Programming L anguages and Compilers
Qualifying Examination

Monday, February 6, 2012

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover afachbook the area of the exam, your code number, and the question
answered in that book. Qineof your books list the numbers afl the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additioaaswer books are available if
needed.

POLICY ON MISPRINTSAND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefalfyogsible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you anwiozed that a problem has been stated
incorrectly, mention this to the proctor. If necessary,phector will contact a representative of the

area to resolve problems during thest hour of the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Yonterpretation should be such that the
problem is nontrivial.



(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024], =*ptr;
(3) int counter;

(4) FI LE *fp;

(5) .

(6) ptr = fgets(header, 2048, fp);
(7) copy_buf f er (header);

(8) ptr = fgets (buf, 1024, fp);
(9) copy_buf fer(buf);

(10) }

(11)

(12) void copy_buffer(char rbuffer){
(13) char copy[20];

(14) strcpy(copy, buffer);

(15) }

Figure 1. Example Program

Question 1 (Security).

Part (a): Languages like C that do not guarantee array-bounds clgeekid that allow pointer
arithmetic can lead to programs that are vulnerable to icekiads of malicious attacks. Explain
how a malicious user can exploit buffer overrun vulnerdpiin a program. Why are programs
written in languages such as Java not vulnerable to theserabilities?

Part (b): Consider the program shown in Figure 1. How could a malicimeex exploit the buffer
overrun in this program, to execute the system sglt en{* * exec / bi n/sh’’)? Assume
that the malicious user controls the contents of the file tvhig points to.

Part (c): One technique to address the buffer-overrun vulnerahigitp make the stackon exe-
cutable Explain why this addresses the buffer-overrun vulnergbiDiscuss the run-time over-
head of this mitigation technique.

Part (d): Another technique for addressing the buffer-overrun vidbdity is to keep a auxiliary
stack. At a function call site, the return address is pushethe auxiliary stack. Before returning
to that call site, the program verifies that the top of the karyi matches the actual return address.
Give details about this technique in the context of the mogshown in Figure 1. Explain why
this technique addresses the buffer-overrun problem.



Question 2 (Functional L anguages and Tail Recursion).

This question concerns implementation techniques forsageifunctions in functional languages.
Part (a): Consider the following recursive function definition, whiceturns the length of a list:

Length: IntList — Int
Length(list) =
cases list
nil : 0
conghd,tail) : 1 + Lengthtail)
end

For a call Lengtklist), wherelist is of lengthn, (i) how many calls are made, and (ii) how deep
does the stack grow?

Part (b): Consider the following function definition, which returnsi¢ or false depending on
whetherz is a member ofist:

MemberOf: Int x IntList — Boolean
MemberOfz, list) =
cases list
nil : false
conghd, tail) : if z = hdthen true else MemberOf z, tail )
end

Note that function MemberOf is tail recursive.
1. Explain what optimization or optimizations are possiioletail-recursive functions.

2. For a call MemberQft, list), wherelist is of lengthn, (i) how many calls are made, and (ii)
how deep does the stack grow? Explain why.

3. In general, how deep does the stack grow for your propaaptementation of tail-recursive
functions? Explain why.

Part (c): “Continuation-passing style” is a paradigm for writing fitional programs in which
functions receive explicit “continuation” arguments tfzaie invoked within the function instead
of returning from the function. In other words, each “retufrom a function looks like a call on
another function.

Remark. The functional definition obtained as the meaning of a @ogm a lan-
guage whose denotational-semantics definition uses ‘fogettions” is one example
of a function in continuation-passing style; this questi@ppens to be about func-
tions written directly in continuation-passing stylend Remark.



Suppose that we rewrite the Length function from Part (apdews:

continuation = Int — Int
LengtH : IntList x continuation — Int
LengtH(list, k) =
cases list
nil : k£(0)
conghd, tail) : LengtH(tail, A\z.k(1 + 2))
end

Length: IntList — Int
Length(list) = LengtH(list, \z.z)

In particular, function Lengthis tail recursive and thus the method you described in Pagt{buld
apply.

1. Interms of the number of calls made and/or the depth oftdeksdid we “get something for
free” by turning Length into tail-recursive form (by trasiming it into continuation-passing
style)? For instance, for a call Lendlist), wherelist is of lengthn, (i) how many calls are
made, and (ii) how deep does the stack grow?

2. In general, by transforming a function into continuatjgassing style do we necessarily gain
performance benefits (i.e., measured in number of callsoam#®pth of the stack)? If not,

suggest a way in which a performance benefit could be gainetthédomodified version of
Length.



Question 3 (Dominators).

The notion ofdominancecan be useful for code analysis and optimization. This goesisks you
to define, compute, and use dominators.

Part (a): Letn andm be nodes of a control-flow graph. Define what it means:féto dominate
m.

Part (b): Define each of the following properties and say whether otm®property holds for the
dominance relation (justify your answers):

e transitivity

o reflexivity

e symmetry

e anti-symmetry
Part (c): A straightforward representation of the dominance retafar the nodes of a control-
flow graph requiresV? space in the worst case, whekeis the number of nodes in the graph.

