Programming Languages and Compilers
Qualifying Examination

Monday, January 31, 2011

This exam asked students to answer 4 out of 6 questions. dtusn@nt contains the 5 questions
that were answered.



Question 1 (Automata).

A non-deterministic, bottom-up, finite-state tree automgtehich will be abbreviated as FSTA)
is a formalism for recognizing (or “accepting”) members dbhaguage of trees. An FSTA =
(Q,QF,3,6) has a set obtatesQ, a set of final state®” C @Q, aranked alphabet:, and a
transition relation.

A ranked alphabet means that each symbol haarityy which indicates how many children it
has. We will denote, e.g., a binary (arity-2) symkwat by foo®. Thus, if7} and7, are two trees,
fod®(T1, Ty) is another tree; it has the symdob? at its root.

The transition relatiord consists of rules of the form

qa(f") — (a1, qn),

whereq, q1,...,q, € Q and f™ is ann-ary symbol. We allowA to be non-deterministic; that is,
one can have multiple result states (i.e., left-hand-sidees) for a given combination of symbol

and child states:
Q(fn) — fn(qlv cee 7qn)

q/(fn) A fn(q177QTL)

An FSTA A accepts a language of treé$A). For a given tred’, T' is accepted or rejected
depending on the outcome of the possihlasof A overT. A run labels each leaf of’ with a
state, and then moves upwards to successively label eaehofi@dwith a state, using the rules of
0. Thatis, if we have the rule

q(f") — (a1, - )

in 0 and there is a subtreg whose root symbol i and whosen children are labeled with
q, - -, qn, respectively, then the root of can be labeled with.

An accepting ruris one that labels the root of the tree with a stat@fn Because we allow
to be non-deterministic, onlgneof the possible runs oft overT’ needs to be an accepting run for
T to beacceptedi.e., forT € L(A) to hold).

An FSTA has no initial state, but the rules for 0-ary symbaigse certain states to act as initial
states at a tree’s various leaves. For instance, suppaseeteve the rule

qir(a”) — a’()

Then if 7" has any instance af as a leaf, that leaf can be labeled wijth, and serves as one of the
“Initial” states for runs ofA overT'. Note that we are permitted to have multiple rules for a 0-ary
symbol and these can be used at different leaves in a given run

°0)
°0

CJ15(GO)
Q17(a0)

— a
— a



Example. Consider the FSTAle, defined as follows:

Aexp = ({Qinta Gfloat, Qerror}a {Qinta Qfloat}a {p|U52, aO’ mO’ xO}’

( 0 \
— Qa
?Im( 0) 0() Qerror(plusz) — pIUSZ(Qfloata Qim)
Gint(m”) — m°() _
0 0 Qerror(plu ) — plu ((Jerron (Jmt)
C_Iﬂoat( ) — m ()
0 0 Qerror(plu ) — plU (Qerrora Qfloat)
foatld ) = 2 GeroPIUS) — PIUS (g Gero) [
Q|nt(p|U52) — p|u52(qim’ Qim) error int, Gerror
2 Qerror(plu ) A plu (Qfloata Qerror)
Qfloat(plu ) - plu (Qfloata C_Iﬂoat) q (plu ) - plU (q q )
L Qerror(plu ) — pIUSZ(Qianfloat) error erron Herror. )

Let T andT; be two trees defined as follows:

Ty = plus(plus(m’().a ()),%

0)
T, = plus(plus'(a’(),a’()),2°())

Note that there is both an accepting runTgr namely,

plus’(plus’(m°(), a’()), a°())
= p|US2(p|US2(q,m(m )7 Qint(ao))a Qint(ao))
= plus’(gine(plus’(m(), a’())), gint(a"))
= gin(PIUS’ (plus’(m°(), a°()), a’()))
and a non-accepting run fa,
plus’(plus’(m°(), a°()), a"())
= plusz(plusz(Qfloat(mO>a Qint(ao))a Gint CLO))
= p|US2(qe”0r(p|US2(m0(), ()))7 Qint(ao))
= Geror(PIUS*(pIUS’ (m°(),a°()), a"()))
In contrast, there is only a non-accepting runfgy namely.

