Making Network Interfaces Less Peripheral

Shubhendu S. Mukherjee and Mark D. Hill

Abstract

Much of a computes value depends on thwowell it interacts with netarks. 1 enhance thisalue, design-
ers must impree the performance of netrks delvered to users.dftunately the performance of netuks is
improving rapidly Unfortunately this dramatic impneement in netwrk performance is seldom dedred to
users. A ky bottleneck is the hostetwork interfacé€NI), which connects a netwk to a host computerhis
bottleneck gets morewere as netark and host performance continue to inyao

The problem with current Nls is that thevere designed with an intade similar to that of a disk intade.
Most current NlIs require applications to use an operating system call, are placed on tle d@rwnt alle
processors to cache theigigters, and force processors to interact with them with in-order and non-specula-
tive accesses. The lastaywroblems are partially due to the presence of “siféstsf’ in current NI designs.

While this kind of an intedfce may hee been adequate in the past, wguarthat future NiIs should appear
to their hosts more lik memory than li& a disk. Memory is virtualized without requiring operation system
intervention (in the common case), is on the memary, lcan be cached, can be accessed out of order and
speculatrely, and is free of anside-efects. W discuss he to do the same for Nls, so that the dramatic
improvements in netark performance can be dedred to users.

1 Introduction

Much of a computes value depends on howell it interacts with netarks. To enhance thisalue, designers must
improve the netwrk performance delered to users. The commonly quoted aspect ofar&tperformance iband-

width. Bandwidth is the rate at which datawfkthrough the netark and computeHigh bandwidth is critical for
transmitting high-quality video or Ige files. An undeappreciated aspect of nei performance idatency
Lateng is the useto-user delay for sending a message. Lateletermines the performance of protocols that send
mary small messages, as can be found in agkile systems, database lock managers, and fine-grain parallel com-
puting [6, 2].

Fortunately networks are impreing rapidly In particular local area netark (LAN) bandwidth has impred from
10-100 megabits/second to one gibit/second or more. AggregsiLANSs, such as the Myricom Myrinet or thanF
dem Serernet, hge moved so &r that some vie them as a e class of netwrks called asystem aga networkor
SAN [5]. SANs impree performance in tavways. First, aggress links and switches pvae very high bandwidth
and etremely lav lateng. Second, reliability properties of SANs alleystems to use lean communication layers
(e.g., Actire Messages [12]) instead of kigaveight and one-size-fits-all protocols (e.g., TCP/IP). Consequently
SANs help impree the performance of both netx hardvare (links and switches) and netk software (commu-
nication protocols).

Unfortunately improvements in netark hardvare and softare are rarely delered to users. Ady problem is inad-
equate hostetwork interfacegNIs). A NI connects a netwk to a host computer that runs the ratasoftware. A

NI includes hardware that sits typically on an I/Qué and gposes an internal intexe (e.g., déce ragisters) to a
host processoMost NlIs hae low-level software (usually in a déce driver) inside the operating system that applica-
tions use to access the netk. Figure 1a illustrates the host location of a eentional NI.

The problem with current Nls is that thevere designed with an intade similar to a disk’interbice. Most current
NIs require applications to use an operating system call, are placed on thes,l/db mot allev caching of deice
registers, and force processors to interact with them with in-order and non-specatagsses. The last problem is

Personal use of this material is permitted. Hoeepermission toeprint/republish this material for advertising orgmotional purposes or for eating nev
collective works foresale or edistritution to serves or lists, or to euse any copyrighted component of this work in other works must be obtaimetthér
IEEE.

This material is pesented to ensartimely dissemination oftsclarly and tebnical work. Copyright and all rights thein are retained by autha or by other
copyright holdes. All pesons copying this informationerxpected to adherto the terms and conatnts invoked by ealr authors copyright. In most cases,
these works may not beposted without thexplicit permission of the copyright holder

‘sor main ‘sor main main
memory memory memory
cache cache
[[
memor s memory s
I/0 brldg{:j I/O bu 4 |:::| Y
> network
_net\/\ork ﬁ interface ﬁ RetoT
. interface interface
A y

System Are;a Netark

System Area Netark

System AreYa Netark

(a) (b (€)
FIGURE 1. (a) illustrates the architecture of standard V\orkstatl)on node with the network interface on the 1/O bus, (b) illustrates
the same werkstation node with the network interface on the memory hus, and (c) augments the netork interface in (b) with a
cache.

subtle and partly caused by hosts communicating with NIs using memory operations thatlassied with side-
effects (e.g., aload to a Nldee rayister both returns aalue and deletes it from theuilee).

