Programming Languages and Compilers
Qualifying Examination

Fall, Sept 20, 2010

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover afachbook the area of the exam, your code number, and the question
answered in that book. Gineof your books list the numbers afl the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additicaaswer books are available if
needed.

POLICY ON MISPRINTS AND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefslpoasible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you arnwiceed that a problem has been stated
incorrectly, mention this to the proctor. If necessary, phector will contact a representative of the

area to resolve problems during thest hour of the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Yonterpretation should be such that the
problem is nontrivial.

P Interp P RM,
-
application RM, o
| RM | kernel application application
kernel kernel
(a) (b) (©)

Figure 1: Three types of reference monitors: (a) OS-levidremce monitor; (b) interpreted
application-level reference monitor; (c) in-lined applion-level reference monitor.

Question 1 (Reference monitors).

This question concerns the use of reference monitors in @&kand application code.

Part (a)

One class o$ecurity policiexan be expressed usisgcurity automataautomata with calls as the
alphabet (where calls are sometimes qualified by specifitegabf actual parameters). Describe
(e.g., by means of a diagram) a security automaton for theyptiat prohibits execution of &end
operation after an¥{ileReadoperation has been executed.

Part (b)

Using the automaton you used to answer Part (a), give an dgaofifan infinite sequence of
operationss for which each of the prefixes of is accepted by the automaton. In other words, the
infinite sequence avoids ever falling into the error state.

Part (c)

The security automaton discussed in Parts (a) and (b) wailsuiiable as the basis for an OS
kernel-level reference monitor (see Figlte 1(a)). Refegemonitors could also be used at appli-
cation level (see Figurés 1(b) and 1(c)).

Using application-level reference monitors opens up negsiilities because the alphabet
of visible events is different. That is, for OS kernel-leveference monitors, the only events
visible are system calls (perhaps further qualified by dmaealues of actual parameters), whereas
application-level events and data are visible to applicatevel reference monitors.

Give an example of an application-level event that would fiteresting—from a security
perspective—to use for reference monitoring. (Note: beferiting your answer to this part,
please read Part (d); it is not our intention that you resyraur answer to just reference monitors
that are pure finite-state automata.)

Part (d)

For the example from Part (c), give a specification of it in smnitable notation. (Note: Various

kinds of specification are acceptable; we are leaving it ymtobecause it may not be possible to
express the property with something as simple as a finite-ategomaton.)

Part (e)

Describe a compilation/rewriting strategy whereby an mapilon-level reference monitor can be
in-lined with the code (as hinted at in Figure 1(c)). Includdiscussion of the potential kinds of

2

optimizations that could be performed.

Question 2 (Loops).

One task usually performed by an optimizing compiler is &nitify the loops in each function.
This question explores loop identification. Parts (b) anjddtk about natural loops. If you are
familiar with Bourdoncle Components, you can use them ieglaf natural loops for parts (b) and
(©).

Part (a): Why is it useful for an optimizing compiler to identify loops

Part (b): A compiler could identify natural loops or strongly-conteat components (SCCs).
What is a natural loop? How are natural loops different froBCS? Give an example to illus-
trate the difference.

Part (c): What are the advantages and disadvantage of using natogs Mersus SCCs in an
optimizing compiler? (Note: the efficiency of computing una loops vs strongly connected
components is not the issue.)

Question 3 (Dataflow analysis).

Recall that we can use Kildall's lattice framework to defimgrastance of a (forward, intrapro-
cedural) dataflow problem for a given CFG as follows:

e We define a complete lattice of dataflow facts with no infinhaios.
¢ We define a monotonic dataflow function for each CFG node.
e We define a special "initial” fact that holds at the start af fanction.

Given this, an algorithm that produces the solution to thafttaw problem (using the CFG) is
the following:

for the entry node e, initialize e.after to the special initial fact
for all other nodes n, initialize n.before = n.after = TOP
repeat {
si mul t aneously conmpute all n.after
(by applying n’s datafl ow function to n.before),
and at the sane tine, conpute all n.before
(as the neet of all predecessors’ after val ues)
} until no change

This algorithm finds the greatest fixed point for the set ofagguns that define the "before”
and "after” facts for all CFG nodes. You can think of one iteva of the loop as an application of
a functionf . Then the loop above computes

f (TOP)
f(f(TOP))
FOE(T(TOR)))

until a fixed point is found. That fixed point is a valued = f*(TOP); i.e., k applications
of f to TOP.

