Programming L anguages and Compilers Qualifying
Examination

Monday, February 4, 2013

This exam asked students to answer 4 out of 6 questions. This document contains the 5 questions that were
answered.



Question 1: (Security Policies)

Part (a): A security policy is a finite-state automaton with calls and their argumenthaslphabet. Assume that
there is a global Boolean semapharand the call ock(L) setsL =1 andunl ock(L) setsL = 0. Draw a finite-state
automaton with alphabétlock(L),unlock(L)} that corresponds to the following policy (assume that titeirvalue
of L=0):

Calll ock() should only be allowed it =0

Part (b): A reference monitor interposes a security policy between the application aedogberating system. A
system call is allowed if it satisfies the security policy.sAming that the security policy is expressed as a finite stat
automaton with system calls and their arguments as theladphexplain the operation of a reference monitor in detail.

Part (c): If a security-policy is expressed as a push-down automatbat are some examples of useful policies that
you can enforce, and that could not be enforced using a fitétie- automaton? Provide an example to explain your
answer.

How does your answer to Part (b) change? (Include somettingtahe relative efficiencies of the two kinds of
reference monitors.)

Part (d): Let the security policy be given as a finite-state automatoDescribe a static-analysis technique that given
a programP determines whether executifgcan result in a sequence of system calls that violates theigepolicy.

How can you use your static-analysis to optimize the refe@enonitor of part (b)?



Question 2: (Register Allocation)

Most compilers start by assuming an unlimited supply ofudttregisters, then (in the register-allocation phase)-map
ping virtual registers to physical registers.

Part (a): Describe three approaches to register allocation. For, éasleribe the steps that are performed, and illustrate
the approach with a small example. Also say what happengtigaliregisters that are not mapped to any physical
register.

Part (b): Compare the approaches that you described in Part (a). Whtiarelative advantages and disadvantages
of each?



Question 3: (Scanning)

Part (a): Regular expressions are routinely used to define lexicék(tdevel) syntax. Explain how regular ex-
pressions are translated into an executable form suitablecinning. Then describe an algorithm for performing
“maximal-munch tokenization”. In maximal-munch tokenipa, each time the scanner is called, its task is to find the
longest prefix of the (remaining) input that is matched by ohihe regular expressions. The scanner is to return the
token name for the regular expression that was matchedj atih the text that matched.

Part (b): Suppose that the tokens in our language are defined as follows

Regular expressiohToken name
abc Tokenl
(abc)*d Token2

Consider an input sting of the form{&bc)™ (i.e., mrepetitions of the character sequence “abc”), and the tegea
application of the algorithm that you gave in Part (a) utitékenizes” the input string (i.e., until all of the tokeims

the input string have been recognized). Note that for sudtirgsthe tokenization of the input string is Tokéhlin
particular, each time the scanner is called, it recognizesiext occurrence of “abc” as the token Tokenl. At no stage
does the scanner return Token2.

In terms ofm, what is the running time of the algorithm that you gave intPa? Explain your answer.

Part (c): Unless you did something particularly clever in Part (a§, itnning time of your algorithm is non-linear (in
m). Some kinds of algorithms with non-linear running times ¢t turned into linear-time algorithms by means of
tabulation. Explain how to modify your algorithm from Part (a) to useukgtion so that its running time for tokenizing
an input string is always linear in the length of the inpuitgtr Note that the goal is to have a linear-time algorithm to
tokenize the overall input string; however, the tokenizauld take more tha®(p) steps to recognize some token of
sizep.

(If for some reason tabulation would not work for your algiom, give a naive algorithm for maximal-munch tok-
enization with non-linear running time on the example froant®b), and explain how tabulation can be used to make
its running time for tokenizing an input string always lingathe length of the input string.)

Part (d): Regular expressions are also used in interactive apitatiExamples include the Unix shell and context
searching in text editors. In these applications the gosihiply to see whether a particular string is in the language
of a regular expression (not to do “maximal-munch tokemirg}. It is easy to translate a regular expression to a
non-deterministic finite automaton, but translating frdrere to a deterministic finite automaton may be too slow.
What can be done instead to allow almost immediate execatioryet still process characters at reasonable speeds.
What is the time complexity of your approach?



Question 4: (Delta Debugging)

To refresh your memory, the minimizing Delta Debugging altpon, calledddmin, produces a minimal test case by
simplifying a failing test case;. We assume that; can be thought of as a succeeding test cas® which we have
applied a set of changes = {d,...,0}, where{d,...,} is a set of elementary changes. Tdumin algorithm
searches for a non-empty set of changéshat, when applied to;, produces a minimal failing test case. Thus, the
answer is a set of changé, such thad c ¢} C cp.