Such Nls will not be adequate in the future. First, @ngrSANs delier bandwidth (10 gigbits/second or more)
and lateng (10s of nanoseconds) that are betweemttwfour orders of magnitude better than thatveedid by cur-
rent disks. Second, wehosts will demand much higher performance than in the past becaasteofprocessors,
multimedia &tensions, and/or multiple processors. If NIs do not respoiydiiticoecome the bottleneck in netwk
performance.

We ague that future NIs should appear to their hosts moeatikmory than li& a disk. Memory is virtualized with-
out requiring operation system intention (in the common case), is on the memary, lzan be cached, can be
accessed out of order and speculdyi and do not hae side-eflects. V. propose to do the same for Nls, as summa-
rized in Table2. Traditional Nis that use direct memory access (DMA@ro$ome of these admtages because data
DMA-ed into memory can be treated justelikggular memoryUnfortunately the DMA initiation itself often uses
corventional solutions listed inable2.

Treating NI accesses #kmemory accesses is justified by the importance ofamnketperformance to future comput-
ers. Dday a Nl is a central piece of hamw for a computeherefore we belie that a NI should be treated as a
“standard equipment” just l&kmain memory or frameauffers and not as an optional and peripheral add-on.

The rest of the paper isgamized as follas. The ngt section discusses a Nlkey components. Rest of the sections
discuss the opportunities for imping the performance of NI accesses, as listedainleR. More details on the
opportunities for impreement areailable in a surgy paper [8].

2 Key Components of a Netark Interface

This section xamines netwrk interface aspects in more detail to yice a foundation for the optimization sections
that follow. A network interface (NI) in a host node is auiee that allevs a processor to send and reegnessages
from a netverk that connects these host nodes. The artaccepts messages from a NI andveedi them to one or
more NIs connected to the netik. A NI consists of tw parts, the internal NI and th&ternal NI. W define the
internal NI as the N§ interfice to the processanain memoryand (perhaps) disks, andternal NI as the N§ inter-
face to the netark. The internal NI contains logic and memory that the processor uses to send aedmessages
to and from the NI. & example, a processor can send a message to therkdiywriting messages to the datg-re
isters of the internal NI. Anx¢ernal NI performs netark-specific functions, such agatic-redundang checks, net-
work-specific framing, etc.

An internal NI consists of tavparts: the send intexde and the rece# interfice. Each inteaice consists of four com-
ponents:

Problems Solutions Discussed
Conventional Proposed

Virtualize via operating system |virtual memory hardarel Section3
Location I/O bus memory lus Section4
Cache NI rgisters not alloved allowed Section5
Out-of-order and speculaé access not alloved allowed Section6
Application Programming Inteste (API) has side-décts no side-efects Section?
Summary: NI access similar to disk interbce access memory access

TABLE 2. Summary and forecast of paper

Status RegistersNI status rgisters contain NI status information. A reeeinterfice status gaster for example,
can indicate that a memessage has ared from the netark, and a send intexfe status ggster can indicate that the
NI has successfully injected a message into thear&tw

Control Registers.NI control registers allav a user process to pass information and commands to theitsk der
example, a processor may temporarily disable NI interrupts by writing to a NI corgistiere

Data Registers.NI data rgisters contain message data sent by a processor aeckbgithe NI from the newk.

Notification mechanism.A NI informs a process of grchange in NI déce status through a notification mecha-
nism. For example, the NI can interrupt the process on a changevioedstatus, such as al of a message from
the netvork.

