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Abstract
Much of a computer’s value depends on how well it interacts with networks. To enhance this value, design-

ers must improve the performance of networks delivered to users. Fortunately, the performance of networks is
improving rapidly. Unfortunately, this dramatic improvement in network performance is seldom delivered to
users. A key bottleneck is the hostnetwork interface (NI), which connects a network to a host computer. This
bottleneck gets more severe as network and host performance continue to improve.

The problem with current NIs is that they were designed with an interface similar to that of a disk interface.
Most current NIs require applications to use an operating system call, are placed on the I/O bus, do not allow
processors to cache their registers, and force processors to interact with them with in-order and non-specula-
tive accesses. The last two problems are partially due to the presence of “side-effects” in current NI designs.

While this kind of an interface may have been adequate in the past, we argue that future NIs should appear
to their hosts more like memory than like a disk. Memory is virtualized without requiring operation system
intervention (in the common case), is on the memory bus, can be cached, can be accessed out of order and
speculatively, and is free of any side-effects. We discuss how to do the same for NIs, so that the dramatic
improvements in network performance can be delivered to users.

1  Intr oduction

Much of a computer’s value depends on how well it interacts with networks. To enhance this value, designers must
improve the network performance delivered to users. The commonly quoted aspect of network performance isband-
width. Bandwidth is the rate at which data flows through the network and computer. High bandwidth is critical for
transmitting high-quality video or large files. An under-appreciated aspect of network performance islatency.
Latency is the user-to-user delay for sending a message. Latency determines the performance of protocols that send
many small messages, as can be found in network file systems, database lock managers, and fine-grain parallel com-
puting [6, 2].

Fortunately, networks are improving rapidly. In particular, local area network (LAN) bandwidth has improved from
10-100 megabits/second to one gigabit/second or more. Aggressive LANs, such as the Myricom Myrinet or the Tan-
dem Servernet, have moved so far that some view them as a new class of networks called asystem area network or
SAN [5]. SANs improve performance in two ways. First, aggressive links and switches provide very high bandwidth
and extremely low latency. Second, reliability properties of SANs allow systems to use lean communication layers
(e.g., Active Messages [12]) instead of heavy-weight and one-size-fits-all protocols (e.g., TCP/IP). Consequently,
SANs help improve the performance of both network hardware (links and switches) and network software (commu-
nication protocols).

Unfortunately, improvements in network hardware and software are rarely delivered to users. A key problem is inad-
equate hostnetwork interfaces (NIs). A NI connects a network to a host computer that runs the network software. A
NI includes hardware that sits typically on an I/O bus and exposes an internal interface (e.g., device registers) to a
host processor. Most NIs have low-level software (usually in a device driver) inside the operating system that applica-
tions use to access the network. Figure 1a illustrates the host location of a conventional NI.

The problem with current NIs is that they were designed with an interface similar to a disk’s interface. Most current
NIs require applications to use an operating system call, are placed on the I/O bus, do not allow caching of device
registers, and force processors to interact with them with in-order and non-speculative accesses. The last problem is
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subtle and partly caused by hosts communicating with NIs using memory operations that are overloaded with side-
effects (e.g., a load to a NI device register both returns a value and deletes it from the device).

Such NIs will not be adequate in the future. First, emerging SANs deliver bandwidth (10 gigabits/second or more)
and latency (10s of nanoseconds) that are between two to four orders of magnitude better than that delivered by cur-
rent disks. Second, new hosts will demand much higher performance than in the past because of faster processors,
multimedia extensions, and/or multiple processors. If NIs do not respond they will become the bottleneck in network
performance.

We argue that future NIs should appear to their hosts more like memory than like a disk. Memory is virtualized with-
out requiring operation system intervention (in the common case), is on the memory bus, can be cached, can be
accessed out of order and speculatively, and do not have side-effects. We propose to do the same for NIs, as summa-
rized in Table2. Traditional NIs that use direct memory access (DMA) offer some of these advantages because data
DMA-ed into memory can be treated just like regular memory. Unfortunately, the DMA initiation itself often uses
conventional solutions listed in Table2.

