SPRING 2015 PH.D. QUALIFYING EXAMINATION
Programming Languages, Compilers, and Security
Computer Sciences Department |
University of Wisconsin—-Madison

Monday, February 4, 2013

GENERAL INSTRUCTIONS:
1. Answer each question in a separate book.

2. Indicate on the cover of each book the area of the exam, your code number, and the question .answered in that
book. -

3. Return all answer books in the folder provided. Additional answer books are available if needed.

SPECIFIC INSTRUCTIONS:

Answer 4 of the 9 questions. Questions 1-5 relate to programming languages, compilers, and software engineering.
Questions 6-9 relate to security and cryptography. However, you are not restricted to answering questions from just one
. group or the other: you may answer any 4 out of the entire pool of 9 questions.

POLICY ON MISPRINTS AND AMBIGUITIES:

The Exam Committee tries to proofread the exam as carefully as possible. Nevertheless, the exam sometimes contains
misprints and ambiguities. If you are convinced a problem has been stated incorrectly, mention this to the proctor. If
necessary, the proctor can contact a representative of the area to resolve problems during the first hour of the exam. In
any case, you should indicate your interpretation of the problem in your written answer. Your interpretation should be
such that the problem is nontrivial, .

Question 1: (Post-Mortem Analysis)

To perform post-mortem analysis after a program has crashed, it can be useful to have one or more snapshots of some
aspect(s) of the states that the program has passed through.

Part (a):

How could a post-mortem-analysis tool make use of one or more stack snapshots to support queries that a user might be
interested in making?

Part (b):

ﬁow could a post-mortem-analysis tool make use of one or more heap snapshots to support queries that a user might be
interested in making? : :

Part (c):

State the key property or properties that ‘make a garbage collector “real-time.”

Part (d):)

One approach to creating a real-time garbage collector is to use two or more “semi-spaces.” Give algorithms for the
allocate and free operations of a semi-space-based real-time garbage collector. (For simplicity, you need only discuss the
workings of a real-time garbage collector that would be used in the run-time system for a single-threaded application.)

Part (e):

Note that a frozen semi-space is a memory snapshot. One could just use an additional thread to write out the semi-space
to disk; however, this approach could interfere with the real-time aspect of the garbage collector. Explain how your
algorithms from the previous part can be modified to create a real-time garbage collector that also collects memory
snapshots. :

Question 2: (Structural Induction)
Consider the following definition of function reduce:

let rec reduce(f, L, b) =
cases (L) of
nil: b .
x::L1: f(x, reduce(f, L1, b))
One way to think about reduce is to think of f as a binary (infix) operator and to think of reduce as:
e putting the value b at the end of the list L, then
o putting the operator between all of the items in L, then
e evaluating right-to-left.

Ie., when applied to function f, a list containing elements x;, 2, ..., X, and "base" value b, reduce returns

J(x1, f(x2, f(ons F(Zn,)).

Part (a): Define a new function, red that is similar to reduce, but (conceptually)
e puts the value b at the front of the list L, then . ‘

o puts the operator between all of the items, then

o evaluates left-to-right.

Le., when applied to function f, a list containing elements xi, X3, ..., X, and base value b, red returns

JCooe fFCf(By X1), X2)s onr Xn)-

Part (b): Show, using structural induction, that if f is associative and corhmutaﬁve, then for all L and all-b,
red(f, L, b) = reduce(f, L, b).

Question 3: Lazy Evaluation

Suppose we wish to add lazy evaluation to Java. If e is some expression, then 1azy e is an unevaluated lazy expression
that can later be evaluated to produce an actual value. If e is some unevaluated lazy expression, then force e evaluates
e and returns an actual value, caching this result so that it can be returned again in the future without evaluating e
for a second time. If e is a lazy expression that has already been forced once, £orce e does not evaluate e twice: it
simply returns the value cached from the first forcing. Only lazy expressions can be forced. “£oxce force e” is only
sensible if e is a lazy expression whose computed result is itself another lazy expression.

We use the lazy keyword to qualify types as well: 1azy 7 is the type of a lazy expression (initially unevaluated)
that can later be forced (evaluated at most once, cached thereafter) to produce a result of type 7. Fields, formal
parameters, and local variables may all be declared with 1azy-qualified types.

