
0018-9162/98/$10.00 © 1998 IEEE70 Computer

A
barrier to delivering improvements in net-
work bandwidth and latency to users is the
network interface (NI), which connects a
network to the host computer that runs
the network software. An NI includes hard-

ware that exposes an internal interface—such as
device registers—to a host processor.

A key problem with most current NIs is that their
internal interface is similar to that of a disk’s interface.
Specifically, these NIs require applications to use an
operating system (OS) call, are placed on the I/O bus,
do not allow caching of device registers, and force
processors to interact with them through in-order and
nonspeculative accesses (Figure 1a).

The last problem is subtle and partly caused by hosts
that communicate with NIs via memory operations
that are overloaded with side effects. A load to an NI
device register, for example, both returns a value and
deletes it from the device. Because of such limitations,
current NIs will not be adequate for use with newer,
high-performance networks and host computers.

High-performance local area networks (LANs) such
as Myricom’s Myrinet or Tandem’s Servernet have
advanced so far that some view them as a new class of
networks called system area networks (SANs).1

Emerging SANs deliver bandwidths of 10 Gbps or more
and latencies of tens of nanoseconds—two to four orders
of magnitude better than that delivered by most current
LANs. Furthermore, the high reliability of SAN hard-
ware enables the use of leaner—and therefore higher
performance—network software (communication pro-
tocols, such as Active Messages) instead of heavy-weight
and one-size-fits-all protocols, such as TCP/IP.

New hosts demand much higher performance than
in the past because of faster or multiple processors and
because of multimedia extensions. If NIs do not adapt
to these changes in networks and host computers, they
will become a barrier to improving network perfor-
mance.

To solve this problem, future NIs should appear to
their hosts more like memory than like disk interfaces.

Memory is virtualized without generally requiring OS
intervention, sits on the memory bus, can be cached,
can be accessed out of order and speculatively, and
does not have side effects. We propose to treat NIs the
same way, as summarized in Table 1. Traditional NIs
that use direct memory access (DMA) offer some of
these advantages because data placed into memory
with DMA can be treated like regular memory.
Unfortunately, the DMA initiation itself often uses
some of the conventional solutions listed in Table 1.

We argue that treating NI accesses like memory
accesses is justified by the importance of network per-
formance to future computers. Today an NI is a cen-
tral piece of hardware. We therefore believe NIs should
be treated as standard equipment, just like main mem-
ory or frame buffers, and not as an optional or periph-
eral add-on.

KEY COMPONENTS
An NI in a host node is essentially a device that lets

a processor send and receive messages from a network
that connects such nodes. The network accepts mes-
sages from an NI and delivers them to one or more
NIs that are also connected to the network. An NI con-
sists of two parts:

• The internal NI is the NI’s interface to the proces-
sor, main memory, and disks. The internal NI con-
tains the logic and memory that the processor uses
to send and receive messages to and from the NI.
For example, a processor can send a message to
the network by writing messages to the internal
NI’s data registers.

• The external NI is the NI’s interface to the net-
work. An external NI performs network-specific
functions, such as cyclic-redundancy checks and
network-specific framing.

An internal NI consists of two parts: the send inter-
face and the receive interface. Each interface consists
of four components:

Re
se

ar
ch

 F
ea

tu
re

Most network interfaces behave like disk interfaces and thereby limit the
effectiveness of today’s high-performance networks in a variety of ways.
The authors argue that—to improve performance—future NIs should appear
to their hosts more like memory than like disk interfaces.

Making Network
Interfaces Less
Peripheral

Shubhendu S.
Mukherjee
Compaq Computer

Corp.

Mark D. Hill
University of
Wisconsin, Madison

.

• Status registers contain NI status information. A
receive-interface status register, for example, can
indicate that a new message has arrived from the
network, and a send-interface status register can
indicate that the NI has successfully injected a
message into the network.

