
FALL 2004
COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN—MADISON
PH. D. QUALIFYING EXAMIN ATION

Programming Languages and Compilers
Qualifying Examination

Monday, September 20, 2004

GENERAL INSTRUCTIONS:

1. Answereach question in a separate book.

2. Indicateon the cover of each book the area of the exam, your code number, and the question
answered in that book.On oneof your books list the numbers ofall the questions answered.Do not
write your name on any answer book.

3. Returnall answer books in the folder provided. Additionalanswer books are available if needed.

SPECIFIC INSTRUCTIONS:

Answer 4 of 5 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible.Nevertheless, the exam some-
times contains misprints and ambiguities.If you are convinced a problem has been stated incorrectly, men-
tion this to the proctor. If necessary, the proctor can contact a representative of the area to resolve problems
during thefirst hourof the exam. Inany case, you should indicate your interpretation of the problem in
your written answer. Your interpretation should be such that the problem is nontrivial.

Question 1.

This question concerns how to determine a certain property for each of the nonterminals
of a context-free grammar:

Given a context-free grammar, for each nonterminalN, what is the length of the shortest
string that can be derived from N? (Our convention will be that if it is not possible to
derive any string from N, then the answer forN should be∞.)

One way to do this is by solving a set of equations over variables whose values are taken
from Nat ∪ { ∞ }. The equations are defined as follows:

(i) For each terminal or nonterminaln of the grammar, let there be a variable xn; let
there also be a variablexε .

(ii) Let there be an equationxε = 0.

(iii) For each terminal symbolt, let there be an equationxt = 1.

(iv) Let “min” be an infix operator that computes the minimum of two numbers; e.g.,
4 min 1 = 1. min is commutative and associative; e.g., 4min 1 = 1min 4 = 1, and
(4 min 1) min 2= 4min(1 min 2)= 4min 1 min 2= 1. For each nonterminalA with
productions of the form

A → a1
. . .ai

A → b1
. . .b j

. . .
A → h1

. . .hp

let there be an equation

xA = (xa1
+ xa2

+ . . .+ xai
) min (xb1

+ xb2
+ . . .+ xb j

) min . . . min (xh1
+ xh2

+ . . .+ xhp
).

For example, the grammar

A → t
A → A t

gives rise to the following set of equations:

xε = 0
xt = 1
xA = (xt) min(xA + xt)

These equations happen to have a unique solution:xε = 0; xt = 1; xA = 1.

As a second example, the grammar

A → ε
A → A t

gives rise to the following set of equations:

xε = 0
xt = 1
xA = (xε) min(xA + xt)

These equations also have a unique solution:xε = 0; xt = 1; xA = 0.
(Question continued on the next page.)

- 1 -

Part (a)

Not all sets of equations that arise from the above definition have a unique solution.Give
a grammar (and its set of equations) such that the grammar’s equations have more than
one solution. List at least two of the solutions to the equations that you give.

(Note: For your grammar to be an acceptable answer, it must meet the following condi-
tions: (i)all nonterminals must be derivable from the grammar’s root symbol; (ii)for
ev ery nonterminal, there must be some derivation of eitherε or some terminal string.)

Part (b)

Recall that if you have a complete partial orderD with a least element , and F is a con-
tinuous function fromD to D, a recursive equation of the formX = F(X) has a least
solution X (where “least” is defined with respect to the ordering relationof D) that
can be obtained as

(*) X =
∞

i = 0
F i ().

Given the set of equations that arise from a grammarG, as defined above, definean
appropriate partial orderDG and a functionF such that theleastfixed-point ofF is the
desired solution; that is, the goal is that in the least fixed-point solution the value for vari-
ablexN , whereN is a nonterminal, is the length of the shortest string that can be derived
from N (and xN = ∞ if it is not possible to derive any string from N). (Be sure to say
what the elements ofDG are, and what the ordering is on elements ofDG since the notion
of “least” is defined with respect to this ordering.)

(Note: You are not required to prove that your functionF is continuous in order to
receive full credit.)

- 2 -

Question 2.

Information flow can be a security issue.For example, a program may have both high-
and low-security inputs and outputs.There is a security leak if the value of a low-secu-
rity output can be affected by the value of a high-security input.

Consider a simple programming language with assignment statements, if-then-else
statements, while loops, initial reads (i.e., all read statements must come at the beginning
of the program), and final writes (i.e., all writes must come at the end of the program),
where a read or write only reads or writes the value of a single variable. Assumethat the
language has no procedures or procedure calls, no non-structured control flow, no point-
ers, no arrays or structures, and no global variables.

