
d

id A.
rger,
klund,

beck,
t, Brad
Brian

and,
5097,
t DE-
dation
ys-
mput-

23632
n—

ice and
distrib-
onclu-
nting the
te or
The Wisconsin Wind Tunnel Project:
An Annotated Bibliography

Mark D. Hill, James R. Larus, David A. Wood
Computer Sciences Department

University of Wisconsin–Madison
1210 West Dayton Street
Madison, WI 53706 USA

wwt@cs.wisc.edu
http://www.cs.wisc.edu/~wwt

April 4, 2001

Abstract

This document lists contributors to the Wisconsin Wind Tunnel Project, gives a brief description of the project, an
presents references and abstracts to its principal papers, including how to obtain them on-line.

1 Contributors

The Wisconsin Wind Tunnel project is co-directed by Professors Mark D. Hill, James R. Larus, and Dav
Wood. Significant contributions to have been made by Glen Ammons, Tom Ball, E. Ender Bilir, Doug Bu
Satish Chandra, Sashikanth Chandrasekaran, Trishul Chilimbi, Anne Condon, Ross M. Dickson, Glen Ec
Babak Falsafi, Charles Fischer, Alain Kägi, Ying Hu, Steve Huss-Lederman, Rahmat Hyder, Alvin Le
James Lewis, Mike Litzkow, Shubhendu Mukherjee, Subbarao Palacharla, Manoj Plakal, Steven Reinhard
Richards, Anne Rogers, Timothy Schimke, Eric Schnarr, Yannis Schoinas, Daniel Sorin, Steve Swartz,
Toonen, Frank Tränkle, Guhan Viswanathan, Zhichen Xu.

2 Project Funding Sources

This work has been supported in part by Wright Laboratory Avionics Directorate, Air Force Material Comm
USAF, under grant #F33615-94-1-1525 and ARPA order no. B550, NSF Grants CCR-9101035, MIP-922
and MIPS-9625558, NSF PYI/NYI Awards CCR-9157366, MIPS-8957278, and CCR-9357779, DOE Gran
FG02-93ER25176, University of Wisconsin Graduate School Grant, Wisconsin Alumni Research Foun
Fellowship and donations from A.T.&T. Bell Laboratories, Digital Equipment Corporation, IBM, Sun Micros
tems, Thinking Machines Corporation, and Xerox Corporation. Much of this research was conducted on co
ing resources purchased through NSF Institutional Infrastructure Grants No. CDA-9024618 and CDA-96
with matching funding from the University of Wisconsin Graduate School. Thinking Machines Corporatio
especially Dave Douglas, Adam Greenberg, Danny Hillis, Roger Lee, and Steve Swartz—contributed adv
assistance for building the Wisconsin Wind Tunnel. The U.S. Government is authorized to reproduce and
ute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and c
sions contained herein are those of the authors and should not be interpreted as necessarily represe
official policies or endorsements, either expressed or implied, of the Wright Laboratory Avionics Directora
the U.S. Government.
1

ort-
anno-

s to

system-
instruc-

tion of
herence
cious

mula-

parallel
ign air-

saic,
l mail

ng
3 Overview

TheWisconsin Wind Tunnel Projectfocuses on trade-offs for designing cost-effective parallel machines supp
ing shared memory. In this work we have published more than five dozen papers which are listed in this

tated bibliography (ftp://ftp.cs.wisc.edu/wwt/annobib.{ps,pdf} 1).

The project focus has centered on three phases of parallel machine design. The first phase examinedCooperative
Shared Memory(ftp://ftp.cs.wisc.edu/wwt/tocs93_csm.{ps,pdf}) that simplified shared
memory hardware by allowing software to manage data movement.

The second phase proposed the more-generalTempest (ftp://ftp.cs.wisc.edu/wwt/
nsf96_summary.{ps,pdf}) interface that enabled programmers, compilers, and program librarie
implement and use message passing, transparent shared memory, and hybrid combinations of the two.

We are now moving into a third phase which returns to a greater hardware emphasis and seeks to use
wide prediction and speculation to improve performance even as communication latencies (measured in
tion opportunities) increase (e.g.,ftp://ftp.cs.wisc.edu/wwt/isca98_cosmos.{ps,pdf} and
ftp://ftp.cs.wisc.edu/wwt/isca99_multifacet.{ps,pdf}).

Furthermore, our parallel machine design foci have and continue to serve as catalysts for a constella
related research. This research include examinations of SMP cluster design, network interface design, co
protocol verification, execution-driven simulation, data parallel compilation, path profiling, and cache cons
data allocation and reorganization.

Finally, we have developed and distributed many tools, including software for parallel execution-driven si
tion (Wisconsin Wind Tunnel) executable editing (Executable Editing Library), and cache-
conscious data allocation and reorganization (ccmalloc andccmorph).

The Wisconsin Wind Tunnel Project is so named because we use our tools to cull the design space of
supercomputers in a manner similar to how aeronautical engineers use conventional wind tunnels to des
planes. Needless to say, we neither design airplanes nor blow air.

4 On-Line Access

On-line information on the Wisconsin Wind Tunnel Project can be obtained through world wide web/mo
anonymous ftp, and gopher. If these fail or you can’t print the compressed postscript, e-mail your posta
address towwt@cs.wisc.edu and we will send hardcopies.

4.1 World Wide Web

Our World Wide Web URL ishttp://www.cs.wisc.edu/~wwt . Our papers can be accessed by buttoni
Technical Papers.

4.2 Anonymous FTP

 Anonymous ftp toftp.cs.wisc.edu andcd wwt . We recommend that you get README.txt

1. The notationftp:annobib.{ps,pdf} means eitherftp:annobib.ps or ftp:annobib.pdf
2

:

-

.

a

5 The Papers

Below we divide our papers into (1)Overviews(2) Tempest, Typhoon, and Blizzard,(3) Custom Protocols,(4)
Compiling for Tempest,(5) Hardware Design,(6) Tools,(7) Cooperative Shared Memory,(8) Wisconsin Wind
Tunnel, (9) Path Profiling, (10) Network Interfaces, (11) Lamport Clocks, and (12) Miscellaneous.

5.1 Overviews

The current version of this annotated bibliography is inannobib.{ps,pdf} .

Mark D. Hill, James R. Larus, and David A. Wood. The Wisconsin Wind Tunnel Project: An Annotated Bib-
liography. Computer Architecture News, 22(5):19–26, December 1994. (Frequently updated. Web location is
http://www.cs.wisc.edu/~wwt).

This document lists contributors to the Wisconsin Wind Tunnel Project, gives a brief description of the
project, and presents references and abstracts to its principal papers, including how to obtain them on-line.

This paper summarizes our project as of June 1995 (ftp://ftp.cs.wisc.edu/wwt/
nsf96_summary.{ps,pdf}). It uses our Compcon 1995 paper as an appendix on Tempest.

Mark D. Hill, James R. Larus, and David A. Wood. Tempest: A Substrate for Portable Parallel Programs. In
COMPCON ’95, pages 327–332, San Francisco, California, March 1995. IEEE Computer Society.

The paper summarizes the Wisconsin Wind Tunnel Project’s research into parallel computer design and
methods. Our principal design contributions—Cooperative Shared Memoryand the Tempest Parallel
Programming Substrate—seek to balance the programming benefits of a shared address space with facilities
for low-level performance optimizations.
The project has refined and compared a variety of ideas with a unique mixture of techniques that include
micro-architecture-level simulation, software prototyping, and rapid hardware prototyping. An important by-
product of this research has been innovative tools, such as theWisconsin Wind Tunneland theExecutable
Editing Library.

5.2 Tempest, Typhoon, and Blizzard

This paper proposes an interface for user-level shared memory calledTempestand describes a hardware imple
mentation calledTyphoon (ftp://ftp.cs.wisc.edu/wwt/isca94_typhoon.{ps,pdf}) .

Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level Shared Mem-
ory. In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages 325–337,
April 1994.

Future parallel computers must efficiently execute not only hand-coded applications but also programs written
in high-level, parallel programming languages. Today’s machines limit these programs to a single
communication paradigm, either message-passing or shared-memory, which results in uneven performance
This paper addresses this problem by defining an interface, Tempest, that exposes low-level communication
and memory-system mechanisms so programmers and compilers can customize policies for a given
application. Typhoon is a proposed hardware platform that implements these mechanisms with a fully-
programmable, user-level processor in the network interface. We demonstrate the utility of Tempest with two
examples. First, the Stache protocol uses Tempest’s fine-grain access control mechanisms to manage part of
processor’s local memory as a large, fully-associative cache for remote data. We simulated Typhoon on the
Wisconsin Wind Tunnel and found that Stache running on Typhoon performs comparably (30%) to an all-
hardwareDirnNB cache-coherence protocol for five shared-memory programs. Second, we illustrate how
programmers or compilers can use Tempest’s flexibility to exploit an application’s sharing patterns with a
3

in Bliz-

-

re

rs

d

r
n
ts

l
t

t

custom protocol. For the EM3D application, the custom protocol improves performance up to 35% over the
all-hardware protocol.

This paper discusses various techniques for fine-grain access control and three implementation of them
zard (ftp://ftp.cs.wisc.edu/wwt/asplos6_fine_grain.{ps,pdf}).

Ioannis Schoinas, Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, James R. Larus, and David A. Wood.
Fine-grain Access Control for Distributed Shared Memory. In Proceedings of the Sixth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems(ASPLOS VI), pages 297–
307, October 1994.

This paper discusses implementations of fine-grain memory access control, which selectively restricts reads
and writes to cache-block-sized memory regions. Fine-grain access control forms the basis of efficient cache
coherent shared memory. This paper focuses on low-cost implementations that require little or no additional
hardware. These techniques permit efficient implementation of shared memory on a wide range of parallel
systems, thereby providing shared-memory codes with a portability previously limited to message passing.
This paper categorizes techniques based on where access control is enforced and where access conflicts a
handled. We incorporated three techniques that require no additional hardware into Blizzard, a system that
supports distributed shared memory on the CM-5. The first adds a software lookup before each shared-
memory reference by modifying the program’s executable. The second uses the memory’s error correcting
code (ECC) as cache-block valid bits. The third is a hybrid. The software technique ranged from slightly
faster to two times slower than the ECC approach. Blizzard’s performance is roughly comparable to a
hardware shared-memory machine. These results argue that clusters of workstations or personal compute
with networks comparable to the CM-5’s will be able to support the same shared-memory interfaces as
supercomputers.

This paper is an overview of Tempest (ftp://ftp.cs.wisc.edu/wwt/
compcon95_tempest.{ps,pdf}).

Mark D. Hill, James R. Larus, and David A. Wood. Tempest: A Substrate for Portable Parallel Programs. In
COMPCON ’95, pages 327–332, San Francisco, California, March 1995. IEEE Computer Society.

This paper describes Tempest, a collection of mechanisms for communication and synchronization in parallel
programs. With these mechanisms, authors of compilers, libraries, and application programs can exploit-
across a wide range of hardware platforms-the best of shared memory, message passing, and hybri
combinations of the two. Because Tempest provides mechanisms, not policies, programmers can tailor
communication to a program’s sharing pattern and semantics, rather than restructuring the program to run
with the limited communication options offered by existing parallel machines. And since the mechanisms are
easily supported on different machines, Tempest provides a portable interface across platforms. This pape
describes the Tempest mechanisms, briefly explains how they are used, outlines several implementations o
both custom and stock hardware, and presents preliminary performance results that demonstrate the benefi
of this approach.

This report gives the Tempest Interface Specification (ftp://ftp.cs.wisc.edu/wwt/
tr95_tempest_spec.{ps,pdf}).

Steven K. Reinhardt. Tempest Interface Specification (Revision 1.2.1).Technical Report 1267, Computer Sci-
ences Department, University of Wisconsin–Madison, February 1995.

This document describes Tempest, an architectural user/system interface for distributed-memory paralle
systems. By providing user-level access to both messaging and memory-management functions, Tempest no
only supports message passing and shared memory, the two dominant parallel programming models, bu
allows users to construct hybrid models as well. The most unusual feature of Tempest is fine-grain memory
access control. An access tag is associated with every block of memory at a granularity typical of a hardware
cache block (e.g., 32-128 bytes). Loads and stores that conflict with the access tag invoke a user-specified
handler that can perform arbitrary operations to resolve the conflict. The ability to dynamically manage data
4

y

system

g

r
r

s

,

access at a fine grain allows data migration and replication without relying on compile-time analysis or a
restricted programming model to guarantee correctness. This migration and replication can be performed
without renaming using Tempest’s virtual memory management operations. To effect data transfer between
nodes, Tempest provides two types of message-passing. Fine-grain messaging provides the short, low-latenc
messages required to implement cache coherence protocols and support fine-grain parallelism. Bulk data
transfer operations are optimized to provide high bandwidth for large messages. Timers and thread
management complete the list of Tempest features.
More recent versions of this document may exist. (http://www.cs.wisc.edu/~wwt) points to the
most recent version.

This paper describes StormWatch, a tool for analyzing the interaction between a program and memory
(http://scxy.tc.cornell.edu/sc95/proceedings/505_TCHI/SC95.HTM).

