Appears in: “Proceedings of Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS V),” October 1992. Reprinted by permission of

ACM.

Cooperative Shared Memory:

Software and Hardware for Scalable Multiprocessors*

Mark D. Hill, James R. Larus, Steven K. Reinhardt, David A. Wood

Computer Sciences Department

University of Wisconsin—-Madison
1210 West Dayton Street
Madison, WI 53706 USA

Abstract

We believe the absence of massively-parallel, shared-
memory machines follows from the lack of a shared-
memory programming performance model that can
inform programmers of the cost of operations (so
they can avoid expensive ones) and can tell hard-
ware designers which cases are common (so they can
build simple hardware to optimize them). Coopera-
tive shared memory, our approach to shared-memory
design, addresses this problem.

Our initial implementation of cooperative shared
memory uses a simple programming model, called
Check-In / Check-Out (CICO), in conjunction with
even simpler hardware, called Diry SW. In CICO,
programs bracket uses of shared data with a check-
out annotation marking the expected first use and
a check-in annotation terminating the expected use
of the data. A cooperative prefetch annotation helps
hide communication latency. DirySW is a mini-
mal directory protocol that adds little complexity
to message-passing hardware, but efficiently supports
programs written within the CICO model.

*This work is supported in part by NSF Presidential Young
Investigator Awards CCR-9157366 and MIPS-8957278, NSF
Grant CCR-9101035, a University of Wisconsin Graduate
School Grant, a Wisconsin Alumni Research Foundation Fel-
lowship and by donations from A.T.&T. Bell Laboratories,
Cray Research Foundation and Digital Equipment Corpora-
tion. Our department’s Thinking Machines CM-5 was pur-
chased through NSF Institutional Infrastructure Grant No.
CDA-9024618 with matching funding from the University of
Wisconsin Graduate School.

© 1992 ACM. Permission to copy without fee all or part
of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date
appear, and that notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise,
or to republish, requires a fee and/or specific permission.

1 Introduction

The rapid, continual advance in microprocessor
technology—which has led to 64-bit processors with
large caches and fast floating-point units—provides
an effective base for building massively parallel com-
puters. Until now, message-passing computers have
dominated this arena. Shared-memory computers
are rare and currently lag in both number and
speed of processors. Their absence is due, in part,
to a widespread belief that neither shared-memory
software nor shared-memory hardware is scalable
[22]. Indeed, many existing shared-memory programs
would perform poorly on massively-parallel systems
because the programs were written under the predom-
inate naive model, which assumes all memory refer-
ences have equal cost. This assumption is wrong be-
cause remote references require communication and
run slower than local references [16]. For example, a
remote memory reference on Stanford DASH costs at
least 100 times more than a local reference [20].

To compound matters, existing shared-memory
hardware either does not extend to highly parallel
systems or does so only at a large cost in complex-
ity. Multis [4] are a successful small-scale shared-
memory architecture that cannot scale because of lim-
its on bus capacity and bandwidth. An alternative is
directory-based cache-coherence protocols [2, 14, 20].
These protocols are complex because hardware must
correctly handle many transient states and race con-
ditions. Although this complexity can be managed
(as, for example, in the Stanford DASH multipro-
cessor [20]), architects must expend considerable ef-
fort designing, building, and testing complex hard-
ware rather than improving the performance of sim-
pler hardware.

Nevertheless, shared memory offers many advan-
tages, including a uniform address space and referen-
tial transparency. The uniform name space permits
construction of distributed data structures, which fa-

cilitates fine-grained sharing and frees programmers
and compilers from per-node resource limits. Ref-
erential transparency ensures object names (i.e., ad-
dresses) and access primitives are identical for both
local and remote objects. Uniform semantics sim-
plify programming, compilation, and load balancing,
because the same code runs on local and remote pro-
Cessors.

The solution to this dilemma is not to discard
shared memory, but rather to provide a framework for
reasoning about locality and hardware that supports
locality-exploiting programs. In our view, the key to
effective, scalable, shared-memory parallel computers
is to address software and hardware issues together.
Our approach to building shared-memory software
and hardware is called cooperative shared memory.
It has three components:

e A shared-memory programming model that pro-
vides programmers with a realistic picture of
which operations are expensive and guides them
in improving programs’ performance with spe-
cific performance primitives.

e Performance primitives that do not change pro-
gram semantics, so programmers and compilers
can aggressively insert them to improve the ex-
pected case, instead of conservatively seeking to
avoid introducing errors.

e Hardware designed, with the programming
model in mind, to execute common cases quickly
and exploit the information from performance
primitives.

Underlying this approach is our parallel program-
ming model, which is a combination of a semantic
model (shared memory) and a performance model.
The component that has been absent until now is
the performance model, which aids both program-
mers and computer architects by providing insight
into programs’ behavior and ways of improving it.
The performance model provides a framework for
identifying and reasoning about the communication
induced by a shared-memory system. Without this
understanding, discerning, let alone optimizing, com-
mon cases is impossible.

Our initial implementation of cooperative shared
memory uses a simple programming performance
model, called Check-In / Check-Out (CICO), and
even simpler hardware called Diry SW. CICO pro-
vides a metric by which programmers can understand
and explore alternative designs on any cache-coherent
parallel computer. In the CICO model (Section 2),
programs bracket uses of shared data with check-out
annotations that indicate whether a process expects

to use a datum exclusively and check-in annotations
that terminate an expected use. CICO’s new ap-
proach encourages programmers to identify intervals
in which data is repeatedly used, rather than focus-
ing than isolated uses, and to explicitly acknowledge
when data can be removed from local buffers. An ad-
ditional cooperative prefetch annotation allows a pro-
gram to anticipate an upcoming check-out and hide
communication latency by arranging for forwarding
of data.

Diry SW (Section 3) is a minimal directory proto-
col that requires a small amount of hardware (sev-
eral state bits and a single pointer/counter field per
block), but efficiently supports programs written un-
der the CICO model. The pointer/counter either
identifies a single writer or counts readers. Simple
hardware entirely handles programs conforming to
the CICO model by updating the pointer/counter and
forwarding data to a requesting processor. No cases
require multiple messages (beyond a single request-
response pair) or transient states. Programs not con-
forming to the CICO model run correctly, but trap
to system software that performs more complex op-
erations (in a manner similar to MIT Alewife [6]).