Here is an example program in this language:

begin program
int w, x, y, z;
read(w);
read(y);
read(z);
w = 0;
if (y > 10) {

x = z + w;
} else {

x = z*2;
}
write(w);
write(x);

end program

In this program, the output value ofx can be affected by the input values of bothy andz,
but not the input value ofw. The output value ofw cannot be affected by the input value
of any variable.

(Question continued on the next page.)

- 3 -

Part (a)

Now consider the program whose code and CFG are shown below (CFG nodes are num-
bered for use in the answer to this question).

begin program
int w, x, y, z;
read(w);
read(x);
read(z);
y = w * 2;
if (y > 10) {

y = 0;
if (z > 0) {

x = y + 1;
}

}
write(x);

end program

9: x = y + 1

6: if (y > 10)

5: y = w*2

4: read z

3: read x

2: read w

1: enter

13: exit

12: write x

11: endif

10: end if

8: if (z > 0)

7: y = 0

What input values can affect the output value ofx?

Consider defining a dataflow-analysis problem whose solution can be used to deter-
mine, for each “write(v)” the set of variables on whose input values the output value
depends. Definethe problem for the example program given above by specifying the
underlying lattice (of dataflow facts) including the meet operator, and by defining a set of
equations, two for each noden, of the form:

n.before = ...
n.after = ...

wheren.before is the dataflow fact that holds before noden executes, andn.after is the
dataflow fact that holds immediately aftern executes. Notethat, unlike the usual equa-
tions for a dataflow-analysis problem, somen.afters will depend on the before facts of
nodes other than noden.
(Question continued on the next page.)

- 4 -

Part (b)

Now assume that the language can include gotos, and consider the following program:

1: begin program
2: int w, x, y, z;
3: read(w);
4: read(y);
5: read(z);
6: w = 0;
7: if (y > 10) {
8: x = z + w;
9: goto L;

}
10: w = 2;
11: x = z*2;
12: L:
13: write(w);
14: write(x);
15: end program

On which input values might the output values ofx andw depend?

What are the dataflow equations for the four assignment statements now?

In general, how does allowing gotos affect the way a node’s dataflow equations are
defined?

- 5 -

Question 3.

A function that looks up a value,x, in a list L is given below.

define lookup(x, L)
cases (L) of

nil: false
x::tail: true
y::tail: lookup(x, tail)

Part (a)

Write function look1 that, given valuex and listL, returns a listL′ such that:

if x is not inL, thenL′ = L
elseL′ is L with x moved to the front of the list

Your code must be purely functional (e.g., no assignments).

Part (b)

What is the worst-case running time for look1 (in terms of the length ofL)? (Note:The
efficiency of your function will not affect your grade.)

Part(c)

Prove that for allx and allL

not lookup(x, L) => look1(x, L) = L

- 6 -

Question 4.

This question involves the design and implementation of exception handlers.

Part (a)

Outline an implementation of the throw/catch construct found in Java. That is, detail the
machine-level steps needed to transfer control from the point of a throw to the handler
responsible for the object that is thrown.

Part (b)

Java uses aterminationsemantics for exceptions: after a throw, execution continues in the
context of the exception handler. Some languages use aresumptionsemantics for excep-
tions: After a thrown object is handled, execution is resumed with the statement that nor-
mally follows the throw (the throw acts like a “backwards call” to a handler, with a return
after the handler completes). Explain how you would change your answer to Part (a) to
support a resumption semantics for the throw/catch construct of Java.

- 7 -

Question 5.

Part (a)

Languages like C that do not guarantee array-bounds checking and that allow pointer
arithmetic can lead to programs that are vulnerable to certain kinds of malicious attacks.
Explain how a malicious user can exploit a buffer-overrun vulnerability in a program.

Part (b)

Consider the program shown below:

1: main(int argc, char* argv[]){
2: char header[2048], buf[1024];
3: int counter;
4: FILE *fp;
5: ...
6: fgets(header, 2048, fp);
7: copy_buffer(header);
8: fgets (buf, 1024, fp);
9: copy_buffer(buf);
10: }
11:
12: void copy_buffer(char *buffer){
13: char copy[20];
14: strcpy(copy, buffer);
15: }

How could a malicious user exploit thebuffer overrun in this program, to execute the
system callsystem(‘‘exec /bin/sh’’)? Assume that the malicious user con-
trols the contents of the file thatfp points to.

Part (c)

One technique to address the buffer-overrun vulnerability is to make the stacknon exe-
cutable. Explain why this addresses the buffer-overrun vulnerability.

Part (d)

Another technique for addressing the buffer-overrun vulnerability is to keep an auxiliary
stack. At a function call site, the return address is pushed on the auxiliary stack. Before
returning to that call site, the program verifies that the top of the auxiliary stack matches
the actual return address.Give details about this technique in the context of the program
discussed in Part (b). Explain why this technique addresses the buffer-overrun problem.

- 8 -