To send a message to the natky a processor first reads the send iatmfstatus ggster to ensure there is enough
space in the send intades data rgisters. If there is enough space, the processor writew aessage to the data
registers. If there is not enough space, the processor can either poll the NI periodically tiehdl notify it when
free space becomesadlable. On receing the n& message in its datagister the NI hands the message to the
external NI, which injects the message into the oekw

When a message areis at a NI, thexternal NI extracts the message from the netlvand hands the message to the
recevve interbce. The recee interfice writes the message to its dagssters and sets a statugister that indicates
the presence of a wemessage. Flo control (e.g., return-to-sender) is typically used to ensure messagevere ne
(or rarely) lost if the data gésters are full. If the control gésters hae been appropriately set by the procedser NI

can send a notification to a processor in the vededst node about the aal of this message through a processor
interrupt. Finally a processor in the regeihost node reads thewmenessage from the NI datagisters.

3 Use \frtual Memory Hard ware to Mrtualize the Network Interface

There is a maed diference in ha user processes access a disk and main merBotl are shared phical
resources virtualized across multiple user processegaaNzing a plysical resource to a user process requir@s tw
mechanisms: protection and address translation. Protection isolates user processes from arfedainesisdransla-

tion allows a user process to access gspal deice through virtual addresses. The operating system virtualizes a
disk by requiring that all disk accesses be initiated through operating system trapgeffvapping to the operat-

ing system is usuallyxpensve because modern microprocessors do not support tegneficiently. In contrast,
main memory is virtualized through the virtual memory handy which is supported by all high-performance
microprocessors todapnd does not uolve operating system intexmtion in the common case. Main memory is
divided into plysical pages and mapped to user virtual space on demand. Aahaustvucture called thednslation
Lookaside Bufer rapidly translates user virtual page addressesysiqal page addresses in main mema@wynse-
guently main memory accesses are muestdr (less than a microsecond) compared to disk accesses (greater than 10
- 100 microseconds).

Accessing NI memory using virtual mempand not the operating system, can therefore dramatically \ien jper-
formance. The operating system simply maps NI memory pages directly into user space; the virtual memory hard-

ware translates these memory-mapped virtual addresses to appropy&talphddresses in the NI memory and
ensures protected access to it.

The Nls in the Thinking Machines’ CM-5 and, more receritlg Myricom Myrinet netwrk allowv users to directly
access the NI memory using this technique. &l such NidJserLevel Network Interfaces (ULNIsince the NI
memory can be directly accessed from user space. Compaq, Intel, and Microsoft Corporations arevglopingle
such a ULNI specification called théral Interface (V1) architecture [4]. The VI architecture is a logical specifica-
tion that will allow a user process to bypass the operating system while sending avitigeoeissages from the net-
work.

4 Place the Netwrk Interface on the Memory Bus

In a standard wrkstation node (Figurdla) disks are typically located on the peripheral W®. The choice of this
location is dictated primarily by thevailability of a standard I/Ous inter&ce (e.g., SBus, PCI), which enables inde-
pendent endors to manafkture NI cards to these standard specifications. &M huses, current memoryubes
are usually proprietary and Y@ non-standard intex€es. Consequentlynanufcturers do not design usually disk
interfaces to memoryus specifications.

Current memory lses, hwever, offer two significant performance aantages eer /O kuses. First, memoryuses
offer much laver lateng and higher bandwidth than I/Quées. Br example, the current generation of PC memory
buses are clodd at 66-75 MHz, which is more thanavimes &ster than the current generation of 33 MHz PCI
buses. Additionallyall /0O kus accesses typically #erse the memoryus and the I/O bridge, which connects pro-
prietary memory bses to standard 1/Qubes. Current memoryubes dier peak bandwidthxeeeding four gigbits
per second. Some of the Sun Enterpriseessrsupport anven more aggresst memory bs called the Ultragiy
plane, which ders a sustained bandwidth of 20 afijts per second. Such high bandwidth is a&devia high
clocks, lage widths (between 64- to 256-bits), ameitapped bs transactions.

Figure 3 shavs the trends in peak link bandwidth of SANs, memaryds in personal computers, and standard 1/0
buses. This figure suggests that thp fetween bandwidths of memory and 1{B8ds will continue toxést in future.

In fact, 1/0 us bandwidth lags behind memonysbbandwidth by at least four years. In otherdsg, /0 luses will
take another four years to achéethe peak bandwidth fefed by today memory bses. ConsequentliXl cards
designed to 1/O Wses will not be able to harness the full memary tlandwidth. Figure also shas that SAN link
bandwidth is greving at a muchédster rate than the bandwidth of PC memarges. Br such SANs we will need
more aggresge memory hses, such as the SUN Ultragjigane.