Trishul Chilimbi, Thomas Ball, Stephen Eick, and James Larus. StormWatch: A Tool for Visualizing Memory
System Protocols. InProceedings of Supercomputing ‘95, December 1995.

Recent research has offered programmers increased options for programming parallel computers by exposin
system policies (e.g., memory coherence protocols) or by providing several programming paradigms (e.g.
message passing and shared memory) on the same platform. Increased flexibility can lead to higher
performance, but it is also a double-edged sword that demands a programmer understand his or he
application and system at a more fundamental level. Our system, Tempest, allows a programmer to select o
implement communication and memory coherence policies that fit an application’s communication patterns.
With it, we have achieved substantial performance gains without making major changes in programs.
However, the process of selecting, designing, and implementing coherence protocols is difficult and time
consuming, without tools to supply detailed information about an application’s behavior and interaction with
the memory system.
StormWatch is a new visualization tool that aids a programmer through four mechanisms: tightly-coupled
bidirectionally linked views, interactive filters, animation, and performance slicing. Multiple views present
several aspects of program behavior simultaneously and show the same phenomenon from different
perspectives. Real-time linking between views enables a programmer to explore levels of abstraction by
changing a view and observing the effect on other views. Interactive filters, along with bidirectional linking,
can isolate the effects of statements, loops, procedures, or files. StormWatch can also animate a program’
dynamic behavior to show the evolution of program execution and communication. Finally, performance
slicing captures causality among events. The examples in the paper illustrate how StormWatch helped us
substantially improve the performance of two applications.

This paper describes hardware support for Tempest running on a network of workstations (ftp://
ftp.cs.wisc.edu/wwt/isca96_dcpld.{ps,pdf}).

Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Decoupled Hardware Support for Distributed
Shared Memory. In Proceedings of the 23rd Annual International Symposium on Computer Architecture, May
1996.

This paper investigates hardware support for fine-grain distributed shared memory (DSM) in networks of
workstations. To reduce design time and implementation cost relative to dedicated DSM systems, we
decouple the functional hardware components of DSM support, allowing greater use of off-the-shelf devices.
We present two decoupled systems, Typhoon-0 and Typhoon-1. Typhoon-0 uses an off-the-shelf protocol
processor and network interface; a custom access control device is the only DSM-specific hardware. To
demonstrate the feasibility and simplicity of this access control device, we designed and built an FPGA-based
version in under one year. Typhoon-1 also uses an off-the-shelf protocol processor, but integrates the network
interface and access control devices for higher performance.
We compare the performance of the two decoupled systems with two integrated systems via simulation. For
six benchmarks on 32 nodes, Typhoon-0 ranges from 30% to 309% slower than the best integrated system
while Typhoon-1 ranges from 13% to 132% slower. Four of the six benchmarks achieve speedups of 12 to 18
on Typhoon-0 and 15 to 26 on Typhoon-1, compared with 19 to 35 on the best integrated system. Two
5

ups

erface.

s

c

.

o

uster of

e
so
benchmarks are hampered by high communication overheads, but selectively replacing shared-memory
operations with message passing provides speedups of at least 16 on both decoupled systems. These speed
indicate that decoupled designs can potentially provide a cost-effective alternative to complex high-end DSM
systems.

This paper further examines how much hardware support is beneficial for supporting the Tempest int
(ftp://ftp.cs.wisc.edu/wwt/toc98_decoupled.{ps,pdf}).

Steven K. Reinhardt, Robert W. Pfile, and David A. Wood. Hardware Support for Flexible Distributed Shared
Memory. IEEE Transactions on Computer Systems, Vol. 47, No. 10, October 1998,pp. 1056-1072.

Workstation-based parallel systems are attractive due to their low cost and competitive uniprocessor
performance. However, supporting a cache-coherent global address space on these systems involve
significant overheads. We examine two approaches to coping with these overheads. First, DSM-specific
hardware can be added to the off-the-shelf component base to reduce overheads. Second, application-specifi
coherence protocols can avoid some overheads by exploiting programmer (or compiler) knowledge of an
application’s communication patterns. To explore the interaction between these approaches, we simulated
four designs that add DSM acceleration hardware to a collection of off-the-shelf workstation nodes. Three of
the designs support user-level software coherence protocols, enabling application-specific protocol
optimizations. To verify the feasibility of our hardware approach, we constructed a prototype of the simplest
design. Measured speedups from the prototype match simulation results closely.
We find that even with aggressive DSM hardware support, custom protocols can provide significant speedups
In addition, the custom protocols are generally effective at reducing the impact of other overheads, including
those due to less aggressive hardware support and larger network latencies. However, for three of our
benchmarks, the additional hardware acceleration provided by our most aggressive design avoids the need t
develop more efficient custom protocols.

This paper describes and analyzes an extended version of Blizzard, called Scirocco, that runs on a cl
SMPs (ftp://ftp.cs.wisc.edu/wwt/pact98.{ps,pdf}).

Ioannis Schoinas, Babak Falsafi, Mark D. Hill, James R. Larus, and David A. Wood. Sirocco: Cost-Effective
Fine-Grain Distributed Shared Memory. In International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), October 1998.

Software fine-grain distributed shared memory (FGDSM) provides a simplified shared-memory programming
interface with minimal or no hardware support. Originally software FGDSMs targeted uniprocessor-node
parallel machines. This paper presents Sirocco, a family of software FGDSMs implemented on a network of
low-cost SMPs. Sirocco takes full advantage of SMP nodes by implementing inter-node sharing directly in
hardware and overlapping computation with protocol execution. To maintain correct shared-memory
semantics, however, SMP nodes require mechanisms to guarantee atomic coherence operations. Multipl
SMP processors may also result in contention for shared resources and reduce performance. SMP nodes al
impact the cost trade-off. While SMPs typically charge higher price-premiums, for a given system size SMP
nodes substantially reduce networking hardware requirement as compared to uniprocessor nodes.
In this paper, we ask the question “are SMPs cost-effective building blocks for software FGDSM?” We
present experimental measurements on Sirocco implementations ranging from an all-software system to a
system with minimal hardware support. Together with simple cost models we show that low-cost SMP nodes:
(i) result in competitive performance with uniprocessor nodes, (ii) substantially reduce hardware requirement
and are more cost-effective than uniprocessor nodes, (iii) significantly benefit from hardware support for
coherence operations, and (iv) are especially beneficial for FGDSMs with high-overhead coherence
operations.

This paper presents a retrospective of the origins and evolution of the Tempest and Typhoon designs (ftp://
ftp.cs.wisc.edu/wwt/isca94_retrospective.{ps,pdf}).
6

l
:

ir

lizzard

d

t

e-
Steven K. Reinhardt, James R. Larus, and David A. Wood. Reflections on ’Tempest and Typhoon: User-leve
Shared Memory’. In Gurindar Sohi, editor, 25 years of the International Symposia of Computer Architecture
Selected Papers, pages 98–101. 1998.

Tempest and Typhoon have emerged as among the most influential contributions of the Wisconsin Wind
Tunnel project, a collaborative effort with Prof. Mark D. Hill, several staff members, and a large group of
graduate students. This retrospective focuses on the origins of the Tempest and Typhoon ideas and the
subsequent evolution.
This paper was selected by a committee of former ISCA program chairs as one of the forty most influential
papers in the 25 year history of ISCA.

5.3 Custom Protocols

The papers in this section focus on using custom protocols to improve parallel program performance.

This paper examines customizing protocols to applications using the Tempest interface running on B
(ftp://ftp.cs.wisc.edu/wwt/sc94_protocols.{ps,pdf}).

Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis Schoinas, Mark D. Hill, James Larus, Anne Rogers,
and David Wood. Application-Specific Protocols for User-Level Shared Memory. InProceedings of Supercom-
puting ‘94, pages 380-389, November, 1994.

Recent distributed shared memory (DSM) systems and proposed shared-memory machines have implemente
some or all of their cache coherence protocols in software. One way to exploit the flexibility of this software
is to tailor a coherence protocol to match an application’s communication patterns and memory semantics.
This paper presents evidence that this approach can lead to large performance improvements. It shows tha
application-specific protocols substantially improved the performance of three application programs—appbt,
em3d, andbarnes—over carefully tuned transparent shared memory implementations. The speed-ups were
obtained onBlizzard, a fine-grained DSM system running on a 32-node Thinking Machines CM-5.

This paper compares three irregular codes running on CHAOS and Tempest (ftp://ftp.cs.wisc.edu/
wwt/ppopp95_irregular.{ps,pdf}).

S. S. Mukherjee, S. D. Sharma, M. D. Hill, J. R. Larus, A. Rogers, and J. Saltz. Efficient support for irregular
applications on distributed-memory machines. InFifth ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming(PPOPP), pages 68–79, July 1995.

Irregular computation problems underlie many important scientific applications. Although these problems are
computationally expensive, and so would seem appropriate for parallel machines, their irregular and
unpredictable run-time behavior makes this type of parallel program difficult to write and adversely affects
run-time performance.
This paper explores three issues—partitioning, mutual exclusion, and data transfer—crucial to the efficient
execution of irregular problems on distributed-memory machines. Unlike previous work, we studied the same
programs running in three alternative systems on the same hardware base (a Thinking Machines CM-5): the
CHAOS irregular application library, Transparent Shared Memory (TSM), and eXtensible Shared Memory
(XSM). CHAOS and XSM performed equivalently for all three applications. Both systems were somewhat
(13%) to significantly faster (991%) than TSM.

This paper describes a language for writing coherence protocols. (ftp://ftp.cs.wisc.edu/wwt/
pldi96_teapot.{ps,pdf}).

Satish Chandra, Brad Richards, and James R. Larus. Teapot: Language Support for Writing Memory Coher-
ence Protocols. InProceedings of the SIGPLAN ‘96 Conference on Programming Language Design and Impl
mentation (PLDI), May 1996.
7

d

e
s

d

r
e

t

e

-

r

Recent shared-memory parallel computer systems offer the exciting possibility of customizing memory
coherence protocols to fit an application’s semantics and sharing patterns. Custom protocols have been use
to achieve message-passing performance-while retaining the convenient programming model of a global
address space-and to implement high-level language constructs. Unfortunately, coherence protocols written in
a conventional language such as C are difficult to write, debug, understand, or modify. This paper describes
Teapot, a small, domain-specific language for writing coherence protocols. Teapot uses continuations to help
reduce the complexity of writing protocols. Simple static analysis in the Teapot compiler eliminates much of
the overhead of continuations and results in protocols that run nearly as quickly as hand-written C code. A
Teapot specification can be compiled both to an executable coherence protocol and to input for a model
checking system, which permits the specification to be verified. We report our experiences coding and
verifying several protocols using Teapot, along with measurements of the overhead incurred by writing a
protocol in a higher-level language.

This paper describes our experience with using Teapot. (ftp://ftp.cs.wisc.edu/wwt/
dsl97_experiences.{ps,pdf}).

S. Chandra, M. Dahlin, B. Richards, R. Y. Wang, T. E. Anderson, and J. R. Larus. Experience with a lan-
guage for writing coherence protocols. InUSENIX Conference on Domain-Specific Languages, Santa Barbara,
California, October 1997.

In this paper, we describe our experience with Teapot, a domain-specific language for addressing the cach
coherence problem. The cache coherence problem arises when parallel and distributed computing system
make local replicas of shared data for reasons of scalability and performance. In both distributed shared
memory systems and distributed file systems, a coherence protocol maintains agreement among the replicate
copies when the underlying data are modified by programs running on the system. Unfortunately, cache
coherence protocols are notoriously difficult to implement, debug, and maintain. Furthermore, the details of
the protocols depend on the requirements of the system under consideration and are highly varied. This pape
presents case studies detailing the successes and shortcomings of using Teapot for writing coherenc
protocols in two distinct systems. The first system, loosely coherent memory (LCM), implements a particular
flavor of distributed shared memory suitable for data-parallel programming. The second system, the xFS
distributed file system, implements a high-performance, serverless file system. Our overall experience with
using Teapot has been positive. In particular, Teapot’s language features resulted in considerable
simplifications in the protocol code for both systems. Furthermore, Teapot’s close coupling between
implementation and formal verification allowed us to achieve much higher confidence in our protocol
implementations than had previously been possible, reducing the time needed to build the protocols. By using
Teapot to solve real problems in complex systems, we also discovered several shortcomings of the Teapo
design. Most noticeably, we found Teapot lacking in support for multithreaded environments, for expressing
actions that transcend several cache blocks, and for blocking system calls. We conclude that domain-specific
languages can be valuable in the specific problem domain of cache coherence. Drawing on our experience, w
also provide guidelines for domain-specific languages in the broader context of systems software.

This paper describes a new technique for cache coherence protocols (ftp://ftp.cs.wisc.edu/wwt/
isca95_dsi.{ps,pdf}).

Alvin R. Lebeck and David A. Wood. Dynamic Self-Invalidation: Reducing Coherence Overhead in Shared-
Memory Multiprocessors. In Proceedings of the 22nd Annual International Symposium on Computer Architec
ture, pages 48-49, June 1995.