Measurements of programs from the SPLASH
benchmark suite [25] illustrate the effectiveness of the
CICO model (Section 4). Finally, Section 5 discusses
related work.

2 CICO Programming
Performance Model

The performance component of our shared-memory
programming model is named Check-In / Check-
Out (CICO). It serves two roles. The descriptive
role is to identify points in a program’s execution
at which communication will occur in any cache-
coherent shared-memory system. The prescriptive
role is to describe how a programmer or compiler can
reduce the cost of this communication. This section
describes CICO and illustrates how it identifies com-
munication and ways to reduce its cost. The next
section (Section 3) shows that hardware can also ex-
ploit CICO annotations to further speed execution.
CICO has two aspects. The first is a set of annota-
tions that bracket uses of shared data. The second is
a hierarchy of models that identify and assign cost to
communication.

2.1 CICO Annotation

CICO begins with programmer-supplied annotations
that elucidate a program’s memory references. These

annotations describe a program’s behavior and do not
affect its semantics, even if misapplied.

CICO assumes memory is divided into aligned,
fixed-sized blocks. The base model provides a pro-
grammer with three performance annotation:

check_out_X Expect exclusive access to block
check_out_S Expect shared access to block
check_in Relinquish a block

check out X asserts that the processor performing a
check-out expects to be the only processor accessing
the block until it is checked-in. check_out_S asserts
that the processor is willing to share (read) access to
the block. Exclusive access is not synonymous with
write access. Shared access is fundamentally more
difficult to manage in hardware, so a single reader
should check-out a block exclusive. Finally, check_in
asserts that the processor performing the check-in
expects another processor to access the checked-out
block next. These annotations are advisory and do
not imply any mechanism to ensure exclusive access.
The annotations play a descriptive role by identify-
ing points in a shared-memory program at which com-
munication occurs and by identifying program be-
havior that causes unnecessary communication. This
communication occurs in all cache-coherent, shared-
memory systems, not just Dir; SW. By making a pro-
gram conform to the CICO model, a programmer or
compiler can improve the program’s performance by
reducing unintended communication caused by ping-
ponging and false sharing. The CICO model can
also be employed to improve conforming programs
by identifying and further reducing communication.
All communication, however, cannot be eliminated
from parallel programs. The next step is to reduce the
impact of communication by overlapping it with com-
putation. The first extension to the model provides
two additional, cooperative prefetch annotations:

prefetch X
prefetch_S

Expect exclusive access to block in near future
Expect shared access to block in near future

prefetch X (prefetch.S) asserts that a processor
performing a prefetch will likely check-out the block
for exclusive (shared) access in the near future.
Prefetches encourage a programmer or compiler to
identify, in advance, data that a processor will use
and consider how to obtain it while computation is
still progressing.

Check-in’s in the CICO model permit a concise de-
scription of this producer-consumer relationship. On
any machine, prefetches execute asynchronously and
can be satisfied at any time. In the CICO model, a
cooperative prefetch is satisfied when the prefetched
block is checked-in. If the prefetch arrives when the

block is checked-out, the response is delayed until the
block is checked-in. Cooperative prefetch couples a
producer and consumer by forwarding fully computed
data. The rendezvous is blind: neither the prefetch-
ing processor nor the processor checking-in the block
know each other’s identity. This form of prefetch
abstracts away from machine-specific timing require-
ments and, as shown in Section 3, has an efficient
implementation.

2.2 CICO Model

CICO provides a hierarchy of performance mod-
els that elucidate an annotated shared-memory pro-
gram’s communication. The collection of models en-
ables a programmer to apply an appropriate model
to each part of a program. Time-critical sections can
be analyzed in depth, while less important code, such
as initialization or error-handlers, can be understood
with naive shared memory assumptions.

Model Level 0. The simplest model ignores CICO
annotations and corresponds to naive shared memory.

Model Level 1. The first real CICO model con-
siders only communications induced by check-out’s
and check-in’s. A parallel program’s shared-memory
cost is proportional to the number of communication
events along its critical path. A communication event
occurs when a processor:

e encounters a check_out annotation for a block
previously checked-in,

o violates a CICO annotation’s exclusivity as-
sumption (by accessing a block while another
processor has it check out X or by writing a
block while it is check_out_S).

Even this simple model can be applied to reduce
communication. An important way is to increase ex-
ploitation of temporal locality, so a block is heavily
used before being relinquished. Another way is to
reduce inter-processor sharing, with its concomitant
check-in, check-out events. Finally, eliminating un-
synchronized true sharing (data races) reduces vio-
lations of the CICO model. CICO does not provide
explicit direction as to how to modify a particular
program. Instead, it provides a metric by which a
programmer can explore alternative designs.

Model Level 2. An important refinement is
prefetching, which can reduce the cost of a check_out
of a block. Consequently, the first rule must be re-
fined to initiate a communication event only when a
processor:

e encounters a check_out annotation for a block
previously checked-in and which has not been
prefetched by the processor executing the
check out X .

Model Refinements. CICO
models cache-coherent shared-memory multiproces-
sors. The physical limitations of real caches—such as
multi-word blocks and finite associativity and size—
produce an orthogonal set of performance considera-
tions that strongly affect the application of the CICO
model to real computers. For example, multi-word
blocks may cause CICO violations due to the well-
known problem of false sharing, which occurs when
processors unwittingly use different locations in the
same block for conflicting purposes [10]. Similarly,
finite caches cause unintended communication when
a cache block is replaced (i.e., implicitly checked-in).
Detailed application of CICO must consider the be-
havior characteristics of real caches [19].