Second, memoryuses support optimized single-writer coherence protocols, whick pitacessor caches to cache
and share memory easilyhis is because these single-writer coherence protocolglera single and consistent
image of plysical memory across all processor caches. Theseetion agues hw and wly caching message data
in processor and ULNI caches can help imprperformance.

The performance adwntages of memoryuses suggest that ULNIs should be placed on memusgshjust lik main
memory (Figurelb). The main problem with memorydes is that thyedo not &port a standard intexte. Hovever,

the adent of ULNIs as standard equipmentelitnemory or frame ufers, emphasizes the need for memaug b
designers toxgort a standard intea€e to either systems designers internal to a coynmathird-party ¥endors man-
ufacturing independent ULNI gizes. Companies such as Intel, IBM, and Sun Microsystems that actumef both
microprocessors and neatvk-centric computers can allosystem designers to design ULNIs to their internal mem-
ory hus. Intels MPP supercomputer calledraflop, for @mple, attaches the ULNI dee directly on the Pentium-
Pro memory bs. For independentendors finding a standard int&ck on the memoryus may imply coordinating
with microprocessor companies to acquire their memary $pecification. Corollary Inc. has ¢k such an
approach, albeit in a dérent contgt, to glue together tavfourprocessor PentiumPro systems into a eight-processor
PentiumPro SMP node [10]. Alternaly, manufcturers of proprietary memoryges could pnade speciabridges

to other open standard intaces, such as the PCI.

The bridge needed ceerts proprietary memoryuls signals to other standard signals. A standard bridge might con-
nect to a standard 1/Qub (e.g., PCI). A standard bridge supportsyrsiandard déces lut may not preide the per-
formance or coherence access needed by ULNIs. A more aggrbssige could corert directly to a standard 1/0
bus connector that supports one demanding IAdcdewithout a pigsical I/0O lus. This bridge carake the 1/0 s
signals to der higher performance (e.g., no arbitration time) to standasidete SGIS Paver Challenge, foream-

ple, uses this type of bridge (which yheall a “personality intedce”) to comert between SG3' proprietary 1/O bs

80000 E T E
E SAN link bandwidth]
- Memory bus bandwidth (PCs)

. r — — — Standard I/O bus bandwidth A
T 8000 £ —~ 2
] = E
(&) L -
[} L .

(2]
2 B i
g 800 & 24 =
[@)) - 7
(0] - .
E ;
p= L i
9 80 -
= = E
3 3
=]
5]
m -

8 ur 1 1 1 1 1 1 1 1 1 1

(e} N~ [ee] [} o — N ™ < n (e} N~ (o] [} o — N (a2} < n (e} N~ (o] [} o —
N~ N~ N~ N~ 06} [ee] [ee] [0} [ee] [ee} [ee} [o0] [e0] [ee} [} (@] (2] [} (o] [e2] [} [} (@] [} o o
(o)) o (o)) (o)) (o)) [e)) [e)) (o)) [0)} (o)) (o)) (o)) [e)} (o)) (o)) [e)) (o)) (o)))} (o)) (o)) (o)) o (o)) o o
— N N

Year of Introduction

FIGURE 3. This figure shavs the trends in peak link bandvidth of SANs and peak banavidth of memory buses in persona
computers and standard I/O luses. The peak SAN link bandidth is growing at 100% per year, while the peak memory and I/O lns
bandwidths are growing at roughly 30% per year. Legend br memory bus: (1) 8085 (2) 8086 (3) 80286 (4) 80386 (5) 8048¢
Pentium (7) PenitumPro. Legend br I/O bus: (8) IBM PC (9) ISA bus (10) MCA (11) EISA tus (12) 32-bit/20-MHz Slos (13) VESA
(14) 32-bit/33-MHz PCI (15) 64-hit/66-MHz PCI. Legenddr System Area Netvworks: (16) TMC CM-2 (17) nCube (18) Intel iPSC/:
(19) Maspar (20) TMC CM-5 (21) Intel Delta (22) Meilo CS-2 (23) IBM SP-2 (24) Myricom Myrinet (25) Intel Rragon (26) Cray
T3D (27) Cray T3E (28) SGI/Craylink.

and a standard SCSlwdee. Similarly Intel's Accelerated Graphics Port is a standard bridge tfatsafraphics
accelerators a dedicated high-bandwidth path to main merorg/en more aggress bridge can comert to a
device-specific intedce that is proprietaryubless demanding and more stable between product generations than a
memory lus. If network connections become standard equipmeset filkme kiffers then this option pvides an
attractize way to obtain performance comparable to a memasyUl NI without some of the cost.

