
Programming Languages and Compilers
Qualifying Examination

Fall, Sept 20, 2010

Answer 4 of 6 questions.

GENERAL INSTRUCTIONS

1. Answer each question in a separate book.

2. Indicate on the cover ofeachbook the area of the exam, your code number, and the question
answered in that book. Ononeof your books list the numbers ofall the questions answered.
Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if
needed.

POLICY ON MISPRINTS AND AMBIGUITIES

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam
sometimes contains misprints and ambiguities. If you are convinced that a problem has been stated
incorrectly, mention this to the proctor. If necessary, theproctor will contact a representative of the
area to resolve problems during thefirst hourof the exam. In any case, you should indicate your
interpretation of the problem in your written answer. Your interpretation should be such that the
problem is nontrivial.

1

P

RM kernel

application
P

kernel

application

RM
Interp RM1P

RM2

RMk

…

kernel

application

(a) (b) (c)

Figure 1: Three types of reference monitors: (a) OS-level reference monitor; (b) interpreted
application-level reference monitor; (c) in-lined application-level reference monitor.

Question 1 (Reference monitors).

This question concerns the use of reference monitors in OS kernel and application code.

Part (a)
One class ofsecurity policiescan be expressed usingsecurity automata: automata with calls as the
alphabet (where calls are sometimes qualified by specific values of actual parameters). Describe
(e.g., by means of a diagram) a security automaton for the policy that prohibits execution of aSend
operation after anyFileReadoperation has been executed.

Part (b)
Using the automaton you used to answer Part (a), give an example of an infinite sequence of
operationsσ for which each of the prefixes ofσ is accepted by the automaton. In other words, the
infinite sequence avoids ever falling into the error state.

Part (c)
The security automaton discussed in Parts (a) and (b) would be suitable as the basis for an OS
kernel-level reference monitor (see Figure 1(a)). Reference monitors could also be used at appli-
cation level (see Figures 1(b) and 1(c)).

Using application-level reference monitors opens up new possibilities because the alphabet
of visible events is different. That is, for OS kernel-levelreference monitors, the only events
visible are system calls (perhaps further qualified by specific values of actual parameters), whereas
application-level events and data are visible to application-level reference monitors.

Give an example of an application-level event that would be interesting—from a security
perspective—to use for reference monitoring. (Note: before writing your answer to this part,
please read Part (d); it is not our intention that you restrict your answer to just reference monitors
that are pure finite-state automata.)

Part (d)
For the example from Part (c), give a specification of it in some suitable notation. (Note: Various
kinds of specification are acceptable; we are leaving it up toyou because it may not be possible to
express the property with something as simple as a finite-state automaton.)

Part (e)
Describe a compilation/rewriting strategy whereby an application-level reference monitor can be
in-lined with the code (as hinted at in Figure 1(c)). Includea discussion of the potential kinds of

2

optimizations that could be performed.

3

Question 2 (Loops).

One task usually performed by an optimizing compiler is to identify the loops in each function.
This question explores loop identification. Parts (b) and (c) talk about natural loops. If you are
familiar with Bourdoncle Components, you can use them in place of natural loops for parts (b) and
(c).

Part (a): Why is it useful for an optimizing compiler to identify loops?

Part (b): A compiler could identify natural loops or strongly-connected components (SCCs).
What is a natural loop? How are natural loops different from SCCs? Give an example to illus-
trate the difference.

Part (c): What are the advantages and disadvantage of using natural loops versus SCCs in an
optimizing compiler? (Note: the efficiency of computing natural loops vs strongly connected
components is not the issue.)

4

Question 3 (Dataflow analysis).

Recall that we can use Kildall’s lattice framework to define an instance of a (forward, intrapro-
cedural) dataflow problem for a given CFG as follows:

• We define a complete lattice of dataflow facts with no infinite chains.

• We define a monotonic dataflow function for each CFG node.

• We define a special ”initial” fact that holds at the start of the function.