2.3 Example

Consider an example. Figure la outlines a stencil
algorithm that sets each element of a two-dimensional
array to the average of its nearest neighbors. Fig-
ure 1b shows the same program with CICO anno-
tations. Each processor computes the average for
a contiguous group of columns and shares its neigh-
bors’ boundary columns. The loop contains two inter-
vals. In the first, each processor copies its neighbors’
boundary columns into local arrays, to avoid data
races when the columns are updated. In the second,
each processor uses the local arrays to compute aver-
ages for its columns.

The Level 1 CICO model points out that communi-
cation in this algorithm occurs because of the bound-
ary columns. One approach to reducing communi-
cation would be to iterate the stencil computation
over the local columns several times before reading
updated values from neighboring processors.

Another approach is to apply the Level 2 CICO
model and use prefetch to hide the communication la-
tency. Figure 2 shows how cooperative prefetch works
for this example. All processors begin each interval by
prefetching the shared columns that they will access
in the subsequent interval. The prefetches remain
pending because the columuns are already checked-out
by the other processor. At the end of an interval, as
a processor checks-in its columns, pending prefetches
succeed and the columns are checked-out to the other
processor and transferred to it, in advance of its ex-
plicit check-out.

-- Code for processor P
LOOP
Cleft := A[x, L-1]
Cright := A[x, U+1]
BARRIER
-- Compute stencil on columns L..U
BARRIER
END LOOP

Part (a).

-- Initialize prefetch for iteration 1
prefetch X A[*, L-1], A[*, U+1]
BARRIER
LOOP
-- Interval 1
prefetch X A[*, L], A[*, U]
check-out_X A[*, L-1]1, A[*, U+1]
Cleft := A[*, L-1]
Cright := A[*, U+1]
check_in A[*, L-1], A[*, U+1]
BARRIER
-- Interval 2
prefetch X A[*, L-1], A[*, U+1]
check_out X A[*, L], A[x, U]
-- Compute stencil on columns L..U
check-in A[*, L], A[*, U]
BARRIER
END LOOP

Part (b).

Figure 1: Example of cooperative prefetch in column-
blocked stencil. The example is simplified. If the matrix
is large enough, the outer loop would have to be blocked
so the columns fit into a processor’s cache.

2.4 Synchronization

Synchronization is communication that orders two or
more program events in distinct processes. Ordering
events with shared memory requires at least two ac-
cesses to a location, where one access modifies the
location and the other reads it (and perhaps modi-
fies it). The CICO annotations described above are
unsuitable for synchronization constructs, which re-
quire competitive (i.e., unordered and unpredictable)
memory access. Rather than extend CICO with an-
notations for unsynchronized accesses, we assume the
existence of simple synchronization constructs such
as locks and barriers. Section 3.3 shows that Mellor-
Crummey and Scott’s locks and barriers coexist easily
with simple hardware for CICO.

2.5 Compilers and CICO

Compilers, as well as programmers, can apply the
CICO model to both analyze and optimize program
behavior. Shared-memory compilers generally have

Proc i-1 Proci Proc i+1

Columns Columns Columns
| = = &
L = = +
= =2
Interval 1 <[> < <
o 'ﬁ': & w!
o o
=] = 3| 2
= L + S
= (=2
Interval 2 ><| X X ><l
Iﬁl: LLI u.l Iﬁl:
o o

Figure 2: Mlustration of cooperative prefetch in column-
block stencil. The lightly shaded columns are checked-out
by processor i —1 or ¢4+ 1. The dark columns are checked-
out by processor 4. The annotations describe pending
prefetches.

not used accurate memory-access cost models. CICO
provides these compilers with an easily-applied metric
for evaluating compilation strategies. This metric can
be applied either to restructure sequential programs
or optimize explicitly parallel programs.

CICO annotations are well-suited to compiler anal-
ysis since they do not affect a program’s semantics.
The analysis to employ an annotation need not be
conservative. Instead, a compiler can optimize the
expected case without considering the effects of an-
notations on other possible executions. By contrast,
software cache coherence holds a compiler to a much
higher standard of ensuring that a program executes
correctly, regardless of its dynamic behavior. Because
compiler analyses are inherently imprecise, software
cache coherence requires a compiler to always err on
the conservative side and insert memory system op-
erations to avoid the worst case. This bias results in
correct programs that communicate too much.

2.6 Discussion

CICO provides shared-memory programmers with a
performance model that identifies the communica-
tion underlying memory references and accounts for
its cost. Message passing also provides programmers
with a clear performance model. A common message-
passing model attributes a fixed cost to each message
independent of its length and destination. When nec-
essary, this model is elaborated to account for an un-
derlying network’s topology and transmission cost.
Unlike CICO, message-passing models need not de-

tect communication, only account for its cost.

Unfortunately, applying the message-
passing model to improve a program’s performance is
difficult, precisely because communication is explic-
itly and inextricably linked with functionality. The
linkage is so tight that a message-passing program
cannot be successfully developed without continual
consideration of performance implications because re-
finements are difficult to incorporate after a program
is written. Every communication must be evaluated
twice—once in the sender, once in the receiver—to
determine if it should be optimized and how the pro-
gram should change to accomplish this goal. A small
change can cause a cascade of modifications as con-
trol and data dependences within a process force the
reordering of other communications.

CICO is an easier model for a compiler or program-
mer to apply for the following reasons:

e CICO annotations are unnecessary for correct
execution. Programmers can incrementally em-
ploy them to understand and optimize time-
critical routines.

e The annotations can be used aggressively to op-
timize expected program behavior since they do
not affect program semantics. The other cases
still function correctly.

e The annotations do not change a datum’s ad-
dress. A programmer can optimize one routine
without changing all routines that interact with
it.

e The annotations never introduce functional
bugs. Using them never breaks correct programs.

