Fast Out-of-Order Processor Simulation Using Memoization

by Eric Schnarr and James R. Larus

University of Wisconsin-Madison Wisconsin Wind Tunnel Project

Out-of-Order Simulators Are Slow

- SimpleScalar 4,000 times slowdown
- RSIM 10,000-15,000 times slowdown
- MXS "several thousand times slowdown"

Out-of-Order Processors

New Simulator: "FastSim"

- Direct execution improves instruction emulation
- Memoization speeds pipeline simulation

- 8-15 times faster than SimpleScalar
- No loss of accuracy!

Direct Execution

Two problems

- Out-of-Order simulation with static instrumentation
- Speculative execution

Direct Execution vs. Out-of-Order

Speculative Direct Execution

Performance vs. SimpleScalar

Limitations

- Target ISA same as host ISA
- Single target processor
 - Shared memory values are timing dependent
- Coarse-grained speculation
 - Value prediction may be difficult
- Small performance improvement
 - Most time spent simulating out-of-order pipeline

What is Memoization?

- Functional programming language optimization
- Cache each function's (input, output) pairs
 - Use saved value instead of recomputing function

- FastSim's Fast-Forwarding:
 - Inputs: pipeline state + branch & cache behavior
 - Outputs: processor state changes + timing info.

FastSim Simulator Components

Simulator Instruction Queue (iQ)

Addr.	<u>Instruction</u>		<u>Tag1</u>	Tag2
0×10074	clr	%fp	done	
0x10078	ld [%sp + 0x40], %10	cache	6
0x1007c	add	%sp, 0x44, %11	exec	1
0x10080	sub	%sp, 0x20, %sp	queue	
0x10084	tst	%g1	queue	
0x10088	be	0x10098	queue	
0x1008c	mov	%g1, %o0	queue	
0x10098	sethi	%hi(0x5b000), %o0	fetch	
0x1009c	or	%00, 0x148, %00	fetch	
0x100a0	call	0x3f378	fetch	
0x100a4	nop		fetch	/

Configurations & Actions

Simulator Instruction Queue (iQ)

Structure of the P-Action Cache

Return To Detailed Simulation

- Decode μ-architecture state from the p-action cache
- Restore simulator iQ
- Restart detailed simulation
- Grow the p-action cache

Performance vs. SimpleScalar

P-Action Cache Miss Rate

P-Action Cache Size

Limiting Size of P-Action Cache

- Replacement policy
 - Avoid fragmentation
 - Maintain pointers between actions
- Configurations can be deleted freely
 - If used again, they will be regenerated

Replacement Policies

- Cache-flush replacement policy
 - Easy to implement
 - Negligible overhead
 - 10x cache size reduction with little loss of performance
- Copying garbage collector
 - More difficult to implement
 - Added overhead from copying
 - Performance no better than cache-flush

Conclusion

- Can simulate out-of-order processors efficiently
 - 170-360 times slowdown
- Direct execution possible, but insufficient
- Memoization extremely effective
 - No loss of accuracy!
 - Cache size reduced by simple replacement policy