , X(), Y(), Z()). Hence, with this notation one of the trees inL(G) is
PlusExp(Variable(A()), IntExp(0())).

Note that each operator has a fixedarity that specifies the number of children that it has. For
instance, the arities of some of the operators ofG are as follows:

Operator Arity
PlusExp 2
TimesExp 2
IntExp 1
Variable 1
0 0
1 0
2 0
...

...
A 0
B 0
...

...
Z 0

Let the children of an arity-k operator be numbered1, . . . , k.
A path in a tree can be described by a string over an alphabet of (compound) symbols of the

form
(nonterminal:: Operator.childNum)

4



(By convention, ifOperatoris a nullary operator,childNumis 0.) For instance, the set of root-to-
leaf paths in the treePlusExp(Variable(A()), IntExp(0())) is

{

(exp:: PlusExp.1)(exp:: Variable.1)(ident :: A.0),
(exp:: PlusExp.2)(exp:: IntExp.1)(natNum:: 0.0)

}

.

Part (a)
Describe how to create an ordinary finite-state automaton that accepts the language of root-to-
leaf paths in given a regular tree grammarH. That is, given a regular tree grammarH, your
construction should produce the automatonAH that accepts

{p | p is a root-to-leaf path in some tree T∈ L(H)}.

Part (b)
Give the automaton that would be produced by your construction for the regular tree grammarG

exp ::= PlusExp(exp, exp)
| TimesExp(exp, exp)
| IntExp(natNum)
| Variable(ident)

Part (c)
Regular tree grammars are related to context-free grammarsin the following way: Suppose that
you normalize a context-free grammarF by introducing additional nonterminals so that terminal
symbols only appear in leaf productions of the formnonterminal→ terminal; then, by introducing
an operator symbol for each production (and treating each terminal symbol as a nullary opera-
tor), one has a regular tree grammar whose language is the setof parse trees for the context-free
grammarF .

A context-free grammar can have two kinds of useless nonterminals:

Useless 1: nonterminaln is useless if there is no derivationroot →∗ α n β

Useless 2: nonterminaln is useless if there is no finite parse tree derivable fromn

Describetwo algorithms, both working on finite automata of the kind described earlier for the
language of root-to-leaf paths of a regular tree grammar:

Part (c.i) The algorithm for this part returns the set of nonterminals that are useless because of
reason “Useless 1”.

Part (c.ii) The algorithm for this part returns the set of nonterminals that are useless because of
reason “Useless 2”. (For this part, you may assume that all “Useless 1” nonterminals were removed
from the context-free grammar before the automaton was constructed.)

Part (d)
Give an example of acontext-free grammarthat has both kinds of useless nonterminals, and illus-
trate the two algorithms on it.

5



Question 3.

Recall that a lambda expression that contains one or more redexes can be reduced using normal
order reduction (always reduce the leftmost outermost redex) or using applicative order reduction
(always reduce the leftmost innermost redex).

Part (a)
What is an advantage of normal order reduction over applicative order reduction? Give an example
to illustrate this advantage.

Part (b)
What is a disadvantage of normal order reduction over applicative order reduction? Again, give an
example.

Part (c)
Is the following strategy equivalent to normal order reduction?

Always reduce the rightmost outermost redex.

(That is, will the two strategies lead to a normal form in exactly the same cases?) If yes, briefly
justify your answer; if no, give a counter-example (a lambdaterm for which one strategy leads to
a normal form, while the other strategy does not).

Part (d)
For each of the following statements, say whether it is true or false, and give a brief justification of
your answer.

1. Every lambda term is equal to a lambda term that is in normalform.

2. Every lambda term is equal to a lambda term that is not in normal form.

3. Every lambda term has some lambda term as its fixed point.

4. Every lambda term is the fixed point of some lambda term.

5. There is a lambda term that is its own fixed point.

6



Question 4.

Assume that you have a simple C-like language with no pointers, but with 1-dimensional arrays
that are declared with a statically known size. Furthermore, array-subscript expressions can only
include integer literals and scalar variables (e.g., A[k] and A[k*5] are OK, but A[ B[2] ] is not
allowed). As in Java programs, bounds checking is done so that an out-of-bounds array index
(either less than zero or greater than or equal to the array size) causes a runtime error. For example,
the statement “x = A[k+j];”, where A has been declared to be ofsize 10, would be handled (in the
low-level code that implements the statement) roughly as follows:

if (k+j < 0) ERROR;
if (k+j >= 10) ERROR;
x = A[k+j];

To simplify the question, assume that arithmetic operations cannot cause overflow (i.e., we are
working with integers, not ints).

