## Theory Qualifying Exam Spring 2014

**Directions.** You have four hours. There are 4 problems, please do them all. If you cannot completely solve a problem, we will award partial credit for work that is correct and relevant to the question.

- 1. A Mealy machine is just like a standard deterministic finite automaton, but with a one-symbol output associated with each state transition. Formally, a Mealy machine M consists of:
  - i) a finite alphabet  $\Sigma$  (used for inputs and outputs);
  - ii) a finite set Q of states;
  - iii) a next-state function  $\delta: Q \times \Sigma \to Q$ ;
  - iv) an output function  $\lambda: Q \times \Sigma \to \Sigma$ ;
  - v) an initial state  $q_0 \in Q$ .

For simplicity, we take the input and output alphabets to be identical here. Then, M computes a function  $f_M: \Sigma^* \to \Sigma^*$  in an evident way.

- a) Argue that  $f_M$  is invertible iff it is 1-1.
- b) Design a polynomial-time algorithm to solve the following problem: Given a Mealy machine M, decide whether  $f_M$  is invertible or not.
- 2. The puzzle page in a recent inflight magazine had the following task:

Transform the first word into the last, changing only one letter at a time:

(Only words in the dictionary should be used.) You don't have to solve this, but make sure you understand what is being asked.

- a) Suppose the two words are n letters long. In how many ways can you fill in the blanks, making only single letter changes as required? (Don't worry about the dictionary yet.) Find an elementary function f for which this number is  $2^{\Theta(f(n))}$ .
- b) Find an algorithm that solves the problem in worst-case time  $2^{\Theta(n)}$ . (Count a dictionary lookup as one step.)

3. Let G = (V, E) be a graph with a given orientation, i.e., each edge  $e = \{u, v\} \in E$  is given a direction, either from u to v, or from v to u, but not both. We are given a sequence of desired in-degrees  $(d(v))_{v \in V}$ , one for each vertex  $v \in V$ . The goal is to find an orientation of G that has the desired in-degree at every  $v \in V$ , and minimizes the number of re-oriented edges. If such an orientation is not possible, the algorithm should detect that.

Give a polynomial-time algorithm to solve this problem.

- 4. Oblivious NP, denoted ONP, is the class of all languages L in NP such that for every input length n there is a witness that works for all the strings of length n in L.
  - a) Formalize the above informal definition of ONP.
  - b) Show that NP=ONP iff NP is in P/poly.