Another possibility is standardizing the intezé between the internal andernal Nis. Microprocessorendors can
provide the internal intedce that communicates with the processor and third-pantgors can prade the aternal
interface that communicates with the netlu This reli&es third-party endors from details of a particular memory
bus’s coherence protocol and all® microprocessorandors to delier the netwrk’s performance to a user process
via its avn optimized internal intesice.

5 Cache Netwrk Interface Registers in Piocessor and Netwrk Interface Caches

This section discusses whorventional NI rgisters are madd uncacheable and what are theaadivges of caching
ULNI registers in processor caches and ULNIs.

5.1 Why corventional NI registers ae marked uncacheable?

Disk interface memory is typically not cached in processor caches. Insteam eemory is usually maekl
uncacheable for three reasons. First, processor accesses to Widdlirdemory often hee side-efects (Figure4),
unlike processor accesses tgular cacheable memorior example, a processarstore to rgular cacheable mem-
ory does not hze side-éfects, such as sending a message into theonletwn contrast, a processestore to ULNI
memory may hee such a side-fct. Because of such siddesfts, NIs often require loads and stores to ULNI mem-
ory to appear strictly in ordeln current microprocessors the simplesiywo ensure this is to mark these loads and
stores uncacheable.

Second, the ULNI memory beles more lile a processor cache than main mem®ohys is because it can generate
new data (e.g., on message reception) justdilprocessom contrast, main memory is a passtevice that can only
return data that has been stored to it. Consequéralyprocessor is aleed to cache ULNI memory locations (e.qg.,
message Uifers), the ULNI must hae the ability to imalidate these memory locations when & meessage anes.
Unfortunately most Nls reside on I/Quses, which usually do not suppontatidation signals.

store X to A store X to A store X to A

load Y from B store Yto A store Y to B—_>N

(@) (b) © | sends message to netk
FIGURE 4. This figure shavs three kinds of side-effects that exist in NI designs. The instructions stiin this figure are uncachec
loads and stoes to ULNI registers memory-mapped to virtual addesses A and B. (a) shs that the stoe-load pair must be strictly
in order for some Nis to vork correctly (e.g, Princeton UDMA initiation), even though the instructions appear unelated to the
processor(b) shavs two consecutve stores to the same addrss must occur in order (e.g TMC CM-5 NI). (c) extends (b) to shav
that the second stoe (in the general case, the “n"th stog) can trigger an action in the NI, such as sending a message into
network. (a) and (b) have the side-effects that a pvious store determines implicitly the next uncached load or st@ a NI expects
(c) has the side-effect of sending a message on a&tor

Third, caching ULNI rgisters in processor caches requires support for ULdidter reuse [7]. Carentional ULNIs

do not hae to remember thealue of a ULNI rgister once a processor reads it because processor loads are atomic.
Unfortunately a processos’loads to wrds in a cache block are not atomic because a procesache could lose

the cache block read from the ULNI due to a cache replacement. Consedukehtlyregisters read via a cache
block requires a handshebetween the processor and ULNI towalkxplicit reuse of the cache block.

The first and third problems—presence of sideat$ in ULNI memory accesses and support ULNIster reuse—
can be eliminated by designing the application programming actexarefully (discussed later). The second prob-
lem—keeping ULNI dgice memory and processor caches coherent—can beddojvplacing the ULNI déce on

the memory bs. This vould allov a ULNI to directly obsemr and participate in the systentoherence protocol, and
thereby generatevmlidation signals when necessary

5.2 Advantages of caching ULNI egisters in piocessor caches

Caching ULNI rgisters in processor cachedeo$ two adwantages [7]. First, caching status or contrgigters in
processor caches helps remaunnecessary memoryd trafic. For example, if a processor were polling on an
uncached status gister every processor poll auld go across the memory$to the ULNI deice. Unsuccessful
polls—that is, those that do not find messages in the Nistevprecious memory$ bandwidth, which could be
used by other processors in an SMP node. Instead, if the sgigisires cached all unsuccessful polls will hit in the
processos cache. When a messagevasifinally and the ULNI status changes, the ULNlicke invalidates the
cached status gester in the processercache. On its mepoll attempt, the processor will incur a cache miss, which
can be satisfied directly by the ULNI.

