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Wisconsin Wind Tunnel II: 
A Fast, Portable Parallel
Architecture Simulator

direct execution and parallel simulation.
In direct execution, a program from the

target system runs on an existing host sys-
tem.1 For example, a target’s floating-point
multiply executes as a floating-point mul-
tiply instruction on the host. The host cal-
culates the target’s execution time and sim-
ulates only those operations unavailable on
the host. Direct execution can run orders
of magnitude faster than pure software
simulation, which interprets every target
instruction. This approach can accurately
calculate the target execution time for stat-
ically scheduled processors with blocking
caches.1

Parallel simulation exploits the target
computer’s inherent parallelism and the
parallel host’s large memory to hold the
simulator’s working set without paging.
The advent of low-cost parallel comput-
ers, such as symmetric multiprocessors
(SMPs) and clusters of workstations
(COWs), make parallel simulation very
attractive. In contrast, other solutions to
this problem—RSIM, SimOS, and Sim-
ICS, for example—run on uniprocessor
hosts and are exceedingly slow in simulat-
ing large-target multiprocessors.2–4

Unfortunately, parallel discrete-event,
direct-execution simulators are complex;
building and porting them can be difficult.
In part, these simulators are not portable
because they rely on machine-specific fea-
tures. They are tied to specific instruction
sets by the need to modify either target
executables or assembly code to calculate
a target’s execution time and simulate
missing features. Some simulators5,6 also
modify the operating system to detect tar-
get cache misses. Also, parallel simulators
often use machine-specific synchronization
and communication features to achieve
good parallel performance.

These low-level dependencies have
been painfully obvious to us as developers
of two generations of parallel direct-
execution simulators. To minimize these
dependencies, we have developed two
tools, Elsie and Synchronized Active Mes-
sages (SAM), that encapsulate the opera-
tions underlying these simulations in a
portable manner. With these tools, we’ve
ported the Wisconsin Wind Tunnel II—
the successor to the original Wisconsin
Wind Tunnel5—to a range of platforms,
including desktop workstations, a Sun
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enterprise server, and a cluster of Sparc
workstations. The results we obtained
on these platforms highlight WWT II’s
portability, good parallel efficiencies
across a range of platforms, and cost-
effectiveness.

The operations
underlying simulations

Four operations help developers iso-
late host-specific features, which makes
it easy to port and tune the performance
of a parallel simulator. The first two
operations—calculation of target execution
time and simulation of features of interest—
relate to direct execution. Two others—
communication of target messages and syn-
chronization of host processors—relate to
conservative-window, parallel, discrete-
event simulation.

CALCULATION OF TARGET
EXECUTION TIME

To evaluate a proposed architecture’s
performance, a simulator must calculate
elapsed time on the target machine as
well as mimic the target’s function. In
simulators that interpret every target
instruction, elapsed-time calculation is
simple: the simulator updates a clock
variable after simulating each instruc-
tion. However, direct-execution simula-
tors derive their speed from directly exe-
cuting blocks of target instructions
without simulator intervention. Invok-
ing the simulator to update the variable
after every instruction would nullify this
performance advantage.

We can reduce the cost of updating
the target clock variable in two ways.
First, instead of invoking the simulator,
the target itself can maintain and update
its own target clock variable. This
implies that we must augment the target
code with extra code that updates the
clock—we call this target clock instru-
mentation. Second, we can update the
variable less frequently by combining the
updates for a sequence of instructions.

Target clock instrumentation can be
done at four levels: source code,1 assem-
bly code,7 object code, and executable.5
Unfortunately, the first three levels
require source, assembly, or object code,

which might be hard to obtain for ven-
dor-provided libraries or commercial
operating systems and databases. Exe-
cutable modification removes this
restriction because it adds target clock
instrumentation directly to the exe-
cutable; but it introduces two problems.
First, its implementation is complex
because the executable editor must han-
dle machine-specific details (for exam-
ple, fixing branch addresses after the
introduction of target clock instrumen-
tation code). Second, like assembly or
object code modification, executable
modification makes the simulator depen-
dent on a specific instruction set.

Fortunately, researchers have recently
developed executable editing tools that let
users traverse the control-flow graph of a
target executable and introduce foreign
code in an almost machine-independent
fashion. These tools relieve the writers of
executable editors from worrying about
low-level machine-specific details. EEL
(executable editing library)8 is one such
tool, which WWT II developers used to
build an executable editor tool named
Elsie (for “Edits Loads and Stores In Exe-
cutables”), to perform the target clock
instrumentation on target executables.
We describe Elsie later.