This question is about doing incremental dataflow analyss:assume that you have used the
above algorithm to solve a dataflow problem. Now someone ¢l program, and you want the
solution for the updated CFG, but you don’t want to start ared compute the new solution from
scratch.

To simplify this, we’ll assume that the shape of the CFG isai@nged (it has the same nodes
and edges as before). However, the code in some of the nodkthexrefore the dataflow functions
associated with those nodes, has changed. This means ¢hfainittionf discussed above has
changed to a new functidn.new (which is still monotonic).

Part (a): Here's one way to compute the new solution (remembervh@tis the solution to the
original problem):

f_new(v_0) neet v_O
f _new(v_1) neet v_1
f _new(v_2) neet v_2

< < <
WN P
I

until no change
Prove (i) that this process is guaranteed to terminate,igrid4t it will produce a safe solution;

i.e., one that is less than or equal to the greatest fixed pbfinctionf _new.

Part (b): While the loop above is guaranteed to terminate and to findeasaution, it is not
guaranteed to find the greatest fixed pointfahew. Show that this is true by supplying the
following:

e a dataflow problem

a simple CFG
e the solution to the dataflow problem (before and after famt®fch CFG node)
e achange to the code at one CFG node

e the greatest solution to the new dataflow problem (the swiutiat would be found by solv-
ing the new problem from scratch)

o the (different) solution that would be found using the imsemtal approach described above
in Part (a).

Question 4 (Fixpoints).

Let S be a finite set of size. Let ' : 25 — 25 be a functior] A setX € 25 is called a fixed
point of a function/' iff /(X) = X. DefineuX.F(X) as the least fixed point df andv X.F'(X)
as the greatest fixed point éf.

e Part (a): Give a formal definition fop, X.F(X) andv X.F(X), and provide conditions un-
der which these fixpoints exist and are unique.

e Part (b): Let G = (5, E) be a labeled directed graph whefeis the set of vertices and
E C S x Sis the set of edges. Given a subSetof S, let Reach(S;) be the set of vertices
s such that there exists a path frosmo a vertexs’. Describe a work-list algorithm for
computingReach(Sy).

e Part (c): Provide a fixpoint formula foReach(S;) (evaluating your formula should yield
Reach(Sy)).

e Part (d): For a setS; € 29, the setS — S, is denoted by-S;. The dual of a formulap
(denoted byD(¢)) is defined as follows:

D(uX.F(X)) = vX-F(=-X)
D(wX.F(X)) = puX~F(-X)
Let 5 be the formula that you gave for part (c). What does the foanil(5) represent?

e Part (e): What is the relationship between a formulaand its dualD(¢)? Justify your
answer

1Recall tha2® is the power-set of.

Question 5 (Security).

Part (a): Describe memory-corruption vulnerabilities for C progssmand give two specific ex-
amples of memory-corruption vulnerabilities.

Part (b): In taint analysis, any variable whose value can be contidiye an adversary (for ex-
ample, a buffer whose contents are read from a network) isngavtainted attribute. The taint
attribute is then propagated throughout the program. Oeser static-analysis technique for taint
analysis of C programs. Use an example to demonstrate yawean At the end of executing
your static-analysis technique, each variable instan¢kdrprogram should be marked as tainted
or untainted. In your description, include a definition atiadly tainted variable instances.

Part (c): Describe a source-to-source transformation, which takégpeogram as input and out-
puts another C-program where the taint attribute is dynatlyipropagated during the execution
of the program.

Part (d): Describe how taint analysis can be used to thwart exploétsube memory corruption
vulnerabilities.

Question 6 (Exception Checking).