Second, uncached accessevioi®\ery lov bandwidth compared to cache block accesses becaydeattsfer only
a fawv bytes of data (e.g., 1-16 bytes). In contrast, cache blocks are typically mgerh(éag., 32-128 bytes) and are
capable of ploiting the full transfer bandwidth of todaymemory hses.

5.3 Advantages of teating ULNI memory as a cache

Like processor caches ULNI caches can cache Uldters. Instead of allocating ULNIgisters in ULNI memory
the rayisters can be allocated in the usaiitual space and bas#t-up by main memory.ike processor caches ULNI
caches can cache simply the portion of main memory that contains the Widtere Such ULNI caches help
improve performance in at leastavwvays. First, processor cache misses for ULNIsters can be intercepted and
satisfied directly by the ULNI cache through a cache-to-cache tra@sfietrast this with data transfer via DMA in
which messages reach the processor cachedirsteps (and consequentlyotunemory s crossings): from ULNI
device to main memory and from main memory to the processor cache. This increase ymtatghecome critical
for lateng-bound, request-response protocols.

Second, the ULNI cache mayerflov when lursts of messages aseiat a ULNI. Havever, ULNI cache replace-
ments to main memory willlffer these messages automatically withoytarocessor inteention [7]. Contrast this
with the more coventional and laver performance solution in which processors musy the data xplicitly from
memory-mapped ULNI gisters to the usex'virtual space.

6 Allow Out-of-Order and Speculatve Accesses to Netwk Interface Memory

To tolerate the lateyoof main memory access, processors usetéghniques: out-of-order (OOO) access and spec-
ulative execution. OOO accesses alltoads and stores to bypass earlier loads or stores. Comebgatiprocessor

need not stall because of a cache miss on a particular load. Specedatiution is more aggressi than OOO
accesses in tolerating memory access Igtédhrocessors speculate on control dependence (e.g., branch prediction),

data dependence, data addresses, and d@atsyand perform computations based on these specudiied.f the
speculation is successful, idle processor resources can be festidedy and memory access latencies can be toler-
ated. Hovever, if the speculation is incorrect, then all yizis computation based on specwigly loaded alues

must be squashed andygsrocess-specific state must be rolled back to the point at which the speculation started. In
the cont&t of messaging, we ant processors to read from and write messages to ULNI memory spetylatst

like regular memory

Processors do not usually perform OOO and speeelaticesses to ULNI memory for three reasons. Firsty ih@n

buses do not adequately support multiple outstanding transactions, which forces processor accesses to NIs to be ser
alized on the 1/O bs. Second, as discussed in the last section, the presence ofesitteinfNIs often force NI
accesses to be performed in ordevpnting OOO accesses. Furtheurrent NIs usually do not priole ary mecha-

nism to rollback ay side-efects if the process@’speculation is incorrect, which peats speculate loads to NI

memory Third, the most microprocessors today disali@OO and speculat accesses on uncached loads or stores,
which is the predominantay in which NIs are accessed.

The first problem—the absence of support for multiple outstanding transactions on commaisd#o-ban be
solved by interécing the ULNI deice to the memoryus, which usually supports multiple outstanding transactions.
The second problem—the presence of sideectf in ULNI memory accesses—can be eliminated by designing the
application programming intexte to the ULNI carefully (see xtesection). Finallythe third problem—absence of
OO0 and speculate access to uncached I/0O space—can beddly caching ULNI mgisters in processor caches on
which processors can speculate and notatig a processas’ speculatiely stored state to be reflected outside the
processarBoth mechanisms are supporteficedntly by modern microprocessors today

7 Use Memory-Based Queues agplication Programming Interface

Typically a user process accesses a peripheral Moedeia the operating system or uses the underlying data-mo
ment primitive as its Application Programming Intace (API) to the I/O dece. For example, user APIs based on
program-controlled I/O uses uncached loads and stores—the daeerd primitves—to memory-mapped dee
registers as the user API to the I/Ovide. Similarly Princetors UDMA [1] mechanism uses DMA transfers as the
user API to the ULNI ddce. We ague that instead ofxposing the underlying data mement primitve as the user
API, ULNIs should structure the ULNI dategisters asmemory-basedjueues [3, 11, 7]. Such memory-based
gueues can be classified neither as program-controlled I/O nor as DMA.