Describe a representation that is commonly used and thairesgless space. How much space
does your representation require in the worst case?

Part (d): Define a dataflow analysis that can be used to compute the daoerrelation for the
nodes of a control-flow graph.

Part (e): Describe at least two analyses and/or optimizations tleptire knowing the dominance
relation for the nodes of a control-flow graph.



Question 4 (Prolog).

Part (a): In Prolog, assume thatdge( X, Y) is true whenX andY are graph nodes for which
there is a directed edge froto Y. Consider the following alternatives for definingat h( X, 2)
relation which is true when there is a path frofiio Z:

Alternative I:

pat h( X, X).
path(X, Z) :- edge(X, Y), X \=Y, path(Y, 2.

Alternative II:

pat h( X, X).
path(X, Z) :- path(X, Y), X \=Y, edge(Y, 2.

Alternative IlI:

pat h(X, Y) :- edge(X Y).
path(X, Z) :- edge(X, Y), X \=Y, path(Y, 2.

Alternative IV:

pat h( X, X).

pat h(X, Y) :- edge(X Y).
pat h( X, 2) path(X, Y), X \=Y, path(Y, 2), Y \= Z

Are these alternatives equivalent in correctness and pedice? If not, which alternative(s)
is/are preferable and why?

Part (b): Define a unancycl e relation in Prolog such thatycl e( X) is true if and only ifX
is part of a nontrivial graph cycle. You may usdge andpat h in your definition. If you use
pat h, say which of the alternatives given above you are assuming.

Part (c): What is the worst-case asymptotic time complexity of yousveer to part (b)? For
simplicity, assume that constant time is required for eatdg fact look-up (includingedge),
unification operation, or backtracking step.



Question 5 (Threads).

For purposes of this question, assume that an entire Jagegonds statically available at compile
time. Reflection, native methods, and dynamic class loaaliagnot used.

Consider memory accesses (loads and stores) in a multégbdeJava program. If an ac-
cess could coincide with an access of f#anelocation by adifferentthread, then we call this a
“potentially-shared access”; otherwise, we call this difdeely-unshared access”.

We may be interested in determining whether a given accessténtially shared or definitely
unshared. A trivial static shared-access analysis mighplsi report the following:

1. Allloads or stores of local variables are definitely unslla
2. All'loads or stores of instance fields are potentially sbar

This analysis conservatively over-approximates the spot#ntially-shared accesses.

Part (a): Propose two alternative static shared-access analysés. the trivial analysis given
above, your alternatives must conservatively over-apprate the set of potentially-shared ac-
cesses. However, your alternatives must be strictly mageipe. Briefly describe your two anal-
yses. You need not present every tiny detail, but you showte gnough information to clearly
demonstrate that your approaches are feasible. You maynasthiat your analysis is operating in
the context of an optimizing Java compiler: the full Javatayrhas been reduced to some simpler
intermediate representation, other standard compildyses are available, etc.

Part (b): How do your two analyses compare in terms of precision? Aeg #yuivalent? Is one
strictly more precise than the other? Or does each beatiee iotdifferent cases? If your analyses
are not equivalent, then give examples of code fragmentsenwir analyses behave differently.
(However, examplealonedo not constitute a complete answer.)

Part (c): Briefly describe three interesting ways in which the resofta static shared-access
analysis could be used. These might involve optimizatioig, detection, interactive development
environments (IDES), or any other aspect of software dgraknt.

Your answers may be suitable for use watfystatic shared-access analysis, or you may require
that the analyses have more specific qualities. If you do Bpgeial analysis requirements, clearly
identify those as part of your answer.



Question 6 (Fixed Points).

Let S be a finite set of size. Let I : 2° — 27 be a functiont. A setX ¢ 2° is called a fixed point
of a functionF iff F(X) = X. DefineuX.F(X) to be the least fixed point df andv X .F'(X) to
be the greatest fixed point &f.

Part (a): Under what conditions is a function guaranteed to have d fe&sl point and how can
that fixed point be computed? Do those conditions hold fofuaittions F of type 2° — 27 as
defined above?

Part (b): LetG = (5, ) be a labeled directed graph wheftés the set of vertices anl C S x .S
is the set of edges. Given a subsegtof S, let Reach(S;) be the set of vertices such that there
exists a path from to vertexs’ € S;. Describe a work-list algorithm for computin@each (S, ).

Part (c): Define a functionF' such thatF’s least fixed point isReach(S;). (Don't just makeF
ignore its argument and compuiach(S;).)

Give a small example graph, identify sgt and show how to comput€’s least fixed point for
your example using the fixed-point-finding technique that glescribed in Part (a).

DoesF also have a greatest fixed point? If yes, what is it? If no, wbi? n

Part (d): The duals of fixed-point formulas are defined as follows:

D(uX.F(X)) = vX~F(=X)
D(wX.F(X)) = pX.~F(-X)

For a setS; € 2 —5; denotes the sef — S;. Let F' be the function that you gave for Part (c).
What does the formul® (X .F(X))) represent?

1Recall tha2® is the power-set of.



