Programming L anguages and Compilers
Qualifying Examination

Monday, September 21, 2009

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover @fachbook the area of the exam, your code number, and the question
answered in that book. Gineof your books list the numbers afl the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additicaaswer books are available if
needed.

POLICY ON MISPRINTSAND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefslpoasible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you argicced that a problem has been stated
incorrectly, mention this to the proctor. If necessary,ghector will contact a representative of the

area to resolve problems during tfest hour of the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Yooterpretation should be such that the
problem is nontrivial.



Question 1.

Suppose that we have a collection of recursive equations

x; = Fy(%) (1)
or, alternatively,

T = F(7) (2)

where F; defines the value of theth component of tuple’. (You can assume that the domain
and range of each of th& is a pointed chain-complete partial ordé?, , C), and that each of the
functionsF; is continuous.)

Consider the related collection of recursive equations

v, = x; U Fi(7) €))
or, alternatively,

I=7TUF() (4)
This problem concerns what happens when a set of equatidhe &drm Eqgn. (2) is converted to
one of the form Eqn. (4). To distinguish between the two formes will use the subscript “old”
for the right-hand side of Eqn. (2); i.e., we rewrite Eqn.48)

T = F,q(7)

and use the subscript “new” for the right-hand side of Eq)y.i(d., we rewrite Eqn. (4) as

T = Fhe(®)
= ZU Fyuy(d)

Part (a)

Show that every fixed point of Egn. (2) is also a fixed point ohEd).

Part (b)

Explain why the converse of Part (a) does not necessarity-hok., a fixed point of Eqn. (4) may
not necessarily be a fixed point of Eqn. (2). (You can eithee @i specific counter-example, or
you can explain where an attempt to show the converse of ®drt¢aks down.)

Part (c)
Show that the least fixed point of Eqn. (4) equals the least fpant of Eqn. (2).

Part (d)
Show that, for every valug, we have the following two properties:

1. The sequence of valués!, (7) | i € Naf forms a chain (hencH F' . (v) is a well-

new
=0

defined value).
2. | | Fi,,(¥) is afixed point off,c,.
=0
(Note thatF°_ (%) equalsy; it doesnotequall.)
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Part (e)
Explain how the ideas from Parts (a)—(d) can be used in inen¢ah dataflow analysis, where the
goal is to use the results from a previously computed datadlioatysis solutionj, to compute a
conservative—but possibly not optimal—solution after aggam has been changed.

To simplify the situation, assume that a program modificatioes not cause the dataflow

lattice (or semi-lattice) to change.



Question 2.

A regular tree grammais a formalism for specifying languages of trees. For instathe follow-
ing grammaiG
exp = PlusExgexp exp
|  TimesExpexp exp
| IntExp(natNum)
| Variable(ident)

wherenatNum= {0, 1, 2, ...} andidentis some finite or infinite set of allowable identifiers (e.g.,
{A,B,..., XY, Z}), defines a languagk(G) of trees (or terms)L(G) includes the trees

Variable(A), Variablg B), . . ., Variablg( %),

INtExp(0), IntExp(1), . . .,

PlusExgVariable( A), IntExp(0)), PlusExgVariable B), IntExp(0)), . . .,
TimesExpVariable( A), IntExp(0)), TimesExpVariable B), IntExp(0)), . . .,
PlusExgIntExp(0), Variable(A)), PlusExgIntExp(0), Variablg B)), . . .,
TimesExpIntExp(0), Variable( A)), TimesExpintExp(0), Variablg B)), . . .,

Let us now introduce some terminologgxp natNum andident are callednonterminals
(or typeg; PlusExp TimesExp IntExp and Variable are calledoperators It is useful to con-
sider 0, 1,2, ... as nullary operators of typeatNum (in which case we might write them as
00),10,2(),...)andA, B, ..., X, Y, Z as nullary operators of tyddent(in which case we might
write them as A(), B(), ..., X(), Y(), Z()). Hence, with thiotation one of the trees ih(G) is
PlusExgVariable( A()), INtExp(0())).

