Fast Qut-of-Order Processor
Simulation Using Memoization

by Eric Schnarr and James R. Larus

University of Wisconsin-Madison
Wisconsin Wind Tunnel Project

Out-of-Order Simulators Are Slow

o SimpleScalar — 4,000 times slowdown
e RSIM — 10,000-15,000 times slowdown

e MXS — “several thousand times slowdown”

Instr.

Fetch I

Out-of-Order Processors

Instr.
Decode

FP

Queue
(16 entries)

Address

Queue
(16 entries)

Integer

Queue
(16 entries)

FP
Register
File
(64x32) or
(32x64)

Load
Store

Load
Store

Integer
Register
File

(64x32)

(16 Kbytes)

Addr.

Int. ALU 1

-
e
L
i
O
l Cache
.
m
H
l
0
H
l
m

Int. ALU 2

New Simulator: “FastSim"”

Direct execution improves instruction emulation

Memoization speeds pipeline simulation

8-15 times faster than SimpleScalar

No loss of accuracy!

target

executable

executable
editing tool

e Two problems
— Qut-of-Order simulation with static instrumentation

— Speculative execution

Direct Execution

Wy
edited

executable

<

—

simulation

library
O

Direct Execution vs. Out-of-Order

set hi %i (0x5b000), %0
or %00, 0x148, %0

save load/store address

load [%sp + 0x40], %O

advance simulation

e Computation instructions
execute directly

; ; cache & memory
1Q I sQ simulator
e Execute loads & stores

(save addresses for
simulator)

[out-of-order pipeline simulator]

e (all simulator at conditional
branches & indirect jumps

Speculative Direct Execution

advance simulation

predict
branch

e Branch based on prediction

e If mispredicted, save regs

save regs. if save regs. if — if correct, do nothing
mispredicted mispredicted
e Continue direct execution

save store address — ||

& pre-store value
e Save pre-store values

store %0, [Y%sp + 0x40]

Performance vs. SimpleScalar

0.157

"09S /"SISUTIIN

[0 SimpleScalar B FastSim w/o Memoization

Limitations

Target ISA same as host ISA

Single target processor
— Shared memory values are timing dependent

Coarse-grained speculation
— Value prediction may be difficult

Small performance improvement
— Most time spent simulating out-of-order pipeline

What is Memoization?

e Functional programming language optimization

e (Cache each function’s (input, output) pairs
— Use saved value instead of recomputing function

e FastSim’s Fast-Forwarding:
— Inputs: pipeline state + branch & cache behavior
— Outputs: processor state changes + timing info.

FastSim Simulator Components

/

Program

w/ Instrumentation

AN

/" Pipeline Simulator
detailed
>

encode

~

Cache &\
Memory
Simulator

—

Simulator Instruction Queue (iQ)

/Add I.

0x10074
0x10078
0x1007c
0x10080
0x10084
0x10088
0x1008c
0x10098
0x1009c
0x100a0

\\8?100a4

Instruction

clr % p

ld [%p + 0x40], %O
add %sp, O0x44, %1
sub %sp, 0x20, %p

t st %91

be 0x10098

nov %91, %0

set hi %hi (0x5b000), %0
or %0, 0x148, %00
call 0x3f378

nop

Tagl
done
cache
exec
gueue
gueue
gueue
gueue
fetch
fetch
fetch
fetch

~

Tag2

Configurations & Actions

Simulator Instruction Queue (iQ)
Addr. Instruction Tagl Tag2

0x10074 clr % p done ~

0x10078 Igd [%p + 0x40]/i %0 cache 6 4 hitect
0x1007c a %sp, O0x44, %1 exec 1 -

0x10080 sub %p, 0x20, Y%p queue L-architecture
0x10084 t st %1 queue . .
0x10088 be 0x10098 queue - | Configuration
0x1008c nov %1, %00 gqueue

0x10098 sethi %i (0x5b000), %0 fetch

0x1009c or %0, 0x148, %0 fetch 16+(11*1.5) = 32.5 bytes
0x100a0 call 0x3f378 f et ch - /

0x100a4 nop fetch ~/ /

-~)
Retire Queues

cycle_counter += 6

Actions < Miss: delay=18 Issue Load Hit
<,I: addr = 1Q[0] ::> ?

o~ width = 4

Structure of the P-Action Cache

advance cycle

SO call cache

not yet simulator
predict branch computed for load

Return To Detailed Simulation

/ Pipeline Simulator \

detailed
simulator

Decode p-architecture state
from the p-action cache

Restore simulator iQ
Restart detailed simulation

Grow the p-action cache

\n

\n

1l

\n
\n

\n
SN

"09S /"ISUIW

Performance vs. SimpleScalar

o
o

[J SimpleScalar B SlowSim [FastSim

P-Action Cache Miss Rate

0.40% -

0.30% -

‘wis pajiead

P-Action Cache Size

I /_ I I
©o o o o
© O O o O
.nl_u co O o

(aw)
9zIS dyoe) ‘xen

Limiting Size of P-Action Cache

e Replacement policy
— Avoid fragmentation
— Maintain pointers between actions

e Configurations can be deleted freely
— If used again, they will be regenerated

Replacement Policies

e (Cache-flush replacement policy
— Easy to implement
— Negligible overhead
— 10x cache size reduction with little loss of performance

e Copying garbage collector
— More difficult to implement
— Added overhead from copying
— Performance no better than cache-flush

Conclusion

e (Can simulate out-of-order processors efficiently
— 170-360 times slowdown

e Direct execution possible, but insufficient

e Memoization extremely effective
— No loss of accuracy!
— Cache size reduced by simple replacement policy