SIMULATION OF FEATURES OF
INTEREST

For the study of proposed parallel
architectures, simulators must let re-
searchers simulate features that might be
unavailable in a host. For example, the
original WWT simulated a hardware,
cache-coherent, shared-memory machine
on Thinking Machines’ CM-5, which is a
message-passing parallel machine.

In direct execution, missing-feature
simulation requires the target to execute
a jump to the simulator on specific target
instructions. For example, to simulate
the target memory system, the target
must transfer control to the simulator on
some target loads and stores.

Researchers have used two approaches
to simulate the host’s missing features.
The first uses host hardware and software
mechanisms to transfer control. For
example, WWT and Tapeworm II, a dif-
ferent simulator developed by Uhlig and

colleagues,6 marked host memory blocks,
absent in the target cache or translation
look-aside buffer (TLB), with bad error
correction code. Accesses to memory
blocks with bad ECC generated traps that
were vectored to the simulator through the
operating system. This let WWT and
Tapeworm II simulate cache and TLB
misses, respectively. This method is not,
however, easily portable because it requires
operating system modification to catch the
ECC traps. Additionally, most dynamically
scheduled processors are unlikely to sup-
port precise exceptions on ECC errors.
Without precise exceptions, a simulator
will be unable to correctly simulate target
cache misses.

The second approach replaces target
instructions with code segments that trans-
fer control to the simulator. Because this
approach is more general, it can incur a
performance penalty. For example, for this
approach to simulate target cache misses,
all loads and stores must check the target
cache state, unlike the WWT approach in
which the simulator checks the target
cache block state only on cache misses.

Replacing instructions with new code
segments introduces problems like those
faced by target clock instrumentation;
so, our solution is similar. We augment
Elsie to replace target instructions to
simulate features missing in the host—
in our case, the target memory system.

COMMUNICATION OF TARGET
MESSAGES

Communication is inherent in paral-
lel simulation because target nodes
exchange messages. However, the most
efficient communication method differs
radically across parallel computers. Typ-
ically, massively parallel processors
(MPPs) use a native message-passing
library, COWs use sockets, and SMPs
use shared memory. Consequently, com-
munication code written for one machine
cannot be easily ported to another. To
overcome this problem, we developed
SAM, a simple messaging library. SAM
abstracts the communication primitives
away from the implementation mecha-
nisms and techniques, and it handles
processor synchronization. We describe
it in more detail later.
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SYNCHRONIZATION OF HOST
PROCESSORS

Parallel, discrete-event simulation
that uses conservative time bucket synchro-
nization9 must rapidly synchronize host
processors. This method breaks target
execution into quanta, lock-step intervals
(see Figure 1). Target messages sent dur-
ing one quantum can affect target state
only in subsequent quanta. We accom-
plish this effect by setting the quantum
length on the basis of the delivery time
necessary for a message to reach the tar-
get (this is a lower bound, so it is con-
servative). Because message delivery is
guaranteed before the next quantum
starts, the simulator ensures that the
receiving target is aware of the message
before it can have any effect on the tar-
get program’s outcome.

Conservative-window, parallel, dis-
crete-event simulation imposes three
synchronization requirements. First,
host processors must detect when target
execution reaches a quantum’s end.

Second, when a quantum expires, host
processors must synchronize among
themselves using a barrier and calculate
the next quantum’s duration. This dura-
tion is typically calculated as the sum of
the minimum target execution time
across all host processors (conventionally
called a reduction) and a fixed quantum

length (for example, 100 target proces-
sor cycles). This minimum execution
time represents the simulator’s “know-
ing” that all targets will not interact for
some period of time so that it can extend
the next quantum. The fixed quantum
length represents the minimum time for
message transmission once a message has
been sent and is the minimum time for
two targets to interact.

Third, host processors must ensure
that all messages sent in a quantum are
received and processed before the next
quantum begins. Figure 1 shows that
messages sent are received at the end of
synchronization. A global reduction of
the difference between the number of
messages sent and received will be zero
once delivery is complete. This lets a
host processor complete reception of all
target messages before beginning the
next quantum.