3 DiriSW Hardware

The CICO model can be used by computer archi-
tects to simplify hardware and improve its perfor-
mance. CICO is the abstraction through which pro-
grammers and architects communicate, much as in-
struction sets have been the fundamental abstraction
in uniprocessor design. As the analogy suggests, a
good abstraction enables programmers to understand
and optimize their programs and helps architects de-
sign fast, effective computers. RISCs have shown
that fast, cost-effective hardware requires hardware
designers to identify common cases and cooperate
with programmers to find mutually-agreeable mod-
els that can be implemented with simple hardware
[15]. This combination permits hardware designers to
devote their attention to making common cases run
fast. Message-passing computers, which are based on

a simple model, are built from simple, scalable hard-
ware. Shared-memory multiprocessors, which cur-
rently lack a unifying performance model, typically
use complex cache-coherence protocols to accommo-
date all programming styles. By contrast, Dir; SWre-
lies on the CICO model to describe program behavior
and uses simple hardware to effectively support it.

3.1 Dz'rlSW

The hardware base of our cooperative shared-memory
machine is the same as a message-passing machine.
Each processor node contains a microprocessor, a
cache, and a memory module. The nodes are con-
nected with a fast point-to-point network.

Fach processor node also has a small additional
amount of hardware that implements our directory
protocol, Diry SW, which associates two state bits, a
pointer/counter, and a trap bit with each block in
memory.! In addition, each memory module is ad-
dressed in a global address space. In a slightly sim-
plified (base) form, a directory can be in one of three
states: Dir X, Dir_S, and Dir_Idle. State Dir X
implies that the directory has given out an exclu-
sive copy of the block to the processor to which the
pointer/counter points. State Dir_S implies that the
directory has given out shared copies to the number
of processors counted by the pointer/counter. State
Dir_Idle implies that the directory has the only valid
copy of the block.

Table 1 illustrates state transitions for the base
Diry SW protocol. Msg Get X (Msg_Get_S, respec-
tively) is a message to the directory requesting an ex-
clusive (shared) copy of a block. Msg_Put is a message
that relinquishes a copy. Processors send a Msg_Get X
(Msg_Get_S) message when a local program references
a block that is not in the local cache or performs an
explicit check-out. In the common case, a directory
responds by sending the data. The Msg Put message
results from an explicit check_in or a cache replace-
ment of a copy of a block.

Several state transitions in Table 1 set a trap bit
and trap to a software trap handler running on the
directory processor (not the requesting processor), as
in MIT Alewife [6]. The trap bit serializes traps on
the same block. The software trap handlers will read
directory entries from the hardware and send explicit
messages to other processors to complete the request
that trapped and to continue the program running

1We derived the name Dir; SW by extending the directory
protocol taxonomy of Agarwal, et al. [2]. They use Dir; B and
Dir; NB to stand for directories with ¢ pointers that do or do not
use broadcast. The SW in Diri SW stands for our Soft Ware
trap handlers.

on their processor. Traps only occur on memory ac-
cesses that violate the CICO model. Thus, programs
conforming to this model run at full hardware speed.
Note that protocol transitions implemented in hard-
ware require at most a single request-response pair.
State transitions requiring multiple messages are al-
ways handled by system software. Shifting the bur-
den of atomically handling multiple-message requests
to software dramatically reduces the number of tran-
sient hardware states and greatly simplifies the co-
herence hardware.

For programs that trap occasionally, the incurred
costs should be small. These costs can be further
reduced by microprocessors that efficiently support
traps [17] or by adopting the approach used in Intel’s
Paragon computer of handling traps in a companion
processor.

3.2 Prefetch Support

This section illustrates how Dir; SW supports co-
operative prefetch, which allows communication to
be overlapped with computation. Dir; SW currently
supports only prefetching an exclusive copy of a block
that is currently idle or is checked-out exclusive.

As Table 2 illustrates, cooperative prefetching re-
quires a new message, Msg Prefetch X (coopera-
tive prefetch of an exclusive copy), and a new
state, Dir X Pend (cooperative prefetch pending).
Msg Prefetch X completes immediately if it finds the
prefetched block in state Dir_Idle. The message be-
comes a pending prefetch if the prefetched block is in
state Dir X. Otherwise, the message is a no-op and
the block must be fetched by a subsequent check-out.
A pending prefetch from processor i sets a block’s
state to Dir X_Pend and its pointer to ¢, so the block
can be forwarded to ¢ as soon as it is checked-in. Get
messages (Msg_Get X and Msg_Get_S) conflict with a
pending prefetch and trap.

Msg Prefetch X works well for blocks used by one
processor at a time, called migratory data by Weber
and Gupta [26]. It is also straightforward to augment
Dir, SW to support a single cooperative prefetch of a
shared copy—providing the block is idle or checked-
out exclusive. It is, however, a much larger change to
Dir SW to support in hardware multiple concurrent
prefetches of a block. We are investigating whether
this support is justified.

3.3 Synchronization Support

Mellor-Crummey and Scott’s locks and barriers are
efficient if a processor can spin on a shared-memory
block that is physically local [23]. A block is local

Message from | Current Next Data Pointer/
Processor i State State Trap? | Action Counter
Msg_Get X Dir_Idle DirX send to i pointer « i
Dir_X Dir_X yes
Dir_§ Dir_S yes
Msg_Get_S Dir_Idle Dir.S send toi | counter « 1
Dir_S Dir_S send to i | counter += 1
Dir X Dir X yes
Msg_Put Dir X Dir_Idle store in
Dir_S Dir_S /Dir_Idle counter —= 1

Table 1: State Machine for Base Diri SW Coherence Protocol.

Msg_Get_X and Msg_Get_S obtain exclusive and shared copies of a block, respectively. Msg_Put returns a copy of a block.
Blank entries in action columns indicate no-ops, all traps set the trap bit, all state transitions not listed are hardware
errors (e.g., send a Msg_Put to Dir_Idle block); and all hardware errors trap.

Message from | Current Next Data Pointer/

Processor i State State Trap? Action Counter

Msg_Prefetch X | Dir_Idle Dir X send to i pointer « i
Dir X Dir_X_Pend pointer « i
Dir_S Dir_S
Dir X_Pend Dir_X_Pend

Msg_Get X Dir X Pend Dir X Pend yes

Msg_Get_S Dir X_Pend Dir_X_Pend yes

Msg_Put Dir X Pend DirX send to prefetcher

Table 2: Diri SW State Machine Extensions for Cooperative Prefetch.

