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Spring 2013 Qualifier Exam:

OPTIMIZATION

4 February 2013

GENERAL INSTRUCTIONS:

1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the

question answered in that book. On one of your books list the numbers of all the questions

answered. Do not write your name on any answer book.

3. Return all answer books in the folder provided. Additional answer books are available if

needed.

SPECIFIC INSTRUCTIONS:

Answer 4 out of 6 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the

exam sometimes contains misprints and ambiguities. If you are convinced a problem has been

stated incorrectly, mention this to the proctor. If necessary, the proctor can contact a represen-

tative of the area to resolve problems during the first hour of the exam. In any case, you should

indicate your interpretation of the problem in your written answer. Your interpretation should

be such that the problem is nontrivial.
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1. Suppose D1, D2, P 1 and P 2 are finite sets of (directions and) points in Rn, with 0 ∈ Di.

(a) Define the positive hull of Di, pos(Di), i = 1, 2. (Note this is sometimes called the

conical hull or the cone generated by Di).

(b) Define the convex hull of P i, conv(P i), i = 1, 2.

(c) Prove that

∩2i=1(pos(Di) + conv(P i)) = ∅

if and only if there exists a w such that

max
d∈D1

dTw ≤ min
d∈D2

dTw

and

max
p∈P 1

pTw < min
p∈P 2

pTw

Be sure to quote any results you use precisely, and point out what happens if P i is

empty.

(d) Explain how this is related to the strong separation of two polyhedral sets {x|Aix ≤
bi}, i = 1, 2 in Rn?

2. We consider a portfolio allocation problem with a universe N
def
= {1, 2, . . . , n} of assets to

purchase. For each stock i ∈ N , we are given its expected return αi, and for each pair of

assets (i, j) ∈ N ×N , the covariance between the (random) returns of these assets is given

as the (symmetric, positive semi-definite) covariance matrix Q ∈ Rn×n. It can be shown

that if x ∈ Rn is a vector of asset allocations, then xTQx is the variance of the (random)

return. Of course,
∑

i∈N αixi is the expected return of the portfolio.

(a) Write an optimization problem that maximizes the expected rate of return, subject

to the “risk”, as measured by the variance of the return of the portfolio, being no

more than K. We must be fully invested, we have a budget of B, and there will be

“no shorting,” so that we must invest a non-negative quantity in each asset.

(b) Now we are more interested in “portfolio rebalancing,” where we have an initial

portfolio h ∈ Rn, with eTh = B. (e ∈ Rn is the all-ones vector). We would like

to add (linear) transacation costs to the previous model. Specifically, if we trade

ti = |xi − hi| of asset i, then we pay an amount citi. Modify your model from (a)

to maximize the expected rate of return minus the total transacation costs. Be sure

to write the model so that the resulting model is (still) a quadratically-constrained

program—(qcp in GAMS).

(c) Now we would like to take a more active portfolio management strategy to help

mitigate risk. There is a “sector” of stocks S1 ⊂ N such that if we decide to take
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a significant position in stocks in S1 then we also want to take a significant position

in a set S2 ⊂ N of less-risky stocks. Specifically, model the (logical) constraint that

if more than 10% of the portfolio is held in stocks in S1, then at least 5% of the

portfolio must be allocated to stocks in S2.

(d) The GAMS solvers for quadratically constrained programming are way too slow,

so your client has demanded that you use second-order-cone programming (SOCP).

Recall that a quadratic cone is the set of points:

Cq
def
=

{
(x, z) ∈ Rn × R | z ≥ ‖x‖2 =

√√√√ n∑
j=1

x2j

}
,

and a rotated second order cone is the set of points

Cr
def
= {(x, y, z) ∈ Rn × R2

+ |2yz ≥ ‖x‖22 = xTx}.

Change your model from problem (a) so that you no longer have a quadratic con-

straint, but rather your variable values are elements of an appropriate second-order-

cone. Hint: You will need to add additional variables and use the fact that Q is

positive semi-definite.

(e) (This one is harder). In order to reduce the “market impact” of large trades, instead

of the linear transaction costs of problem (b), we would now like to assess a cost

proportional to t
3/2
i . Specifically, if we trade ti = |xi − hi| of asset i, then we pay a

“market impact” cost of cit
3/2
i . Modify your model from (b) to maximize the expected

rate of return minus the total market-impact cost. This sounds easy, but it is actually

difficult, because in order to get full credit, you must model the problem as a SOCP.

