FALL 2006
COMPUTER SCIENCES DEPARTMENT
UNIVERSITY OF WISCONSIN—MADISON
PH.D. QUALIFYING EXAMINATION

Computer Architecture
Qualifying Examination
Monday, September 18, 2006

GENERAL INSTRUCTIONS:
1. Answer each question in a separate book.
2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the
questions answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are
available if needed.

SPECIFIC INSTRUCTIONS:

Answer all of the following SIX questions. The questions are quite specific. If, however,
some confusion should arise, be sure to state all your assumptions explicitly.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless,
the exam sometimes contains misprints and ambiguities. If you are convinced a problem
has been stated incorrectly, mention this to the proctor. If necessary, the proctor can
contact a representative of the area to resolve problems during the first hour of the exam.
In any case, you should indicate your interpretation of the problem in your written
answer. Your interpretation should be such that the problem is non-trivial.



1. Serial Decimal Digit Detector

Let a serial Decimal Digit Detector (DDD) receive one bit each cycle, wait for four bits,
assert its output if the four bits are a valid binary-coded decimal (BCD) digit (0000, 0001,
.., 1001), and then repeat for the next new set of four bits. The output should be asserted
at most once every four bits, because only aligned digits are considered.

INPUT: A new single-bit IN is available each cycle from a D-flip-flop clocked by CLK.
Assume that the most-significant bit (MSB) arrives first.

OUTPUT: Serial output OUT should be 1 when an BCD digit is found and 0 otherwise
(not BCD or, as yet, incomplete).

(a) Present a finite-state machine diagram (FSM) for a serial DDD. Indicate what state
that your FSM should start in (since we are not asking for a reset signal in this prob-
lem).

(b) “Implement” your design by assigning state values and giving equations for combi-
national logic. You will be graded for design correctness first and clarity second.
Grading will not consider speed or gate count.

2. Trends in Microarchitectural Techniques

Computer architects are constantly debating the value of different microarchitectural
techniques, and techniques that were considered very important in one generation are
sometimes discarded in the next generation. Two techniques, trace caches and simulta-
neous multithreading (or hyperthreading) that were considered to be very important for
a previous-generation microarchitecture (e.g., the Intel Pentium IV) were not considered
desirable in a more recent microarchitecture (e.g, the Intel Core 2).

Put yourselves in the shoes of the chief architect of a contemporary microarchitecture.
(a) Argue why a trace cache is a good choice.

(b) Argue why a trace cache is a poor choice.

(c) Argue why simultaneous multithreading is a good choice.

(d) Argue why simultaneous multithreading is a poor choice.



3. Memory Consistency Models

Consider a single Chip Multiprocessor (CMP) consisting of a eight cores that connect to a
private write-back L1 caches kept coherent with an MOESI directory protocol imple-
mented at the four banks of an on-chip multi-bank shared write-back L2 cache. Assume
each L2 bank misses to a corresponding bank of external DRAM memory.

Assume that each core is a single-issue in-order processor that speculates on conditional
branches. Let a core retire an instruction after the instruction completes execution and all
previous instructions have retired. Let stores retire by writing their value to the tail of a
first-in-first-out (FIFO) write buffer. An entry is removed from the head of the write
buffer when sufficient coherence permission has been obtained that the head’s value can
be written into the L1 cache.

(a) What mechanisms are needed to ensure that this CMP implements a processor con-
sistent memory consistency model (e.g., SPARC Total Store Order (TSO))?

(b) Give example code and execution where your answer to part (a) realizes a processor
consistent execution that is 1ot sequentially consistent (SC).

(c) What mechanisms are needed to ensure that this CMP implements sequential consis-
tency?

4. Branch in Large Instruction Windows

A number of recent microarchitecture proposals strive to hide main memory latency by
creating effective execution window sizes of a thousand instructions or more. But since
typically one in six instructions is a branch, this naively implies accurately predicting
over 150 branches to fill the window without incurring a misprediction. Even with a 99%

accurate branch predictor, there is only a 22% chance of correctly predicting 150 consecu-
tive branches.

(a) Discuss the hardware and software techniques that can reduce the number of mispre-
dicted branches in a large instruction window microarchitecture.

(b) Discuss ways to mitigate the impact of mispredicted branches in a large instruction
window microarchitecture.



5. Reliability and CMPs

As semiconductor technology continues to scale to smaller feature sizes, microprocessor
systems become much more susceptible to both transient (soft) and permanent (hard)
faults. For example, the small capacitances of static RAM cells make them much more
susceptible to transient errors due to sub-atomic particle strikes. And small wire dimen-
sions and increasing process variation greatly increase the likelihood of metal migration
that results in open circuits (i.e., a blown fuse).

Many architects believe that even volume microprocessor systems must soon take signif-
icant steps to maintain current levels of reliability. Yet classical fault-tolerance techniques,
such as triple modular redundancy (i.e., voting logic), is widely considered too expensive
for volume applications. Worse, the high levels of integration expected in future chip-
multiprocessor (CMP) systems means that much or all of the processing logic will reside
on a single silicon chip.

(a) Describe how you might apply a main-frame style pair-and-spare redundancy
scheme (e.g., IBM G5) to a single chip CMP system. What types of faults could this
handle? What types of faults would prove a challenge?

(b) Describe how you might apply temporal redundancy schemes (e.g., Diva) to a single
chip CMP system. What types of faults could this handle? What types of faults would
prove a challenge?

(c) Compare and contrast the two approaches. Which has more promise for this design
point? Would a synthesis of these ideas provide a sweet spot solution or unnecessary
complexity?

6. Synchronization Mechanisms

As the number of cores on a CMP increases, computer architects may have to design
novel on-chip synchronization mechanisms to facilitate efficient synchronization of the
multiple CMP cores. To do so computer architects are likely to see how synchronization
was done in older parallel machines, and if and how those techniques might be adapted
to the CMP context. The parameters that are likely to be considered include: the problem
domain, the bandwidth required, and the latency of the synchronization operation.

There have been a variety of parallel machines that have used different synchronization
techniques. These include the Stanford DASH, the Thinking Machines CM-5, the Cray
T3E, and others.

Suppose you are to design a synchronization mechanism for a CMP with 32-64 cores.
What lessons can you learn from the synchronization mechanisms of older machines,
such as those above, and how might you adapt them for the CMP context?