Diry SW supports cooperative prefetching with a new message, Msg Prefetch_X (cooperative prefetch for an exclusive
copy), and a new state, Dir_X_Pend (cooperative prefetch exclusive pending). As the top block of the table illustrates,
Msg_Prefetch_X obtains an exclusive copy of an idle block, records the prefetching processor’s identity in a Dir_X block’s
pointer field (so the subsequent Msg _Put forwards the block), and is a no-op otherwise. The following three blocks show
how the base protocol interacts with the new state. Msg_Get_X and Msg_Get_S trap if a prefetch is pending. A Msg_Put
forwards data to a prefetching processor (pointed to by the pointer/counter).

either because it is allocated in a processor’s physi-
cally local, but logically shared, memory module or
because a cache-coherence protocol copies it into the
local cache. The current Dir; SW is unsuitable for
synchronization because the interactions do not fit
the CICO model and the protocol traps on common
cases, ruining performance. We currently support
the first alternative with the addition of non-cachable
pages and a swap instruction. Both are easily imple-
mented because they are supported by most micro-
processors. We are also investigating further exten-
sions to Diry SW to support synchronization.

3.4 Discussion

Diry SW is easier to implement than most other hard-
ware cache-coherence mechanisms. The fundamen-
tal simplification comes from eliminating race condi-
tions in hardware, not from reducing the number of

state bits in a directory entry. Race conditions, and
the myriad of transient states they produce, make
most hardware cache-coherence protocols difficult to
implement correctly. For example, although Berke-
ley SPUR’s bus-based Berkeley Ownership coherence
protocol [18] has only six states, interactions between
caches and state machines within a single cache con-
troller produce thousands of transient states [27].
These interactions make verification extremely diffi-
cult, even for this simple bus-based protocol. Fur-
thermore, most directory protocols, such as Stanford
DASH’s [20] and MIT Alewife’s [6], are far more com-
plex than any bus-based protocol. They require hard-
ware to support transitions involving n nodes and 2n
messages, where n ranges from 4 to the number of
nodes or clusters.

By contrast, the base Diry SW protocol (without
prefetching) is simpler than most bus-based cache-
coherence protocols. All hardware-implemented tran-

sitions involve at most two nodes and two messages.
Most bus-based protocols require transitions among
at least three nodes and require more than two mes-
sages. Furthermore, adding prefetch makes Diry SW’s
complexity, at most, comparable to bus-based proto-
cols. This complexity, however, is modest compared
to other directory protocols.

The principal benefit of Dir; SW’s simplicity is that
it allows shared-memory to be added to message-
passing hardware without introducing much addi-
tional complexity. Hardware designers can continue
improving the performance of this hardware and
make the common cases execute quickly, rather than
concentrating on getting the complex interactions
correct.

The principal drawback of Diry SW is that it runs
slowly for programs that cause traps. Although pro-
grammers could avoid traps by reasoning directly
about Diry SW hardware, the CICO model provides
an abstraction that hides many hardware details but
still allows a programmer to avoid traps. CICO and
Diry SW are designed together so programs following
the CICO model do not trap.

Traps on shared blocks are much more onerous
than traps on exclusive blocks since the former re-
quires broadcasts to force check-in of the shared
copies. Programs that cannot substantially eliminate
these traps will not scale on Dir; SW hardware. One
solution is to extend the hardware to Dir; SW, which
maintains up to 4 pointers to shared copies. Dir; SW
traps on requests for more than 4 shared copies (like
Alewife [6]) and when a check_out X request en-
counters any shared copies (unlike Alewife, which
sometimes handles this transition in hardware). Like
Diry SW (and unlike Alewife), Dir; SW never sends
more than a single request/response pair, since soft-
ware handles all cases requiring multiple messages.

A secondary drawback of Diri SW is its lack of
hardware support for multiple concurrent prefetches
of a block. Although Diry SW efficiently supports
single-producer, single-consumer relations with coop-
erative prefetch, multiple consumers cannot exploit
cooperative prefetch. Diri SW cooperative prefetch
only records one prefetch exclusive request. Multi-
ple consumers must obtain updated values with ex-
plicit check-outs. We are unsure as to whether this
behavior is a serious performance problem or of the
extent to which blocking can reduce the number of
consumers, so we are unwilling to extend the Diry SW
protocol yet.

4 Preliminary Evaluation

This section contains a preliminary evaluation of
CICO and Diry SW. For two reasons, the evaluation
focuses on the number of traps incurred by applica-
tions. First, a trap means that a program does not
conform to the CICO model. The measurements be-
low demonstrate that a large body of existing code
can be adapted to the CICO model so traps occur
infrequently and have little or no effect on program
performance. Second, our tools currently record only
event counts, which cannot be used to predict par-
allel speedup or measure prefetch effectiveness. We
are extending the metrics so the applications’ paral-
lel performance can be accurately characterized.

The measurements were collected by executing
applications programs—hand-annotated with CICO
annotations—on a Thinking Machines CM-5 aug-
mented with an additional layer of software to sim-
ulate Diry SW. The combination of CM-5 hardware
and a software layer is called the Wisconsin Wind
Tunnel (WWT) and is an example of a new simula-
tion technique called virtual prototyping. A wirtual
prototype consists of a target machine interface on
top of a commercial hardware platform. By using
software, or a combination of hardware and software,
this interface layer supports the functional machine
interface of a target machine. Whenever possible,
target system software runs native on the commer-
cial platform. Only target system features not sup-
ported by the platform are simulated in software or
implemented in custom hardware.

WWT manipulates the CM-5 processor node vir-
tual memory maps and ECC (error-correcting code)
bits to trap on memory references to cache blocks that
would not be in a target machine’s cache. ECC, which
is calculated on double words, permits a much finer
granularity of sharing than does the page-level protec-
tion used in shared virtual memory [21]. ECC errors
and page access violations trap to the Diry SW simu-
lator, which models the Dir; SW hardware by sending
explicit messages to other processors to obtain cache
blocks and maintain coherence. Once brought into a
node’s cache, a block is accessed by the local proces-
sor at full speed, without simulator intervention, just
as it would be on Dir; SW hardware.2. WWT cap-
tures all non-local memory references and accurately
records all transitions of Diry SW hardware, regard-
less of the accuracy or completeness of the CICO an-
notations. Furthermore, WWT’s speed has allowed
us to examine large application (a total of almost 80

20ne exception: unlike the real hardware, all writes to pages
containing read-only blocks trap.