This paper introduces dynamic self-invalidation (DSI), a new technique for reducing cache coherence
overhead in shared-memory multiprocessors. DSI eliminates invalidation messages by having a processo
automatically invalidate its local copy of a cache block before a conflicting access by another processor.
Eliminating invalidation overhead is particularly important under sequential consistency, where the latency of
invalidating outstanding copies can increase a program’s critical path.
DSI is applicable to software, hardware, and hybrid coherence schemes. In this paper we evaluate DSI in the
context of hardware directory-based write-invalidate coherence protocols. Our results show that DSI reduces
8

s

s
le

e

ural sim-

d-
-

g

d
of

y
ir

rallel

g

execution time of a sequentially consistent full-map coherence protocol by as much as 41%. This is
comparable to an implementation of weak consistency that uses a coalescing write-buffer to allow up to 16
outstanding requests for exclusive blocks. When used in conjunction with weak consistency, DSI can exploit
tear-off blocks-which eliminate both invalidation and acknowledgment messages- for a total reduction in
messages of up to 26%.

5.4 Compiling for Tempest

Discusses and compares the strengths of compiler- and hardware-implemented shared memory (ftp://
ftp.cs.wisc.edu/wwt/hw_sw_sm.{ps,pdf}) .

James R. Larus. Compiling for Shared-Memory and Message-Passing Computers.ACM Letters on Program-
ming Languages and Systems, 2(1-4):165-180, March-December 1994.

Many parallel languages presume a shared address space in which any portion of a computation can acces
any datum. Some parallel computers directly support this abstraction with hardware shared memory. Other
computers provide distinct (per-processor) address spaces and communication mechanisms on which
software can construct a shared address space. Since programmers have difficulty explicitly managing addres
spaces, there is considerable interest in compiler support for shared address spaces on the widely availab
message-passing computers.
At first glance, it might appear that hardware-implemented shared memory is unquestionably a better base on
which to implement a language. This paper argues, however, that compiler-implemented shared memory,
despite its shortcomings, has the potential to exploit more effectively the resources in a parallel computer.
Hardware designers need to find mechanisms to combine the advantages of both approaches in a singl
system.

This paper compares four shared-memory and message-passing programs running on detailed architect
ulators of comparable machines. (ftp://ftp.cs.wisc.edu/wwt/asplos6_sm_mp.{ps,pdf}).

Satish Chandra, James R. Larus, and Anne Rogers. Where is TIme Spent in Message-Passing and Share
Memory Programs? In Proceedings of the Sixth International conference on Architectural Support for Program
ming Languages and Operating Systems (ASP-LOS VI), Pages 61-75, October 1994.

Message passing and shared memory are two techniques parallel programs use for coordination and
communication. This paper studies the strengths and weaknesses of these two mechanisms by comparin
equivalent, well-written message-passing and shared-memory programs running on similar hardware. To
ensure that our measurements are comparable, we produced two carefully tuned versions of each program an
measured them on closely-related simulators of a message-passing and a shared-memory machine, both
which are based on same underlying hardware assumptions.
We examined the behavior and performance of each program carefully. Although the cost of computation in
each pair of programs was similar, synchronization and communication differed greatly. We found that
message-passing’s advantage over shared-memory is not clear-cut. Three of the four shared-memor
programs ran at roughly the same speed as their message-passing equivalent, even though the
communication patterns were different.

This paper shows how a custom memory system, built on Blizzard, can help support C**, a high-level pa
language (ftp://ftp.cs.wisc.edu/wwt/asplos6_lcm.{ps,pdf}).

J. R. Larus, B. Richards, and G. Viswanathan. LCM: Memory system support for parallel language imple-
mentation. In Proceedings of the Sixth International Conference on Architectural Support for Programmin
Languages and Operating Systems (ASP LOS VI), pages 208–218, October 1994.

Higher-level parallel programming languages can be difficult to implement efficiently on parallel machines.
This paper shows how a flexible, compiler-controlled memory system can help achieve good performance for
language constructs that previously appeared too costly to be practical.
9

ster of

d

empest

he

ication

s
)

emory
Our compiler-controlled memory system is called Loosely Coherent Memory (LCM). It is an example of a
larger class of Reconcilable Shared Memory (RSM) systems, which generalize the replication and merge
policies of cache-coherent shared-memory. RSM protocols differ in the action taken by a processor in
response to arequestfor a location and the way in which a processorreconcilesmultiple outstanding copies
of a location. LCM memory becomes temporarily inconsistent to implement the semantics of C** parallel
functions efficiently. RSM provides a compiler with control over memory-system policies, which it can use to
implement a language’s semantics, improve performance, or detect errors. We illustrate the first two points
with LCM and our compiler for the data-parallel language C**.

This paper explores the performance of a suite of HPF programs on a Blizzard implementation on a clu
workstations (ftp://ftp.cs.wisc.edu/wwt/lcpc96_hpf.{ps,pdf}).

S. Chandra and J. R. Larus. HPF on Fine-Grain Distributed Shared Memory: Early Experience. In
U. Banerjee, A. Nicolau, D. Gelernter, and D. Padua, editors,Proceedings of the Ninth Workshop on Languages
and Compilers for Parallel Computing. August 1996.

This paper examines the performance of a suite of HPF applications on a network of workstations using two
different compilation approaches: generating explicit message-passing code, and generating code for a share
address space provided by a fine-grain distributed shared memory system (DSM). Preliminary experiments
indicate that the DSM approach performs with usually a small slow down compared to the message passing
approach on regular programs, yet enables efficient execution of non-regular programs.

This book chapter describes the C** data parallel programming language and its implementation using T
(ftp://ftp.cs.wisc.edu/wwt/PPUC.{ps,pdf}).

J. R. Larus, B. Richards, and G. Viswanathan. Parallel programming in C**: A large-grain data-parallel pro-
gramming language. In G. V. Wilson and P. Lu, editors, Parallel Programming Using C++, chapter 8, pages
297–342. MITP, 1996.

C** is a large-grain data-parallel programming language. It preserves the principal advantages of SIMD data
parallelism—comprehensible and near-determinate parallel execution—while relaxing SIMD’s constricted
execution model. We have used C** a vehicle for experimenting with parallel language features and with
implementation techniques that exploit program-level control of a parallel computer’s memory system. This
paper both describes the language and summarizes progress in language design and implementation since t
previous C** paper.

This paper describes how a compiler-directed predictive protocol can improve shared-memory commun
for iterative data-parallel programs (ftp://ftp.cs.wisc.edu/wwt/
sc96_compiler_sm.{ps,pdf}).

Guhan Viswanathan and James R. Larus. Compiler-directed Shared-Memory Communication for Iterative
Parallel Applications. In Proceedings of Supercomputing ’96, November 1996.

Many scientific applications are iterative and specify repetitive communication patterns. This paper shows
how a parallel-language compiler and a predictive cache-coherence protocol in a distributed shared memory
system together can implement shared-memory communication efficiently for applications with unpredictable
but repetitive communication patterns. The compiler uses static analysis to identify program points where
potentially repetitive communication occurs. At runtime, the protocol builds a communication schedule in
one iteration and uses the schedule to pre-send data in subsequent iterations. This paper contain
measurements of three iterative applications (including adaptive programs with unstructured data accesses
that show that a predictive protocol increases the number of shared-data requests satisfied locally, thus
reducing the remote data access latency and total execution time.

This paper describes how to optimize communication in HPF programs on fine-grain distributed shared m
(ftp://ftp.cs.wisc.edu/wwt/ppopp97_hpf.{ps,pdf}) .
10

s

l

es, and

s-

ork of

ut

l

S. Chandra and J. R. Larus. Optimizing Communication in HPF programs for Fine-Grain Distributed Shared
Memory. In Sixth ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPOPP),
June 1997.

Unlike compiler-generated message-passing code, the coherence mechanisms in shared-memory system
work equally well for regular and irregular programs. In many programs, however, compile-time information
about data accesses would permit data to be transferred more efficiently—if the underlying shared-memory
system offered suitable primitives. This paper demonstrates that cooperation between a compiler and a
memory coherence protocol can improve the performance of High Performance Fortran (HPF) programs
running on a fine-grain distributed shared memory system up to a factor of 2, while retaining the versatility
and portability of shared memory. As a consequence, shared memory’s performance becomes competitive
with message passing for regular applications, while not affecting (or in some cases, even improving) its large
advantage for irregular codes. This paper describes the design of our implementation and reports experimenta
results.

5.5 Hardware Design

This paper proposes three new multicast directory protocols for cache-coherent shared-memory machin
shows that even with very little state they can be competitive with a full-map directory protocol (ftp://
ftp.cs.wisc.edu/wwt/ics94_directory.{ps,pdf}).

S. S. Mukherjee and M. D. Hill. An evaluation of directory protocols for medium-scale shared-memory mul-
tiprocessors. In Proceedings of the 1994 International Conference on Supercomputing, pages 64–74, Manche
ter, England, July 1994.

This paper considers alternative directory protocols for providing cache coherence in shared-memory
multiprocessors with 32 to 128 processors, where the state requirements of DirN may be considered too large.
We considerDir iB, i – 1,2,4, DirN, Tristate(also calledsuperset), Coarse Vector, and three new protocols. The
new protocols—Gray-hardware, Gray-software, Home—are optimizations ofTristatethat use gray coding to
favor near-neighbor sharing.
Our results are the first to compare all these protocols with complete applications (and the first evaluation of
Tristatewith a non-synthetic workload). Results for three applications—ocean (one-dimensional sharing),
appbt (three-dimensional sharing), andbarnes (dynamic sharing)—for 128 processors on the Wisconsin
Wind Tunnel show that (a)Dir1B sends 15 to 43 times as many invalidation messages asDirN, (b) Gray-
softwaresends 1.0 to 4.7 times as many messages as DirN, making it better thanTristate, Gray-hardware, and
Home, and (c) the choice betweenDir iB, Coarse Vector, andGray-softwaredepends on whether one wants to
optimize for few sharers (Dir iB), many sharers (Coarse Vector), or hedge one’s bets between both alternatives
(Gray-software).
Keywords: Shared-memory multiprocessors, cache coherence, directory protocols, and gray code.

This paper explores the cost and performance of adding synchronization hardware to an existing netw
workstations. (ftp://ftp.cs.wisc.edu/wwt/ics96_synch.{ps,pdf}).

Rahmat S. Hyder and David A. Wood. Synchronization Hardware for Networks of Workstations: Perfor-
mance vs. Cost. InProceedings of the 1996 International Conference on Supercomputing, May 1996.

Networks of workstations (NOWs) are gaining popularity as lower-cost alternatives to massively-parallel
processors (MPPs) because of their ability to leverage high-performance commodity workstations and data
networks. However, fast data networks may not suffice if applications require frequent global
synchronization, e.g., barriers, reductions, and broadcasts. Many MPPs provide hardware support specifically
to accelerate these operations. Separate synchronization networks have also been proposed for NOWs, b
such add-on hardware only makes sense if the performance improvement is commensurate with its cost. In
this study, we examine the cost/performance trade-off of add-on synchronization hardware for an emulated
32-node NOW, running an aggregate workload of twelve shared-memory, message-passing, and data-paralle
11

n

A

d

e
s

e
f

th tradi-
workloads. For low-latency messaging (e.g., ~10 ms), add-on hardware is cost-effective only if its per-node
cost is less than 8% of the base workstation cost. For higher-latency messages (e.g., ~100 ms), add-o
hardware is cost-effective if it costs less than 23% of the base cost. At these higher latencies and typical
prices, a 32-node NOW with an add-on synchronization network is cost effective for 10 of the 12 benchmarks,
compared to a uniprocessor with the same memory capacity.

This paper proposesReactive NUMA (R-NUMA), a hardware DSM design that unifies S-COMA and CC-NUM
(ftp://ftp.cs.wisc.edu/wwt/isca97.{ps,pdf}).

Babak Falsafi and David A. Wood. Reactive NUMA: A Design for Unifying S-COMA and CC-NUMA. In Pro-
ceedings of the 24th Annual International Symposium on Computer Architecture, pages 229–240, June 1997.

This paper proposes and evaluates a new approach to directory-based cache coherence protocols calle
Reactive NUMA (R-NUMA). An R-NUMA system combines a conventional CC-NUMA coherence protocol
with a more-recent Simple-COMA (S-COMA) protocol. What makes R-NUMA novel is the way it
dynamically reacts to program and system behavior to switch between CC-NUMA and S-COMA and exploit
the best aspects of both protocols. This reactive behavior allows each node in an R-NUMA system to
independently choose the best protocol for a particular page, thus providing much greater performance
stability than either CC-NUMA or S-COMA alone. Our evaluation is both qualitative and quantitative. We
first show the theoretical result that R-NUMA’s worst-case performance is bounded within a small constant
factor (i.e., two to three times) of the best of CC-NUMA and S-COMA. We then use detailed execution-
driven simulation to show that, in practice, R-NUMA usually performs better than either a pure CC-NUMA
or pure S-COMA protocol, and no more than 57% worse than the best of CC-NUMA and S-COMA, for our
benchmarks and base system assumptions.