Consider exception handling in a simplified Java-like laaggi Exceptions must be instances
of the Thr owabl e class or some subclass ®ir owabl e. An exception is raised (or thrown)
using at hr owstatement:

t hr ow e;

Exceptions are caught usinig y/cat ch statements. Let ands; represent statements and
let T; andid; represent identifiers. Assume the following simplified syifiort r y/cat ch state-
ments:

try
S

catch (17 idy)
S1

catch (7, id,)
Sn

In the text that follows, we refer te as the body of thé r y clause, and; as the bodies of the
corresponding at ch clauses.

When an exception is thrown, the run-time environment les#te closest dynamically enclos-
ingt ry/cat ch statement. It searches through theet ch clauses of that statement in order until
it finds one with associated tyfgéethat is a superclass of the dynamic type of the thrown valhe. T
corresponding at ch clauses; is then evaluated withi; bound to the thrown value. If noat ch
clause has a suitable associated type, then the exceptipagates outward to the next closest dy-
namically enclosing r y/cat ch statement. Propagation continues until a suitalalech clause
is found or until the last of the enclosing y/cat ch statements has been exhausted.

Assume that we have a typing environméntvith which we can make judgments as given
in fig. 2. For example, the following might be part of the tygeecking rules for statements. It
enforces the restriction that onkhr owabl e instances can be thrown:

I'e:7 T'F7LC Throwabl e
I'~throw e :void

As a second example, a sequence:@ftatements type checks if each individual statement type

checks:
I'ks;:void TI'Fsg:void --- Ik s, :void

I'Fs; sy ---5,:void
Java requires that each method declare the set of excepéisses that it may propagate out
to callers. If the exception declaration includes a cl&sshen thrown instances df or anyT
subclass might propagate out from the method without beaglat.
[You may be aware of Java’s distinction between checked andecked exceptions. Disregard
unchecked exceptions for purposes of this question. Aleptions are checked exceptions that
must be declared in the method signature if not caught wittiermethod body:.]

9

variable lookup judgments:

LGid) =7

Interpretation:id is a bound identifier with type.
subclassing judgments:

'-ACB

Interpretation:A and B are the names of classes aAds a subclass ¢
B. The “C” relation is reflexive and transitively closed.

-

method lookup judgments:
''FAdd -1y x--- X7, = p

Interpretation:A is the name of a class with methatltaking arguments
of typesr; and yielding a result of type. Assume that the implictthi s
argument is represented by.

type checking judgments for expressionsI e : 7
Interpretation:e is an expression that type checks and has statictype

type checking judgments for statements:I" - s : void

Interpretation:s is a statement or block of statements that type checks.

Figure 2: General forms of judgments provided by a typingremmentI".

Part (a):

Modify the general forms of (1) method lookup judgments, t{§)e checking judgments on ex-
pressions, and (3) type checking judgments on statemegisltbany additional information that

would be required to verify that checked exception declanatare correct. Do not write complete
type checking rules. Merely show the general forms thatglleee kinds of judgment would have
and state the interpretation of each as inﬁig. 2.

Part (b):

Write a type checking rule for the binary-* operator that uses the modified judgment forms you
proposed in panﬂla). For simplicity, assume that this aperanly applies to a pair of arguments
of typei nt .

Part (c):

Write a type checking rule farr y/cat ch statements that uses the modified judgment forms you
proposed in paa]a). You may use just one rule or multipless you see fit. Your rule(s) should
enforce the following restrictions:

10

1. Identifierid; for a caught exception is bound with tyfewithin the correspondingat ch
clause body;.

2. Eachcat ch clause must have the possibility of actually catching soroejgtions raised
in the body of the ry clause and not caught by any precedaas ch clause in the same

t ry/cat ch statement.

3. Only instances ofhr owabl e or aThr owabl e subclass can be caught.

Include comments clearly explaining which parts of yourefg) enforce each of the three

restrictions above.
Note that it is legal forcat ch clause bodies to raise new exceptions of their own. Any such

exception is dispatched starting with the next encloging/cat ch statement. Latecat ch
clauses in the curremtr y/cat ch statement are not considered.

11

	
	
	