• Control registers let a user process pass infor-
mation and commands to the NI device. For
example, a processor may temporarily disable NI
interrupts by writing to an NI control register.

• Data registers contain message data sent by a
processor or received by the NI from the network.

• Notification mechanisms help an NI inform a
process of any change in NI device status. For
example, the NI can interrupt the process on a
change in device status, such as the arrival of a
message from the network.

To send a message to the network, a processor first
reads the send-interface status register to ensure there
is enough space in the send interface’s data registers.
If there is enough space, the processor writes a new
message to the data registers. If there is not enough
space, the processor can either poll the NI periodically
or have the NI notify the processor when space
becomes available. When the NI’s internal interface
gets the message, it hands the message to the external

NI, which injects the message into the network.
When a message from the network arrives at an NI,

the external NI extracts the message from the network
and hands it to the receive interface. The receive interface
writes the message to its data registers and sets a status

October 1998 71

Processor

Cache

Main
memory

Network
interface

System
area network

Memory bus

I/O bus
I/O bridge

Disks

(a)

Processor

Cache

Main
memory

Network
interface

Cache

System
area network

Memory bus

Disks

(c)

Processor

Cache

Main
memory

Network
interface

System
area network

Memory bus

Disks

(b)

Table 1. Summary of conventional and proposed solutions.

Problem Conventional solution Proposed solution

Virtualized by Operating system Virtual memory hardware
Location I/O bus Memory bus
Cache NI registers Not allowed Allowed
Out-of-order and speculative access Not allowed Allowed
Application Programming Interface (API) Has side effects Has no side effects

Figure 1. The archi-
tecture of a standard
workstation node with
the network interface
(a) on the I/O bus, (b)
on the memory bus,
and (c) on the mem-
ory bus with a cache.

.

72 Computer

register that indicates the presence of a new message.
Flow control (such as a return-to-sender function)

ensures messages are rarely lost if the data registers
are full. If the processor has appropriately set the con-
trol registers, the NI can use a processor interrupt to
send a notification to a processor in the receive host
node about the message’s arrival. A processor in the
receive host node then reads the new message from
the NI data registers.

VIRTUALIZING THE NI
Virtualizing a physical resource (to a user process)

requires two mechanisms: protection and address
translation. Protection isolates user processes from
one another. Address translation lets a user process
access a physical device through virtual addresses. The
OS virtualizes a disk by requiring that all disk accesses
be initiated through OS trap commands. However,
trapping to the OS is usually expensive because mod-
ern microprocessors do not support traps efficiently.

In contrast, main memory gets virtualized through
the virtual memory hardware (which is supported by
all high-performance microprocessors today), gener-
ally without OS intervention. Main memory is divided
into physical pages and mapped to user virtual space
on demand. A hardware structure called the transla-
tion lookaside buffer translates user virtual page
addresses to physical page addresses in main memory.
Consequently, main memory accesses are much faster
(less than a microsecond) than disk accesses (typically
more than 10 to 100 microseconds).

Accessing NI memory using virtual memory can
thus dramatically improve performance. The OS sim-
ply maps NI memory pages directly into user space.
The virtual memory hardware translates these mem-
ory-mapped virtual addresses to appropriate physical
addresses in the NI memory and ensures protected
access.

For example, the NIs in Thinking Machines’ CM-5
and, more recently, Myricom’s Myrinet network let
users access the NI memory directly using this tech-
nique. We call such NIs user-level network interfaces
(or ULNIs), since the NI memory can be directly
accessed from user space. Compaq, Intel, and
Microsoft are jointly developing a ULNI specification
called the virtual interface architecture,2 which will
allow a user process to bypass the OS while sending
and receiving messages to and from the network.

THE MEMORY BUS
In a standard workstation node (as shown in Figure

1a), disks are typically located on the peripheral I/O
bus. This location is dictated primarily by the avail-
ability of a standard I/O bus interface (like SBus or
PCI). Unlike I/O buses, current memory buses are usu-
ally proprietary and have nonstandard interfaces.
Consequently, manufacturers do not usually design
disk interfaces to memory bus specifications.