This paper advocates the multiprocessor support sequential consistency or related simple models (ftp://
ftp.cs.wisc.edu/wwt/computer98_sccase.{ps,pdf}).

M. D. Hill. Multiprocessors should support simple memory consistency models. IEEE Computer, 31,
1998.

Many future computers will be shared-memory multiprocessors. These hardware systems must define for
software the allowable behavior of memory. A reasonable model is sequential consistency (SC), which makes
a shared memory multiprocessor behave like a multiprogrammed uniprocessor. Since SC appears to limit
some of the optimizations useful for aggressive hardware implementations, researchers and practitioners hav
defined several relaxed consistency models. Some of these models just relax the ordering from writes to read
(processor consistency, IBM 370, Intel Pentium Pro, and Sun TSO), while others aggressively relax the order
among all normal reads and writes (weak ordering, release consistency, DEC Alpha, IBM PowerPC, and Sun
RMO).
This paper argues that multiprocessors should implement SC or, in some cases, a model that just relaxes th
ordering from writes to reads. I argue against using aggressively relaxed models because, with the advent o
speculative execution, these models do not give a sufficient performance boost to justify exposing their
complexity to the authors of low-level software.
Keywords: multiprocessors, parallel computing, shared memory, memory consistency models.
Revised version ofTechnical Report 1353, Computer Sciences Department, University of Wisconsin–
Madison, October 1997.

This paper describes a novel hybrid coherence technique that combines aspects of directory protocols wi
tional snooping.

E. Ender Bilir, Ross M. Dickson, Ying Hu, Manoj Plakal, Daniel J. Sorin, Mark D. Hill, and David A. Wood.
Multicast Snooping: A New Coherence Method Using a Multicast Address Network. InProceedings of the 26th
Annual International Symposium on Computer Architecture, Atlanta, Georgia, May 1999.
12

t

a

f

r

on and
This paper proposes a new coherence method called “multicast snooping”that dynamically adapts between
broadcast snooping and a directory protocol. Multicast snooping is unique because processors predic
which caches should snoop each coherence transaction by specifying a multicast “mask.” Transactions are
delivered with an ordered multicast network, such as an Isotach network, which eliminates the need for
acknowledgment messages. Processors handle transactions as they would with a snooping protocol, while
simplified directory operates in parallel to check masks and gracefully handle incorrect ones (e.g., previous
owner missing). Preliminary performance numbers with mostly SPLASH-2 benchmarks running on 32
processors show that we can limit multicasts to an average of 2-6 destinations (<< 32) and we can deliver 2-5
multicasts per network cycle (>> broadcast snooping’s 1 per cycle). While these results do not include timing,
they do provide encouragement that multicast snooping can obtain data directly (like broadcast snooping) but
apply to larger systems (like directories).

5.6 Tools

This paper describes the EEL Executable Editing Library (ftp://ftp.cs.wisc.edu/wwt/
pldi95_eel.{ps,pdf}).

J. R. Larus and E. Schnarr. Eel: Machine-independent executable editing. InProceedings of the SIGPLAN ’95
Conference on Programming Language Design and Implementation (PLDI), pages 291–300, June 1995.

EEL (Executable Editing Library) is a library for building tools to analyze and modify an executable
(compiled) program. The systems and languages communities have built many tools for error detection, fault
isolation, architecture translation, performance measurement, simulation, and optimization using this
approach of modifying executables. Currently, however, tools of this sort are difficult and time-consuming to
write and are usually closely tied to a particular machine and operating system. EEL supports a machine- and
system-independent editing model that enables tool builders to modify an executable without being aware of
the details of the underlying architecture or operating system or being concerned with the consequences o
deleting instructions or adding foreign code.

This paper describes a new abstraction for efficient memory system simulation (ftp://ftp.cs.wisc.edu/
wwt/sigmetrics95_am.{ps,pdf}).

A. R. Lebeck and D. A. Wood. Active memory: A new abstraction for memory-system simulation. In Proceed-
ings of the 1995ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems, pages 220–
230, May 1995.

This paper describes theactive memoryabstraction for memory-system simulation. In this abstraction—
designed specifically for on-the-fly simulation, memory references logically invoke a user-specified function
depending upon the reference’s type and accessed memory block state. Active memory allows simulator
writers to specify the appropriate action on each reference, including “no action” for the common case of
cache hits. Because the abstraction hides implementation details, implementations can be carefully tuned fo
particular platforms, permitting much more efficient on-the-fly simulation than the traditional trace-driven
abstraction.
Our SPARC implementation,Fast-Cache, executes simple data cache simulations two or three times faster
than a highly-tuned trace-driven simulator and only 2 to 7 times slower than the original program. Fast-Cache
implements active memory by performing a fast table look up of the memory block state, taking as few as 3
cycles on a SuperSPARC for the no-action case. Modeling the effects of Fast-Cache’s additional lookup
instructions qualitatively shows that Fast-Cache is likely to be the most efficient simulator for miss ratios
between 3% and 40%.

This paper describes how instruction scheduling within EEL can reduce the cost of program instrumentati
reschedule legacy code. (ftp://ftp.cs.wisc.edu/wwt/wcsss96_eel.{ps,pdf}).

Eric Schnarr and James R. Larus. Instruction Scheduling and Executable Editing. InWorkshop on Compiler
Support for System Software (WCSSS ‘96), Tucson, Arizona, February 1996
13

s

f

r

d

tation.

r

s

l
e
a

f-order

t-
Modern microprocessors offer more instruction-level parallelism than most programs and compilers can
currently exploit. The resulting disparity between a machine’s peak and actual performance, while frustrating
for computer architects and chip manufacturers, opens the exciting possibility of low-cost or even no-cost
instrumentation for measurement, simulation, or emulation. Instrumentation code that executes in previously
unused processor cycles is effectively hidden. These microprocessors also pose another problem, which arise
from the machine-specific instruction scheduling necessary for high performance. Different implementations
of an architecture, such as the many x86 processors, may benefit from different schedules, which either
requires multiple executables or a way to reschedule existing programs for new machines.
We investigated both opportunities by adding an instruction scheduler to the EEL executable editing library.
On first-generation, 2 and 3-way superscalar SPARC processors, this simple, local scheduler hid an average o
17% (8-22%) of the overhead cost of profiling instrumentation in the SPECINT benchmarks and an average
of 28% (5-53%) of the profiling cost in the SPECFP benchmarks. On a second-generation, 4-way superscala
UltraSPARC, the scheduler hid an average of 16% (8-21%) of the profiling cost in the SPECINT benchmarks
and 65% (7-136%) in the SPECFP benchmarks. We also used the scheduler to reschedule uninstrumente
code previously compiled for the SuperSPARC. Scheduling that takes into account the UltraSPARC’s out-of-
order execution improved the SPECFP benchmarks by an average of 9% (1-33%).

This paper describes how instruction scheduling within EEL can reduce the cost of program instrumen
(ftp://ftp.cs.wisc.edu/wwt/micro29_eel.{ps,pdf}).

E. Schnarr and J. R. Larus. Instruction scheduling and executable editing. In 29th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO 29), December 1996.

Modern microprocessors offer more instruction-level parallelism than most programs and compilers can
currently exploit. The resulting disparity between a machine’s peak and actual performance, while frustrating
for computer architects and chip manufacturers, opens the exciting possibility of low-cost instrumentation for
measurement, simulation, or emulation. Instrumentation code that executes in previously unused processo
cycles is effectively hidden. On two superscalar SPARC processors, a simple, local scheduler hid an average
of 13% of the overhead cost of profiling instrumentation in the SPECINT benchmarks and an average of 33%
of the profiling cost in the SPECFP benchmarks.

This paper describes a new approach to profile shared-memory performance. (ftp://ftp.cs.wisc.edu/
wwt/ppopp97_memprof.{ps,pdf}).

Z. Xu, J. R. Larus, and B. P. Miller. Shared-memory performance profiling. In Sixth ACM SIGPLAN Sympo-
sium on Principles & Practice of Parallel Programming (PPOPP), June 1997.

This paper describes a new approach to finding performance bottlenecks in shared-memory parallel program
and its embodiment in the Paradyn Parallel Performance Tools running with the Blizzard fine-grain
distributed shared memory system. This approach exploits the underlying system’s cache coherence protoco
to detect data sharing patterns that indicate potential performance bottlenecks and presents performanc
measurements in a data-centric manner. As a demonstration, Paradyn helped us improve the performance of
new shared-memory application program by a factor of four.

This paper describes optimizations that dramatically accelerate the cycle-accurate simulation of an out-o
processor (ftp://ftp.cs.wisc.edu/wwt/asplos98_fastsim.{ps,pdf}).

Eric Schnarr and James R. Larus. Fast Out-Of-Order Processor Simulation Using Memoization. InProceed-
ings of the Eighth International Conference on Architectural Support for Programming Languages and Opera
ing Systems (ASPLOS VIII), October 1998.

Our new out-of-order processor simulator, FastSim, uses two innovations to speed up simulation 8-15 times
(vs. Wisconsin SimpleScalar) with no loss in simulation accuracy. First, FastSim uses speculative direct-
execution to accelerate the functional emulation of speculatively executed program code. Second, it uses a
variation on memoization -- a well-known technique in programming language implementation -- to cache
microarchitecture states and the resulting simulator actions, and then "fast forwards" the simulation the next
14

ocessor

t.

.

e

emory

-

time a cached state is reached. Fast-forwarding accelerates simulation by an order of magnitude, while
producing exactly the same, cycle-accurat result as conventional simulation.

This paper describes how to automatically accelerate the cycle-accurate simulation of an out-of-order pr
(ftp://ftp.cs.wisc.edu/wwt/plidi01_facile.pdf).

Eric Schnarr, Mark D. Hill, and James R. Larus. Facile: A Language and Compiler for High-Performance
Processor Simulators. In Programming Language Design and Implementation, 2001.

Architectural simulators are essential tools for computer architecture and systems research and developmen
Simulators, however, are becoming frustratingly slow, because they must now model increasingly complex
micro-architectures running realistic workloads. Previously, we developed a technique called fast-forwarding,
which applied partial evaluation and memoization to improve the performance of detailed architectural
simulations by as much as an order of magnitude .
While writing a detailed processor simulator is difficult, implementing fast-forwarding is even more complex.
This paper describes Facile, a domain-specific language for writing detailed, accurate micro-architecture
simulators. Architectural descriptions written in Facile can be compiled, using partial evaluation techniques,
into fast-forwarding simulators that achieve significant performance improvements with far less programmer
effort. Facile and its compiler make this performance-enhancing technique accessible to computer architects

5.7 Cooperative Shared Memory

Introduces cooperative shared memory (a precusor to Tempest) (ftp://ftp.cs.wisc.edu/wwt/
tocs93_csm.{ps,pdf}):

Mark D. Hill, James R. Larus, Steven K. Reinhardt, and David A. Wood. Cooperative Shared Memory: Soft-
ware and Hardware for Scalable Multiprocessors.ACM Transactions on Computer Systems, 11(4):300–318,
November 1993. Earlier version appeared inFifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS V).

We believe the paucity of massively-parallel, shared-memory machines follows from the lack of a shared-
memory programming performance model that can inform programmers of the cost of operations (so they can
avoid expensive ones) and can tell hardware designers which cases are common (so they can build simpl
hardware to optimize them).Cooperative shared memory, our approach to shared-memory design, addresses
this problem.
Our initial implementation of cooperative shared memory uses a simple programming model, calledCheck-
In/Check-Out(CICO), in conjunction with even simpler hardware, calledDir1SW. In CICO, programs bracket
uses of shared data with acheck_out directive marking the expected first use and acheck_in directive
terminating the expected use of the data. Acooperative prefetchdirective helps hide communication latency.
Dir1SW is a minimal directory protocol that adds little complexity to message-passing hardware, but
efficiently supports programs written within the CICO model.

Examines the complexity and performance of alternative directory protocols for cooperative shared m
(ftp://ftp.cs.wisc.edu/wwt/isca93_mechanisms.{ps,pdf}):

David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C.
Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla, and Steven K. Reinhardt. Mechanisms for Coopera
tive Shared Memory. In Proceedings of the 20th Annual International Symposium on Computer Architecture,
pages 156–168, May 1993. Also appeared in itCMG Transactions, Spring 1994.

This paper explores the complexity of implementing directory protocols by examining theirmechanisms—
primitive operations on directories, caches, and network interfaces. We compare the following protocols:
Dir1B, Dir4B, Dir4NB, DirnNB, Dir1SW, and an improved version ofDir1SW(Dir1SW+). The comparison
15

s

l

t
,

s
s
s

l

d

at
shows that the mechanisms and mechanism sequencing ofDir1SWandDir1SW+ are simpler than those for
other protocols.
We also compare protocol performance by running eight benchmarks on 32 processor systems. Simulation
show thatDir1SW+’s performance is comparable to more complex directory protocols. The significant
disparity in hardware complexity and the small difference in performance argue thatDir1SW+ may be a more
effective use of resources. The small performance difference is attributable to two factors: the low degree of
sharing in the benchmarks and Check-In/Check-Out (CICO) directives.
Keywords: Shared-memory multiprocessors, memory systems, cache coherence, directory protocols, and
hardware mechanisms.