Consequently]} € L(Aexp) butTh & L(Aexp). O

Abbreviations:

e You may drop superscripts on alphabet symbols.

e Although we wrote out all of the possible transitions invaly geror, it would have been
convenient to treadeor as a “stuck” state—in which case, in the set of rules Agg, we
would have omitted the last two rules in the first column aridta rules in the second
column. Such rules would be implicit: an occurrenceqggf,r in any child of an arityk
symbol results in the symbol being labeled wijth,,.
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Part (a) (Relationship to String Automata):
Explain how ordinary non-deterministic finite-state (styj automata are a degenerate case of FS-
TAS.

FSTAs are useful in dataflow-analysis and model-checkioblpms because they can be used
to describe the matched call-and-return structure of path®ulti-procedure programs. Parts
(b) and (c) concern how to define an FSTA to specify a treedagg that captures the matched
paths specific to a particular program, namely, the one sHmilow. (The “if(*)” denotes a non-
deterministic branch.)

void bar(){
void foo() { n5: if (*) {
nl: x1=0; x1=x1+x2;
n2: x2 =1; n6: bar();
n3: bar(); N7: X2 = x2+1;
n4: ; }
} ng: ;
}
procedure foo
ny K
X, = ;
n, '
X, =1
N3
bar() -
n4c¥ '

The FSTA you will define should accept a language, each treeéhadh represents a properly
matched path fromm; to n,. For each properly matched pathfrom n, to n4, the FSTA should
accept a tree that represeptsThe FSTA should reject trees that either (i) do not repreaqrath,
or (ii) represent a path that violates matched call-andrrestructure in the graph given above.

The alphabek consists of three kinds of symbols:

1. Nine 0-ary symbols for the nine edges in the graph givewebo

{e! el e? el e? el el el el }.

n1—nz? "N2—n3’? "N3—ns’? N5—ng’ N5—nNe’  Neg—N5’ N7 —Ng) TNg—NT) TNg—TN4

2. Sixty-four binary symbols for possible start/end pasis in a sub-path:

P2, 1 1<i,j <8}

3. Sixty-four ternary symbols for subtrees that represessible matched call-and-return sub-
paths: {cf;ﬁnj | 1 < 14,j < 8}. (The symbols are ternary so that the three children can

represent a call-edge from caller-to-callee, an edge ortahmd path from the entry node to
the exit node of the callee, and a return-edge from callezatier.)
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Part (b) (Representing Paths with Trees):
The idea is that the frontier of each tree (i.e., its sequehteaves in left-to-right order) represents
a candidate path. Draw the three trees that represent tlogviiog paths:

1. [n1 — n2,n2 — n3,n3 — nb,nd5 — n8, N8 — nd|

2. [n1 — n2,n2 — n3,n3 — nd,n5 — n6,n6 — nb,nd — nb6,n6 — nb,nd — n8 nd —

n7,n7 — n8,n8 — n7,n7 — n8,n8 — n4j

3. [n1 — n2,n2 — n3,n3 — nb,nb — n8,n8 — n7|
(Note: the first two trees should be accepted by the FSTA thatnill define in Part (c); the third
tree should be rejected by the FSTA from Part (c).)

Part (c) (Identifying Matched Call-and-Return Structure) :

The alphabet: of the FSTA has been defined above. The set of state$ the FSTA consists
of a stuck stategenror, together with 64 states that are indexed by a pair of nodeesa =
{deror} U {@n,—n, | 1 < 14,5 < 8}. The set of final states is defined as followE? = {¢,, ., }-

Using @, QF, andX as defined above, give the definition of an FSTA that acceptiatiguage
of trees that represent all properly matched paths frgrto 4. The intention is that statg,, ..,
only arises in a run when there exists a matched path frptan;.

(There are 65 different states and 137 alphabet symbols.oMetexpect you to write out the
full transition relation; however, it should be clear fromur answer what the essential features are
and what the intended pattern is.)