Given this, an algorithm that produces the solution to the dataflow problem (using the CFG) is
the following:

for the entry node e, initialize e.after to the special initial fact
for all other nodes n, initialize n.before = n.after = TOP
repeat {

simultaneously compute all n.after
(by applying n’s dataflow function to n.before),
and at the same time, compute all n.before
(as the meet of all predecessors’ after values)

} until no change

This algorithm finds the greatest fixed point for the set of equations that define the ”before”
and ”after” facts for all CFG nodes. You can think of one iteration of the loop as an application of
a functionf. Then the loop above computes

f(TOP)
f(f(TOP))
f(f(f(TOP)))
...

until a fixed point is found. That fixed point is a valuev 0 = fk(TOP); i.e.,k applications
of f to TOP.

This question is about doing incremental dataflow analysis:i.e., assume that you have used the
above algorithm to solve a dataflow problem. Now someone edits the program, and you want the
solution for the updated CFG, but you don’t want to start overand compute the new solution from
scratch.

To simplify this, we’ll assume that the shape of the CFG is notchanged (it has the same nodes
and edges as before). However, the code in some of the nodes, and therefore the dataflow functions
associated with those nodes, has changed. This means that the functionf discussed above has
changed to a new functionf new (which is still monotonic).

5

Part (a): Here’s one way to compute the new solution (remember thatv 0 is the solution to the
original problem):

v_1 = f_new(v_0) meet v_0
v_2 = f_new(v_1) meet v_1
v_3 = f_new(v_2) meet v_2
...
until no change

Prove (i) that this process is guaranteed to terminate, and (ii) that it will produce a safe solution;
i.e., one that is less than or equal to the greatest fixed pointof functionf new.

Part (b): While the loop above is guaranteed to terminate and to find a safe solution, it is not
guaranteed to find the greatest fixed point off new. Show that this is true by supplying the
following:

• a dataflow problem

• a simple CFG

• the solution to the dataflow problem (before and after facts for each CFG node)

• a change to the code at one CFG node

• the greatest solution to the new dataflow problem (the solution that would be found by solv-
ing the new problem from scratch)

• the (different) solution that would be found using the incremental approach described above
in Part (a).

6

Question 4 (Fixpoints).
Let S be a finite set of sizen. Let F : 2S → 2S be a function.1 A setX ∈ 2S is called a fixed

point of a functionF iff F (X) = X. DefineµX.F (X) as the least fixed point ofF andνX.F (X)
as the greatest fixed point ofF .

• Part (a): Give a formal definition forµX.F (X) andνX.F (X), and provide conditions un-
der which these fixpoints exist and are unique.

• Part (b): Let G = (S, E) be a labeled directed graph whereS is the set of vertices and
E ⊆ S × S is the set of edges. Given a subsetS1 of S, let Reach(S1) be the set of vertices
s such that there exists a path froms to a vertexs′. Describe a work-list algorithm for
computingReach(S1).

• Part (c): Provide a fixpoint formula forReach(S1) (evaluating your formula should yield
Reach(S1)).

• Part (d): For a setS1 ∈ 2S, the setS − S1 is denoted by¬S1. The dual of a formulaφ
(denoted byD(φ)) is defined as follows:

D(µX.F (X)) = νX.¬F (¬X)

D(νX.F (X)) = µX.¬F (¬X)

Let β be the formula that you gave for part (c). What does the formulaD(β) represent?

• Part (e): What is the relationship between a formulaφ and its dualD(φ)? Justify your
answer

1Recall that2S is the power-set ofS.

7

Question 5 (Security).

Part (a): Describe memory-corruption vulnerabilities for C programs, and give two specific ex-
amples of memory-corruption vulnerabilities.

Part (b): In taint analysis, any variable whose value can be controlled by an adversary (for ex-
ample, a buffer whose contents are read from a network) is given a tainted attribute. The taint
attribute is then propagated throughout the program. Describe a static-analysis technique for taint
analysis of C programs. Use an example to demonstrate your answer. At the end of executing
your static-analysis technique, each variable instance inthe program should be marked as tainted
or untainted. In your description, include a definition of initially tainted variable instances.

Part (c): Describe a source-to-source transformation, which takes aC program as input and out-
puts another C-program where the taint attribute is dynamically propagated during the execution
of the program.

Part (d): Describe how taint analysis can be used to thwart exploits that use memory corruption
vulnerabilities.