Treating NI accesses like memory accesses is justified by the importance of network performance to future comput-
ers. Today a NI is a central piece of hardware for a computer. Therefore we believe that a NI should be treated as a
“standard equipment” just like main memory or frame buffers and not as an optional and peripheral add-on.

The rest of the paper is organized as follows. The next section discusses a NI’s key components. Rest of the sections
discuss the opportunities for improving the performance of NI accesses, as listed in Table2. More details on the
opportunities for improvement are available in a survey paper [8].

2  Key Components of a Network Interface

This section examines network interface aspects in more detail to provide a foundation for the optimization sections
that follow. A network interface (NI) in a host node is a device that allows a processor to send and receive messages
from a network that connects these host nodes. The network accepts messages from a NI and delivers them to one or
more NIs connected to the network. A NI consists of two parts, the internal NI and the external NI. We define the
internal NI as the NI’s interface to the processor, main memory, and (perhaps) disks, and external NI as the NI’s inter-
face to the network. The internal NI contains logic and memory that the processor uses to send and receive messages
to and from the NI. For example, a processor can send a message to the network by writing messages to the data reg-
isters of the internal NI. An external NI performs network-specific functions, such as cyclic-redundancy checks, net-
work-specific framing, etc.

An internal NI consists of two parts: the send interface and the receive interface. Each interface consists of four com-
ponents:
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FIGURE 1. (a) illustrates the architecture of standard workstation node with the network interface on the I/O bus, (b) illustrates
the same workstation node with the network interface on the memory bus, and (c) augments the network interface in (b) with a
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Status Registers. NI status registers contain NI status information. A receive interface status register, for example,
can indicate that a new message has arrived from the network, and a send interface status register can indicate that the
NI has successfully injected a message into the network.

Control Registers. NI control registers allow a user process to pass information and commands to the NI device. For
example, a processor may temporarily disable NI interrupts by writing to a NI control register.

Data Registers. NI data registers contain message data sent by a processor or received by the NI from the network.

Notification mechanism. A NI informs a process of any change in NI device status through a notification mecha-
nism. For example, the NI can interrupt the process on a change in device status, such as arrival of a message from
the network.

To send a message to the network, a processor first reads the send interface status register to ensure there is enough
space in the send interface’s data registers. If there is enough space, the processor writes a new message to the data
registers. If there is not enough space, the processor can either poll the NI periodically or have the NI notify it when
free space becomes available. On receiving the new message in its data register the NI hands the message to the
external NI, which injects the message into the network.

When a message arrives at a NI, the external NI extracts the message from the network and hands the message to the
receive interface. The receive interface writes the message to its data registers and sets a status register that indicates
the presence of a new message. Flow control (e.g., return-to-sender) is typically used to ensure messages are never
(or rarely) lost if the data registers are full. If the control registers have been appropriately set by the processor, the NI
can send a notification to a processor in the receive host node about the arrival of this message through a processor
interrupt. Finally, a processor in the receive host node reads the new message from the NI data registers.

3  Use Virtual Memory Hard ware to Virtualize the Network Interface

There is a marked difference in how user processes access a disk and main memory. Both are shared physical
resources virtualized across multiple user processes. Virtualizing a physical resource to a user process requires two
mechanisms: protection and address translation. Protection isolates user processes from one another. Address transla-
tion allows a user process to access a physical device through virtual addresses. The operating system virtualizes a
disk by requiring that all disk accesses be initiated through operating system traps. However, trapping to the operat-
ing system is usually expensive because modern microprocessors do not support them very efficiently. In contrast,
main memory is virtualized through the virtual memory hardware, which is supported by all high-performance
microprocessors today, and does not involve operating system intervention in the common case. Main memory is
divided into physical pages and mapped to user virtual space on demand. A hardware structure called the Translation
Lookaside Buffer rapidly translates user virtual page addresses to physical page addresses in main memory. Conse-
quently, main memory accesses are much faster (less than a microsecond) compared to disk accesses (greater than 10
- 100 microseconds).

