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Out-of-Order Simulators Are Slow

o SimpleScalar — 4,000 times slowdown
e RSIM — 10,000-15,000 times slowdown

e MXS — “several thousand times slowdown”
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New Simulator: “FastSim"”

Direct execution improves instruction emulation

Memoization speeds pipeline simulation

8-15 times faster than SimpleScalar

No loss of accuracy!
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Direct Execution vs. Out-of-Order

set hi %i (0x5b000), %0
or %00, 0x148, %0

save load/store address

load [ %sp + 0x40 ], %O

advance simulation

e Computation instructions
execute directly

; ; cache & memory
1Q I sQ simulator
e Execute loads & stores

(save addresses for
simulator)

[ out-of-order pipeline simulator ]

e (all simulator at conditional
branches & indirect jumps




Speculative Direct Execution

advance simulation

predict
branch

e Branch based on prediction

e If mispredicted, save regs

save regs. if save regs. if — if correct, do nothing
mispredicted mispredicted
e Continue direct execution

save store address — ||

& pre-store value
e Save pre-store values

store %0, [ Y%sp + 0x40 ]



Performance vs. SimpleScalar
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Limitations

Target ISA same as host ISA

Single target processor
— Shared memory values are timing dependent

Coarse-grained speculation
— Value prediction may be difficult

Small performance improvement
— Most time spent simulating out-of-order pipeline



What is Memoization?

e Functional programming language optimization

e (Cache each function’s (input, output) pairs
— Use saved value instead of recomputing function

e FastSim’s Fast-Forwarding:
— Inputs: pipeline state + branch & cache behavior
— Outputs: processor state changes + timing info.



FastSim Simulator Components
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Simulator Instruction Queue (iQ)

/Add I.

0x10074
0x10078
0x1007c
0x10080
0x10084
0x10088
0x1008c
0x10098
0x1009c
0x100a0

\\8?100a4

Instruction

clr % p

ld [ %p + 0x40 ], %O
add %sp, O0x44, %1
sub %sp, 0x20, %p

t st %91

be 0x10098

nov %91, %0

set hi %hi (0x5b000), %0
or %0, 0x148, %00
call 0x3f378

nop

Tagl
done
cache
exec
gueue
gueue
gueue
gueue
fetch
fetch
fetch
fetch

~

Tag2




Configurations & Actions

Simulator Instruction Queue (iQ)
Addr. Instruction Tagl Tag2

0x10074 clr % p done ~

0x10078 Igd [ %p + 0x40 ]/i %0 cache 6 4 hitect
0x1007c a %sp, O0x44, %1 exec 1 -

0x10080 sub %p, 0x20, Y%p queue L-architecture
0x10084 t st %1 queue . .
0x10088 be  0x10098 queue - | Configuration
0x1008c nov %1, %00 gqueue

0x10098 sethi %i (0x5b000), %0 fetch

0x1009c or %0, 0x148, %0 fetch 16+(11*1.5) = 32.5 bytes
0x100a0 call 0x3f378 f et ch - /

0x100a4 nop fetch ~/ /

-~ )
Retire Queues

cycle_counter += 6

Actions < Miss: delay=18 Issue Load Hit
<,I: addr = 1Q[0] ::> ?

o~ width = 4




Structure of the P-Action Cache

advance cycle

SO call cache

not yet simulator
predict branch computed  for load



Return To Detailed Simulation

/ Pipeline Simulator \

detailed
simulator

Decode p-architecture state
from the p-action cache

Restore simulator iQ
Restart detailed simulation

Grow the p-action cache
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P-Action Cache Miss Rate
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P-Action Cache Size
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Limiting Size of P-Action Cache

e Replacement policy
— Avoid fragmentation
— Maintain pointers between actions

e Configurations can be deleted freely
— If used again, they will be regenerated



Replacement Policies

e (Cache-flush replacement policy
— Easy to implement
— Negligible overhead
— 10x cache size reduction with little loss of performance

e Copying garbage collector
— More difficult to implement
— Added overhead from copying
— Performance no better than cache-flush



Conclusion

e (Can simulate out-of-order processors efficiently
— 170-360 times slowdown

e Direct execution possible, but insufficient

e Memoization extremely effective
— No loss of accuracy!
— Cache size reduced by simple replacement policy



