Optimization Qualifer Exam University of Wisconsin-Madison

Spring 2011 Qualifier Exam:
OPTIMIZATION

January 31, 2011

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the
question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer 5 out of 8 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the
exam sometimes contains misprints and ambiguities. If you are convinced a problem has been
stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-
tative of the area to resolve problems during the first hour of the exam. In any case, you should
indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Consider the following problem:

min max(2x; — 3xy + x3 + 2, —x1 + T2 + 223 + 5)

T1,22,T3

subject to x1 — a2+ x3 =4, x1,xo,x3 > 0.

(a) Formulate this problem as a linear program.

(b) Solve this problem.

(¢) Find the dual of the LP formulation in (a).
)

(d) Is the solution to the primal problem unique? If not, is the solution set bounded or

unbounded?

2. Suppose we have m non-empty polytopes
P, = {$ eR" : Apx < bk} (1)

for k =1,...,m. Here, Ag is pp xn and by € RP* for k = 1,...,m. Write the optimization

problem

m
minimize ¢! z subject to z € conv (U Pk>
k=1
as a linear program. Justify your formulation. Write down necessary and sufficient condi-
tions on the cost vector ¢ that guarantee that the optimal solution lies in P;.

3. In this problem, we will decide capital investments and an extraction sequence for a gold
mine in Montana. This mining opportunity will take place for a limited number of time
periods T' = {1,2,...|T|}. Conceptually, the mine consists of an m x n array of blocks.
(See Figure 1). Each block is defined by its vertical and horizontal position in the set
B ={(i,j) | i € {1,2,...m},j € {1,2,...n}. Each block (4, j) € B has a volume v;; and
if mined will lead to a profit of p;;. In order to mine the block at position (i, j), you must
mine the blocks on top of it. Specifically, if 1 < j < n, then in order to mine the block at
position (7, ), the blocks at position (i — 1,5 — 1), (i — 1,7), and (i — 1,5 + 1) must have
been mined in a previous period. If ;7 = 1, then in order to mine the block at position

(L,1) | (1,2) | (1,3) | (1,4)
(2,1) | (2,2) | (2,3) | (2,4)

(3,1) | (3,2) | (3,3) | (3,4)

Figure 1: Example mine with m = 3 and n = 4. E.g., block (2,2) cannot be excavated until
after blocks (1,1), (1,2), and (1,3) have been.
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(,1), the blocks at positions (i — 1,1), and (¢ — 1,2) must have been mined in a previous
period. Similarly, in order to mine the block at position (i,n), the blocks at positions
(i —1,n—1), and (i — 1,n) must have been mined in a previous period.

The mining is done by excavating machines. We must decide how many new excavators
to lease in each period. Each excavator is able to clear a volume of A in each time period.
The cost of leasing an excavating machine from period ¢ € T until the end of the time
horizon is ¢;. This (entire) cost is paid in period t and the machine is available until period
|T'|—i.e. you may not shorten the period of the lease.

We assume that the choice of excavating a block in a particular period is an all-or-nothing
decision—either block (i, j) is completely excavated in period ¢, or no excavation is done
on the block. We also assume that if a machine is newly leased in period ¢t it is available
for excavating immediately at the start of the period (and all periods thereafter).

The goal is to maximize the total cash on hand at the end of period |T|. We initially start
with $K. At the beginning of each period we can spend some of the currently available
cash to lease additional excavating machines, but the cash balance is not allowed to go
negative. Unspent cash accrues interest at a rate of §/period—$1 in period ¢ will become
$(1 4+ 9) in period ¢t + 1. At the end of the period we receive the profit from the blocks
processed in that period.

(a) Write an algebraic description of the mine planning problem that achieves the objec-
tive and obeys all the problem restrictions. Be sure to clearly define your decision
variables. State clearly assumptions that you made in your model that are not clari-
fied in the problem description above.

(b) If time permits, demonstrate how your model would be implemented in either the
GAMS or AMPL modeling language. You may assume that all sets and parameters

will be instantiated (filled in with actual values) outside of the code you write.
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4. Consider the following (general) two-stage stochastic program:
s« def .
= E, [F
2" = minE, [F(z,w)],
where X C R™, and

F(z,0) € min g(z,y,w)
y€G(z,w)

is the optimal value of the second-stage problem for some function g : R x R? x Q@ — R
and multifunction G : R” x Q@ — R™. You may assume that F(z,w) is “well-behaved”.
Specifically, F(z,-) is measurable, —oco < E,[F(z,w)] < 400 Vo € X, and mingex F(z,w)
exists for all w € Q.

(a) Define the value
ZpI R, [min F(z, w)}
reX

to be the value of the perfect information solution. Prove: z* > zpy.

(b) Let wy,...,wy be an independent and identically distributed sample of w (i.e., each

w; has the same distribution as w), and define

1 N
~N def .
AN E min — E F(z,w;).
ze€X NN 4 7
1=

Prove: z* > E[2V], where here the expectation is taken with respect to the random
sample w1, ..., wyN.

5. Consider the binary reverse knapsack set:
X ={ze{0,1}"] ijxj > b}
j=1

where b >0 and 0 < w; < b, for j =1,...,n.

(a) For any S C {1,...,n} define b(S) = b — }_ ;g w;. Prove that if b(S) > 0, then the
inequality

> min{w;, b(S)}a; > b(S) (2)
Jj¢s
is valid for the set X. Hint: for an arbitrary z € X, consider separately the case in
which there exists j/ ¢ S such that z;; =1 and b(S) < wj» and the case in which this
does not hold.

(b) Consider the specific example:
X = {z € {0,1}* | 5z + 4x2 + 423 + 324 > 8}.

Specify inequality (2) for S = {2,4} and prove it is facet-defining for conv(X). You
may use the fact that conv(X) is full-dimensional without proving it.
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6. Let b € R™. Let 1 € R™ denote the vector of all 1s. Compute an optimal solution of the

one-dimensional unconstrained optimization problems
minimize ||z1 — b||,

for p = 1,2 and oco. In all cases, determine if the solution is unique and explain why or
why not.

7. Let {p1,...,px} be a nonempty finite set of points in R™. A geometric median of the
points py, is a point # € R that minimizes the sum D(z) = S35, ||px — || of the Euclidean
distances from z to the points.

Show that the minimum value of D(x) is
K K
sup Z(wk,pk)\Zwk:(), lug|| < 1fork=1,...,K ;.
wi,...,wg ER™ k=1 =1

Explain how you could calculate this value using an ordinary nonlinear-programming pack-
age that does not accept nonsmooth functions.

8. Consider the following two problems, where b is a vector of nonpositive numbers, and p

and A are positive parameters:

(A) min g7z + gCCTJZ s.t. Az > b,
€T

(B) min g7z s.t. Az >b, |z]? < A%
4

(a) Write down KKT conditions for both problems.
(b) Explain why both (A) and (B) have a solution whenever p and A are positive.

(¢) Let z(u) be the solution of (A) for some p > 0. Find a value of A such that x(u) is
also the solution of (B).

(d) For problem (A), show that ||z(u)]]2 is a nonincreasing function of y for u > 0.
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