Memory-based queues consist obtyarts: a send queue and a reegjueue. Each queue is allocated in virtual
memory and managed as a circulaffér with head and tail pointerso Bend a message, the processor enqueues the
message at the tail of the send queue eitherxpljcily writing the message into the send queue memory or by
inserting a virtual pointer to the message into the send queue. The ULNI dequeues messages from the head by read
ing the send queue memory and, if necesseagslating the virtual pointer to the message to iysiphl memory
address and subsequently reading the message from the user virtual @péeerdeaie queue, the ULNI similarly
engueues messages at the tail of the veapieue and the processor dequeues messages from the hazlc@re-
mands for such APIs are no longempkcit DMA-initiation requests; instead, ULNI diee commands are simple
memory operations, such as incrementing or decrementing queue head or tail paintemple, when a proces-

sor enqueues a message to the send queue and increments the tailtip@ibieXl| interprets this as adee com-
mand to send a message to the oetwlf the tail pointer is uncached, then the ULNI treats the increment as a
signalling store; if the tail pointer is cached, the ULNI must poll on the tail pointerdomassages.

There are four adntages to treating ULNI APl as memory-based queues. Firsteumfikached accesses or
UDMA, memory-based queues decouple a processor and a ULNI. This enables both the processor and ULNI to send
and receie multiple messages to and from the queues without blocking.

Second, memory-based queuesid side-efects by treating ULNI queue accesses simply as sidetdfee rgular

memory accesses. ULNI commands for such queues are primarily incrementing or decrementing queue pointers.
This allowvs processors to cache ULNI queues, perform OOO accesses on queue, medthspgculately send and

receve messages to and from these queues.

Third, since memory-based queues are allocatedrular memory and managed as circulaffdrs, the reuse
handshak is simple: a comparison of the head and tail pointeeale whether a queue location can be reused or
not.

Fourth, memory-based queues simplify the problem of multiprogramming a ULNI for SMPs. This is because mem-
ory-based queues pride each process protected, yet simultaneous, access to the ULNI withukintgnthe operat-

ing system while sending and redeg messages. In contrast, machines, such as the Thinking Machines’ CM-5,
allow only one user process to access the ULNI at one time and mustt@witeh the entire ULNI when it conte
switches a user process.

8 Additional Opportunities

There are at least three additional opportunities for impgothe performance of processdr interactions. Details

about these opportunities can be found in Mukherjee and Hill [8]. These opportunities are using virtual memory to
buffer network messages, ming data between a processor and a NI in cache block units, and notifying a processor
of NI events via cache ymlidations. Wtual memory is typically huge in todaytomputers and, therefore, can pro-

vide such lage amounts of iffering. High-performance ULNI déces can demand lge amounts—that is, tens of
megabytes—of bffer memory to accommodate a widariety of protocols, support g dgree of multiprogram-

ming, handle lage lursts of messages, and guarantee reliablgedgliof messages via flocontrol. Using cache

blocks to read and write NI memory alls a processor to directly read data out of a Né, fikogram-controlled 1/O,

and transfer data in blocks, dikDMA. Finally, using cache iralidations as notification signals, instead ofvyea

weight interrupts, all@s a NI to rapidly inform a processor of its status changes.

9 Conclusions

A new generation of netarks called System Area Nedvks (SANS) haswlved to satisfy the increasing demand for
high-bandwidth, la-lateng networks. The benefits of SANs are realized in applications only if light-weight proto-
cols (not TCP/IP) and fi€ient netvork interfaces are used. The benefits of SANs are squanderedafaple, if
applications must wroke the operating system to send and kecaiessages. In contrast, Ueel Network Inter-
faces (ULNIs) allev host applications to access the ratninterface directly without compromising protection by
memory mapping internal intexte rgisters into user space.