Accessing NI memory using virtual memory, and not the operating system, can therefore dramatically improve per-
formance. The operating system simply maps NI memory pages directly into user space; the virtual memory hard-

Problems Solutions Discussed

Conventional Proposed

Virtualize via operating system virtual memory hardware Section3

Location I/O bus memory bus Section4

Cache NI registers not allowed allowed Section5

Out-of-order and speculative access not allowed allowed Section6

Application Programming Interface (API) has side-effects no side-effects Section7

Summary: NI access similar to disk interface access memory access

TABLE 2. Summary and forecast of paper
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ware translates these memory-mapped virtual addresses to appropriate physical addresses in the NI memory and
ensures protected access to it.

The NIs in the Thinking Machines’ CM-5 and, more recently, the Myricom Myrinet network allow users to directly
access the NI memory using this technique. We call such NIsUser-Level Network Interfaces (ULNIs) since the NI
memory can be directly accessed from user space. Compaq, Intel, and Microsoft Corporations are jointly developing
such a ULNI specification called the Virtual Interface (VI) architecture [4]. The VI architecture is a logical specifica-
tion that will allow a user process to bypass the operating system while sending and receiving messages from the net-
work.

4  Place the Network Interface on the Memory Bus

In a standard workstation node (Figure 1a) disks are typically located on the peripheral I/O bus. The choice of this
location is dictated primarily by the availability of a standard I/O bus interface (e.g., SBus, PCI), which enables inde-
pendent vendors to manufacture NI cards to these standard specifications. Unlike I/O buses, current memory buses
are usually proprietary and have non-standard interfaces. Consequently, manufacturers do not design usually disk
interfaces to memory bus specifications.

Current memory buses, however, offer two significant performance advantages over I/O buses. First, memory buses
offer much lower latency and higher bandwidth than I/O buses. For example, the current generation of PC memory
buses are clocked at 66-75 MHz, which is more than two times faster than the current generation of 33 MHz PCI
buses. Additionally, all I/O bus accesses typically traverse the memory bus and the I/O bridge, which connects pro-
prietary memory buses to standard I/O buses. Current memory buses offer peak bandwidth exceeding four gigabits
per second. Some of the Sun Enterprise servers support an even more aggressive memory bus called the Ultragiga-
plane, which offers a sustained bandwidth of 20 gigabits per second. Such high bandwidth is achieved via high
clocks, large widths (between 64- to 256-bits), and overlapped bus transactions.

Figure 3 shows the trends in peak link bandwidth of SANs, memory buses in personal computers, and standard I/O
buses. This figure suggests that the gap between bandwidths of memory and I/O buses will continue to exist in future.
In fact, I/O bus bandwidth lags behind memory bus bandwidth by at least four years. In other words, I/O buses will
take another four years to achieve the peak bandwidth offered by today’s memory buses. Consequently, NI cards
designed to I/O buses will not be able to harness the full memory bus bandwidth. Figure 3 also shows that SAN link
bandwidth is growing at a much faster rate than the bandwidth of PC memory buses. For such SANs we will need
more aggressive memory buses, such as the SUN Ultragigaplane.

Second, memory buses support optimized single-writer coherence protocols, which allow processor caches to cache
and share memory easily. This is because these single-writer coherence protocols provide a single and consistent
image of physical memory across all processor caches. The next section argues how and why caching message data
in processor and ULNI caches can help improve performance.