For example, consider the following code:

class Example {
private static int counter;

private static int next () ({
++counter;
System.out.println("next counter: ", counter);
return counter;

}

public static void main(String [] args) {
System.out.println("start of main");
lazy int futurel = lazy next();
lazy int futureZ = lazy next();
System.out.println("two lazy expressions stored");
System.out.println("first lazy expression forced: ", force futurel);
System.out.println("direct call without lazy expression: ", next());
System.out.println("second lazy expression forced: ", force futurel);
System.out.println("first lazy expression forced again: ", force futurel);
System.out.println("second lazy expression forced again: ", force future2);

This code outputs:

start of main

two lazy expressions stored

next counter: 1

first lazy expression forced: 1

next counter: 2

direct call without lazy expression: 2
next counter: 3

second lazy expression forced: 3

first lazy expression forced again: 1
second lazy expression forced again: 3

Observe that each lazy expression is not evaluated until forced. Also notice that forcing the same expression a
second time does not cause it to be reevaluated. Even if the first evaluation had side effects, the value computed by the
first force is cached and reused thereafter.

A lazy expression may refer to certain named variables that are in scope at the point where the 1azy e construct
appears. In general, any name that is accessible to the code containing the 1azy e expression is also accessible to
the ¢ expression itself. There is, however, one very important exception: local variables and formal parameters of the
containing method are only accessible to ¢ if declared £inal. (Note that the same restriction applies to inner classes, a
standard Java feature.) For example: ‘ '

void example (int position, £inal String message)

{

final int offset = ... ;

String line = ...;
. lazy message.charAt (position) ... ; // error: position not final
. lazy line.charAt (offset) ... ; // error: line not final

lazy message.charAt (offset) ... ; // OK

Part (a): Type Checking

Choose an appropriate general form for typing judgments on expressions and clearly state what that form and its
components mean. Then use judgments of this form to write type-checking rules for the new lazy e and force e
expressions.

Beyond giving suitable types to lazy e and force e, your rules should also enforce the named-variable access
restrictions mentioned in the preceding paragraph. In parﬁcular lazy e should not type check if ¢ accesses non-final
locals or formals.

Part (b): Subtyping-

Let “<” represent the reflexive closure of the subtyping relation. Java already has a subtyping relation based on classes
and interfaces: 71 < 7 if 7y extends or implements 7. ‘
Consider the following possible options for extending subtyping to lazy expressions:

1. 7<lazy T
2. lazy7<7T
3. < = lazy 1 < lazyn;
4, 1< = lazyn <lazy7?

‘Which of these are correct and appropriate, and which would be incorrect or undesirable? Justify your response.
You should consider both formal and practical implications of the decision you make.

“Correct” subtyping rules should at least preserve subject reduction and substitutability of subtypes for supertypes. If
_ you have additional considerations in mind, state them clearly and explain why you find them necessary or appropriate.

Part (c): Implementation and Behavior

Can lazy evaluation be implemented using a standard, modern Java virtual machine and runtime environment, or
would runtime changes be required? If no changes would be needed, describe in detail how to map lazy-evaluation
features onto existing constructs in the Java language and/or virtual execution environment. If changes would be needed,
describe the smallest set of changes that would allow lazy evaluation with reasonable semantics and efficiency.

Part (d): Erasure

Suppose we erase all lazy-evaluation constructs from a program, turning lazy e and force ¢ into simply ¢ and turning
lazy 7 into simply . Under what circumstances can be gnarantee that the modified (non-lazy) program behaves
indistinguishably from the original (lazy) version?

Ignore performance for purposes of this question. Consider only the observable output and/or values returned by the
program.

Question 4: Lambda calculus

In this problem, we use the untyped lambda calculus with small-step call-by-value left-to-right evaluation. Recall this
encoding of pairs:

mkpair =g4¢ Ax. Ay. Az. zxy

S5t =as Ap. p(Ax. Ay. x)

snd =g Ap. p(Ax. Ay.y)

where mkpair models a pair of x and y, fs returns the first element of a pair, and snd returns the second element of a
pair.

Part (a):

For any values v; and v,, f5¢ (mkpair v v2) produces a value in 6 steps. Writing only lambda terms (i.e., no abbreviations),
show these steps. Show just the result of each step, not the derivation that produces it.