Current memory buses, however, offer significant
performance advantages: lower latency, higher band-
width, and support for optimized single-writer coher-
ence protocols.

Lower latency and higher bandwidth
Memory buses offer much lower latency and higher

bandwidth than I/O buses. For example, the current
generation of PC memory buses run at 66 to 75 MHz,
which is more than two times faster than the current
generation of 33-MHz PCI buses. Additionally, all I/O
bus accesses typically traverse the memory bus and
the I/O bridge, which connects proprietary memory
buses to standard I/O buses.

Current memory buses offer peak bandwidths of
more than 4 Gbps. Some of the Sun Enterprise servers
support an even more aggressive memory bus called
the Ultragigaplane, which offers a sustained band-

Year of introduction

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

80,000

8,000

800

80

8

B
an

d
w

id
th

 (
m

eg
ab

it
s/

se
co

n
d

)

SAN link bandwidth
Memory bus bandwidth (PCs)
Standard I/O bus bandwidth 28

15
7

6 27
26

25
5 14

22

20

1918
17
16

21

13
12

11

4

9
3

8

2
1

10

24

23

Figure 2. In PCs and
standard I/O buses,
the peak SAN link
bandwidth is growing
100 percent per year,
while the peak mem-
ory and I/O band-
widths are growing
roughly 30 percent per
year. Memory buses
in the figure: (1) Intel
8085, (2) Intel 8086,
(3) Intel 80286, (4)
Intel 80386, (5) Intel
80486, (6) Intel Pen-
tium, (7) Intel
Pentium Pro. I/O
buses: (8) IBM PC, (9)
ISA bus, (10) MCA,
(11) EISA bus, (12)
Sun 32-bit/20-MHz
Sbus, (13) VESA, (14)
32-bit/33-MHz PCI,
(15) 64-bit/66-MHz
PCI. SANs: (16) TMC
CM-2, (17) nCube/ten,
(18) Intel iPSC/2, (19)
MasPar MP-1216,
(20) Thinking
Machines CM-5, (21)
Intel Delta, (22)
Meiko CS-2, (23) IBM
SP-2, (24) Myricom
Myrinet, (25) Intel
Paragon, (26) Cray
T3D, (27) Cray T3E,
(28) SGI/Craylink.

.

width of 20 Gbps. Such buses achieve high bandwidth
via high clock speeds, large widths (between 64 and
256 bits), and overlapped bus transactions.

Figure 2 compares the trends in peak link band-
width of SANs, memory buses in PCs, and standard
I/O buses. This figure suggests that there will continue
to be a gap between the bandwidths of memory and
I/O buses. In fact, I/O bus bandwidth lags behind
memory bus bandwidth by at least four years.
Consequently, NI cards designed for I/O buses will
not harness full memory-bus bandwidth.

Optimized coherence protocols
Memory buses support optimized single-writer

coherence protocols. These protocols allow processor
caches to cache and share memory easily because they
provide a single and consistent image of physical mem-
ory across all processor caches.

The performance advantages of memory buses sug-
gest that ULNIs should be placed on memory buses,
just like main memory, as shown in Figure 1b. The main
problem with memory buses is that designers do not
currently export a standard interface. The advent of
ULNIs as standard equipment, like memory or frame
buffers, emphasizes the need for designers to do so.

Companies such as Intel, IBM, and Sun Microsys-
tems, which manufacture both microprocessors and
network-centric computers, could allow system design-
ers to design ULNIs to their internal memory bus. Intel’s
MPP Teraflop supercomputer, for example, attaches a
ULNI device directly to the Pentium Pro memory bus.
Independent vendors may have to acquire memory bus
specifications from microprocessor companies to
develop a standard interface for the memory bus.
Corollary, for example, has taken such an approach,
albeit in a different context, to glue together two four-
processor Pentium systems into an eight-processor
Pentium Pro SMP node.3 Alternatively, manufacturers
of proprietary memory buses could provide special
bridges to other open-standard interfaces, such as PCI.