The performance advantages of memory buses suggest that ULNIs should be placed on memory buses, just like main
memory (Figure 1b). The main problem with memory buses is that they do not export a standard interface. However,
the advent of ULNIs as standard equipment, like memory or frame buffers, emphasizes the need for memory bus
designers to export a standard interface to either systems designers internal to a company or third-party vendors man-
ufacturing independent ULNI devices. Companies such as Intel, IBM, and Sun Microsystems that manufacture both
microprocessors and network-centric computers can allow system designers to design ULNIs to their internal mem-
ory bus. Intel’s MPP supercomputer called Teraflop, for example, attaches the ULNI device directly on the Pentium-
Pro memory bus. For independent vendors finding a standard interface on the memory bus may imply coordinating
with microprocessor companies to acquire their memory bus specification. Corollary Inc. has taken such an
approach, albeit in a different context, to glue together two four-processor PentiumPro systems into a eight-processor
PentiumPro SMP node [10]. Alternatively, manufacturers of proprietary memory buses could provide specialbridges
to other open standard interfaces, such as the PCI.

The bridge needed converts proprietary memory bus signals to other standard signals. A standard bridge might con-
nect to a standard I/O bus (e.g., PCI). A standard bridge supports many standard devices but may not provide the per-
formance or coherence access needed by ULNIs. A more aggressive bridge could convert directly to a standard I/O
bus connector that supports one demanding I/O device without a physical I/O bus. This bridge can fake the I/O bus
signals to offer higher performance (e.g., no arbitration time) to standard devices. SGI’s Power Challenge, for exam-
ple, uses this type of bridge (which they call a “personality interface”) to convert between SGI’s proprietary I/O bus
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and a standard SCSI device. Similarly, Intel’s Accelerated Graphics Port is a standard bridge that offers graphics
accelerators a dedicated high-bandwidth path to main memory. An even more aggressive bridge can convert to a
device-specific interface that is proprietary but less demanding and more stable between product generations than a
memory bus. If network connections become standard equipment like frame buffers then this option provides an
attractive way to obtain performance comparable to a memory-bus ULNI without some of the cost.

Another possibility is standardizing the interface between the internal and external NIs. Microprocessor vendors can
provide the internal interface that communicates with the processor and third-party vendors can provide the external
interface that communicates with the network. This relieves third-party vendors from details of a particular memory
bus’s coherence protocol and allows microprocessor vendors to deliver the network’s performance to a user process
via its own optimized internal interface.

5  Cache Network Interface Registers in Processor and Network Interface Caches

This section discusses why conventional NI registers are marked uncacheable and what are the advantages of caching
ULNI registers in processor caches and ULNIs.

5.1  Why conventional NI registers are marked uncacheable?

Disk interface memory is typically not cached in processor caches. Instead device memory is usually marked
uncacheable for three reasons. First, processor accesses to ULNI device memory often have side-effects (Figure 4),
unlike processor accesses to regular cacheable memory. For example, a processor’s store to regular cacheable mem-
ory does not have side-effects, such as sending a message into the network. In contrast, a processor’s store to ULNI
memory may have such a side-effect. Because of such side-effects, NIs often require loads and stores to ULNI mem-
ory to appear strictly in order. In current microprocessors the simplest way to ensure this is to mark these loads and
stores uncacheable.

Second, the ULNI memory behaves more like a processor cache than main memory. This is because it can generate
new data (e.g., on message reception) just like a processor. In contrast, main memory is a passive device that can only
return data that has been stored to it. Consequently, if a processor is allowed to cache ULNI memory locations (e.g.,
message buffers), the ULNI must have the ability to invalidate these memory locations when a new message arrives.
Unfortunately, most NIs reside on I/O buses, which usually do not support invalidation signals.