There is a functionest, , that can be called to test with respect to a set of changes

O if rg with changes applied passes
testy, (c) =< O if ry with changes applied fails
? if rg with changeg applied is inconclusive

In particular,test,, (0) = O andtest;, (co) = 0. Henceforth, we assume that is fixed and abbreviateest, , as
test.

The ddmin algorithm performs a recursive search on its current estina) of the answer, using the helper
functionddmin; given below. At each stagddmin,(cf;,n) partitions the current sef; into n pairwise-disjoint subsets
of changes of approximately the same size. Thatjs: A1 WAy - - - WAL, where for all;, |Aj| ~ lel/n.

A failure-inducing set of changesis 1-minimal if removing any single chang®; from c causes the failure to
disappear, i.e., for a; € c, test(c— {;}) # 0. The inputs taldmin arecy and (implicitly) test, such thatest(0) = O
andtest(cg) = 0. The goal is to finct!; = ddmin(cy) such thatc;, C cq, test(c’}) = O, andc’; is 1-minimal. The
minimizing Delta Debugging algorithmidmin(cp) is defined as follows:

ddmin(cg) = ddminy(cg, 2)

ddminy (¢, n) =

letA; WA - -- WAL be a partitioning ot/ such that
all &; are pairwise disjoint, andd; . |A;| ~ Icgl/n holds

in
let 0 = ¢, — Ay in
if Ji € {1,...,n} such thatest(A;) = O thenddminz (4, 2)
else ifdi € {1,...,n} such thatest(0;) = O thenddminy(0;, max(n— 1, 2))
else ifn < |cj5| thenddming(cf;, min(|c|, 2n))
elsec

The recursion invariant (and thus precondition)ddmin; is (test(c’;) = 0) A (n < |c)).

Part (a): 1-Minimality

Sketch a proof that the result computeddalnin is always 1-minimal.

Part (b): Best-Case Complexity

What is the best-case asymptotic complexityddiin, stated in terms of the size of;? Under what circumstances
does this best case occur?



Part (c): Granularity

Suppose Delta Debugging is operating with a granularityigiite We have a failure-inducing configuratioch =
A WA W---WAg. No singled; fails, buttest(O3) does fail. Therils is our new, smaller, failure-inducing configuration.
This falls under case two aldmin, as given above.

In this situationddmin, recursively continues minimizings with a granularity of seven: one smaller than before. An
alternative would have been to reset the granularity to emsuring that we try to splifls roughly in half. Splitting in
half tends to eliminate large groups of irrelevant changesidy. So why is thahot done here? Why does the second
case ofddminy use a granularity ofi— 1 (but at least two) instead of always using a granularitywvafa

Part (d): Practical Considerations

To use Delta Debugging, one must devise a suitable repagganfor changes, configurations (sets of changes), and
the testing functionest. Describe the most significant practical challenges intargdahese items for large, complex
software systems. What properties must these items hasgteylaat properties are desirable but perhaps not required?
How does Delta Debugging fail (or degrade) if these propsrdire not upheld?



Question 5: (Def-Use and Use-Def Chains)

Part (a): Def-Use and Use-Def chains are essential data structuresafioy optimizations. Explain what information
Def-Use and Use-Def chains encode.

Part (b): Outline how Def-Use and/or Use-Def chains can be used t@dwlo different problems arising in either a
compiler’'s optimization phase or its back-end phase.

Part (c): Suppose the programming language has no procedure calisn @Gie Use and Def sets for each node in a
program’s control-flow graph, how can Use-Def chains be ageybfor the program?

Part (d): This part refers to a language with the following charasters:
e The language has parameterless procedure calls but nadfuicetls.
e Procedures cannot be nested; any procedure other than imemoeedure can be called by any other procedure.
¢ Variables declared in the main procedure are global to attgulures; there are no other global variables.

e A variable can be declared to be of typeocedure. The only way procedure variables are assigned values
is using assignment statements of the forar“:= name’, where name is the name of some procedure; for
example, % :=fib”".

e Procedure calls are of the form: “calhme’, wherename is the name of some procedure, or “cat”, where
var is a variable of typgrocedure (you may assume that no variable can have the same name aedym).

Suppose that we want to compuger procedural Use-Def chains for the language described ahevewe want to
match a definition of a global variable with its uses (wheredhfinition and the uses may be in different procedures).
Describe an algorithm for computing a safe approximatiothése Use-Def chains (i.e., your algorithm may err on
the side of computing too many chains, but never too few).