Bridging the bus
A standard bridge might connect to a standard I/O

bus but may not provide the performance or coher-
ence access needed by ULNIs. A more aggressive bridge
could convert directly to a standard I/O bus connec-
tor that supports a single I/O device without a physi-
cal I/O bus. This bridge could fake the I/O bus signals
to offer higher performance with no arbitration time.

Silicon Graphics’ Power Challenge, for example,
uses this type of bridge (which the company calls a per-
sonality interface) to convert between SGI’s propri-
etary I/O bus and a standard SCSI device. Similarly,

Intel’s Accelerated Graphics Port is a standard bridge
that offers graphics accelerators a dedicated high-
bandwidth path to main memory. An even more
aggressive bridge can convert to a device-specific inter-
face that is proprietary but less demanding and more
stable between product generations than a memory
bus. If network connections become standard equip-
ment, this option would provide a way to obtain per-
formance comparable to that of a memory bus ULNI
at a lower cost.

Another possibility is standardizing the interface
between the internal and external NIs. Microprocessor
vendors could provide the internal interface that com-
municates with the processor. Third-party vendors
could provide the external interface that communicates
with the network. This technique would keep third-
party vendors from having to deal with a particular
memory bus’ coherence protocol and let microproces-
sor vendors deliver the network’s performance to a user
process via its own optimized internal interface.

CACHING NI REGISTERS
Conventional NI registers are marked uncacheable.

ULNI registers, on the other hand, can be cached in
processor caches and in ULNIs themselves, which
offers several advantages.

Uncached access to conventional NI registers
Unlike processor accesses to regular cacheable

memory, processor accesses to ULNI device memory
often have side effects (shown in Figure 3), such as
sending a message into the network. Because of such
side effects, NIs often require loads and stores to
ULNI memory to appear to be in order. In current
microprocessors, the simplest way to ensure this is to
mark these loads and stores uncacheable.

Furthermore, ULNI memory behaves more like a
processor cache than like main memory. This is
because it can generate new data—on message recep-
tion, for example—just like a processor generates new
data on a store. In contrast, main memory is a passive
device that can only return data stored to it. If a proces-
sor is allowed to cache ULNI memory locations (like
message buffers), the ULNI must have the ability to
invalidate these memory locations when a new mes-
sage arrives. However, most NIs reside on I/O buses,
which usually do not support invalidation signals.

Finally, caching ULNI registers in processor caches
requires support for ULNI register reuse.4 Conven-
tional ULNIs do not have to remember the value of a
ULNI register once a processor reads it because
processor loads are atomic. Unfortunately, a proces-
sor’s loads to words in a cache block are not atomic

October 1998 73

store X to A

load Y from B

store X to A

store Y to A

store X to A

store Y to B
NI sends

message to network

(a) (b) (c)

Figure 3. Processor
accesses to ULNI
device memory have
three kinds of side
effects. In this figure,
the instructions are
uncached loads and
stores to ULNI regis-
ters that are memory-
mapped to virtual
addresses A and B. In
(a), the store-load
pair must be in order
for some network
interfaces (such as in
Princeton Shrimp’s
Ultra DMA technique)
to work correctly,
even though the
instructions appear
unrelated to the
processor. In (b), two
consecutive stores to
the same address
must occur in order
(such as in Thinking
Machines’ CM-5 NIs).
Thus, in (a) and (b), a
previous store implic-
itly determines the
next uncached load or
store that a network
interface expects. In
(c), the second store
triggers an action in
the network interface,
such as the sending
of a message into the
network.

.

74 Computer

because—in the case of a cache replacement—
a processor’s cache can lose the cache block
from the ULNI before the processor has a
chance to read all the words in the cache block.
The ULNI registers require a handshake
between the processor and ULNI to allow
explicit reuse of the cache block.

