
Programming Languages and Compilers Qualifying
Examination

Monday, February 4, 2013

This exam asked students to answer 4 out of 6 questions. This document contains the 5 questions that were
answered.

1

Question 1: (Security Policies)

Part (a): A security policy is a finite-state automaton with calls and their arguments asthe alphabet. Assume that
there is a global Boolean semaphoreL and the calllock(L) setsL = 1 andunlock(L) setsL = 0. Draw a finite-state
automaton with alphabet{lock(L),unlock(L)} that corresponds to the following policy (assume that the initial value
of L = 0):

Call lock() should only be allowed ifL = 0

Part (b): A reference monitor interposes a security policy between the application and the operating system. A
system call is allowed if it satisfies the security policy. Assuming that the security policy is expressed as a finite-state
automaton with system calls and their arguments as the alphabet, explain the operation of a reference monitor in detail.

Part (c): If a security-policy is expressed as a push-down automaton,what are some examples of useful policies that
you can enforce, and that could not be enforced using a finite-state automaton? Provide an example to explain your
answer.

How does your answer to Part (b) change? (Include something about the relative efficiencies of the two kinds of
reference monitors.)

Part (d): Let the security policy be given as a finite-state automatonA. Describe a static-analysis technique that given
a programP determines whether executingP can result in a sequence of system calls that violates the security policy.

How can you use your static-analysis to optimize the reference monitor of part (b)?

2

Question 2: (Register Allocation)

Most compilers start by assuming an unlimited supply of virtual registers, then (in the register-allocation phase) map-
ping virtual registers to physical registers.

Part (a): Describe three approaches to register allocation. For each, describe the steps that are performed, and illustrate
the approach with a small example. Also say what happens to virtual registers that are not mapped to any physical
register.

Part (b): Compare the approaches that you described in Part (a). What are the relative advantages and disadvantages
of each?

3

Question 3: (Scanning)

Part (a): Regular expressions are routinely used to define lexical (token-level) syntax. Explain how regular ex-
pressions are translated into an executable form suitable for scanning. Then describe an algorithm for performing
“maximal-munch tokenization”. In maximal-munch tokenization, each time the scanner is called, its task is to find the
longest prefix of the (remaining) input that is matched by oneof the regular expressions. The scanner is to return the
token name for the regular expression that was matched, along with the text that matched.

Part (b): Suppose that the tokens in our language are defined as follows:

Regular expressionToken name
abc Token1
(abc)∗d Token2

Consider an input sting of the form “(abc)m” (i.e., m repetitions of the character sequence “abc”), and the repeated
application of the algorithm that you gave in Part (a) until it “tokenizes” the input string (i.e., until all of the tokensin
the input string have been recognized). Note that for such a string, the tokenization of the input string is Token1m. In
particular, each time the scanner is called, it recognizes the next occurrence of “abc” as the token Token1. At no stage
does the scanner return Token2.

In terms ofm, what is the running time of the algorithm that you gave in Part (a)? Explain your answer.

Part (c): Unless you did something particularly clever in Part (a), the running time of your algorithm is non-linear (in
m). Some kinds of algorithms with non-linear running times can be turned into linear-time algorithms by means of
tabulation. Explain how to modify your algorithm from Part (a) to use tabulation so that its running time for tokenizing
an input string is always linear in the length of the input string. Note that the goal is to have a linear-time algorithm to
tokenize the overall input string; however, the tokenizer could take more thanO(p) steps to recognize some token of
sizep.

(If for some reason tabulation would not work for your algorithm, give a naive algorithm for maximal-munch tok-
enization with non-linear running time on the example from Part (b), and explain how tabulation can be used to make
its running time for tokenizing an input string always linear in the length of the input string.)

Part (d): Regular expressions are also used in interactive applications. Examples include the Unix shell and context
searching in text editors. In these applications the goal issimply to see whether a particular string is in the language
of a regular expression (not to do “maximal-munch tokenization”). It is easy to translate a regular expression to a
non-deterministic finite automaton, but translating from there to a deterministic finite automaton may be too slow.
What can be done instead to allow almost immediate executionand yet still process characters at reasonable speeds.
What is the time complexity of your approach?

4

Question 4: (Delta Debugging)

To refresh your memory, the minimizing Delta Debugging algorithm, calledddmin, produces a minimal test case by
simplifying a failing test caser✘. We assume thatr✘ can be thought of as a succeeding test caser✔ to which we have
applied a set of changesc✘ = {δ1, . . . ,δk}, where{δ1, . . . ,δk} is a set of elementary changes. Theddmin algorithm
searches for a non-empty set of changesc′′✘ that, when applied tor✔, produces a minimal failing test case. Thus, the
answer is a set of changesc′′✘, such that/0 ⊂ c′′✘ ⊆ c✘.