Describes and examines the benefits of the check-in, check-out (CICO) programming performance mode
(ftp://ftp.cs.wisc.edu/wwt/p4_cico.{ps,pdf}):

James R. Larus, Satish Chandra, and David A. Wood. CICO: A Shared-Memory Programming Performance
Model. In Jeanne Ferrante and Tony Hey, editors,Portability and Performance for Parallel Processors,
chapter 5, pages 99–120. John Wiley & Sons, 1994.

A programming performance model provides a programmer with feedback on the cost of program operations
and is a necessary basis to write efficient programs. Many shared-memory performance models do no
accurately capture the cost of interprocessor communication caused by non-local memory references
particularly in computers with caches. This paper describes a simple and practical programming performance
model—calledcheck-in, check-out (CICO)—for cache-coherent, shared-memory parallel computers. CICO
consists of two components. The first is a collection of annotations that a programmer adds to a program to
elucidate the communication arising from shared-memory references. The second is a model that calculate
the communication cost of these annotations. An annotation’s cost models the cost of the memory reference
that it summarizes and serves as a metric to compare alternative implementations. Several example
demonstrate that CICO accurately predicts cache misses and identifies changes that improve program
performance.

This paper discusses solving microstructure electrostatics with cooperative shared memory (ftp://
ftp.cs.wisc.edu/wwt/cce_electrostatics.{ps,pdf}).

F. Traenkle, M.D. Hill, and S. Kim. Solving Microstructure Electrostatics on a Proposed Parallel Computer.
Computers and Chemical Engineering, 19:743–757, 1995.

The programming models presented by parallel computers are diverse and changing. We study a new paralle
programming model—cooperative shared memory (CSM)—with a collaborative effort between chemical
engineers and computer scientists. Since CSM machines do not (yet) exist we evaluate our applications an
machine designs with the Wisconsin Wind Tunnel (WWT), which runs CSM programs and calculates the
performance of hypothetical parallel computers.
The application considered is the class of three—dimensional elliptic partial differential equations (Laplace,
Stokes, Navier) with solutions represented by boundary integral equations. The parallel algorithm follows
naturally from our use of the Completed Double Layer Boundary Integral Equation Method (CDLBIEM).
A major result is the demonstration that coding CDLBIEM is much simpler under CSM than with the
message passing model, and yet performance (computational times and speed ups) is comparable, a fact th
may be of great interest to designers of future machines. With WWT, we can also examine performance as a
function of machine parameters such as cache size and network bandwidth and latency. The possibility of
tweaking simultaneously the algorithm and architecture to outline pathways of evolution for future parallel
machines is an important concept explored in this work.

Master’s thesis that explains on the contents of the above paper (ftp://ftp.cs.wisc.edu/wwt/
traenkle_ms.{ps,pdf}).

F. Traenkle. Parallel Programming Models and Boundary Integral Equation Methods for Microstructure
Electrostatics. Master’s thesis, University of Wisconsin–Madison, 1993.
16

t

e

a

s

s
e

r

-

The programming models presented by parallel computers are diverse and changing. We study the
implementation of our application in different parallel programming models with a collaborative effort
between chemical engineers and computer scientists.
The application considered is the class of three-dimensional elliptic partial differential equations (Laplace,
Stokes, Navier) with solutions represented by boundary integral equations. These partial differential equations
appear in basic microscopic descriptions of heterogeneous structured continua. As an example, we presen
results for the macroscopic dielectric constants and thermal conductivities of two-phase materials. The
parallel algorithm follows naturally from our use of the Completed Double Layer Boundary Integral Equation
Method (CDLBIEM).
The application is implemented in the message-passing programming model using the standard send-receiv
message-passing primitives in the CMMD library and the static shared-memory model in the form of Split-C,
both running on the Thinking Machines CM-5 parallel computer. Furthermore, we study its implementation
in a new parallel programming model - cooperative shared memory (CSM). Since CSM machines do not (yet)
exist we evaluate our application and machine designs with the Wisconsin Wind Tunnel (WWT), which runs
CSM programs and calculates the performance of hypothetical parallel computers.
A major result is the demonstration that coding CDLBIEM is much simpler under CSM than with the
message-passing model or Split-C, and yet performance (computational times and scaleup) is comparable,
fact that may be of great interest to designers of future machines.

This paper describes Cachier, a tool for automatically inserting CICO annotations in programs (ftp://
ftp.cs.wisc.edu/wwt/icpp94_cachier.{ps,pdf}).

T. M. Chilimbi and J. R. Larus. Cachier: A tool for automatically inserting CICO annotations. In Proceedings
of the 1994 International Conference on Parallel Processing (Vol. II Software), pages II–89–98, August 1994.

Shared memory in a parallel computer provides programmers with the valuable abstraction of a shared
address space—through which any part of a computation can access any datum. Although uniform acces
simplifies programming, it also hides communication, which can lead to inefficient programs. The check-in,
check-out (CICO) performance model for cache-coherent, shared-memory parallel computers helps a
programmer identify the communication underlying memory references and account for its cost. CICO
consists of annotations that a programmer can use to elucidate communication and a model that attribute
costs to these annotations. The annotations can also serve as directives to a memory system to improv
program performance. Inserting CICO annotations requires reasoning about the dynamic cache behavior of a
program, which is not always easy. This paper describes Cachier, a tool that automatically inserts CICO
annotations into shared-memory programs. A novel feature of this tool is its use of both dynamic information,
obtained from a program execution trace, as well as static information, obtained from program analysis. We
measured several benchmarks annotated by Cachier by running them on a simulation of the Dir1SW cache
coherence protocol, which supports these directives. The results show that programs annotated by Cachie
perform significantly better than both programs without CICO annotations and programs that were annotated
by hand.
Keywords: Shared-memory, parallel programming performance models, parallel programming tools, cache-
coherence, directory protocols.

5.8 Wisconsin Wind Tunnel

Describes the Wisconsin Wind Tunnel (ftp://ftp.cs.wisc.edu/wwt/
sigmetrics93_wwt.{ps,pdf}):

S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood. The Wisconsin Wind Tun-
nel: Virtual prototyping of parallel computers. In Proceedings of the 1993 ACM Sigmetrics Conference on Mea
surement and Modeling of Computer Systems, pages 48–60, May 1993.

We have developed a new technique for evaluating cache coherent, shared-memory computers. The
Wisconsin Wind Tunnel (WWT) runs a parallel shared-memory program on a parallel computer (CM-5) and
17

m

-

uses execution-driven, distributed, discrete-event simulation to accurately calculate program execution time.
WWT is a virtual prototype that exploits similarities between the system under design (the target) and an
existing evaluation platform (the host). The host directly executes all target program instructions and memory
references that hit in the target cache. WWT’s shared memory uses the CM-5 memory’s error-correcting code
(ECC) as valid bits for a fine-grained extension of shared virtual memory. Only memory references that miss
in the target cache trap to WWT, which simulates a cache-coherence protocol. WWT correctly interleaves
target machine events and calculates target program execution time. WWT runs on parallel computers with
greater speed and memory capacity than uniprocessors. WWT’s simulation time decreases as target syste
size increases for fixed-size problems and holds roughly constant as the target system and problem scale.

Describes operating system support for the Wisconsin Wind Tunnel (ftp://ftp.cs.wisc.edu/wwt/
usenix93_kernel.{ps,pdf}):

S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C. Lewis, and D. A. Wood. The Wisconsin Wind Tun-
nel: Virtual prototyping of parallel computers. In Proceedings of the 1993 ACM Sigmetrics Conference on Mea
surement and Modeling of Computer Systems, pages 48–60, May 1993.

This paper describes a kernel interface that provides an untrusted user-level process (anexecutive) with
protected access to memory management functions, including the ability to create, manipulate, and execute
within subservient contexts (address spaces).Page motion callbacksnot only give the executive limited
control over physical memory management, but also shift certain responsibilities out of the kernel, greatly
reducing kernel state and complexity.
Theexecutive interfacewas motivated by the requirements of the Wisconsin Wind Tunnel (WWT), a system
for evaluating cache-coherent shared-memory parallel architectures. WWT uses the executive interface to
implement a fine-grain user-level extension of Li’s shared virtual memory on a Thinking Machines CM-5, a
message-passing multicomputer. However, the interface is sufficiently general that an executive could act as a
multiprogrammed operating system, exporting an alternative interface to the threads running in its subservient
contexts.
The executive interface is currently implemented as an extension to CMOST, the standard operating system
for the CM-5. In CMOST, policy decisions are made on a central, distinct control processor (CP) and
broadcast to the processing nodes (PNs). The PNs execute a minimal kernel sufficient only to implement the
CP’s policy. While this structure efficiently supports some parallel application models, the lack of autonomy
on the PNs restricts its generality. Adding the executive interface provides limited autonomy to the PNs,
creating a structure that supports multiple models of application parallelism. This structure, with autonomy on
top of centralization, is in stark contrast to most microkernel-based parallel operating systems in which the
nodes are fundamentally autonomous.

How to use the Wisconsin Wind Tunnel (ftp://ftp.cs.wisc.edu/wwt/
wwt_tutorial.{ps,pdf}).

S. S. Mukherjee, A. Kagi, and D. Burger. A programming tutorial for the wisconsin wind tunnel. Unpublished
manuscript, revised January 1995.

This tutorial gives a brief introduction to programming, compiling, and executing parallel shared-memory
applications on the Wisconsin Wind Tunnel (WWT), avirtual prototyping system. The WWT currently runs
only on a Thinking Machines CM-5, so we assume that the reader has access to one and knows how to log in
and run programs and is familiar with basic Unix(TM) functionality.
The tutorial illustrates how to parallelize a simple sequential application; how to use the Cooperative Shared
Memory (CSM) model and different cache coherence protocols; and how to execute, debug and profile
parallel applications on the WWT. The tutorial should give you enough information to get started writing your
own programs for the WWT.

Shows that parallel simulation can have better cost/performance than sequential simulationftp://
ftp.cs.wisc.edu/wwt/pads94_costperf.{ps,pdf}).
18

s

tention

-

using

e

e

g

B. Falsafi and D. A. Wood. Cost/performance of a parallel computer simulator. InProceedings of the 8th Work-
shop on Parallel and Distributed Simulation (PADS ’94), July 1994.

This paper examines the cost/performance of simulating a hypotheticaltarget parallel computer using a
commercialhostparallel computer. We address the question of whether parallel simulation is simply faster
than sequential simulation, or if it is also more cost-effective. To answer this, we develop a performance
model of the Wisconsin Wind Tunnel (WWT), a system that simulates cache-coherent shared-memory
machines on a message-passing Thinking Machines CM-5. The performance model uses Kruskal and Weiss’
fork-join model to account for the effect of event processing time variability on WWT’s conservative fixed-
window simulation algorithm. A generalization of Thiebaut and Stone’s footprint model accurately predicts
the effect of cache interference on the CM-5. The model is calibrated using parameters extracted from a fully-
parallel simulation (p-N), and validated by measuring the speedup as the number of processors (p) ranges
from one to the number of target nodes (N). Together with simple cost models, the performance model
indicates that for target system sizes of 32 nodes and larger, parallel simulation is more cost-effective than
sequential simulation. The key intuition behind this result is that large simulations require large memories,
which dominate the cost of a uniprocessor; parallel computers allow multiple processors to simultaneously
access this large memory.

This paper examines a range of network simulation models that trade off the accurate calculation of con
against reductions in simulation time. (ftp://ftp.cs.wisc.edu/wwt/ipps95_netsim.{ps,pdf}).

D. C. Burger and D. A. Wood. Accuracy vs. performance in parallel simulation of interconnection networks.
In Proceedings of the 9th International Parallel Processing Symposium, April 1995.

Parallel simulation is emerging as the dominant technique for studying parallel computers. However, the
interconnection networks of these machines can be modeled at many different levels of abstraction, allowing
researchers to trade off accuracy and performance. In this paper, we use the Wisconsin Wind Tunnel, a
parallel simulator for cache-coherent shared-memory machines, to study the trade-offs of accuracy versus
performance for six different network simulation models. We evaluate these models for a variety of parallel
applications, cache-coherence protocols, and topologies. We show that only the two most expensive models
which model contention at individual links-are robust in the presence of high network loads or non-uniform
traffic patterns.

This paper examines the use of optimistic algorithms to perform parallel simulations of parallel machines
program executables. (ftp://ftp.cs.wisc.edu/wwt/pads96_optimistic.{ps,pdf}).

S. Chandrasekaran and M. D. Hill. Optimistic simulation of parallel architectures using program executables.
In Proceedings of Tenth Workshop on Parallel and Distributed Simulation (PADS ’96), May 1996.