Name Application Input Size # CICO Instructions
Data Set (lines) | Annotations (millions)
barnes Barnes-Hut N-body simulation 2k bodies 2775 112 174
cholesky | Cholesky factorization of sparse matrix besstk1b 1888 72 5,522
locus Standard cell wire routing Primaryl 7001 125 927
mm Blocked matrix multiply 256 x 256 395 37 1,533
mp3d Hypersonic flow simulation 50000 mols 1607 62 3,762
pthor Digital circuit simulation risc 9200 758 5,917
tomcatv | Parallel SPEC benchmark 1024 x 1024 10 iter 404 68 25,296
water Water molecule simulation 512 mols 10 iter 1466 73 37,479

Table 3: Example applications.

This table describes the applications. With the exception of mm and tomcatv, they are SPLASH benchmarks [25]. (The
SPLASH benchmark ocean is written in Fortran, which does not yet run on WWT.) Column Size lists the original size of
each application, in lines of code. The next column lists the number of CICO annotations added to each program. The
final column lists the number of instructions (in millions) executed by each program.

billion instructions) and large data sets.

4.1 Applications

The SPLASH benchmark suite is a collection of
explicitly-parallel, shared-memory applications [25].
We added CICO primitives, by hand, to the SPLASH
benchmarks (except ocean, which is written in For-
tran) and two additional programs (mm, a blocked
matrix multiply, and tomcatv, a parallel version of
the SPEC benchmark). Table 3 describes the appli-
cations.

We annotated these programs by finding memory
references that access shared data and inserting an
explicit check-out annotation for each accessed block.
Note that WWT also implicitly checks-out a block at
each memory reference that misses in a processor’s
cache, so the statistics are accurate, even where our
annotations are incomplete. We also added explicit
check-in annotations to release shared data before it
is used by other processors. Finally, we added some
prefetch annotations, although they were not the fo-
cus of this study.

In some cases, inserting these annotations required
changes to a program to introduce additional syn-
chronization. For example, in water, most of the in-
terprocess communication occurs when each proces-
sor updates the force vectors between its molecules
and other processors’ molecules. In the original code,
each molecule is protected by a lock that prevents si-
multaneous updates. This approach does not work
well for CICO since the sharing pattern for each
molecule is unpredictable and, hence, ill-suited for
prefetching. Since conflicting molecule accesses are
infrequent (1 of every N/P updates, where N is the
number of molecules and P is the number processors)

pair-wise locks can be replaced by two general barriers
that synchronize conflicting accesses. Immediately
before reaching a barrier, a processor prefetches the
next (conflicting) molecule and checks-in its molecule.
After updating the conflicting molecule, a processor
releases it and prefetches back its original molecule.
Another barrier synchronizes these prefetches. The
processors then update the next N/P conflict-free
molecules without synchronization.

4.2 Results

Figure 3 categorizes how check-outs perform with
Dir SW.3 Check-outs that reference blocks already
in the local cache have minimal cost, while those caus-
ing traps are the most expensive. Other check-outs
are handled by Dir; SW hardware at an intermediate
cost that depends on the effectiveness of prefetching.
The bar labeled Prefetch lists the fraction of check-
outs that execute after a prefetch. The bar labeled No
Prefetch gives check-outs whose full latency is seen.
The measurements illustrate the usability of the
CICO programming model. By annotating uses of
shared data structures in these programs, we were
able to almost entirely avoid traps. Table 4 lists
the number of traps that occur and calculates their
overhead cost under a plausible assumption about
trap handler execution cost. The three applications
with a non-negligible number of traps (locus, mp3d,
and pthor) were written to use unsynchronized shar-
ing (data races) that does not conform to the CICO
model. Even so, we were able to reduce the cost of
trap handling to a low level. We also believe that trap

3We do not report check-ins or prefetches because they do
not cause traps and their latency overlaps computation.

9.0 1~

trap

7.0+

prefetch

I local

6.0 -

Events per 1000 instructions

501+ B

4.0+~

201

10+

Figure 3: This histogram describes the check-out behav-
ior of Diry SW . Each bar describes the state of a block
when a check-out executes. Check-outs, which can incur
substantial costs, are broken down in the following way.
Local is the fraction of checked-out blocks that were al-
ready in a processor’s local cache. Prefetch is the fraction
of checked-out blocks that were previously prefetched. No
Prefetch is the fraction of checked-out blocks that were
not prefetched. Traps is the fraction of check-outs that
cause a trap.

overhead will decrease when the programs execute on
larger data sets, which will reduce the likelihood of
traps.

The results also provide strong evidence in favor
of virtual prototyping. Unlike building hardware, we
have run large programs after less than a person-year
of effort. Unlike pure simulation, our system executes
programs and collects statistics at close-to-hardware
speeds. The current, untuned system executes the
almost 80 billion instructions in the applications in
several hours.

5 Related Work

Inserting CICO annotations is superficially similar
to inserting coherence primitives in software cache-
coherent systems [9, 7, 24]. Software coherence
schemes invalidate far more data than dynamically
necessary for two reasons not shared by CICO [1].
First, correctness requires invalidates along all possi-
ble execution paths—even those that will not occur
dynamically. Second, correctness requires conserva-

no prefetch

10

Name # Traps | # Broadcast | Overhead
Traps (per

1000 inst)
barnes 509 58 (11%) 0.3
cholesky 21,202 16 (0%) 2.1
locus 3,643 | 2,093 (57%) 12.3
mm 50 0 (0%) 0.0
mp3d 126,635 | 19,373 (15%) 43.0
pthor 286,156 2,417 (1%) 27.6
tomcaty 2,060 34 (2%) 0.0
water 0 0 (0%) 0.0

Table 4: Effect of traps.