Explain why your FSTA accepts the first two trees from yourvegristo Part (b), and why it
rejects the third tree from Part (b).

Part (d) (Checking Emptiness):
Given an FSTAA = (Q, X3, 4, ¢°, QF), give an algorithm for determining wheth&f A) = ().



Question 2 (Lambda Calculus Evaluation Strategies).

Recall that lambda expressions can be reduced either usimgahorder reduction (NOR)—i.e.,

reduce the leftmost-outermost redex—or using applicatieker reduction (AOR)—i.e., reduce
the leftmost-innermost redex. Two reduction strategigsand.S, are considered to be equivalent
iff for every lambda expressioa, either bothS; and.S; reducee to normal form, or neither does

(i.e., neither terminates).

Part (a):
What are the advantages of NOR over AOR and vice versa? Gam@es to illustrate your
answers.

Part (b):

Is the strategy “reduce the rightmost-outermost redex’ivedent to NOR? If yes, briefly justify
your answer. If no, give an example of a lambda expressionmwfach one strategy leads to a
normal form while the other strategy fails to terminate.

Part (c):

Is the strategy “reduce the rightmost-innermost redex’iedent to AOR? If yes, briefly justify
your answer. If no, give an example of a lambda expressionmwfach one strategy leads to a
normal form while the other strategy fails to terminate.



Question 4 (Security).

Part (a) (Provoking a Buffer Overrun):

Languages like C that do not guarantee array-bounds chgakiththat allow pointer arithmetic can
lead to programs that are vulnerable to certain kinds of ¢cimls attacks. Consider the program
shown in Figure 1. How could a malicious user cause a bufferran?

Part (b) (Exploiting a Buffer Overrun):
Explain how a malicious user can exploit a buffer-overrumeuability in a program.

Part (c) (Buffer-Overrun Analysis):

We will sketch a static-analysis technique to detect busferrruns. Each buffeouf (variable of
typechar =) is associated with two range-valued variables, (buf) and R, (buf) (one for
the length and other for the allocated space). A progranmakéi (of typei nt) is associated
with a single range-valued variable(i) (representing the possible valuesidf Intuitively, if
Rien(buf) = (n,m), then the minimum and maximum length of the bufterf are n andm,
respectively. SimilarlyR,;,.(buf) = (n, m) indicates that the minimum and maximum allocated
space for the buffeoufaren andm, respectively. Zero or more subset constraints on rangesda
variables are generated for each statement in the programexample, consider the following
statement:

strcpy(a, b)

Sinceb is copied intaz, the following constraint is generated:
Rlen(b) g Rlen(a)

Show the range constraints generated for the program givEigure 1.

Note: You will have to use sets of constraints that model the Iypfanctionsf get s andst r cpy.
We are assuming you know the semantics bf cpy. Descriptions okt r| en andf get s are
given below:

strlen()
/! Returns the nunber of characters up to, but not including, the nearest '\0’

char *fgets(char *s, int size, FILE *strean);
/! Reads in at nost size-1 characters fromstreamand stores themin the buffer pointed to by s.
/! Reading stops after an EOF or a newine. If anewine is read, it is stored in the buffer.
/1 A’\0" is stored after the last character in the buffer.

Part (d) (Identifying Overruns using Range Constraints):
Solvinga systemS of range constraints means finding the “tightest” possialeges that respect
all of the constraints irb. For example, consider the following systeéimnof range constraints:

(4,4) € R(a)
(8,8) < R(b)
R(b) < R(a)
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(1) main(int argc, char* argv[]){
(2) char header[2048], buf[1024],
*Cccl, *cc2, =*ptr;

(3) int counter;

(4) FI LE *f p;

(5) .

(6) ptr = fgets(header, 2048, fp);
(7) ccl = copy_buffer(header);

(8) ptr = fgets (buf, 1024, fp);
(9) cc2 = copy_buffer(buf);

(10) }

(11)

(12) char *copy_buffer(char *buffer){

(13) char =*copy;

(14) copy = (char *) malloc(strlen(buffer));
(15) strcpy(copy, buffer);

(16) return copy;

(17) }

Figure 1. Example program.