Note that each operator has a fixauaty that specifies the number of children that it has. For
instance, the arities of some of the operator& @fre as follows:

Operator | Arity
PlusExp | 2
TimesExp 2
INtExp 1
Variable |1
0 0
1 0
2 0
A 0
B 0
Z 0

Let the children of an arity= operator be numbered. . . , k.
A pathin a tree can be described by a string over an alphabet of (@on@) symbols of the
form
(nonterminal:: OperatorchildNum
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(By convention, ifOperatoris a nullary operatochildNumis 0.) For instance, the set of root-to-
leaf paths in the treBlusExgVariable( A()), IntExp(0())) is

(exp:: PlusExpl)(exp:: Variablel)(ident:: A.0),
(exp:: PlusExp2)(exp:: IntExp1)(natNum:: 0.0)

Part (a)

Describe how to create an ordinary finite-state automatahdhcepts the language of root-to-
leaf paths in given a regular tree gramnfar That is, given a regular tree grammaér, your
construction should produce the automatgnthat accepts

{p | pis aroot-to-leaf path in some tree & L(H)}.

Part (b)
Give the automaton that would be produced by your constmdtr the regular tree grammar
exp = PlusExgexp exp
| TimesExpexp exp
| IntExp(natNum)
| Variable(ident)

Part (c)

Regular tree grammars are related to context-free gramimaing following way: Suppose that
you normalize a context-free grammaérby introducing additional nonterminals so that terminal
symbols only appear in leaf productions of the faronterminal— terminal then, by introducing
an operator symbol for each production (and treating eachinal symbol as a nullary opera-
tor), one has a regular tree grammar whose language is tloé gatse trees for the context-free
grammarr'.

A context-free grammar can have two kinds of useless noireatm

Useless 1 nonterminal: is useless if there is no derivationot —* an 3
Useless 2 nonterminak: is useless if there is no finite parse tree derivable from

Describetwo algorithms, both working on finite automata of the kind désaxat earlier for the
language of root-to-leaf paths of a regular tree grammar:

Part (c.i) The algorithm for this part returns the set of nonterminhi tare useless because of
reason “Useless 1.

Part (c.ii) The algorithm for this part returns the set of nhonterminbd are useless because of
reason “Useless 2”. (For this part, you may assume that akléss 1” nonterminals were removed
from the context-free grammar before the automaton wastiearsd.)

Part (d)
Give an example of aontext-free grammathat has both kinds of useless nonterminals, and illus-
trate the two algorithms on it.



Question 3.

Recall that a lambda expression that contains one or moexesdcan be reduced using normal
order reduction (always reduce the leftmost outermosteaieusing applicative order reduction
(always reduce the leftmost innermost redex).

Part (a)
What is an advantage of normal order reduction over appleatder reduction? Give an example
to illustrate this advantage.

Part (b)
What is a disadvantage of normal order reduction over agiphe order reduction? Again, give an
example.

Part (c)
Is the following strategy equivalent to normal order redutc?

Always reduce the rightmost outermost redex.

(That is, will the two strategies lead to a normal form in @kathe same cases?) If yes, briefly
justify your answer; if no, give a counter-example (a lamtatan for which one strategy leads to
a normal form, while the other strategy does not).

Part (d)
For each of the following statements, say whether it is tmfalgse, and give a brief justification of
your answetr.

1. Every lambda term is equal to a lambda term that is in nofamad.

2. Every lambda term is equal to a lambda term that is not imabform.
3. Every lambda term has some lambda term as its fixed point.

4. Every lambda term is the fixed point of some lambda term.
5

. There is a lambda term that is its own fixed point.



Question 4.

Assume that you have a simple C-like language with no pantast with 1-dimensional arrays
that are declared with a statically known size. Furthermarmay-subscript expressions can only
include integer literals and scalar variables (e.g., Alkfl #&[k*5] are OK, but A[ B[2] ] is not
allowed). As in Java programs, bounds checking is done doath@ut-of-bounds array index
(either less than zero or greater than or equal to the arzay sauses a runtime error. For example,
the statement “x = A[k+j];”, where A has been declared to beipé 10, would be handled (in the
low-level code that implements the statement) roughly Hevis:

if (k+j < 0) ERROR;
if (k+j >=10) ERROR,;
X = A[k+j];

To simplify the question, assume that arithmetic operatimannot cause overflow (i.e., we are
working with integers, not ints).

Part (a)

Your job is to define an intraprocedural dataflow analysist¢ha be used to remove bounds checks
that are guaranteed to succeed because of some previokshetvirog been done. For example, in
the following code both upper and lower bounds checks caeteved for subscript expressions
3,6,and 7.