Part (a)
Your job is to define an intraprocedural dataflow analysis that can be used to remove bounds checks
that are guaranteed to succeed because of some previous check having been done. For example, in
the following code both upper and lower bounds checks can be removed for subscript expressions
3, 6, and 7.

A[k+j] = 12; // subscript exp 1
if (A[k] == 0) { // subscript exp 2

A[k] = A[k+n]; // subscript exps 3 and 4
} else{

A[k+n] = 0; // subscript exp 5
}
A[k+n] = A[k+j]; // subscript exps 6 and 7

Because a subscript expression that includes only literals(e.g., A[3] or A[4+5]) can be checked
statically, assume that every subscript expression includes at least one variable.

Define your dataflow analysis, and explain how to use the results to eliminate bounds checks.
To simplify your presentation, assume that there is only 1 array in the program being analyzed.

Part (b)
What other optimizations and/or code transformations could be done to reduce the number of
bounds checks? Consider both reducing the total number in the program as well as the total num-
ber that are executed when the program is run. If the techniques that you describe require more
dataflow-analysis results, explain how to perform that analysis.

Part (c)
Now assume that the language does allow pointers. The goal isstill to do an intraprocedural
analysis and to check that array-subscript expressions yield in-bounds values, not to check that
dereferences of pointers to arrays are in-bounds. Suppose that you have run a flow-insensitive
points-to-analysis algorithm, and have the results in hand. How would you use the points-to-
analysis results to make your answers to Parts (a) and (b) sound?

7



(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024], *ptr;
(3) int counter;
(4) FILE *fp;
(5) ...
(6) ptr = fgets(header, 2048, fp);
(7) copy_buffer(header);
(8) ptr = fgets (buf, 1024, fp);
(9) copy_buffer(buf);

(10) }
(11)
(12) void copy_buffer(char *buffer){
(13) char copy[20];
(14) strcpy(copy, buffer);
(15) }

Figure 1: Example program.

Question 5.

Part (a)
Languages like C that do not guarantee array-bounds checking and that allow pointer arithmetic
can lead to programs that are vulnerable to certain kinds of malicious attacks. Explain how a
malicious user can exploit buffer overrun vulnerability ina program.

Part (b)
Consider the program shown in Figure 1. How could a malicioususer exploit the buffer overrun
in this program, to execute the system callsystem("open /etc/passwd")? Assume that
the malicious user controls the contents of the file thatfp points to. Based on your answer discuss
why buffer- overrun attacks belong to a class of attacks called code-injection attacks.

Part (c)
How would you implement a source-to-source translator thattransforms a C program to a safe C
program. A safe C program reports an error before a buffer overrun. Hint: Think about keeping
extra information with each pointer.

Part (d)
A safe C program generated by source-to-source translator can have prohibitive overheads. De-
scribe how you can use static analysis to optimize your source-to-source translator.

8



Question 6.

The Java virtual machine includes an unusual pair of instructions,jsr andret, which can be used
to implement “lightweight subroutines”. For purposes of this question, we give these instructions
the following, simplified behaviors:

• jsr a pushes the address of the next instruction on a special execution-address stack which
is distinct from the regular stack used to contain regular procedure activation records. It then
continues execution with the instruction at addressa.

• ret pops the most recent value from the special execution-address stack and continues
executing with the instruction at that address.

Note that becausejsr andret manipulate a distinct stack, these instructions do not change
the local variables visible to executing code.

In the question parts that follow, if you do not remember the details of the Java VM’s unusual
operand-stack architecture, feel free to assume a more standard execution environment such as that
found on any modern, real processor. Answers using either machine model are equally acceptable.

Part (a): Code Generation for Finally Clauses
Describe howjsr andret could be used to good effect when generating code for thefinally
clauses oftry blocks.

Part (b): Finally Clauses Without Lightweight Subroutines
Supposejsr andretwere not available. Describe an alternative strategy for compilingfinally
blocks which avoids using these but which could cause the compiled machine code (or bytecode)
to be exponentially larger than the source code in some pathological cases.

Part (c): Pathological Expansion
Give an example of source code which exhibits the pathological expansion mentioned above.

Part (d): Trade-Offs
Even ifjsr andret are available, perhaps we do not want to use them. Describe a scenario in
which we would prefer to use the second code-generation strategy (from Part (b)) even if the first
(from Part (a)) is available.

9