A key tool of computer architects is computer simulation at the level of detail that can execute program
executables. The time and memory requirements of such simulations can be enormous, especially when th
machine under design—thetarget—is a parallel machine. Thus, it is attractive to use parallel simulation, as
successfully demonstrated by theWisconsin Wind Tunnel(WWT). WWT uses a conservative simulation
algorithm and eschews network simulation to make lookahead adequate. Nevertheless, we find most of
WWT’s slowdown to be due to the synchronization overhead in the conservative simulation algorithm.
This paper examines the use of optimistic algorithms to perform parallel simulations of parallel machines. We
first show that we can make optimistic algorithms work correctly even with WWT’s direct execution of
program executables. We checkpoint processor registers (integer, floating-point, and condition codes) and us
executable editing to log the value of memory words just before they are overwritten by stores. Second, we
consider the performance of two optimistic algorithms. The first executes programs optimistically, but
performs protocol events (e.g., sending messages) conservatively. The second executes everythin
optimistically and is similar to Time Warp with lazy message cancellation. Unfortunately, both approaches
make parallel simulation performance worse for the default WWT assumptions. We conclude by speculating
on the performance of optimistic simulation when simulating (1) target network details, and (2) on hosts with
high message latencies and no synchronization hardware.
19

in

a

s.

a rou-

s

e-
This paper presents in detail the analytical models used to derive the results
(pads94_costperf.{ps,pdf}) , (ftp://ftp.cs.wisc.edu/wwt/tomacs_perf.{ps,pdf}).

B. Falsafi and D. A. Wood. Modeling cost/performance of a parallel computer simulator.ACM Transactions
on Modeling and Computer Simulation, 7(1), January 1997.

This paper describes the Wisconsin Wind Tunnel II (WWT II) simulator (ftp://ftp.cs.wisc.edu/wwt/
paid97_wwt2.{ps,pdf}).

Shubhendu S. Mukherjee, Steven K. Reinhardt, Babak Falsafi, Mike Litzkow, Steve Huss-Lederman,
Mark D. Hill, James R. Larus, and David A. Wood. Wisconsin Wind Tunnel II: A Fast and Portable Parallel
Architecture Simulator. In Workshop on Performance Analysis and Its Impact on Design (PAID), June 1997.

The design of future parallel computers requires rapid simulation of target designs running realistic
workloads. These simulations have been accelerated using two techniques: direct execution and the use of
parallel host. Historically, these techniques have been considered to have poor portability. This paper
identifies and describes the implementation of four key operations necessary to make such simulation portable
across a variety of parallel computers. These four operations are: calculation of target execution time,
simulation of features of interest, communication of target messages, and synchronization of host processor
Portable implementations of these four operations have allowed us to easily run the Wisconsin Wind Tunnel II
(WWT II)—a parallel, discrete-event, direct-execution simulator—across a wide range of platforms, such as
desktop workstations, a SUN Enterprise server, a cluster of workstations, and a cluster of symmetric
multiprocessing nodes. We plan to release WWT II in August, 1997. We also plan to port WWT II to the IBM
SP2.
We find that for two benchmarks, WWT II demonstrates both good performance and good scalability.
Uniprocessor WWT II simulates one target cycle of a 32-node target machine in 114 and 166 host cycles
respectively for the two benchmarks on a SUN UltraSPARC. Parallel WWT II achieves speedups between
4.1-5.4 on 8 host processors in our three parallel machine configurations.

5.9 Path Profiling

This paper describes a new and efficient technique for recording the execution frequency of paths through
tine (ftp://ftp.cs.wisc.edu/wwt/micro96.{ps,pdf}).

T. Ball and J. R. Larus. Efficient path profiling. In 29th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 29), page 46–57, December 1996.

A path profiledetermines how many times each acyclic path in a routine executes. This type of profiling
subsumes the more common basic block and edge profiling, which only approximate path frequencies. Path
profiles have many potential uses in program performance tuning, profile-directed compilation, and software
test coverage.
This paper describes a new algorithm for path profiling. This simple, fast algorithm selects and places profile
instrumentation to minimize run-time overhead. Instrumented programs run with overhead comparable to the
best previous profiling techniques. On the SPEC95 benchmarks, path profiling overhead averaged 31%, a
compared to 16% for efficient edge profiling. Path profiling also identifies longer paths than a previous
technique, which predicted paths from edge profiles (average of 88, versus 34 instructions). Moreover,
profiling shows that the SPEC95train input datasets covered most of the paths executed in theref datasets.

This paper extends the previous paper on path profiling (micro96.{ps,pdf}) to take advantage of hardware
counters on UltraSPARC (and other processors) (ftp://ftp.cs.wisc.edu/wwt/
pldi97_paths.{ps,pdf}).

G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and context sen-
sitive profiling. In Proceedings of the SIGPLAN ’97 Conference on Programming Language Design and Impl
mentation (PLDI), June 1997.
20

e

rs

t

or
all
ller

ata

ofit-
on-
%

nisms to

re

e

le
A program profile attributes run-time costs to portions of a program’s execution. Most profiling system suffer
from two major deficiencies: first, they only apportion simple metrics, such as execution frequency or elapsed
time to static, syntactic units, such as procedures or statements; second, they aggressively reduce the volum
of information collected and reported, although aggregation can hide striking differences in program behavior.
This paper addresses both concerns by exploiting the hardware counters available in most modern processo
and by incorporating two concepts from data flow analysis—flow and context sensitivity—to report more
context for measurements. This paper extends our previous work on efficient path profiling to generalized
flow sensitive profiling, which associates hardware performance metrics with a path through a procedure. In
addition, it describes a data structure, the calling context tree, that efficiently captures calling contexts for
procedure-level measurements.
Our measurements found the SPEC95 benchmarks execute a small number (3-28) of hot paths that accoun
for 9–98% of their L1 data cache misses. Moreover, these hot paths are concentrated in a few routines, which
have complex dynamic behavior.

This paper shows how to use path profiles to improve the precision of data-flow analysis in a compiler (ftp://
ftp.cs.wisc.edu/wwt/pldi98_dataflow.{ps,pdf}).

G. Ammons and J. R. Larus. Improving data-flow analysis with path profiles. InProceedings of the SIGPLAN
‘98 Conference on Programming Language Design and Implementation (PLDI), June 1998.

Data-flow analysis computes its solutions over the paths in a control-flow graph. These paths—whether feasible
infeasible, heavily or rarely executed—contribute equally to a solution. However, programs execute only a sm
fraction of their potential paths and, moreover, programs' execution time and cost is concentrated in a far sma
subset ofhot paths.

This paper describes a new approach to analyzing and optimizing programs, which improves the precision of d
flow analysis along hot paths. Our technique identifies and duplicates hot paths, creating ahot path graphin which
these paths are isolated. After flow analysis, the graph is reduced to eliminate unnecessary duplicates of unpr
able paths. In experiments on SPEC95 benchmarks, path qualification identified 2–112 times more non-local c
stants (weighted dynamically) than the Wegman-Zadek conditional constant algorithm, which translated into 1–7
more dynamic instructions with constant results.

5.10 Network Interfaces

This paper explores a class of Coherent Network Interfaces that uses snooping cache coherence mecha
improve communication performance between a processor and a network interface. (ftp://
ftp.cs.wisc.edu/wwt/isca96_cni.{ps,pdf}).

S. S. Mukherjee, B. Falsafi, M. D. Hill, and D. A. Wood. Coherent network interfaces for fine-grain commu-
nication. In Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages 247–
258, May 1996.

Historically, processor accesses to memory-mapped device registers have been marked uncachable to insu
their visibility to the device. The ubiquity of snooping cache coherence, however, makes it possible for
processors and devices to interact with cachable, coherent memory operations. Using coherence can improv
performance by facilitating burst transfers of whole cache blocks and reducing control overheads (e.g., for
polling).
This paper begins an exploration of network interfaces (NIs) that use coherence—coherent network interfaces
(CNIs)—to improve communication performance. We restrict this study to NI/ CNIs that reside on coherent
memory or I/O buses, to NI/CNIs that are much simpler than processors, and to the performance of fine-grain
messaging from user process to user process.
Our first contribution is to develop and optimize two mechanisms that CNIs use to communicate with
processors. A cachable device register—derived from cachable control registers—[39,40] is a coherent,
cachable block of memory used to transfer status, control, or data between a device and a processor. Cachab
21

s

n

etwork

er-

s.
.g.

e
nd

I

,

rt zero-

e

n

queues generalize cachable device registers from one cachable, coherent memory block to a contiguou
region of cachable, coherent blocks managed as a circular queue.
Our second contribution is a taxonomy and comparison of four CNIs with a more conventional NI.
Microbenchmark results show that CNIs can improve the round-trip latency and achievable bandwidth of a
small 64-byte message by 37% and 125% respectively on the memory bus and 74% and 123% respectively o
a coherent I/O bus. Experiments with five macrobenchmarks show that CNIs can improve the performance by
17-53% on the memory bus and 30-88% on the I/O bus.

This paper does an in-depth simulation study of the impact of data transfer and buffering alternatives on n
interface design (ftp://ftp.cs.wisc.edu/wwt/hpca98_impact.{ps,pdf}).

S. S. Mukherjee and M. D. Hill. The impact of data transfer and buffering alternatives on network interface
design. InProceedings of the Fourth IEEE Symposium on High-Performance Computer Architecture, February
1998.

The explosive growth in the performance of microprocessors and networks has created a new opportunity to
reduce the latency of fine-grain communication. Microprocessor clock speeds are now approaching the
gigahertz range. Network switch latencies have dropped to tens of nanoseconds. Unfortunately, this explosive
growth also exposes processor accesses to the network inter face (NI) as a critical bottleneck for fine-grain
communication. Researchers have proposed several techniques, such as using block loads and stores, Us
Level DMA, and Coherent Network Interfaces, to alleviate this NI access bottleneck.
This paper is the first to systematically identify, examine, and evaluate the key parameters that underlie these
design alternatives. We classify these parameters into two categories: data transfer and buffering parameter
The data transfer parameters capture how messages are transferred between internal memory structures (e
processor caches, main memory) of a computer and a memory bus NI. The buffering parameters capture how
and where an NI buffers incoming network messages.
We evaluate seven memory bus NIs that we believe capture the essential components of the design spac
exposed by these data transfer and buffering parameters. These seven NIs abstract the data transfer a
buffering parameters of the NIs in TMC CM-5, Fujitsu AP3000, Princeton User-Level DMA, Digital Memory
Channel, MIT StarT-JR, and two Coherent Network Interfaces (CNI512Q and CNI32Qm).
Our results indicate that a high-performance NI design should effectively use the block transfer mechanism of
the memory bus, minimize processor involvement for data transfer, directly transfer messages between an N
and the processor (at least in the common case), provide plentiful buffering (possibly in main memory), and
minimize processor involvement to buffer incoming network messages. The relative importance of these
parameters depends both on the specific NI design and the characteristics of the application.
As a corollary of this study, we find that, contrary to conventional wisdom, mapping an NI to the processor
registers is usually not the ideal choice. This is because processor register memory is a precious resource
which does not provide adequate buffering for many applications.

This paper evaluates alternative designs for address translation structures in network interfaces to suppo
copy transfers (minimal messaging).
(ftp://ftp.cs.wisc.edu/wwt/hpca98_nitrans.{ps,pdf}).

I. Schoinas and M. D. Hill. Address translation mechanisms in network interfaces. InProceedings of the
Fourth IEEE Symposium on High-Performance Computer Architecture, February 1998.

Good network hardware performance is often squandered by overheads for accessing the network interfac
(NI) within a host. NIs that support user-level messaging avoid frequent operating system (OS) action yet
unnecessary copying can still result in low performance. We explore improving application messaging
performance by eliminating all unnecessary copies (minimal messaging). For minimal messaging, NIs must
support address translation and must do so more richly than has been done in the past. NI address translatio
should flexibly support higher-level abstractions, map all user space, exploit translation locality, and degrade
gracefully when locality is poor. We classify NI address translation implementations based on where the
lookup and the miss handling are performed (CPU or NI). We present alternative designs and we consider
how they interact with the OS. We provide simulation results that evaluate the alternative design points and
22

emory

d

cess in

t

n
y
e

-based
we demonstrate feasibility with a real implementation using Myrinet. We find: (a) NIs need not have hardware
lookup structures, as software schemes are fast enough; (b) it is difficult for an NI to handle its own translation
misses unless commercial operating systems are substantially modified to view an NI as CPU peer; (c) in the
conventional situation where the operating system views the NI as a device, minimal messaging should be
used only when the translation is present, while a single-copy protocol is used when it is not and (d)
alternatively, one can currently get acceptable performance when the CPU handle misses if the kernel
provides very fast trap interfaces but microprocessor and operating system trends may make this alternative
less viable in the long run.

This paper argues that a processor’s interactions with a network interface should be treated more like a m
access, rather than like a disk interface access. (ftp://ftp.cs.wisc.edu/wwt/
computer98_nicase.{ps,pdf}).

S. S. Mukherjee and M. D. Hill. Making network interfaces less peripheral. IEEE Computer, “(?):?,” “ 1998.”
A talk-only version of this paper appears inHot Interconnects V, 1997.