Detecting a quantum’s end
There are two ways to detect a quan-

tum’s end. First, the simulator can check
for quantum expiration on each entry into
the simulator. This works well if the 
target frequently returns control to the
simulator. Because WWT II simulates
every load and store, we use this approach. 
Second, if the simulator is invoked less
frequently, global synchronization will be

deferred, which might delay other target
nodes. In this case, we can modify the 
target executable to check the target exe-
cution time more frequently (for instance,
on target clock updates) and invoke the
simulator if a quantum has expired. This
method is more robust but adds overhead.

Synchronization
Different parallel computers provide

different degrees of hardware support for
barrier synchronization and reductions.
For example, the CM-5 supports both
hardware barriers and hardware reduc-
tions, while the Cray T3E supports only
hardware barriers. In contrast, the Sun
Enterprise E6000 and our cluster of
workstations connected with an off-the-
shelf network lack hardware support for
either. So, these machines must imple-
ment both in software. The lack of hard-
ware support for barriers and reductions
can degrade the performance of conser-
vative-window, parallel, discrete-event
simulation, particularly when quantum
intervals are short.

Message processing
Most parallel computers lack the

hardware support to determine whether
all messages injected into a host network
have been drained (received), although
the CM-5 is a notable exception. How-
ever, there are various ways to do this in
software. For example, we can collect
acknowledgments for every message
injected into the network. Alternatively,
we can confirm message delivery at a
quantum’s end, combined with barrier
synchronization. SAM implements the
necessary functionality for the second
alternative, while permitting portability.

Elsie

Elsie modifies target executables that
run on WWT II (see Figure 2) to calcu-
late target execution time and simulate
features of interest. Like other exe-
cutable editors for direct-execution sim-
ulators, Elsie adds instrumentation for
this calculation and to simulate the tar-
get’s memory system.

Surprisingly, contrary to earlier
expectations, Elsie can be written in an

Quantum

Quantum

Synchronization

Synchronization

Synchronization

Figure 1. A graphical representation of quantum and messages sent for four
processors. Blue regions are synchronization times; green areas are simulator
processing times.
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almost machine-independent fashion,
for two reasons. First, Elsie uses EEL,
which hides most details of modifying
executables, to traverse a target exe-
cutable’s control-flow graph and to 
add code snippets. Snippets contain
machine-specific instructions, which
Elsie adds to edges in a control-flow
graph to track the target’s execution
time. Elsie also replaces target memory
instructions (loads and stores, for exam-
ple) with snippets that jump into the sim-
ulator, which simulates the target mem-
ory system.

Second, machine-dependent snippets
are few and small; the eight mandatory
snippets each contain four or fewer
instructions. Consequently, we would
need to rewrite only small portions of
machine-specific code to port Elsie to a
different instruction set, and the few
machine-specific instructions make port-
ing even easier.

Elsie currently runs only on the Sparc
V8 instruction set. Modifying Elsie for
other instruction sets will involve describ-
ing the new processor’s properties and
using a version of EEL for that processor.
For example, we will need detailed tim-
ings for the new instruction set.

Though the above techniques make
WWT II portable, augmenting the tar-
get with instrumentation code for simu-
lating every memory instruction increases
WWT II’s overhead compared to WWT
or Tapeworm II. WWT and Tapeworm
II have low overhead because they directly
execute memory instructions that hit in
the target cache. WWT II reduces its
overhead by providing a fast path for loads
and stores that hit in the target cache.10

Typically, on a load or store, the simula-
tor translates the virtual address to the
physical address using the target TLB,
indexes into the cache, and finds the
appropriate cache block through a tag
match. Next, the simulator checks the
cache block’s state and, on a cache hit,
loads or stores a value from or to the cache
block. But in the fast path, WWT II
maintains pointers to all valid target cache
blocks in each target TLB entry. So, if a
load or store hits in the target cache,
WWT II can directly find the block on a
target TLB access.

SAM
SAM provides an architecture-neutral

programming model that unifies a paral-
lel host’s communication and synchro-
nization operations for a quantum-based,
parallel, discrete-event simulation. The
model achieves target message commu-
nication and host processor synchro-
nization in the simulator.

SAM is simple by design so that it can
be implemented easily across a range of
parallel machines. It has three main prim-
itives. Host processors communicate 
using SAM_Send_Msg, calculate the next 
quantum duration using SAM_Bcast_Msg
(via broadcast messages), and synchronize
using SAM_Sync.