Hint: You will need to add some auxiliary variables.

3. Let G = (V,A) be a directed graph with n = |V | nodes and m = |A| arcs. Let s and t be

distinct nodes in V , and assume that an s-t path exists in G. Let χP , P ∈ P be the set

of incidence vectors of all s-t paths in G. (That is, χPa = 1 if arc a ∈ A is on path P , and

χPa = 0 otherwise.) The dominant of the s-t path set is:

X↑s−t = {x ∈ Rm+ | x ≥ χP for some P ∈ P}.

Recall that a set of arcs C ⊆ A is an s-t cut if C = {a = (i, j) ∈ A | i ∈ S, j ∈ V \ S} for

some S ⊂ V with s ∈ S and t /∈ S.

(a) Let C be an s-t cut in G. Show that the inequality∑
a∈C

xa ≥ 1 (1)

is valid for X↑s−t.
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(b) Show that inequality (1) is not facet-defining for conv(X↑s−t) if C is a not a minimal

s-t cut. (An s-t cut C is minimal if no strict subset of C is an s-t cut.) You may take

it as given that conv(X↑s−t) is full-dimensional.

(c) Show that conv(X↑s−t) is equal to the set of x ∈ Rm+ that satisfy inequality (1) for

all s-t cuts C in G. Hint: To show this, it is sufficient to show that whenever the

following linear program has an optimal solution, it has an integral optimal solution:

min
∑
a∈A

caxa (2)

subject to:
∑
a∈C

xa ≥ 1, ∀s− t cuts C (3)

x ∈ Rm+ . (4)

4. Show that the following three convex problems are equivalent. Carefully explain how the

solution of each problem is obtained from the solution of the other problems. The problem

data are the matrix A ∈ Rm×n (with rows aTi ), the vector b ∈ Rm, and the constant µ > 0.

(a) Robust least-squares.

min

m∑
i=1

φ(aTi x− bi)

with variable x ∈ Rn, where φ : R→ R is defined as

φ(u) =

u2 |u| ≤ µ

µ(2|u| − µ) |u| > µ
.

(b) `1 regularized least-squares.

min ‖Ax− b− z‖22 + 2µ‖z‖1

with variables x ∈ Rn and z ∈ Rm.

(c) Weighted least-squares.

min
∑m

i=1(a
T
i x− bi)2/(wi + 1) + µ2

∑m
i=1wi

s.t. wi ≥ 0 i = 1, . . . ,m

with variables x ∈ Rn and w ∈ Rm.

5. Prove the following separation results. You may use the fact that when X is a closed

convex set, with P (·) denoting the operation of projection onto X, we have

(y − P (y))T (z − P (y)) ≤ 0 for all y and for all z ∈ X.
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(a) Let X be nonempty, convex, and closed, with 0 /∈ X. Then there is t̄ ∈ Rn and α > 0

such that t̄Tx ≤ −α for all x ∈ X.

(b) Let X and Y be two disjoint closed convex nonempty sets with X compact. Then

there is c ∈ Rn and α ∈ R such that cTx− α < 0 for all x ∈ X and cT y − α > 0 for

all y ∈ Y .

6. In this problem, we consider the 2-stage stochastic program with fixed recourse

min
x∈Rn

cTx+ Eξ[Q(x, ξ)] (5)

Ax = b, x ≥ 0,

where, as usual the recourse function Q(x, ξ) : Rn × Ξ→ R ∪ {+∞} is given as

Q(x, ξ) = min
y∈Rm

qT y

Tx+Wy = h, y ≥ 0

where ξ = (q, h, T ) is a random vector, with components q ∈ Rn+, h ∈ Rp, and T ∈ Rp×n.

Note that the matrix W is not random.

(a) Give the definition of the problem (5) having complete recourse

(b) Suppose that the (fixed) matrix W has the following property:

P : {π ∈ Rq | Wπ ≤ 0} = {0}.

True of False. If property P holds, then the problem (5) has complete recourse. If

true, provide a proof. If false, provide a counterexample.
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