This table lists the number of traps occurring during each
program’s execution and the fraction of traps requiring a
broadcast. The last column is a calculation of the trap
handler overhead cost under the assumption that a non-
broadcast trap consumes 500 and a broadcast trap re-
quires 5,000 instruction executions.

tive static analysis, which makes worst-case assump-
tions. Diry SW leaves the burden of correctness with
hardware, while providing software with the ability
to optimize performance.

CICO’s hierarchy of performance models has sim-
ilar goals to Hill and Larus’s models for program-
mers of multis [16]. CICO’s models, however, provide
richer options for reasoning about relinquishing data
and initiating prefetches.

Many researchers have investigated using directory
protocols for hardware cache coherence in large-scale
shared-memory systems [2]. Stanford DASH [20] con-
nects n clusters (n < 64) with a mesh and the proces-
sors within a cluster with a bus. It maintains coher-
ence with a Dir, NB protocol between clusters and
snooping within a cluster. Each multiprocessor in
Stanford Paradigm [8] connects n clusters (n < 13)
with a bus and uses a two-level bus hierarchy within
a cluster. It uses a Dir, NB protocol between clusters
and a similar protocol within each cluster. IEEE Scal-
able Coherent Interface (SCI) [13] allows an arbitrary
interconnection network between n nodes (n < 64K).
It implements a Dir, NB protocol with a linked-list
whose head is stored in the directory and other list el-
ements are associated with blocks in processor caches.
MIT Alewife [6] connects multithreaded nodes with
a mesh and maintains coherence with a LimitLESS
directory that has four pointers in hardware and sup-
ports additional pointers by trapping.

Dir; SW shares many goals with these coherence
protocols. Like all four protocols, Diry SW interleaves
the directory with main memory. Like the DASH,

SCI and Alewife protocols, it allows any interconnec-
tion network. Like the SCI and Alewife protocols,
Diry SW directory size is determined by main memory
size alone (and not the number of clusters). Diry SW
hardware is simpler than the other four protocols, be-
cause it avoids the transient states and races that they
handle in hardware (see Section 3.1). Diry SW relies
on a model (CICO) to ensure that expensive cases
(trapping) are rare. If they are common, Diry SW will
perform poorly. All four, for example, use hardware
to send multiple messages to handle the transition
from four readers to one writer. Diry SW expects the
readers to check-in the block and traps to software if
this does not happen.

We are aware of two other efforts to reduce direc-
tory complexity. Archibald and Baer [3] propose a
directory scheme that uses four states and no point-
ers. As mentioned above Alewife [6] uses hardware
with four pointers and traps to handle additional
readers. Both are more complex than Diri SW, be-
cause both must process multiple messages in hard-
ware. Archibald and Baer must send messages to
all processors to find two or more readers, while
Alewife hardware uses multiple messages with 1-4
readers. Dir; SW’s trapping mechanism was inspired
by Alewife’s.

Dir SW supports software-initiated prefetches that
leave prefetched data in a cache. Like [5, 12] we do
not prefetch into registers, so data prefetched early
does not become incoherent. Diry SW’s cooperative
prefetch support also reduces the chance that data is
prefetched too early since a prefetch remains pend-
ing until a block is checked-in. This avoids having
the block ping-pong from the prefetcher to the writer
and back. Similar, but richer support is provided by
QOSB [11], now called QOLB. QOLB allows many
prefetchers to join a list, spin locally, and obtain the
data when it is released. Dir; SW supports a single
prefetcher (per block) with much simpler hardware
than QOLB, but it does not provide good support for
multiple concurrent prefetchers (for the same block).
Finally, cooperative prefetch always maintains naive
shared-memory semantics, whereas a process issuing
a QOLB must ensure that it eventually releases the
block.

6 Conclusions

Shared memory offers many advantages, such as a
uniform address space and referential transparency,
that are difficult to replicate in today’s massively-
parallel, message-passing computers. We believe the
absence of massively-parallel, shared-memory ma-

11

chines follows from the lack of a programming per-
formance model that identifies both the common and
expensive operations so programmers and hardware
designers can improve programs and hardware.

In our view, the key to effective, scalable, shared-
memory parallel computers is to address the software
and hardware issues together. Our approach to build-
ing shared-memory software and hardware, called co-
operative shared memory, provides programmers with
a realistic model of which operations are expensive;
programmers and compilers with performance prim-
itives that can be used aggressively, because they do
not change semantics; and hardware designers with a
description of which cases are common.

Our initial implementation of cooperative shared
memory uses a simple programming performance
model, called Check-In / Check-Out (CICO), and
even simpler hardware called Diry SW. CICO pro-
vides a metric by which programmers can understand
and explore alternative designs on any cache-coherent
parallel computer. In the CICO model (Section 2),
programs bracket uses of shared data with check-out
annotations that indicate whether a process expects
to use a datum exclusively and check-in annotations
that terminate an expected use. CICO’s new ap-
proach encourages programmers to identify intervals
in which data is repeatedly used, rather than focusing
on isolated uses, and to explicitly acknowledge when
data can be removed from local buffers. An additional
cooperative prefetch annotation allows a program to
anticipate an upcoming check-out and hide commu-
nication latency.

Diry SW is a minimal directory protocol that adds
little complexity to the hardware of a message-
passing machine, but efficiently supports programs
written within the CICO model. It uses a single
pointer/counter field to either identify a writer or
count readers. Simple hardware entirely handles pro-
grams conforming to the CICO model by updating
the pointer/counter and forwarding data to a request-
ing processor. No case requires multiple messages
(beyond a single request-response pair) or transient
states. Programs not conforming to the model run
correctly, but cause traps to software trap handlers
that perform more complex operations.

A preliminary evaluation of CICO and Diri SW
on the Wisconsin Wind Tunnel (WWT) illustrates
the effectiveness of the CICO programming model
and shows that Dir SW traps can be avoided. Fur-
thermore, the results provide strong evidence for the
virtual prototyping method, since with less than a
person-year of effort we can run Dir; SW programs
and collect statistics at speeds comparable to real ma-
chines.