Like active messages, a SAM message
contains the virtual address of a handler
that SAM will call at the receiving host
processor. Unlike active messages, how-
ever, SAM messages do not guarantee
message reception until SAM_Sync
completes. When SAM_Sync completes,
SAM guarantees that all messages have
been received and processed (and mes-
sages scheduled for the next quantum)
by calling the corresponding handlers.
By supplying the appropriate handler,
SAM can calculate the next quantum
duration through message broadcasts for
simplicity, thereby avoiding a separate
reduction interface, such as the one in
the CM-5.

Currently, SAM runs on three plat-
forms: an SMP, a COW, and a cluster of
SMPs (COW–SMP). We have optimized
each implementation to the platform’s
underlying communication substrate.

The SAM SMP implementation is
straightforward because our Sun E6000
SMP supports efficient low-latency com-
munication over the memory bus. SAM
allocates a shared-memory segment and,
for each process in the parallel program,
sets up two sets of mailboxes in shared
memory—destination and source mail-
boxes. One process uses another’s desti-
nation mailbox to send a point-to-point
message to that process. Each message is
explicitly copied into the destination
mailbox because two processes share only
the segment containing the mailboxes,
not the entire address space. An atomic
fetch-and-add operation ensures mutual

exclusion within a destination mailbox. A
process uses its own source mailbox to
queue broadcast messages. To avoid mul-
tiple copies of the same message, we do
not queue a broadcast message in the des-
tination mailboxes.

Finally, when a process calls SAM_
Sync, SAM drains a process’s own desti-
nation mailboxes and checks all other
processes’ source mailboxes for broadcast
messages. Subsequently, SAM calls the
handlers corresponding to each message
and returns control to the simulator.

The COW implementation of SAM
is more complex. Analysis of the COW’s
communication characteristics reveals
high message overhead (26 microsec-
onds under SunOS 5.5 with Myricom
switches), so minimizing the number of
messages is important. WWT II sends
two or fewer messages, per processor, of
up to 80 bytes in a quantum. Multiple
messages occur on a host if it has multi-
ple targets and because a single target’s
protocol processing can involve multi-
ple messages.

Considering these characteristics, we
implement SAM_Sync through a software
butterfly-style message exchange pattern.
The number of stages is logarithmic in 
the number of processors, thereby reduc-
ing the number of messages on the critical
path. We further minimize messages by
piggybacking the target messages from the

Target source code

Target executable

Instrumented target
executable

Standard C compiler

Elsie

(WWT II)

Wisconsin
Wind Tunnel II Host

configuration

Target output

Target execution time

WWT II statistics

Figure 2. Elsie’s relationship to the
Wisconsin Wind Tunnel II.
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current quantum and the data needed to
determine the next quantum length on the
butterfly synchronization. Because WWT
II sends very few short messages in each
quantum, the butterfly’s total cost is not
substantially increased over the synchro-
nization cost, even though our piggy-
backing scheme sends all data to all host
processors, as Figure 3 shows.

In the COW–SMP implementation,
the SMP host processors first exchange
messages. Next, one predesignated host
processor in each SMP node exchanges
messages with other host processors, as
Figure 3 shows. Finally, SMP host
processors synchronize locally to ensure
that the predesignated processor has
drained all messages from the network.

Test configurations

Table 1 shows the three parallel
machine configurations we used with the
WWT II experimental framework. Fig-
ure 4 depicts the three machines. The
COW–SMP in Figure 4 is the same as
the COW, except that each node has two
processors, not one. We use 16 COW
nodes and eight dual-processor COW–
SMP nodes to equalize the number of
host processors in the COW and COW–
SMP configurations.

An S-COMA (simple cache-only

memory architecture) shared-memory
machine was our target architecture.11

Each target node has a single processor
and a 256-Kbyte processor cache. Hard-
ware coherence is implemented through
a full-map directory protocol. Each
WWT II host processor simulates one
or more target nodes. For example, for
a 256-node target, an eight-processor
WWT II configuration simulates 32 tar-
get nodes per host processor.

Table 2 shows our five target bench-
marks and corresponding input data 
sets. Our measurements report the time
WWT II took to execute only the paral-
lel portion of each target benchmark.
We assume our target benchmarks use
the Sparc V8 instruction set, so we
ensured that all of our host processors
are Sparc V8 compatible.

Additionally, because WWT II always
takes the same path through the target
executable, all our target executable runs
report the same execution cycles no mat-

P1 P2 P3P0

Ti
m

e

Figure 3. SAM implementation for a
cluster of workstations. P0, P1, P2, 
and P3 denote host processors. Boxes
represent data—here, only P0 sends 
a message. Solid lines represent the
flow of synchronization messages
with data (piggybacking). Dotted lines
represent the flow of synchronization
messages without data.

