
This exam asked the student to answer 4 out of 6 question. This document
contains the 4 questions that were answered.

Question 1: N-Limited Constant Propagation

Consider a generalized kind of constant propagation calledN-limited constant
propagation. This analysis determines aset of up to N values for each variable
v at each program point. The meaning is thatv is guaranteed to have one of the N
values at that point. (Normal constant propagation is 1-limited.)

Part (a):

Define a dataflow framework that defines N-limited constant propagation for a
fixed N. Assume the usual simple imperative programming language (a program
is a single procedure, there is no aliasing, etc).

Part (b):

How can the results of N-limited constant propagation be used by an optimizing
compiler?

Part (c):

What are the advantages and disadvantages of this dataflow problem compared
with normal constant propagation?

1

Question 2: Non-Local Gotos

Consider a language that allowsnon-local gotos as follows:

A statement of the form “goto L” is legal iff, when the goto is executed,
there is some procedure that has been called, has executed a statement
labeledL, and has not yet returned (this procedure could be the one that
contains the goto). If this is the case, control is transferred to the most
recently executed such statement; otherwise, a runtime error occurs. Note
that a procedure may have more than one statement with the same label.

Part (a):

Is it possible for the compiler to determine whether every goto in a program is
legal? If yes, describe how it would be done. If no, explain why not, and give
an analysis that would be safe but perhaps overly conservative (i.e., would never
allow an illegal goto, but might say that a legal goto was illegal).

Part (b):

Describe how non-local gotos could be implemented at runtime (assume a com-
piled, not an interpreted language). Think about what special operations need to
be implemented when a procedure is called, when a procedure returns (normally),
when a labeled statement is executed, and when a goto is executed.

2

Question 3: Partial Evaluation and Denotational Semantics

Recall that the first step of partial evaluation is to computea division by doing a
binding-time analysis. For this question you will define a denotational semantics
so that the meaning of a program is a uniform, congruent division (i.e., a mapping
from the identifiers that appear in the program to their bindings–eitherstatic or
dynamic).

Here is the grammar for the language:
P→ C.
C→ C1 ; C2 | if B then C | if B then C1 else C2 | I := E | while B do C | read(I)
E→ E1 + E2 | I | N
B → E1 = E2 | ! B | TRUE | FALSE
I → IDENT
N → NUM

The division defined by your denotational semantics should be the most optimistic
division that satisfies the following properties (i.e., as few variables as possible
should be classified dynamic).

1. Every variable that occurs in a read statement is dynamic.

2. If the right-hand side of an assignment includes a dynamicvariable, then the
left-hand-side variable is dynamic.

3. If the condition of a while loop includes a dynamic variable, then every vari-
able that is assigned to inside the loop is dynamic.

To specify the denotational semantics you will need to provide semantic algebras
and valuation functions. The algebras and functions for thestandard semantics,
which defines the meaning of a program to be the final value of variable Z, are
given on the next page to serve as a model for your answer. The given standard
semantics doesnot include a rule for the read statement, but you should include
that in your answer.

3

STANDARD DENOTATIONAL SEMANTICS

Semantic Algebras

1. Truth Values
Domain

Tr = {true, false}
Operations

not: Tr→ Tr

2. Identifiers
Domain

i, i1 ε Id = Identifier

3. Natural Numbers
Domain

n ε Nat = {zero, one, two, ...}
Operations

plus: Nat→ Nat→ Nat
equals: Nat→ Nat→ Tr

4. Stores
Domain

s, s’ε Store = Id→ Nat
Operations

Newstore: Store =λ i. zero
Access: Id→ Store→ Nat =λ i. λ s. s i
Update: Id→ Nat→ Store→ Store =λ i. λ n. λ s. λ i1. if i1 is i then n

else s (i1)

Valuation Functions

P: Program→ Nat→ Nat
P[C.] = λ n. let s = update A n Newstore in

let s’ = C[C] s in Access Z s’ endlet endlet

C: Command→ Store→ Store
C[C1;C2] =λ s. C[C2] (C[C1] s)

4

C[if B then C] = λ s. if (B[B] s) thenC[C] s else s
C[if B then C1 else C2] =λ s. if (B[B] s) thenC[C1] s elseC[C2] s
C[I := E] = λ s. Update I (E[E] s) s
C[while B do C] = fix(λ f. λ s. if B[B] s then f (C[C] s) else s)

E: Expression→ Store→ Nat
E[I] = λ s. Access I s
E[N] = λ s. N
E[E1 + E2] =λ s. (E[E1] s) plus (E[E2] s)

B: BooleanCondition→ Store→ Nat
B[TRUE] = λ s. true
B[FALSE] = λ s. false
B[!B] = λ s. not (B[B] s)
B[E1 = E2] =λ s. (E[E1] s) equals (E[E2] s)

5

Question 4: Partial Orders

This question concerns a pointed complete partial order (cpo) [Part (a)] or two
pointed cpos [Part (b)].

Part (a):

Consider two chainsC = C1 ⊑C2 ⊑ . . .⊑Ci ⊑ . . . andD = D1 ⊑ D2 ⊑ . . .⊑ D j ⊑

. . . such that foralli there existsj such thatCi ⊑ D j, and forall j there existsi such

thatD j ⊑Ci. Show that
∞

G

i=0

Ci =
∞

G

j=0

D j.

Part (b):

Suppose thatα andγ define a Galois insertion between Conc and Abs in the usual
way; i.e.,

α : Conc→ Abs

γ : Abs→ Conc

such that
a = α(γ(a)), forall a ∈ Abs, (1)

and
c ⊑ γ(α(c)), forall c ∈ Conc, (2)

Assume that bothγ andα are continuous.

Is it true thatγ(⊥Abs) = ⊥Conc ? Either give a proof or a counter example.

Is it true thatγ(⊤Abs) = ⊤Conc ? Either give a proof or a counter example.

6