Alk+j] = 12; I/ subscript exp 1
if (Alk] ==0) { I/ subscript exp 2
A[K] = Alk+n]; // subscript exps 3 and 4
} else{
Alk+n] =0; I/ subscript exp 5
h

Alk+n] = A[k+j]; // subscript exps 6 and 7

Because a subscript expression that includes only lit¢eads, A[3] or A[4+5]) can be checked
statically, assume that every subscript expression ieslad least one variable.

Define your dataflow analysis, and explain how to use the tetukliminate bounds checks.
To simplify your presentation, assume that there is onlyrdyain the program being analyzed.

Part (b)

What other optimizations and/or code transformations adod done to reduce the number of
bounds checks? Consider both reducing the total numbeeipriigram as well as the total num-
ber that are executed when the program is run. If the teclksitjuat you describe require more
dataflow-analysis results, explain how to perform thatysial

Part (c)

Now assume that the language does allow pointers. The gailliso do an intraprocedural

analysis and to check that array-subscript expressiond yiebounds values, not to check that
dereferences of pointers to arrays are in-bounds. Suppasgdu have run a flow-insensitive
points-to-analysis algorithm, and have the results in haHdw would you use the points-to-
analysis results to make your answers to Parts (a) and (bpSou
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(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024], =*ptr;
(3) int counter;

(4) FI LE *f p;

(5) .

(6) ptr = fgets(header, 2048, fp);
(7) copy_buf fer (header);

(8) ptr = fgets (buf, 1024, fp);
(9) copy_buf fer(buf);

(10) }

(11)

(12) void copy_buffer(char *buffer){
(13) char copy[ 20];

(14) strcpy(copy, buffer);

(15) }

Figure 1: Example program.
Question 5.

Part (a)

Languages like C that do not guarantee array-bounds chgeekid that allow pointer arithmetic
can lead to programs that are vulnerable to certain kindsalfcraus attacks. Explain how a
malicious user can exploit buffer overrun vulnerabilityaiprogram.

Part (b)

Consider the program shown in Figure 1. How could a malicimses exploit the buffer overrun
in this program, to execute the system &list en{ " open / et ¢/ passwd") ? Assume that
the malicious user controls the contents of the file thmpoints to. Based on your answer discuss
why buffer- overrun attacks belong to a class of attackedatbde-injection attacks.

Part (c)

How would you implement a source-to-source translator tfaaisforms a C program to a safe C
program. A safe C program reports an error before a bufferomeHint: Think about keeping
extra information with each pointer.

Part (d)
A safe C program generated by source-to-source translatohave prohibitive overheads. De-
scribe how you can use static analysis to optimize your sstoesource translator.



Question 6.

The Java virtual machine includes an unusual pair of ingtras,j sr andr et , which can be used
to implement “lightweight subroutines”. For purposes a$thuestion, we give these instructions
the following, simplified behaviors:

e | sr apushes the address of the next instruction on a special exee@ddress stack which
is distinct from the regular stack used to contain regulacedure activation records. It then
continues execution with the instruction at address

e ret pops the most recent value from the special execution-addstack and continues
executing with the instruction at that address.

Note that becausesr andr et manipulate a distinct stack, these instructions do notghan
the local variables visible to executing code.

In the question parts that follow, if you do not remember thtads of the Java VM'’s unusual
operand-stack architecture, feel free to assume a moréasthaxecution environment such as that
found on any modern, real processor. Answers using eithehimamodel are equally acceptable.

Part (a): Code Generation for Fi nal | y Clauses
Describe how sr andr et could be used to good effect when generating code fof theal | y
clauses of r y blocks.

Part (b): Fi nal | y Clauses Without Lightweight Subroutines

Supposeg sr andr et were not available. Describe an alternative strategy forbngf i nal | y
blocks which avoids using these but which could cause thgdethmachine code (or bytecode)
to be exponentially larger than the source code in some [ugfival cases.

Part (c): Pathological Expansion
Give an example of source code which exhibits the pathoibgixpansion mentioned above.

Part (d): Trade-Offs

Even ifj sr andr et are available, perhaps we do not want to use them. Describenaso in
which we would prefer to use the second code-generatiotegirdfrom Part (b)) even if the first
(from Part (a)) is available.