Designing a ULNI’s API carefully can elimi-
nate side effects in ULNI memory accesses
and the need to support ULNI register reuse. The
ULNI device memory and processor caches can
be kept coherent by placing the ULNI device on

the memory bus, which allows a ULNI to observe and
participate in the system’s coherence protocol and
thereby generate invalidation signals when necessary.

Caching NI registers in processor caches
Caching status or control registers in processor caches

helps remove unnecessary memory bus traffic. If a
processor were polling an uncached status register, every
processor poll would go across the memory bus to the
ULNI device. Unsuccessful polls—those that do not find
messages in the NI—waste memory bus bandwidth that
could be used by other processors in an SMP node.

If the status register were cached, all unsuccessful
polls would hit in the processor’s cache. If a message
were to arrive and change the ULNI status, the ULNI
device would invalidate the cached status register in
the processor’s cache. On its next poll attempt, the
processor would incur a cache miss, which could be
satisfied directly by the ULNI.

Furthermore, uncached accesses provide very low
bandwidth compared to cache block accesses because
they transfer only a few bytes of data—from 1 to 16
bytes. In contrast, cache blocks are typically much
larger—from 32 to 128 bytes—and can exploit the
full transfer bandwidth of today’s memory buses.

Treat ULNI memory as a cache
Like processor caches, ULNI caches can cache

ULNI registers. Instead of allocating ULNI registers
in ULNI memory, however, the registers can be allo-
cated in the user’s virtual space and can be backed up
by main memory. Like processor caches, ULNI caches
can simply cache the portion of main memory that
contains the ULNI registers.

Such ULNI caches help improve performance.
Processor cache misses for ULNI registers can be inter-
cepted and satisfied directly by the ULNI cache
through a cache-to-cache transfer. Contrast this with
data transfer via DMA, in which messages reach the
processor cache in two steps (and consequently two
memory bus crossings): from ULNI device to main
memory and from main memory to the processor
cache. This increase in latency may cause serious prob-
lems for latency-bound request-response protocols.

Also, the ULNI cache may overflow when bursts of
messages arrive at a ULNI. ULNI cache replacements
to main memory will buffer these messages automat-
ically without processor intervention.4 Contrast this
with the more conventional and lower performance
solutions in which processors must copy the data
explicitly from memory-mapped ULNI registers to the
user’s virtual space.

OUT-OF-ORDER AND SPECULATIVE ACCESSES
To tolerate the latency of main memory access,

processors use two techniques: out-of-order access and
speculative execution. Out-of-order accesses allow
loads and stores to bypass earlier loads or stores. A
processor need not stall because of a cache miss on a
particular load. Speculative execution tolerates mem-
ory access latency better than out-of-order accesses.

Processors speculate on control dependence (like
branch prediction), data dependence, data addresses,
and data values, and then perform computations based
on these speculated values. If the speculation is correct,
idle processor resources can be used effectively and
memory access latencies can be tolerated. However, if
the speculation is incorrect, all previous computation
based on speculatively loaded values must be quashed
and any process-specific state must be rolled back to
the point at which the speculation started.

Processors do not usually perform out-of-order and
speculative accesses to ULNI memory for three reasons:

• Many I/O buses do not adequately support mul-
tiple outstanding transactions, so processor
accesses to NIs must be serialized on the I/O bus.
This problem can be solved by interfacing the
ULNI device with the memory bus, which usu-
ally supports multiple outstanding transactions.

• To avoid side effects, NI accesses are not generally
performed out of order. Speculative loads to NI
memory are also generally avoided because cur-
rent NIs usually do not roll back side effects caused
by incorrect processor speculation. Designing the
ULNI’s API carefully can eliminate this problem.

• Most microprocessors today disallow out-of-
order and speculative accesses on uncached loads
and stores, which are the predominant ways to
access NIs. This problem can be solved by
caching (and thereby speculating on) ULNI reg-
isters in processor caches and by not allowing a
processor’s speculatively stored state to be
reflected outside the processor. Modern micro-
processors support both mechanisms efficiently.