Much of a computer’s value depends on how well it interacts with networks. To enhance this value, designers
must improve the performance of networks delivered to users. Fortunately, the performance of networks is
improving rapidly. Unfortunately, this dramatic improvement in network performance is seldom delivered to
users. A key bottleneck is the host network interface (NI), which connects a network to a host computer. This
bottleneck gets more severe as network and host performance continue to improve.
The problem with current NIs is that they were designed with an interface similar to that of a disk interface.
Most current NIs require applications to use an operating system call, are placed on the I/O bus, do not allow
processors to cache their registers, and force processors to interact with them with in-order and non-
speculative accesses. The last two problems are partially due to the presence of “side-effects” in current NI
designs.
While this kind of an interface may have been adequate in the past, we argue that future NIs should appear to
their hosts more like memory than like a disk. Memory is virtualized without requiring operation system
intervention (in the common case), is on the memory bus, can be cached, can be accessed out of order an
speculatively, and is free of any side-effects. We discuss how to do the same for NIs, so that the dramatic
improvements in network performance can be delivered to users.

This paper describes an efficient approach for low-overhead network interface that allows simultaneous ac
an SMP (ftp://ftp.cs.wisc.edu/wwt/hpca99_pdq.{ps,pdf}).

Babak Falsafi and David A. Wood. Parallel Dispatch Queue: A Queue-Based Programming Abstraction To
Parallelize Fine-Grain Communication Protocols. InProceedings of the 5th International Symposium on High-
Performance Computer Architecture (HPCA-5), pages 182–192, 1999.

This paper proposes a novel queue-based programming abstraction, Parallel Dispatch Queues (PDQ), tha
enables efficient parallel execution of fine-grain software communication protocols. Parallel systems often
use fine-grain software handlers to integrate a network message into computation. Executing such handlers i
parallel requires acceess to a set of data structures, PDQ allows messages to include a synchronizion ke
protecting handler accesses to a group of protocol resources. By simply synchronizing message in a queu
prior to dispatch, PDQ not only eliminates the overhead of acquiring/releasing synchronization primitives but
also prevents busy-waiting within handlers.

5.11 Lamport Clocks

This paper illustrates the use of Lamport Clocks as a verification technique to demonstrate that a bus
cache-coherence protocol ensures sequential consistency (ftp://ftp.cs.wisc.edu/wwt/
tr98_lamport.{ps,pdf}).
23

t

r

-
e

cache-

a

emory

-

D. J. Sorin, M. Plakal, M. D. Hill, and A. E. Condon. Lamport Clocks: Reasoning About Shared Memory Cor-
rectness. Technical Report 1367, Computer Sciences Department, University of Wisconsin–Madison, 1998.

Modern shared memory implementations use many complex, interacting optimizations, forcing industrial
product groups to spend much more effort in verification than in design. Current formal verification
techniques are somewhat non-intuitive to system designers and verifiers, and these formal methods do no
scale well to practical systems.
This paper seeks to give verifiers and designers a reasoning technique that is precise (unlike informal
reasoning) and intuitive (unlike some formal models). To prove that a system obeys the desired consistency
model, we would like a tool that allows us to create a total order of events. We modestly extend Lamport’s
logical clock work from distributed systems and apply it to shared memory systems. We use these so-called
Lamport clocks to timestamp events and thereby create a total order. This total order can then be examined to
see if it satisfies the desired consistency model. Lamport clocks are purely a reasoning tool, and they are neve
instantiated in hardware.
We demonstrate the value of Lamport clocks by showing that sequential consistency (SC) is obeyed by a
variety of snooping bus-based coherence protocols, ranging from a simple cache-less system to a split
transaction out-of-order bus. We present timestamping schemes for all of the above systems and, in the cas
of the split-transaction bus, we use the timestamps to formally prove that the system satisfies SC.

This paper illustrates the use of Lamport Clocks as a verification technique to demonstrate that a directory
coherence protocol ensures sequential consistency (ftp://ftp.cs.wisc.edu/wwt/
spaa98_lamport.{ps,pdf}).

M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill. Lamport Clocks: Verifying a Directory Cache-Coherence
Protocol. In Proceedings of the 10th Annual ACM Symposium on Parallel Architectures and Algorithms, June
1998.

Modern shared-memory multiprocessors use complex memory system implementations that include a variety
of non-trivial and interacting optimizations. More time is spent in verifying the correctness of such
implementations than in designing the system. In particular, large-scale Distributed Shared Memory (DSM)
systems usually rely on a directory cache-coherence protocol to provide the illusion of a sequentially
consistent shared address space. Verifying that such a distributed protocol satisfies sequential consistency is
difficult task. Current formal protocol verification techniques complement simulation, but are somewhat non-
intuitive to system designers and verifiers, and they do not scale well to practical systems.
In this paper, we examine a new reasoning technique that is precise and (we find) intuitive. Our technique is
based on Lamport’s logical clocks, which were originally used in distributed systems. We make modest
extensions to Lamport’s logical clocking scheme to assign timestamps to relevant protocol events to construct
a total ordering of such events. Such total orderings can be used to verify that the requirements of a particular
memory consistency model have been satisfied.
We apply Lamport clocks to prove that a non-trivial directory protocol implements sequential consistency. To
do this, we describe an SGI Origin 2000-like protocol in detail, provide a timestamping scheme that totally
orders all protocol events, and then prove sequential consistency (i.e., a load always returns the value of the
“last” store to the same address in timestamp order).

This paper extends the use of Lamport clocks as a verification technique to systems that use relaxed m
models, specifically the Sun TSO and Compaq Alpha memory models (ftp://ftp.cs.wisc.edu/wwt/
hpca99_lamport.{ps,pdf}).

Anne E. Condon, Mark D. Hill, Manoj Plakal, and Daniel J. Sorin. Using Lamport Clocks to Reason About
Relaxed Memory Models. InProceedings of the Fifth IEEE Symposium on High-Performance Computer Archi
tecture, January 1999.

Cache coherence protocols of current shared-memory multiprocessors are difficult to verify. Our previous
work proposed an extension of Lamport’s logical clocks for showing that multiprocessors can implement
sequential consistency (SC) with an SGI Origin 2000-like directory protocol and a Sun Gigaplane-like split-
24

imple-
echni-

s

s. I/O
ften, I/O
s. The
rs more

WIO
e con-
cts. Spe-
s in a k
or and
to that

otocols,

,

e

,

transaction bus protocol. Many commercial multiprocessors, however, implement more relaxed models, such
as SPARC Total Store Order (TSO), a variant of processor consistency, and Compaq (DEC) Alpha, a variant
of weak consistency.
This paper applies Lamport clocks to both a TSO and an Alpha implementation. Both implementations are
based on the same Sun Gigaplane-like split-transaction bus protocol we previously used, but the TSO
implementation places a first-in-first-out write buffer between a processor and its cache, while the Alpha
implementation uses a coalescing write buffer. Both write buffers satisfy read requests for pending writes (i.e.,
do bypassing) without requiring the write to be immediately written to cache. Analysis shows how to apply
Lamport clocks to verify TSO and Alpha specifications at the architectural level

This paper provides a framework to specify I/O architectures at the system level, and provides a sample
mentation whose conformance to the specification is proved using our extension of Lamport Clocks. The T
cal Report includes the full proof while the conference version has a sketch of the proof (ftp://
ftp.cs.wisc.edu/wwt/{spaa99_io,tr1398_io}.{ps,pdf}).

Mark D. Hill, Anne E. Condon, Manoj Plakal, and Daniel J. Sorin. A System-Level Specification Framework
for I/O Architectures. In Proceedings of the Eleventh ACM Symposium on Parallel Algorithms and Architecture
(SPAA), June 1999.

Mark D. Hill, Anne E. Condon, Manoj Plakal, and Daniel J. Sorin. A System-Level Specification Framework
for I/O Architectures. Technical Report 1398, Computer Sciences Department, University of Wisconsin–Mad-
ison, March 1999.

A computer system is useless unless it can interact with the outside world through input/output (I/O) device
systems are complex, including aspects such as memory-mapped operations, interrupts, and bus bridges. O
behavior is described for isolated devices without a formal description of how the complete I/O system behave
lack of an end-to-end system description makes the tasks of system programmers and hardware implemento
difficult to do correctly.

This paper proposes a framework for formally describing I/O architectures called Wisconsin I/O (WIO).
extends work on memory consistency models (that formally specify the behavior of normal memory) to handl
siderations such as memory-mapped operations, device operations, interrupts, and operations with side effe
cifically, WIO asks each processor or device that can issue k operation types to specify ordering requirement
✕ k table. A system obeys WIO if there always exists a total order of all operations that respects process
device ordering requirements and has the value of each “read” equal to the value of the most recent “write”
address.

This paper then presents examples of WIO specifications for systems with various memory consistency
models including sequential consistency (SC), SPARC TSO, an approximation of Intel IA-32, and Compaq
Alpha. Finally, we present a directory-based implementation of an SC system, and we sketch a proof which
shows that the implementation conforms to its WIO specification.

This paper develops a table-based methodology for specifying cache coherence protocols, spcifies two pr
and shows a technique for verification (ftp://ftp.cs.wisc.edu/wwt/
tr1412_lamport.{ps,pdf}).

Daniel J. Sorin, Manoj Plakal, Mark D. Hill, Anne E. Condon, Milo M. Martin, and David A. Wood. Specify-
ing and Verifying a Broadcast and a Multicast Snooping Cache Coherence Protocol. Technical Report 1412
Computer Sciences Department, University of Wisconsin–Madison, March 2000.

In this paper, we develop a specification methodology that documents and specifies a cache coherenc
protocol in eight tables: the states, events, actions, and transitions of the cache and memory controllers. We
then use this methodology to specify a detailed, low-level three-state broadcast snooping protocol with an
unordered data network and an ordered address network that allows arbitrary skew. We also present a detailed
low-level specification of a new protocol called Multicast Snooping, and, in doing so, we better illustrate the
utility of the table-based specification methodology. Lastly, we demonstrate a technique for verification of the
25

d

d

paper

g

,

ce gran-
Multicast Snooping protocol, through the sketch of a manual proof that the specification satisfies a
sequentially consistent memory model.

5.12 Miscellaneous

This paper explores paging on distributed-shared-memory machines (ftp://ftp.cs.wisc.edu/wwt/
sc94_paging.{ps,pdf}).

D. C. Burger, R. S. Hyder, B. P. Miller, and D. A. Wood. Paging tradeoffs in distributed-shared-memory mul-
tiprocessors. InProceedings of Supercomputing ’94, pages 590–599, November 1994.

Massively parallel processors have begun using commodity operating systems that support demand-page
virtual memory. To evaluate the utility of virtual memory, we measured the behavior of seven shared-memory
parallel application programs on a simulated distributed-shared-memory machine. Our results (i) confirm the
importance of gang CPU scheduling, (ii) show that a page-faulting processor should spin rather than invoke a
parallel context switch, (iii) show that our parallel programs frequently touch most of their data, and (iv)
indicate that memory, not just CPUs, must be “gang scheduled”. Overall, our experiments demonstrate that
demand paging has limited value on current parallel machines because of the applications’ synchronization
and memory reference patterns and the machines’ high page-fault and parallel-context-switch overheads.

This paper shows when parallel computing is cost-effective (ftp://ftp.cs.wisc.edu/wwt/
computer95_cost.{ps,pdf}).

D. A. Wood and M. D. Hill. Cost-effective parallel computing.IEEE Computer, 28(2):69–72, February 1995.

Many academic papers imply that parallel computing is only worthwhile when applications achieve nearly
linear speedup (i.e., execute nearlyp times faster onp processors). This note shows that parallel computing is
cost-effective whenever speedup exceedscostup—the parallel system cost divided by uniprocessor cost.
Furthermore, when applications have large memory requirements (e.g., 512 megabytes), the costup—an
hence speedup necessary to be cost-effective—can be much less than linear.

This paper evaluates protocol scheduling policies for a software DSM running on an SMP cluster. The
quantifies when it is beneficial to dedicate a processor on an SMP node to running coherence protocol (ftp://
ftp.cs.wisc.edu/wwt/hpca97.{ps,pdf}).

B. Falsafi and D. A. Wood. Scheduling communication on an SMP node parallel machine. InProceedings of
the Third IEEE Symposium on High-Performance Computer Architecture, pages 128–138, February 1997.

Distributed-memory parallel computers and networks of workstations (NOWs) both rely on efficient
communication over increasingly high-speed networks. Software communication protocols are often the
performance bottleneck. Several current and proposed parallel systems address this problem by dedicatin
one general-purpose processor in a symmetric multiprocessor (SMP) node specifically for protocol
processing. This scheduling convention reduces communication latency and increases effective bandwidth
but also reduces the peak performance since the dedicated processor no longer performs computation.
In this paper, we study a parallel machine with SMP nodes and compare two protocol processing policies:
Fixed, which uses a dedicated protocol processor; and Floating, where all processors perform both
computation and protocol processing. The results from synthetic microbenchmarks and five
macrobenchmarks show that: i) a dedicated protocol processor benefits light-weight protocols much more
than heavy-weight protocols; ii) Fixed improves performance over Floating when communication becomes
the bottleneck, which is more likely when the application is very communication-intensive, overheads are
very high, or there are multiple (i.e., more than two) processors per node; iii) a system with optimal cost-
effectiveness is likely to include a dedicated protocol processor, at least for light-weight protocols.