FIGURE 3. This figure shows the trends in peak link bandwidth of SANs and peak bandwidth of memory buses in personal
computers and standard I/O buses. The peak SAN link bandwidth is growing at 100% per year, while the peak memory and I/O bus
bandwidths are growing at roughly 30% per year. Legend for memory bus: (1) 8085 (2) 8086 (3) 80286 (4) 80386 (5) 80486 (6)
Pentium (7) PenitumPro. Legend for I/O bus: (8) IBM PC (9) ISA bus (10) MCA (11) EISA bus (12) 32-bit/20-MHz Sbus (13) VESA
(14) 32-bit/33-MHz PCI (15) 64-bit/66-MHz PCI. Legend for System Area Networks: (16) TMC CM-2 (17) nCube (18) Intel iPSC/2
(19) Maspar (20) TMC CM-5 (21) Intel Delta (22) Meiko CS-2 (23) IBM SP-2 (24) Myricom Myrinet (25) Intel Paragon (26) Cray
T3D (27) Cray T3E (28) SGI/Craylink.
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Third, caching ULNI registers in processor caches requires support for ULNI register reuse [7]. Conventional ULNIs
do not have to remember the value of a ULNI register once a processor reads it because processor loads are atomic.
Unfortunately, a processor’s loads to words in a cache block are not atomic because a processor’s cache could lose
the cache block read from the ULNI due to a cache replacement. Consequently, ULNI registers read via a cache
block requires a handshake between the processor and ULNI to allow explicit reuse of the cache block.

The first and third problems—presence of side-effects in ULNI memory accesses and support ULNI register reuse—
can be eliminated by designing the application programming interface carefully (discussed later). The second prob-
lem—keeping ULNI device memory and processor caches coherent—can be solved by placing the ULNI device on
the memory bus. This would allow a ULNI to directly observe and participate in the system’s coherence protocol, and
thereby generate invalidation signals when necessary.

5.2  Advantages of caching ULNI registers in processor caches

Caching ULNI registers in processor caches offers two advantages [7]. First, caching status or control registers in
processor caches helps remove unnecessary memory bus traffic. For example, if a processor were polling on an
uncached status register, every processor poll would go across the memory bus to the ULNI device. Unsuccessful
polls—that is, those that do not find messages in the NI—waste precious memory bus bandwidth, which could be
used by other processors in an SMP node. Instead, if the status register is cached all unsuccessful polls will hit in the
processor’s cache. When a message arrives finally and the ULNI status changes, the ULNI device invalidates the
cached status register in the processor’s cache. On its next poll attempt, the processor will incur a cache miss, which
can be satisfied directly by the ULNI.

Second, uncached accesses provide very low bandwidth compared to cache block accesses because they transfer only
a few bytes of data (e.g., 1-16 bytes). In contrast, cache blocks are typically much larger (e.g., 32-128 bytes) and are
capable of exploiting the full transfer bandwidth of today’s memory buses.

5.3  Advantages of treating ULNI memory as a cache

Like processor caches ULNI caches can cache ULNI registers. Instead of allocating ULNI registers in ULNI memory
the registers can be allocated in the user’s virtual space and backed-up by main memory. Like processor caches ULNI
caches can cache simply the portion of main memory that contains the ULNI registers. Such ULNI caches help
improve performance in at least two ways. First, processor cache misses for ULNI registers can be intercepted and
satisfied directly by the ULNI cache through a cache-to-cache transfer. Contrast this with data transfer via DMA in
which messages reach the processor cache in two steps (and consequently two memory bus crossings): from ULNI
device to main memory and from main memory to the processor cache. This increase in latency may become critical
for latency-bound, request-response protocols.

Second, the ULNI cache may overflow when bursts of messages arrive at a ULNI. However, ULNI cache replace-
ments to main memory will buffer these messages automatically without any processor intervention [7]. Contrast this
with the more conventional and lower performance solution in which processors must copy the data explicitly from
memory-mapped ULNI registers to the user’s virtual space.