COW–SMP

SMP

COW

COW
SMP

Cluster of workstations
Symmetric multiprocessor

Figure 4. The different machine
configurations for four processors.
Green represents a bus; blue, a
network.

Table 1. The three host systems for WWT II. N is the number of nodes and
P is the total number of host processors.

INTERHOST COMMUNICATION

PARALLEL MACHINE HOST PROCESSOR MEMORY BUS NETWORK N P

SMP 250-MHz 83.5 MHz; N/A 1 16
16-processor UltraSparc 256-bit-wide
Sun E6000 split transaction

COW 66-MHz N/A First-generation, 16 16
Uniprocessor HyperSparc version 2,
Sparcserver20 Myricom

Myrinet
switches

COW–SMP 66-MHz 50 MHz; First-generation, 8 16
Dual-processor HyperSparc 64-bit-wide version 2,
Sparcserver 20 sequential Myricom

transaction Myrinet
switches

Table 2. Target benchmarks and the corresponding input data sets for our experiments.

BENCHMARK SOURCE DESCRIPTION INPUT DATA SET

FFT Splash-2 Complex fast Fourier 216 points
transform

LU Splash-2 LU factorization Order-512 matrix,
order-16 blocks

radix Splash-2 Integer sort 256K keys, 1K radix

tomcatv WWT parallelization of Mesh generation with Order-512 matrices,
SPEC Thompson’s solver four iterations

water-sp Splash-2 Water molecule simulation 4K molecules, three steps



ter which platform ran the experiments.
WWT II always takes the same path
through the executable because we strictly
order the events. Such control over the
experimental framework is essential to
effectively characterize WWT II’s per-
formance across our three platforms.

Performance analysis

We analyzed WWT II’s overall per-
formance on the basis of two main fac-
tors: parallel performance and cost-
effectiveness.

PARALLEL PERFORMANCE
We assessed WWT II’s parallel per-

formance in terms of the host’s parallel
speedup (uniprocessor time divided by
parallel time). Table 3 compares WWT
II’s performance across our three paral-
lel hosts; the simulator achieved reason-
able speedups for a modest number of
targets. We show only selected bench-
marks and limited targets because they
exemplify the results and are small
enough to avoid virtual-memory thrash-
ing on a single COW node. As shown
below, WWT II’s performance increases
with larger simulations.

As an example of the WWT II’s
absolute runtimes, the 16-host proces-
sor runtimes for the tomcatv benchmark
are 1.8 and 9.4 minutes for the SMP and
COW, respectively. These runtimes
show that parallel simulations are prac-
tical for many applications. The
speedups we achieve are better on the
SMP as the number of host processors
increases, indicating that the SMP’s
faster communication yields better par-
allel performance than does the COW.

The SMP results are important
because the large memory available for
any number of processors lets us run
large-memory targets across the full
range of host processors. Without this
ability we could not run the large paral-
lel jobs on a single processor to deter-
mine speedups. Figure 5a shows that the
simulator achieves good speedups for up
to 16 hosts across all benchmarks with
256 targets. At 16 hosts, the speedups
range from 8.6 to 13.6 for an efficiency
of 54% to 85%. The speedup curves

Table 3. Parallel speedups across platforms for WWT II on a 32-node
target system.

SPEEDUP

BENCHMARK NO. OF HOST PROCESSORS SMP COW COW–SMP

LU 1 1.0 1.0 1.0
2 1.8 1.7 1.6
4 3.1 2.6 2.5
8 4.7 3.5 3.4

16 5.4 3.6 3.5

tomcatv 1 1.0 1.0 1.0
2 1.8 1.8 1.6
4 3.3 2.9 2.7
8 5.1 4.0 3.8

16 5.8 4.3 4.1
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Figure 5. (a) Simulator speedups on a symmetric multiprocessor across
benchmarks for 256 targets. (b) Simulator speedups on an SMP for tomcatv
with a varying number of targets.
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increase monotonically, so that greater
parallelism reduces a given simulation’s
runtime.

Figure 5b shows the effect of varying
the number of targets—increasing the
targets increases the simulator speedups.
This effect, seen on all benchmarks, is
most pronounced with tomcatv. This

trend indicates that larger simulations,
which require greater uniprocessor 
runtimes, will achieve better parallel 
performance.