MEMORY-BASED QUEUES
A user process typically accesses a peripheral I/O

device via the OS or it uses the underlying data move-
ment primitive as the API to the I/O device. For example,

To harness SAN
benefits effectively,
we must design NIs
more like memory

than like disk
interfaces.

.

user APIs based on program-controlled I/O use uncached
loads and stores (the data movement primitives) to mem-
ory-mapped device registers as the user API to the I/O
device. Similarly, Princeton’s User-Level DMA5 mecha-
nism uses DMA transfers as the user API to the ULNI
device. Instead of exposing the underlying data move-
ment primitive as the user API, ULNIs could more effec-
tively structure the ULNI date registers as memory-based
queues.2,4,6,7 Such memory-based queues cannot be clas-
sified as program- controlled I/O or as DMA.

Memory-based queues consist of two parts: a send
queue and a receive queue. Each queue is allocated in
virtual memory and managed as a circular buffer with
head and tail pointers. To send a message, the proces-
sor queues the message at the tail of the send queue
either by explicitly writing the message into the send
queue’s memory or by inserting a virtual pointer to
the message in the send queue. The ULNI dequeues
messages from the head by reading the send queue
memory and, if necessary, translating the virtual
pointer to its physical memory address and reading
the message from the user virtual space.

For the receive queue, the ULNI similarly queues
messages at the tail of the receive queue and the proces-
sor dequeues messages from the head. Device com-
mands for such APIs are thus no longer explicit
DMA-initiation requests. They are simple memory
operations, such as incrementing or decrementing
queue head or tail pointers. For example, when a
processor queues a message to the send queue and incre-
ments the tail pointer, the ULNI interprets this action
as a command to send a message to the network. If the
tail pointer is uncached, the ULNI treats the increment
as a signaling store. If the tail pointer is cached, the
ULNI must poll the tail pointer for new messages.

There are four advantages to treating the ULNI API
as a memory-based queue:

• Unlike uncached accesses or UDMA, memory-
based queues decouple a processor and a ULNI.
This decoupling enables the processor and the
ULNI to send and receive multiple messages to
and from the queues without blocking.

• Memory-based queues avoid side effects by treat-
ing ULNI queue accesses simply as side-effect-free
regular-memory accesses. ULNI commands for
such queues are primarily incrementing or decre-
menting queue pointers. This lets processors cache
ULNI queues, perform out-of-order accesses on
queue memory, and speculatively send and receive
messages to and from these queues.

• Since memory-based queues are allocated like
regular memory and managed as circular buffers,
the reuse handshake is simple: A comparison of
the head and tail pointers reveals whether a queue
location can be reused.

• Memory-based queues simplify the prob-
lem of multiprogramming a ULNI for
SMPs because the queues give each process
protected, simultaneous access to the
ULNI without invoking the OS while send-
ing and receiving messages. In contrast,
machines like the Thinking Machines’
CM-5 allow only one user process to
access the ULNI at one time and must con-
text-switch the entire ULNI when it con-
text-switches a user process.

There are at least three additional opportu-
nities for improving the performance of proces-
sor-to-NI interactions.8,9 Using virtual
memory—instead of small and dedicated NI
memory—to buffer network messages can pro-
vide megabytes of buffer space for network messages.
Moving data between a processor and an NI in cache
block units allows data to be read directly from the
NI (like program-controlled I/O) as well as to be trans-
ferred in blocks (like DMA). Finally, using cache inval-
idations as notification signals—instead of
heavyweight interrupts—lets an NI inform a proces-
sor of its status changes rapidly.

SANs have evolved to satisfy the increasing demand
for high-bandwidth, low-latency networks. But
the benefits can be realized only if we use light-

weight protocols and efficient NIs. We squander SANs’
benefits, for example, if applications must invoke the
OS to send and receive messages from the NI.