(Ap. p (Ax. Ay.x)) ((Ax. Ay. Az. zxy) v1 v2)

_)

—

Part (b):

Extend the encoding to include a swap function. Given an encoding of the pair (v1,vz), swap should return an encoding
of the pair (va,v;). . '

Part (c):

The most popular encoding of recursion in A-calculus uses the Y combinator. Another approach uses the simple U
combinator (which is not a fixed-point combinator):

U=gix.xx
Using the U combinator, we can define the factorial function as follows:
fact =g U(Af. An. if (n=0) then 1 else nx ((ff)(n—1)))

(For clarity, we extend pure lambda calculus with conditionals and arithmetic.)
Prove that fact satisfies the following A-calculus equation:

fact= ()Ln if (n=0) then 1 else n* (fact(n—1)))

Part (d):

Consider the following theorem for characterizing fixed-point combinators themselves as fixed points:
Let G=Ay.Af.f(yf). Then M is a fixed-point combinator if and only if M = GM. ¢3)
(Note: Recall that the following A-calculus transformation is called the 7-reduction rule:
(Ax.Mx) =y M,
where x does not occur as one of the free variables of M. You are allowed to use 1-reduction in this question.)
(i) Use Theorem 1 to show that ¥ =g¢ A f.((Ax. f(xx)) (Ax. f(xx))) is a fixed-point combinator.

(ii) Use Theorem 1 to show that the U combinator (Ax. x x) is a not a fixed-point combinator.

(iii) Prove Theorem 1. (Note that the theorem involves an “if and only if”’; consequently, your proof should have two
parts.)

“Question 5: Optimality of Delta Debugging

Let C be the set of all elementary changes. Let T == C — {¢/, X} be the set of test functions that judge any subset of C
to succeed or fail. For purposes of this question, assume that tests are always conclusive. Let ddmin : T x C — C be the
Delta Debugging minimization algorithm that minimizes failure-inducing changes, given some specific test function
and an initial set of failing changes. Let test € T be a specific test function, and let ¢ C C be some initial failing set of
changes such that test(c) = X. Then ddmin(test,c) computes a smaller set of changes ¢’ C c such that test(c’) = X and
¢ is 1-minimal. i

Part (a): 1-Minimality Defined
As noted, ¢’ is guaranteed to be 1-minimal, What does that mean exactly? Formally define 1-minimality in this context,
using precise mathematical notation and the terms and symbols defined above. ‘
Part (b): Local Optimality Defined

If ¢’ were guaranteed to be locally optimal, what would that mean exactly? Formally define local optimality in this
context, using precise mathematical notation and the terms and symbols defined above.

Part (c): Global Optimality Defined

If ¢’ were guaranteed to be globally optimal, what would that-mean exactly? Formally define global optima]ity in this
context, using precise mathematical notation and the terms and symbols defined above.

Part (d): Local Optimality Assured

Although Delta Debugging only guarantees 1-minimality for arbitrary test functions, it may be able to do better under
certain circumstances. Describe the subset of T for which ddmin will always provide a locally-optimal result. What
is the weakest set of restrictions that ensure this? (Or equivalently, what is the largest subset of T' for which this is
assured?) Briefly justify your answer.

Part (e): Global Optimality Assured

Describe the subset of T for which ddmin will always provide a globally-optimal result. What is the weakest set of
restrictions that ensure this? (Or equivalently, what is the largest subset of T for which this is assured?) Briefly justify
your answer.

Question 6: Memory vulnerabilities [Security]

Refer to the C program in Figure 1,

Part (a):

Explain the memory-corruption vulnerability, how an attacker would exploit it assuming they can execute the program
from the command line, and how to remove the vulnerability from the program.

- Part (b):

‘Would a stack canary prevent exploitation of this vulnerability? Explain.

Part (c):

WX (write xor executable) protections allow marking memory pages as writable or executabie, but not both. Would
marking the pages containing the stack as non-executable prevent exploitation of this vulnerability? If yes, explain. If
not, explain how an exploit would work.

oo

W o~ o

10
11

12
13
14

15
16
17
18
19
20
21
22

#include <stdio.h>
#include <string.h>

#define BUF_SIZE 256

int main(int argc, charx argv[])

{

}

if(argec != 3) {
printf("Error: give a string and its length \n");
return -1; .