The eponential imprgement in microprocessors’ and SANs’ performance and thenad? SMPs indicate that pro-
cessor accesses to ULNIs will become a critical bottleneck for computer syatdmwith SANs. Processor
accesses to ULNI gisters is simply reading and writing ULNI memoievertheless, most ULNIs treat such
accesses as disk inteck accesses that cavdaide-diects (e.g., a message send). Such treatment eisadlarrent

ULNIs to tale adwantage of memory access optimization technigues, such as traditional caches, out-of-order
accesses, and speculation. Instead, \gaear that ULNI memory accesses should be treatedyakareside-dect-

free memory accesses. Memory is virtualized without requiring operation systererntitan(in the common case),

is on the memoryus, can be cached, can be accessed out of order and spelgukatid is free of anside-efects.

We discussed loto do the same for Nls, so that the dramatic imgmuents in netark performance can be deli

ered to users.

Acknowledgments

We would like to thank Guri Sohi for inspiring this papBebecca Hdfnan, Rich Martin, Larry Petersonyifiash
Sodani, and the angmous reiewers preided \aluable comments on earlier drafts of this paper

This work is supported in part by Wright Laboratoryidnics Directorate, Air Brce Material Command, USAF
under grant #F33615-94-1-1525 and ARtder no. B550, CCR-9101035, MIP-9225097, and MIPS-9625558, and
donations from Sun Microsystems. The U.Sv&ament is authorized to reproduce and distalveprints for Ge
ernmental purposes notwithstanding aopyright notation thereon. The wies and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representifigjighpadities or endorsements,
either epressed or implied, of the Wright Laboratoryignics Directorate or the U.S. @arnment.

References

[1] MatthiasA. Blumrich, Cesary Dubnicki, EdwaM¥. Felten, and Kai Li. Protected User-level DMA for the SHRIMP Network Interfaderdoeedings of the Second IEEE
Symposium on High-Performance Computer Architecteebruary 1996.

[2] R.Cypher, AHo, S.Konstatinidou, and MMessina. Architectural Requirements of Parallel Scientific Applications with Explicit Communicati®rodeedings of the 20th
Annual International Symposium on Computer Architectpages 2—13, 1993.

[3] Peter Druschel, Larrly. Peterson, and Bruc® Davie. Experiences with a High-Speed Network Adaptor: A Software PerspecB\@dOMM '94 pages 2—-13, August 1994.
[4] Dave Dunning and Greg Regnier. The Virtual Interface Architectutdotrinterconnects Vpages 47-58, 1997.

[5] RobertW. Horst. TNet: A Reliable System Area NetwolkEE Micro, 15(1):37-45, February 1994.
[6] Kimberly A. Keeton, Thomag&. Anderson, and Davidl. Patterson. LogP Quantified: The Case for Low-Overhead Local Area NetwoHst Interconnects 1111995.

[7] Shubhend. Mukherjee, Babak Falsafi, Makk Hill, and DavidA. Wood. Coherent Network Interfaces for Fine-Grain CommunicatioRrdneedings of the 23rd Annual
International Symposium on Computer Architecty@ges 247-258, May 1996.

[8] Shubhends. Mukherjee and MarR. Hill. A Survey of User-Level Network Interfaces for System Area Networks. Technical Report 1340, Computer Sciences Department,
University of Wisconsin—Madison, February 1997.

[9] loannis Schoinas and Makk Hill. Address Translation in Network Interfaces. Pnoceedings of the Fourth International Symposium on High-Performance Computer
Architecture (HPCA)February 1998.

[10] Pete Vogt. Profusion: A Buffered, Cache Coherent Crossbar Switktot limterconnects Mpages 87-96, 1997.

[11] Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels. U-Net: A User-Level Network Interface for Parallel and Distributed CorRputieediimgs of the
15th ACM Symposium on Operating System Principles (S@8§9s 40-53, December 1995.

[12] Thorsten von Eicken, Davif. Culler, SettCopen Goldstein, and Klalsik Schauser. Active Messages: a Mechanism for Integrating Communication and Computation. In
Proceedings of the 19th Annual International Symposium on Computer Architgetges 256—-266, May 1992.