Key to the increased efficiency is the
reduction in idle time, resulting from
improved load balancing as the number
of targets per host increases. Once a host

completes work for its targets in the cur-
rent quantum, it idles until the slowest
host completes and enters the synchro-
nization as shown in Figure 1. As the
number of targets per host increases, the
deviation from the average decreases, as
does the idle time.12

COST-EFFECTIVENESS
Although parallelism clearly improves

runtimes for a given simulation, this does
not demonstrate that parallelism is cost-
effective.13 To evaluate whether running
a parallel simulation on N host nodes is
cheaper than running N sequential sim-
ulations, we must specify the cost of the
host systems. The cost is the purchase
price of the smallest system that could
run the proposed simulation. So, a sim-
ulation run on four hosts, needing 1
Gbyte of memory, would be the cost of
the smallest box with four processors and
1 Gbyte of memory.

Memory is a key cost component. In
our WWT II analysis, we determined
the simulator’s memory usage (in
Mbytes), given by

Msim=1.26 * (# hosts) + 1.97 *(# targets)
Mtarget = target memory * (# targets)
M = Msim + Mtarget

where Msim is the memory used by the
simulator on all hosts without the target
program, Mtarget is the memory for all
targets, and M is the total memory used
in all hosts. The cost of the SMP system
in thousands of US dollars is

C = base + 9 * [(max(P/2 , M/512 ]
+16* P + 0.0174 * M

where P is the number of host proces-
sors, and base (base cost of an “empty”
system) is 17.5 if P ≤ 6, 48.5 if 7 ≤ P ≤ 14,
and 181.5 if 15 ≤ P ≤ 30. (These cost fig-
ures came from a 1997 Sun price list.)
From the simulation’s cost and runtime,
we determine cost-effectiveness by

CE(P) = C(P) * time(P)

where a lower value is better. We deter-
mine a parallel simulator’s cost-effective-
ness from the relative cost-effectiveness
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Figure 6. The relative cost-effectiveness across benchmarks for 64 targets and
64 Mbytes per target.
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of running the simulation on P processors
versus one processor:

RCE(P) = CE(P)/CE(1).

Values less than one show that running
on P processors is cheaper than running
on one processor.

Figure 6 shows the relative cost-
effectiveness across the benchmarks.
These results assume that each target
uses 64 Mbytes of memory, and the
speedups are those achieved when run-
ning the data sets in Table 2. Parallel sim-
ulation is cost-effective for these bench-
marks, simulator, and cost parameters
until we try to run on 16 host CPUs. At
that point, only tomcatv is cost-effective.
For all benchmarks, the point of lowest
cost is on four host processors. Parallel
simulation is thus not only faster but costs
roughly half (48% to 59%) of the uni-
processor simulation.

Figure 7 shows how varying the num-
ber of targets and memory per target for
tomcatv affects cost-effectiveness. Again,
we assume that the speedups measured
from the actual benchmarks are un-
changed as the amount of memory
varies. The relative cost-effectiveness
improves as the number of targets
increases, which is consistent with the
previous result—speedups improve as
the number of targets increases. Also, as
the memory per target (and thus total
memory) increases, the relative cost-
effectiveness improves. Both trends,
observed across the benchmarks, are
consistent with previous results.12,13

For the largest benchmark considered
in Figure 7—256 targets, 64 Mbytes per
target—the relative cost-effectiveness
drops as the number of host processors
rises. For this simulation, 16 host proces-
sors is most cost-effective, costing 12%
of the uniprocessor simulation. The
optimal number of host processors, how-
ever, remains an open question.

At the other extreme—32 targets, 0.5
Mbytes per target—the graph results
resemble those in Figure 6. Here, four
host processors are most cost-effective,
and for 16 hosts, the cost-effectiveness
is worse than the uniprocessor case.
These results clearly show that parallel

simulation is cost-effective, including
sufficiently large simulations for large
numbers of host processors.

WWT II DEMONSTRATES THE tech-
nologies that support parallel simulation
of target multiprocessors with up to hun-
dreds of in-order processors executing
user-level code. More information on
WWT II can be found at www.cs.wisc.
edu/~wwt/wwt2.

Researchers at Wisconsin continue
multiprocessor research but with an
emphasis on commercial workloads.
Simulation work continues, using the
Virtutech SimICS infrastructure4 that
supports the operating system and device
simulation necessary for these work-
loads. Future work will apply ideas from
WWT II so that workload sizes can
more accurately reflect what the Inter-
net economy demands of its computing
infrastructure. 
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