To harness SAN benefits effectively, NIs must be
designed more like memory than like disk interfaces.
This includes accessing the NI directly from user space
through virtual memory hardware, placing the NI on
the memory bus, caching NI registers, accessing the
NI out of order and speculatively, and designing a side
effect-free API. ❖

Acknowledgments
We thank Guri Sohi for inspiring this article. Jim

Burnette, Rebecca Hoffman, Rich Martin, Larry
Peterson, Avinash Sodani, and the anonymous review-
ers provided valuable comments on earlier drafts. This
work is supported in part by Wright Laboratory
Avionics Directorate, Air Force Material Command,
USAF, under grant #F33615-94-1-1525, ARPA order
#B550, CCR-9101035, MIP-9225097, MIPS-
9625558, and donations from Sun Microsystems.

References
1. R.W. Horst, “TNet: A Reliable System Area Network,”

IEEE Micro, Feb. 1994, pp. 37-45.

October 1998 75

SANs have evolved
to satisfy the

increasing demand
for high-bandwidth,

low-latency
networks. But the
benefits can be

realized only if we
use lightweight
protocols and
efficient NIs.

.

2. D. Dunning and G. Regnier, “The Virtual Interface
Architecture,” Proc. Hot Interconnects V, ACM Press,
New York, Aug. 1997, pp. 47-58.

3. P. Vogt, “Profusion: A Buffered, Cache Coherent Cross-
bar Switch,” Proc. Hot Interconnects V, ACM Press,
New York, Aug. 1997, pp. 87-96.

4. S.S. Mukherjee et al., “Coherent Network Interfaces for Fine-
Grain Communication,” Proc. 23rd Int’l Symp. Computer
Architecture, ACM Press, New York, 1996, pp. 247-258.

5. M.A. Blumrich et al., “Protected User-level DMA for the
Shrimp Network Interface,” Proc. Second IEEE Symp.
High-Performance Computer Architecture, IEEE CS
Press, Los Alamitos, Calif., 1996, pp. 154-165.

6. P. Druschel, L.L. Peterson, and B.S. Davie, “Experiences
with a High-Speed Network Adaptor: A Software Per-
spective,” Proc. SIGCOMM 94, ACM Press, New York,
1994, pp. 2-13.

7. T. von Eicken et al., “U-Net: A User-Level Network
Interface for Parallel and Distributed Computing,” Proc.
15th ACM Symp. OS Principles, ACM Press, New York,
1995, pp. 40-53.

8. S.S. Mukherjee and M.D. Hill, A Survey of User-Level
Network Interfaces for System Area Networks, Tech.
Report 1340, Computer Sciences Department, Univer-
sity of Wisconsin, Madison, 1997.

9. S.S. Mukherjee, Design and Evaluation of Network
Interfaces for System Area Networks, PhD dissertation,
University of Wisconsin, Madison, 1998.

Shubhendu S. Mukherjee is a senior hardware engi-
neer on the Alpha Architecture team at Compaq
Computer Corp. His current interests include microar-
chitectures for high-performance parallel computers.
Mukherjee received a BTech from the Indian Institute
of Technology, Kanpur, and an MS and a PhD from
the University of Wisconsin, Madison. Mukherjee per-
formed this work as a PhD candidate. Contact him at
shubu@muhthr.hlo.dec.com.

Mark D. Hill is a professor and Romnes fellow in the
Computer Sciences Department and the Electrical and
Computer Engineering Department at the University
of Wisconsin, Madison. He also codirects the Wis-
consin Wind Tunnel parallel-computing project. His
current research interests include memory systems of
shared-memory multiprocessors and high-performance
uniprocessors. Hill received a BSE from the University
of Michigan, Ann Arbor, and an MS and a PhD in
computer engineering from the University of Califor-
nia, Berkeley. Contact him at markhill@ cs.wisc.edu.

.