There is a functiontestr✔
that can be called to testr✔ with respect to a set of changesc:

testr✔
(c) =











✔ if r✔ with changesc applied passes

✘ if r✔ with changesc applied fails

? if r✔ with changesc applied is inconclusive

In particular,testr✔
(/0) = ✔ andtestr✔

(c✘) = ✘. Henceforth, we assume thatr✔ is fixed and abbreviatetestr✔
as

test.
The ddmin algorithm performs a recursive search on its current estimate (c′✘) of the answer, using the helper

functionddmin2 given below. At each stage,ddmin2(c′✘,n) partitions the current setc′✘ into n pairwise-disjoint subsets
of changes of approximately the same size. That is,c′✘ = ∆1⊎∆2⊎· · ·⊎∆n, where for all∆i, |∆i| ≈ |c′✘|/n.

A failure-inducing set of changesc is 1-minimal if removing any single changeδ j from c causes the failure to
disappear, i.e., for allδ j ∈ c, test(c−{δ j}) 6= ✘. The inputs toddmin arec✘ and (implicitly) test, such thattest(/0) = ✔

and test(c✘) = ✘. The goal is to findc′′✘ = ddmin(c✘) such thatc′′✘ ⊆ c✘, test(c′′✘) = ✘, andc′′✘ is 1-minimal. The
minimizing Delta Debugging algorithmddmin(c✘) is defined as follows:

ddmin(c✘) = ddmin2(c✘,2)

ddmin2(c
′
✘,n) =

let ∆1⊎∆2⊎·· ·⊎∆n be a partitioning ofc′✘ such that

all ∆i are pairwise disjoint, and∀∆i . |∆i| ≈ |c′✘|/n holds

in

let ∇i = c′✘ −∆i in

if ∃i ∈ {1, . . . ,n} such thattest(∆i) = ✘ thenddmin2(∆i,2)

else if∃i ∈ {1, . . . ,n} such thattest(∇i) = ✘ thenddmin2(∇i,max(n−1,2))

else ifn < |c′✘| thenddmin2(c
′
✘,min(|c′✘|,2n))

elsec′✘

The recursion invariant (and thus precondition) forddmin2 is (test(c′✘) = ✘)∧ (n ≤ |c′✘|).

Part (a): 1-Minimality

Sketch a proof that the result computed byddmin is always 1-minimal.

Part (b): Best-Case Complexity

What is the best-case asymptotic complexity ofddmin, stated in terms of the size ofc✘? Under what circumstances
does this best case occur?

5

Part (c): Granularity

Suppose Delta Debugging is operating with a granularity of eight. We have a failure-inducing configurationc′✘ =
∆1⊎∆2⊎·· ·⊎∆8. No single∆i fails, buttest(∇3) does fail. Then∇3 is our new, smaller, failure-inducing configuration.
This falls under case two ofddmin2 as given above.

In this situation,ddmin2 recursively continues minimizing∇3 with a granularity of seven: one smaller than before. An
alternative would have been to reset the granularity to two,ensuring that we try to split∇3 roughly in half. Splitting in
half tends to eliminate large groups of irrelevant changes quickly. So why is thatnot done here? Why does the second
case ofddmin2 use a granularity ofn−1 (but at least two) instead of always using a granularity of two?

Part (d): Practical Considerations

To use Delta Debugging, one must devise a suitable representation for changes, configurations (sets of changes), and
the testing functiontest. Describe the most significant practical challenges in creating these items for large, complex
software systems. What properties must these items have, and what properties are desirable but perhaps not required?
How does Delta Debugging fail (or degrade) if these properties are not upheld?

6

Question 5: (Def-Use and Use-Def Chains)

Part (a): Def-Use and Use-Def chains are essential data structures for many optimizations. Explain what information
Def-Use and Use-Def chains encode.

Part (b): Outline how Def-Use and/or Use-Def chains can be used to solve two different problems arising in either a
compiler’s optimization phase or its back-end phase.

Part (c): Suppose the programming language has no procedure calls. Given the Use and Def sets for each node in a
program’s control-flow graph, how can Use-Def chains be computed for the program?

Part (d): This part refers to a language with the following characteristics:

• The language has parameterless procedure calls but no function calls.

• Procedures cannot be nested; any procedure other than the main procedure can be called by any other procedure.

• Variables declared in the main procedure are global to all procedures; there are no other global variables.

• A variable can be declared to be of typeprocedure. The only way procedure variables are assigned values
is using assignment statements of the form: “var := name”, wherename is the name of some procedure; for
example, “x := fib”.

• Procedure calls are of the form: “callname”, wherename is the name of some procedure, or “callvar”, where
var is a variable of typeprocedure (you may assume that no variable can have the same name as a procedure).

Suppose that we want to computeinterprocedural Use-Def chains for the language described above; i.e., we want to
match a definition of a global variable with its uses (where the definition and the uses may be in different procedures).
Describe an algorithm for computing a safe approximation tothese Use-Def chains (i.e., your algorithm may err on
the side of computing too many chains, but never too few).

7