This paper evaluates the performance tradeoffs associated with different consistency models and coheren
ularities. (ftp://ftp.cs.wisc.edu/wwt/ppopp97_grain.{ps,pdf})
26

r

n

a

(ftp://

ems
Y. Zhou, L. Iftode, J. P. Singh, K. Li, B. R. Toonen, I. Schoinas, M. D. Hill, and D. A. Wood. Relaxed consis-
tency and coherence granularity in DSM systems: a performance evaluation. InSixth ACM SIGPLAN Sympo-
sium on Principles & Practice of Parallel Programming (PPOPP), June 1997.

During the past few years, two main approaches have been taken to improve the performance of software
shared memory implementations: relaxing consistency models and providing fine-grained access control.
Their performance tradeoffs, however, are not well understood. This paper studies these tradeoffs on a
platform that provides access control in hardware but runs coherence protocols in software. We compare the
performance of three protocols across four coherence granularities, using 12 applications on a 16-node cluste
of workstations. Our results show that no single combination of protocol and granularity performs best for all
the applications. The combination of a sequentially consistent (SC) protocol and fine granularity works well
with 7 of the 12 applications. The combination of a multiple-writer, home-based lazy release consistency
(HLRC) protocol and page granularity works well with 8 out of the 12 applications. For applications that
suffer performance losses in moving to coarser granularity under sequential consistency, the performance ca
usually be regained quite effectively using relaxed protocols, particularly HLRC. We also find that the HLRC
protocol performs substantially better than a single-writer lazy release consistent (SW-LRC) protocol at
coarse granularity for many irregular applications. For our applications and platform, when we use the
original versions of the applications ported directly from hardware-coherent shared memory, we find that the
SC protocol with 256-byte granularity performs best on average. However, when the best versions of the
applications are compared, the balance shifts in favor of HLRC at page granularity.

This paper presents an analytic model for evaluating the performance of ILP multiprocessors. (ftp://
ftp.cs.wisc.edu/wwt/isca98_model.{ps,pdf}).

D. Sorin, V. Pai, S. Adve, M. Vernon, and D. Wood. Analytic Evaluation of Shared-Memory Parallel Systems
with ILP Processors. InProceedings of the 25th International Symposium on Computer Architecture, June 1998.

This paper develops and validates an analytical model for evaluating specific types of architectural
alternatives for shared-memory multiprocessors with processors that aggressively exploit instruction-level
parallelism (ILP). Compared to simulation, the analytical model is many orders of magnitude faster to solve,
yielding highly accurate system performance estimates in seconds.
The model input parameters characterize the ability of an application to exploit instruction-level parallelism
as well as the interaction between the application and the memory system architecture. A new simulation
methodology is described that allows these parameters to be generated 250-400 times faster than with
detailed execution-driven simulator.
Finally, this paper shows that this analytical model can be used to gain insights into application performance
and to evaluate architectural design trade-offs. Thus, a designer can use this analytical model to quickly
determine the important regions of the design space for an application or architecture, allowing a more
focused and effective use of simulation time and resources for more detailed studies

This paper presents analytical techniques for modeling servers that have high service time variability.
ftp.cs.wisc.edu/wwt/sigmetrics00_model.{ps,pdf}).

Derek L. Eager, Daniel J. Sorin, and Mary K. Vernon. AMVA Techniques for High Service Time Variability.
In Proceedings of the 2000 ACM Sigmetrics Conference on Measurement and Modeling of Computer Syst,
pages 217–228, June 2000.

Motivated by experience gained during the validation of a recent ApproximateMean Value Analysis (AMVA)
model of modern shared memory architectures, this paper re-examines the ‘‘standard’’ AMVA approximation
for non-exponential FCFS queues. We find that this approximation is often inaccurate for FCFS queues with
high service time variability. For such queues, we propose and evaluate: (1) AMVA estimates of the mean
residual service time at an arrival instant that are much more accurate than the standard AMVA estimate, (2) a
new AMVA technique that provides a much more accurate estimate of mean center residence time than the
standard AMVA estimate, and (3) a new AMVA technique for computing the mean residence time at a
‘‘downstream’’ queue which has a more bursty arrival process than is assumed in the standard AMVA
27

t.

g

e

ta place-

f the
or

lat-
ased

ce a
ey
l-
thm

for-
on-
ct
hm,

o semi-
equations. Together, these new techniques increase the range of applications to which AMVA may be
fruitfully applied, so that for example, the memory system architecture of shared memory systems with
complex modern processors can be analyzed with these computationally efficient methods.

This paper proposes using general prediction logic to accelerate coherence protocols. (ftp://
ftp.cs.wisc.edu/wwt/isca98_cosmos.{ps,pdf}).

S. S. Mukherjee and M. D. Hill. Using prediction to accelerate coherence protocols. In Proceedings of the 25th
Annual International Symposium on Computer Architecture, June 1998.

Most large shared-memory multiprocessors use directory protocols to keep per-processor caches coheren
Some memory references in such systems, however, suffer long latencies for misses to remotely-cached
blocks. To ameliorate this latency, researchers have augmented standard coherence protocols with
optimizations for specific sharing patterns, such as read-modify-write, producer-consumer, and migratory
sharing. This paper seeks to replace these directed solutions with general prediction logic that monitors
coherence activity and triggers appropriate coherence actions.
This paper takes the first step toward using general prediction to accelerate coherence protocols by developin
and evaluating theCosmoscoherence message predictor. Cosmos predicts the source and type of the next
coherence message for a cache block using logic that is an extension of Yeh and Patt’s two-levelPApbranch
predictor. For five scientific applications running on 16 processors, Cosmos has prediction accuracies of 62%
to 93%. Cosmos’ high prediction accuracy is a result of predictable coherence message signatures that aris
from stable sharing patterns of cache blocks.

This paper discusses using a generational copying garbage collector to implement cache-conscious da
ment. (ftp://ftp.cs.wisc.edu/wwt/ismm98_cache_gc.{ps,pdf}).

Trishul M. Chilimbi and James R. Larus. Using Generational Garbage Collection to Implement Cache-Con-
scious Data Placement. InProceedings of the International Symposium on Memory Management, pages 37–48,
October 1998.

The cost of accessing main memory is increasing. Machine designers have tried to mitigate the consequences o
processor and memory technology trends underlying this increasing gap with a variety of techniques to reduce
tolerate memory latency. These techniques, unfortunately, are only occasionally successful for pointer-manipu
ing programs. Recent research has demonstrated the value of a complementary approach, in which pointer-b
data structures are reorganized to improve cache locality.

This paper studies a technique for using a generational garbage collector to reorganize data structures to produ
cache-conscious data layout, in which objects with high temporal affinity are placed next to each other, so that th
are likely to reside in the same cache block. The paper explains how to collect, with low overhead, real-time profi
ing information about data access patterns in object-oriented languages, and describes a new copying algori
that utilizes this information to produce a cache-conscious object layout.

Preliminary results show that this technique reduces cache miss rates by 21–42%, and improves program per
mance by 14–37% over Cheney’s algorithm. We also compare our layouts against those produced by the Wils
Lam-Moher algorithm, which attempts to improve program locality at the page level. Our cache-conscious obje
layouts reduces cache miss rates by 20–41% and improves program performance by 18–31% over their algorit
indicating that improving locality at the page level is not necessarily beneficial at the cache level.

This paper discusses the problem of implementing cache-conscious structure layouts and describes tw
automatic tools for achieving this. (ftp://ftp.cs.wisc.edu/wwt/
pldi99_cache_layout.{ps,pdf}).

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Cache-Conscious Structure Layout. In Proceedings
of the SIGPLAN ’99 Conference on Programming Language Design and Implementation (PLDI), May 1999.
28

hile
sful

lem
es
eir

lock.
ns,

tructure

m-
s by
nce

es

hot
10–
iza-

in

es

em-
of

l for

ng
y of
. We
Hardware trends have produced an increasing disparity between processor speeds and memory access times. W
a variety of techniques for tolerating or reducing memory latency have been proposed, these are rarely succes
for pointer-manipulating programs.

This paper explores a complementary approach that attacks the source (poor reference locality) of the prob
rather than its manifestation (memory latency). It demonstrates that careful data organization and layout provid
an essential mechanism to improve the cache locality of pointer-manipulating programs and consequently, th
performance. It explores two placement techniques—clusteringandcoloring—that improve cache performance by
increasing a pointer structure’s spatial and temporal locality, and by reducing cache-conflicts.

To reduce the cost of applying these techniques, this paper discusses two strategies—cache-conscious reorganiza-
tion andcache-conscious allocation—and describes two semi-automatic tools—ccmorph andccmalloc —that
use these strategies to produce cache-conscious pointer structure layouts.ccmorph is a transparent tree reorga-
nizer that utilizes topology information to cluster and color the structure.ccmalloc is a cache-conscious heap
allocator that attempts to co-locate contemporaneously accessed data elements in the same physical cache b
Our evaluations, with microbenchmarks, several small benchmarks, and a couple of large real-world applicatio
demonstrate that the cache-conscious structure layouts produced byccmorph andccmalloc offer large perfor-
mance benefits—in most cases, significantly outperforming state-of-the-art prefetching.

This paper discusses the problem of cache-conscious structure definition and explores two techniques—s
field reordering and structure splitting—that address this. (ftp://ftp.cs.wisc.edu/wwt/
pldi99_cache_def.{ps,pdf}).

Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-Conscious Structure Definition. InProceed-
ings of the SIGPLAN ’99 Conference on Programming Language Design and Implementation (PLDI), May 1999.

A program’s cache performance can be improved by changing the organization and layout of its data—even co
plex, pointer-based data structures. Previous techniques improved the cache performance of these structure
arranging distinct instances to increase reference locality. These techniques produced significant performa
improvements, but worked best for small structures that could be packed into a cache block.

This paper extends that work by concentrating on the internal organization of fields in a data structure. It describ
two techniques—structure splittingandfield reordering—that improve the cache behavior of structures larger than
a cache block. For structures comparable in size to a cache block, structure splitting can increase the number of
fields that can be placed in a cache block. In five Java programs, structure splitting reduced cache miss rates
27% and improved performance 6–18% beyond the benefits of previously described cache-conscious reorgan
tion techniques.

For large structures, which span many cache blocks, reordering fields, to place those with high temporal affinity
the same cache block can also improve cache utilization. This paper describesbbcache , a tool that recommends
C structure field reorderings. Preliminary measurements indicate that reordering fields in 5 active structur
improves the performance of Microsoft SQL Server 7.0 2–3%.

This paper summarizes cache-conscious work from Chilimbi’s thesis and related papers. (ftp://
ftp.cs.wisc.edu/wwt/computer00_conscious.{ps,pdf}).

Trishul M. Chilimbi, Mark D. Hill, and James R. Larus. Making Pointer-Based Data Structures Cache Con-
scious. InIEEE Computer, TBD 2000.

Processor and memory technology trends portend a continual increase in the relative cost of accessing main m
ory. Machine designers have tried to mitigate the effect of this trend through a hierarchy of caches and a variety
other hardware and software techniques. These techniques, unfortunately, have only been partially successfu
pointer-manipulating programs.

This paper explores a complementary approach of enlisting programmers and tool writers in the task of improvi
the cache locality of accesses to pointer-based data structures. Throughout, we exploit the location transparenc
pointer-based data structures that allow changes to the memory (and cache) layout of nodes, records, fields, etc
29

res-
nd
lds
t

discuss how programmers can manually improve cache performance with techniques, such as clustering, comp
sion, and coloring. We then explore how to lessen a programmer’s burden with the help of semi-automatic a
automatic tools for changing structure layout to improve cache performance. Techniques include reordering fie
in a structure definition, carefully placing nodes in memory at allocation time, and dynamically reorganizing extan
data structures.
30

	The Wisconsin Wind Tunnel Project: An Annotated Bibliography
	Mark D. Hill, James R. Larus, David A. Wood
	Computer Sciences Department
	University of Wisconsin–Madison
	1210 West Dayton Street
	Madison, WI 53706 USA
	wwt@cs.wisc.edu
	http://www.cs.wisc.edu/~wwt April 4, 2001
	1 Contributors
	2 Project Funding Sources
	3 Overview
	4 On-Line Access
	4.1 World Wide Web
	4.2 Anonymous FTP

	5 The Papers
	5.1 Overviews
	5.2 Tempest, Typhoon, and Blizzard
	5.3 Custom Protocols
	5.4 Compiling for Tempest
	5.5 Hardware Design
	5.6 Tools
	5.7 Cooperative Shared Memory
	5.8 Wisconsin Wind Tunnel
	5.9 Path Profiling
	5.10 Network Interfaces
	5.11 Lamport Clocks
	5.12 Miscellaneous