6  Allow Out-of-Order and Speculative Accesses to Network Interface Memory

To tolerate the latency of main memory access, processors use two techniques: out-of-order (OOO) access and spec-
ulative execution. OOO accesses allow loads and stores to bypass earlier loads or stores. Consecutively, a processor
need not stall because of a cache miss on a particular load. Speculative execution is more aggressive than OOO
accesses in tolerating memory access latency. Processors speculate on control dependence (e.g., branch prediction),

store X to A
load Y from B

store X to A
store Y to A

store X to A

store Y to B
NI sends message to network

FIGURE 4. This figure shows three kinds of side-effects that exist in NI designs. The instructions shown in this figure are uncached
loads and stores to ULNI registers memory-mapped to virtual addresses A and B. (a) shows that the store-load pair must be strictly
in order for some NIs to work corr ectly (e.g., Princeton UDMA initiation), even though the instructions appear unrelated to the
processor. (b) shows two consecutive stores to the same address must occur in order (e.g., TMC CM-5 NI). (c) extends (b) to show
that the second store (in the general case, the “n”th store) can trigger an action in the NI, such as sending a message into the
network. (a) and (b) have the side-effects that a previous store determines implicitly the next uncached load or store a NI expects.
(c) has the side-effect of sending a message on a store.

(a) (b) (c)



7

data dependence, data addresses, and data values, and perform computations based on these speculated values. If the
speculation is successful, idle processor resources can be used effectively and memory access latencies can be toler-
ated. However, if the speculation is incorrect, then all previous computation based on speculatively loaded values
must be squashed and any process-specific state must be rolled back to the point at which the speculation started. In
the context of messaging, we want processors to read from and write messages to ULNI memory speculatively, just
like regular memory.

Processors do not usually perform OOO and speculative accesses to ULNI memory for three reasons. First, many I/O
buses do not adequately support multiple outstanding transactions, which forces processor accesses to NIs to be seri-
alized on the I/O bus. Second, as discussed in the last section, the presence of side-effects in NIs often force NI
accesses to be performed in order preventing OOO accesses. Further, current NIs usually do not provide any mecha-
nism to rollback any side-effects if the processor’s speculation is incorrect, which prevents speculative loads to NI
memory. Third, the most microprocessors today disallow OOO and speculative accesses on uncached loads or stores,
which is the predominant way in which NIs are accessed.

The first problem—the absence of support for multiple outstanding transactions on common I/O buses—can be
solved by interfacing the ULNI device to the memory bus, which usually supports multiple outstanding transactions.
The second problem—the presence of side-effects in ULNI memory accesses—can be eliminated by designing the
application programming interface to the ULNI carefully (see next section). Finally, the third problem—absence of
OOO and speculative access to uncached I/O space—can be solved by caching ULNI registers in processor caches on
which processors can speculate and not allowing a processor’s speculatively stored state to be reflected outside the
processor. Both mechanisms are supported efficiently by modern microprocessors today.

7  Use Memory-Based Queues as Application Programming Interface

Typically a user process accesses a peripheral I/O device via the operating system or uses the underlying data move-
ment primitive as its Application Programming Interface (API) to the I/O device. For example, user APIs based on
program-controlled I/O uses uncached loads and stores—the data movement primitives—to memory-mapped device
registers as the user API to the I/O device. Similarly, Princeton’s UDMA [1] mechanism uses DMA transfers as the
user API to the ULNI device. We argue that instead of exposing the underlying data movement primitive as the user
API, ULNIs should structure the ULNI date registers asmemory-based queues [3, 11, 7]. Such memory-based
queues can be classified neither as program-controlled I/O nor as DMA.

Memory-based queues consist of two parts: a send queue and a receive queue. Each queue is allocated in virtual
memory and managed as a circular buffer with head and tail pointers. To send a message, the processor enqueues the
message at the tail of the send queue either by explicitly writing the message into the send queue memory or by
inserting a virtual pointer to the message into the send queue. The ULNI dequeues messages from the head by read-
ing the send queue memory and, if necessary, translating the virtual pointer to the message to its physical memory
address and subsequently reading the message from the user virtual space. For the receive queue, the ULNI similarly
enqueues messages at the tail of the receive queue and the processor dequeues messages from the head. Device com-
mands for such APIs are no longer explicit DMA-initiation requests; instead, ULNI device commands are simple
memory operations, such as incrementing or decrementing queue head or tail pointers. For example, when a proces-
sor enqueues a message to the send queue and increments the tail pointer, the ULNI interprets this as a device com-
mand to send a message to the network. If the tail pointer is uncached, then the ULNI treats the increment as a
signalling store; if the tail pointer is cached, the ULNI must poll on the tail pointer for new messages.