}

read_string(argvil], atoi(arg&[Z])) ;

void read string(charx stx, int len)

{

char buf[BUF_SIZE];

if(len > BUF_SIZE) '{

printf("Error: input string too long™);
}
else {

strcpy (buf, str);

}

return;

Figure 1: Vulnerable program.

Question 7: ECB Mode [Security]

This problem is about modes of operation of block ciphers to achieve secure symmetric encryption. Let E : {0,1}* x
{0,1}* — {0, 1}" be a block cipher that maps k-bit keys and an #-bit message block to an n-bit output. Assume »n is
even. You can assume E is a secure block cipher such as AES.

Part (a):

Expiain (i) bow encryption of an Am bit message for some integer m is performed using the standard ECB mode of
operation and (ii) why standard ECB is insecure.

Part (b):

Now consider the following variant of ECB mode. For simplicity we will only define this mode of operation to work on
messages of length |M| =i (n/2) for some positive integer i. We denote by || concatenation of two bit strings. Assume
K is a uniformly chosen from {0,1}* and kept secret.

Encrypt(X,M)
Parse M into n/2-bit blocks My,...,M,
Let R be a random n/2-bit string
Fori=1tomdo

C1 = E(K,R||M;)
RetCy,...,Cn

(i) What kinds of leakage about plaintexts is admitted by standard ECB but not the variant? (ii) What type of mformauon
about plaintexts is still leaked with this variant?

Part (c):

Recall that the semantic security notion of Goldwasser and Micali requires that ciphertexts not leak even a single
bit of information about plaintexts. Describe how to change selection of R in order to achieve semantic security (for
chosen-plaintext attacks only) assuming » is large enough.

Part (d):
Explain why the resulting algorithm is still not very good, both from a performance and a security perspective.

10

Question 8: Policy automatons [Security]

£

A security policy is a finite-state automaton with calls and their arguments as the alphabet. Assume that there is a global
Boolean semaphore L and the call 1ock (L) sets L =1 and unlock (L) sets L=0.

Part (a):

Give a diagram of a finite-state automaton with alphabet {lock(L),unlock(L)} that corresponds to the following
policy (assume that the initial value of L = 0):

A call on 1ock () should only be allowed if L =0

Part (b):

A reference monitor interposes a security policy between the application and the operating system. A system call is
allowed if it satisfies the security policy. Assuming that the security policy is expressed as a finite-state automaton with
system calls and their arguments as the alphabet, explain the operation of a reference monitor.

Part (c):

Now suppose that a security policy is expressed as a push-down automaton. (i) What kind of policies can you enforce?
Provide an example to explain your answer. (ii) How does your answer to part (b) change?

Part (d):

Let the security policy be given as a finite-state automaton A. (i) Describe a static-analysis technique that, given a
program P, determines whether executing P can result in a sequence of system calls that violates the security policy. (ii)
How can you use your static analysis to optimize the reference monitor of part (b)?

11

Question 9: Key exchange [Security]

In a three-party key exchange protocol, a trusted server S shares keys K4 with a party A and K with a party B. Consider
using a shortened Needbam-Schroeder-type protocol to derive a key K and send an encrypted message M from A to B:

A— S:ABN,
S—A: {NA,K,B, {KaA}KB}KA
A— B: {K,A}g,, {M}x

Here Ny is a large, random nonce, the keys are chosen uniformly, and the curly braces denote use of a secure
authenticated encryption on the enclosed message (encoded in some canonical fashion) and using the key indicated in
the subscript.

Part (a):

Explain how B obtains the message M.

Part (b): ‘
Consider an adversary that observes traffic between A and B and that can inject traffic into the network (e.g., a
compromised router on the network path). What kind of an attack can such a network adversary mount?

Part (c):

We turn to defending against your attack from Part (b). The modification should only use authenticated encryption and
nonce generation and completely prevent an attack by any network adversary. (i) Create a protoco! which optimizes the
latency of B decrypting an authenticated message M. (ii) Create a protocol that minimizes storage costs, in particular .
achieving &/(1) storage on both A and B across many sessions.

12