The following assignment of ranges is the “tightest” thafpects constraints if :

R(a) = (4,8)
R(b) = (838)

Notice that the following assignment of ranges also resptet constraints irb;, but does not
assign the “tightest” possible ranges.

R(a) = (1,9)
R(b) = (5,8)

Suppose that there is procedufefor solving a system of range constraints, i.e., proceddre
returns the “tightest” possible ranges that respect thetcaints in a systeny. How will you use
procedureP to discover buffer overruns?

Part (e) (Defining a Graph Algorithm for Solving Range Constraints):

Consider the range constraints from Part (c). Give a gragbrihm to solve the range constrains
generated in Part (c). You need only explain your algorithith wespect to the specific set of
constraints generated in Part (c).



Question 5 (Registers).

A C programmer can declare local variables taégistervariables. This kind of declaration tells
the compiler to try to keep those variables in registersatiman in the function’s activation record
(on the stack).

Part (a):
Suppose that there are N register variables in a functiorfdwer than N registers available for
allocation. What can the compiler do to determine whetHe &hriables can be kept in registers?

Part (b):

Normally, if a variable is in a register, the value in thatistgr must be saved before every function
call and restored after the call. If the number of variablesegisters is large, this can make
function calls quite expensive. What can a compiler do tacauanecessary saving and restoring
of registers across calls?

Part (c):

Even if a register’s value must be saved and restored acrfiwsxton call, it may be possible to
improve the code (by reducing code size and/or executioa)timy placing the save/restore code
somewhere other than immediately before/after the calle Gome examples of this and explain
how the compiler can determine where to place the savereestale.



Question 6 (Array and Function Subtyping).

Let 7 represent some type. For any typeet 7| ] represent the type of arrays whose elements all
have typer. For any pair of types;, r, let ; — 7, represent the type of functions fromto r,.
Let int be the type of integers. Letnit, also known asoid, be the empty type of statements that
compute no value.

Let = be a binary relation that represents strict subtyping, withs its reflexive closure.

Part (a)

Java and C# extend subtyping across array elements. Thatlisy = 7'[] C 7[]. Write a
fragment of Java or C# code that type checks according toul@sbut that will fail at runtime due
to an incorrectly-typed element appearing in an array.

Part (b) (Elimination of Runtime Checks):

Java and C# add runtime checks to every array-element assignin order to trap this sort of
error and throw an exception instead. Propose a static anogmalysis and optimization that
could safely eliminate some of these runtime checks. Desgrour analysis in detail, including
placing it in context with respect to well-known familiesaralysis techniques.

Part (c) (Function Subtyping):
What are the most flexible subtyping relations that can gdifelpermitted among function types?
That is, what are the weakest conditionsonr,, 7{, andr;, for which we can safely treat — 7}
as a subtype of;, — 7?

Justify the correctness of your answer. It may be useful aryguments to treat types as
mathematical sets with subtyping as subsetting.

Part (d) (Arrays as Functions):

Suppose we model array operations as a pair of functions:fangetting the value of an array
element and one for setting the value of an array elementsé henctions must work for arrays
of all types, and therefore are actually a polymorphic fgrofl functions parameterized by array
element type:

get VT . T[] = int =T

set YT . T[] — int — T — unit

Note thatsetis treated as imperative: it modifies the given array in pwe returns nothingupit).

Any form of polymorphism means that a single value can siandbusly have multiple types.
In the case of parametric polymorphism, the types of a valakide its polymorphic type as well
as all monomorphic instantiations of that type. In the cdseibtyping, the types of a value include
some most-specific type as well as all supertypes of thaifspgpe. Show how extending array
subtyping across elements allows deriving a types&ithat violates runtime type safety of arrays.
You should expect to use the function subtyping relatioretigyed in part (c) when formulating
your answetr.
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