8

Question 6 (Exception Checking).
Consider exception handling in a simplified Java-like language. Exceptions must be instances

of theThrowable class or some subclass ofThrowable. An exception is raised (or thrown)
using athrow statement:

throw e;

Exceptions are caught usingtry/catch statements. Lets andsi represent statements and
let Ti andid i represent identifiers. Assume the following simplified syntax fortry/catch state-
ments:

try
s

catch (T1 id1)
s1

...
catch (Tn idn)

sn

In the text that follows, we refer tos as the body of thetry clause, andsi as the bodies of the
correspondingcatch clauses.

When an exception is thrown, the run-time environment locates the closest dynamically enclos-
ing try/catch statement. It searches through thecatch clauses of that statement in order until
it finds one with associated typeTi that is a superclass of the dynamic type of the thrown value. The
correspondingcatch clausesi is then evaluated withid i bound to the thrown value. If nocatch
clause has a suitable associated type, then the exception propagates outward to the next closest dy-
namically enclosingtry/catch statement. Propagation continues until a suitablecatch clause
is found or until the last of the enclosingtry/catch statements has been exhausted.

Assume that we have a typing environmentΓ with which we can make judgments as given
in fig. 2. For example, the following might be part of the type checking rules for statements. It
enforces the restriction that onlyThrowable instances can be thrown:

Γ ⊢ e : τ Γ ⊢ τ ⊑ Throwable
Γ ⊢ throw e; : void

As a second example, a sequence ofn statements type checks if each individual statement type
checks:

Γ ⊢ s1 : void Γ ⊢ s2 : void · · · Γ ⊢ sn : void

Γ ⊢ s1 s2 · · · sn : void

Java requires that each method declare the set of exception classes that it may propagate out
to callers. If the exception declaration includes a classT , then thrown instances ofT or anyT

subclass might propagate out from the method without being caught.
[You may be aware of Java’s distinction between checked and unchecked exceptions. Disregard

unchecked exceptions for purposes of this question. All exceptions are checked exceptions that
must be declared in the method signature if not caught withinthe method body.]

9

variable lookup judgments:

Γ(id) = τ

Interpretation:id is a bound identifier with typeτ .

subclassing judgments:

Γ ⊢ A ⊑ B

Interpretation:A andB are the names of classes andA is a subclass of
B. The “⊑” relation is reflexive and transitively closed.

method lookup judgments:

Γ ⊢ A.id : τ1 × · · · × τn → ρ

Interpretation:A is the name of a class with methodid taking arguments
of typesτi and yielding a result of typeρ. Assume that the implicitthis
argument is represented byτ1.

type checking judgments for expressions:Γ ⊢ e : τ

Interpretation:e is an expression that type checks and has static typeτ .

type checking judgments for statements:Γ ⊢ s : void

Interpretation:s is a statement or block of statements that type checks.

Figure 2: General forms of judgments provided by a typing environmentΓ.

Part (a):

Modify the general forms of (1) method lookup judgments, (2)type checking judgments on ex-
pressions, and (3) type checking judgments on statements toyield any additional information that
would be required to verify that checked exception declarations are correct. Do not write complete
type checking rules. Merely show the general forms that these three kinds of judgment would have
and state the interpretation of each as in fig. 2.

Part (b):

Write a type checking rule for the binary “+” operator that uses the modified judgment forms you
proposed in part (a). For simplicity, assume that this operator only applies to a pair of arguments
of typeint.

Part (c):

Write a type checking rule fortry/catch statements that uses the modified judgment forms you
proposed in part (a). You may use just one rule or multiple rules as you see fit. Your rule(s) should
enforce the following restrictions:

10

1. Identifierid i for a caught exception is bound with typeTi within the correspondingcatch
clause bodysi.

2. Eachcatch clause must have the possibility of actually catching some exceptions raised
in the body of thetry clause and not caught by any precedingcatch clause in the same
try/catch statement.

3. Only instances ofThrowable or aThrowable subclass can be caught.

Include comments clearly explaining which parts of your rule(s) enforce each of the three
restrictions above.

Note that it is legal forcatch clause bodies to raise new exceptions of their own. Any such
exception is dispatched starting with the next enclosingtry/catch statement. Latercatch
clauses in the currenttry/catch statement are not considered.

11

	
	
	