There are four advantages to treating ULNI API as memory-based queues. First, unlike uncached accesses or
UDMA, memory-based queues decouple a processor and a ULNI. This enables both the processor and ULNI to send
and receive multiple messages to and from the queues without blocking.

Second, memory-based queues avoid side-effects by treating ULNI queue accesses simply as side-effect-free regular
memory accesses. ULNI commands for such queues are primarily incrementing or decrementing queue pointers.
This allows processors to cache ULNI queues, perform OOO accesses on queue memory, and speculatively send and
receive messages to and from these queues.

Third, since memory-based queues are allocated like regular memory and managed as circular buffers, the reuse
handshake is simple: a comparison of the head and tail pointers reveals whether a queue location can be reused or
not.
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Fourth, memory-based queues simplify the problem of multiprogramming a ULNI for SMPs. This is because mem-
ory-based queues provide each process protected, yet simultaneous, access to the ULNI without invoking the operat-
ing system while sending and receiving messages. In contrast, machines, such as the Thinking Machines’ CM-5,
allow only one user process to access the ULNI at one time and must context switch the entire ULNI when it context
switches a user process.

8  Additional Opportunities

There are at least three additional opportunities for improving the performance of processor-NI interactions. Details
about these opportunities can be found in Mukherjee and Hill [8]. These opportunities are using virtual memory to
buffer network messages, moving data between a processor and a NI in cache block units, and notifying a processor
of NI events via cache invalidations. Virtual memory is typically huge in today’s computers and, therefore, can pro-
vide such large amounts of buffering. High-performance ULNI devices can demand large amounts—that is, tens of
megabytes—of buffer memory to accommodate a wide variety of protocols, support large degree of multiprogram-
ming, handle large bursts of messages, and guarantee reliable delivery of messages via flow control. Using cache
blocks to read and write NI memory allows a processor to directly read data out of a NI, like program-controlled I/O,
and transfer data in blocks, like DMA. Finally, using cache invalidations as notification signals, instead of heavy-
weight interrupts, allows a NI to rapidly inform a processor of its status changes.

9  Conclusions

A new generation of networks called System Area Networks (SANs) has evolved to satisfy the increasing demand for
high-bandwidth, low-latency networks. The benefits of SANs are realized in applications only if light-weight proto-
cols (not TCP/IP) and efficient network interfaces are used. The benefits of SANs are squandered, for example, if
applications must invoke the operating system to send and receive messages. In contrast, User-level Network Inter-
faces (ULNIs) allow host applications to access the network interface directly without compromising protection by
memory mapping internal interface registers into user space.

The exponential improvement in microprocessors’ and SANs’ performance and the advent of SMPs indicate that pro-
cessor accesses to ULNIs will become a critical bottleneck for computer systems built with SANs. Processor
accesses to ULNI registers is simply reading and writing ULNI memory. Nevertheless, most ULNIs treat such
accesses as disk interface accesses that can have side-effects (e.g., a message send). Such treatment disallows current
ULNIs to take advantage of memory access optimization techniques, such as traditional caches, out-of-order
accesses, and speculation. Instead, we argued that ULNI memory accesses should be treated as regular side-effect-
free memory accesses. Memory is virtualized without requiring operation system intervention (in the common case),
is on the memory bus, can be cached, can be accessed out of order and speculatively, and is free of any side-effects.
We discussed how to do the same for NIs, so that the dramatic improvements in network performance can be deliv-
ered to users.
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