7

Acknowledgements

Satish Chandra, Glen Ecklund, Alvy Lebeck, Jim
Lewis, Subbarao Palacharla, and Timothy Schimke
helped develop the Wisconsin Wind Tunnel and ap-
plications. Dave Douglas, Danny Hillis, Roger Lee,
and Steve Swartz of TMC provided invaluable advice
and assistance in building the Wind Tunnel. Sarita
Adve, Jim Goodman, Guri Sohi, and Mary Vernon
provided helpful comments and discussions. Singh et

al.

[25] performed an invaluable service by writing

and distributing the SPLASH benchmarks. Michael
Wolf provided the mm benchmark.

References

(1]

(2]

(3]

4]

(8]

(6]

(7]

(8]

(9]

(10]

(11]

Sarita V. Adve, Vikram S. Adve, Mark D. Hill, and Mary K.
Vernon. Comparison of Hardware and Software Cache Co-
herence Schemes. In Proceedings of the 18th Annual Inter-
national Symposium on Computer Architecture, pages 298—
308, June 1991.

Anant Agarwal, Richard Simoni, Mark Horowitz, and John
Hennessy. An Evaluation of Directory Schemes for Cache Co-
herence. In Proceedings of the 15th Annual International
Symposium on Computer Architecture, pages 280—289, 1988.

James Archibald and Jean-Loup Baer. An Economical Solu-
tion to the Cache Coherence Problem. In Proceedings of the
11th Annual International Symposium on Computer Archi-
tecture, pages 355—362, June 1984.

C. Gordon Bell. Multis: A New Class of Multiprocessor Com-
puters. Science, 228:462-466, 1985.

David Callahan, Ken Kennedy, and Allan Poterfield. Soft-
ware Prefetching. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS IV), pages 40-52,
April 1991.

David Chaiken, John Kubiatowics, and Anant Agarwal. Lim-
itLESS Directories: A Scalable Cache Coherence Scheme. In
Proceedings of the Fourth International Conference on Ar-
chitectural Support for Programming Languages and Oper-
ating Systems (ASPLOS IV), pages 224-234, April 1991.

J. Cheong and A.V. Veidenbaum. A Cache Coherence Scheme
With Fast Selective Invalidation. In Proceedings of the 15th
Annual International Symposium on Computer Architec-
ture, pages 299-307, June 1988.

David R. Cheriton, Hendrick A. Goosen, and Patrick D.
Boyle. Paradigm: A Highly Scalable Shared-Memory Mul-
tiprocessor. IEEE Computer, 24(2):33-46, February 1991.

Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe. Auto-
matic Management of Programmable Caches. In Proceedings
of the 1988 International Conference on Parallel Processing
(Vol. II Software), pages 229-238, Aug 188.

Susan J. Eggers and Randy H. Katz. The Effect of Sharing
on the Cache and Bus Performance of Parallel Programs. In
Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS III), pages 257-270, 1989.

James R. Goodman, Mary K. Vernon, and Philip J. Woest.
Efficient Synchronization Primitives for Large-Scale Cache-
Coherent Multiprocessors. In Proceedings of the Third Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS III),
pages 64-77, April 1989.

12

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

(25]

(26]

(27]

Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd
Mowry, and Wolf-Dietrich Weber. Comparative Evaluation of
Latency Reducing and Tolerating Techniques. In Proceedings
of the 18th Annual International Symposium on Computer
Architecture, pages 254-263, June 1991.

David B. Gustavson. The Scalable Coherent Interface and Re-
lated Standards Projects. IEEE Micro, 12(2):10-22, February
1992.

David B. Gustavson and David V. James, editors. SCI: Scal-
able Coherent Interface: Logical, Physical and Cache Co-
herence Specifications, volume P1596/D2.00 18Nov91. IEEE,
November 1991. Draft 2.00 for Recirculation to the Balloting
Body.

John L. Hennessy and David A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann,
1990.

Mark D. Hill and James R. Larus. Cache Considerations
for Programmers of Multiprocessors. Communications of the
ACM, 33(8):97-102, August 1990.

Douglas Johnson. Trap Architectures for Lisp Systems. In
Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, pages 79-86, June 1990.

Randy H. Katz, Susan J. Eggers, David A. Wood, C.L.
Perkins, and R.G. Sheldon. Implementing a Cache Consis-
tency Protocol. In Proceedings of the 12th Annual Inter-
national Symposium on Computer Architecture, pages 276—
283, June 1985.

Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf.
The Cache Performance and Optimizations of Blocked Algo-
rithms. In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS IV), pages 63—74, April
1991.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietrich Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. The Stanford DASH Multipro-
cessor. IEEE Computer, 25(3):63-79, March 1992.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual
Memory Systems. ACM Transactions on Computer Systems,
7(4):321-359, November 1989.

Calvin Lin and Lawrence Snyder. A Comparison of Program-
ming Models for Shared Memory Multiprocessors. In Proceed-
ings of the 1990 International Conference on Parallel Pro-
cessing (Vol. II Software), pages I1-163—170, August 1990.

John M. Mellor-Crummey and Michael L. Scott. Algorithms
for Scalable Synchronization on Shared-Memory Multiproces-
sors. ACM Transactions on Computer Systems, 9(1):21-65,
February 1991.

Sang Lyul Min and Jean-Loup Baer. A Timestamp-based
Cache Coherence Scheme. In Proceedings of the 1989 Inter-
national Conference on Parallel Processing (Vol. I Archi-
tecture), pages 1-23-32, August 1989.

Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford Parallel Applications for Shared Memory.
Computer Architecture News, 20(1):5—44, March 1992.

Wolf-Dietrich Weber and Anoop Gupta. Analysis of Cache
Invalidation Patterns in Multiprocessors. In Proceedings of
the Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS III), pages 243—256, April 1989.

David A. Wood, Garth G. Gibson, and Randy H. Katz. Veri-
fying a Multiprocessor Cache Controller Using Random Case
Generation. IEEE Design and Test of Computers, 7(4):13—
25, August 1990.

