
1

The Impact of Data Transfer and Buffering Alternatives on Network Interface Design

Shubhendu S. Mukherjee and Mark D. Hill
Computer Sciences Department

University of Wisconsin-Madison
1210 W. Dayton Street

Madison, Wisconsin 53706-1685, USA
{shubu,markhill}@cs.wisc.edu

To appear in the Proceedings of the Fourth International Symposium on High-Performance Computer Architecture (HPCA), February 1998

Abstract
The explosive growth in the performance of microprocessors

and networks has created a new opportunity to reduce the latency
of fine-grain communication. Microprocessor clock speeds are
now approaching the gigahertz range. Network switch latencies
have dropped to tens of nanoseconds. Unfortunately, this explo-
sive growth also exposes processor accesses to the network inter-
face (NI) as a critical bottleneck for fine-grain communication.
Researchers have proposed several techniques, such as using
block loads and stores, User-Level DMA, and Coherent Network
Interfaces, to alleviate this NI access bottleneck.

This paper is the first to systematically identify, examine, and
evaluate the key parameters that underlie these design alterna-
tives. We classify these parameters into two categories: data
transfer and buffering parameters. The data transfer parameters
capture how messages are transferred between internal memory
structures (e.g. processor caches, main memory) of a computer
and a memory bus NI. The buffering parameters capture how and
where an NI buffers incoming network messages.

We evaluate seven memory bus NIs that we believe capture the
essential components of the design space exposed by these data
transfer and buffering parameters. These seven NIs abstract the
data transfer and buffering parameters of the NIs in TMC CM-5
[24], Fujitsu AP3000 [37], Princeton User-Level DMA [2], Digi-
tal Memory Channel [16], MIT StarT-JR [20], and two Coherent
Network Interfaces (CNI512Q and CNI32Qm) [29].

Our results indicate that a high-performance NI design should
effectively use the block transfer mechanism of the memory bus,
minimize processor involvement for data transfer, directly transfer
messages between an NI and the processor (at least in the com-
mon case), provide plentiful buffering (possibly in main memory),
and minimize processor involvement to buffer incoming network
messages. The relative importance of these parameters depends
both on the specific NI design and the characteristics of the appli-
cation.

As a corollary of this study, we find that, contrary to conven-
tional wisdom, mapping an NI to the processor registers is usually
not the ideal choice. This is because processor register memory is
a precious resource, which does not provide adequate buffering
for many applications.

1 Intr oduction
The term “computer” is perhaps a misnomer today. A modern

computer system often “communicates” with a communication
network more than it “computes.” A network interface (NI) device
provides a computer with a gateway to such external networks.

Unfortunately, processor accesses to an NI threaten to become
a critical bottleneck in computers today. This is because of two
reasons. First, the explosive growth in microprocessor and net-
work performance has vastly increased the rate at which proces-
sors communicate with external networks. Microprocessors
continue to evolve with gigahertz clocks and increasing levels of
instruction-level parallelism. Network hardware continues to
advance towards multi-gigabytes-per-second bandwidth and tens-

of-nanoseconds switch latencies. Consequently, rapid processor
access to the NI is critical to effectively use such extremely fast
microprocessor and network hardware.

Second, processor accesses to an NI form an important compo-
nent of end-to-end latency for fine-grain communication. Fine-
grain communication underlies many traditional and emerging
application domains, such as parallel scientific applications [10],
network file systems [22], world-wide web servers [1], and data-
base queries [23]. A major fraction of messages in these domains
are small messages that are less than a few kilobytes.

Traditional NIs reside on the I/O bus and are accessed via
either uncached loads/stores or Direct Memory Access (DMA).
However, such traditional solutions cannot alleviate the NI access
bottleneck. Today’s I/O buses offer latencies and bandwidth that
are a factor of two to ten worse than memory buses. Consequently,
several commercial NI designers and researchers have proposed
moving the NI from the I/O bus to the memory bus. For example,
parallel computers, such as the TMC CM-5 [41], Meiko CS2 [28],
and Intel Teraflops [6] attach their NIs directly to the memory
bus.1

Both uncached accesses and DMA are low-performance solu-
tions to accessing an NI device residing on the memory bus. Tra-
ditionally, uncached accesses transferred only between one to
eight bytes of data, which cannot effectively use today’s 16- to 32-
byte wide memory buses (e.g. Sun UltraGigaplane). On the other
hand, traditional DMA usually requires the operating system to
perform many tasks to initiate a transfer between memory and an
I/O device. Consequently, the overhead to initiate a DMA transfer
can be as high as hundreds or thousands of instructions. This
makes traditional DMA highly inefficient for small data transfers
that underlie fine-grain communication.

Fortunately, today there exists a range of innovative solutions
that have the potential to alleviate this NI access bottleneck. For
example, the Sun UltraSparc processor [39] offers new user-level
block load and store instructions. These block loads and stores can
move 64-byte blocks of data between an I/O device and the float-
ing-point registers. The Fujitsu AP3000 [38] parallel computer
uses these UltraSparc block load/store instructions to access its
NI. Blumrich, et al. [2] proposed a new mechanism called User-
Level DMA (UDMA) that dramatically reduces the DMA initia-
tion overhead to just two user-level instructions. Alternatively,
Mukherjee, et al. [29] proposed a new class of NIs called Coher-
ent Network Interfaces (CNIs) that interface directly to the mem-
ory bus’ coherence protocol. This allows data transfer between a
processor cache and a CNI in whole cache block units and plenti-

1. Attaching the NI to the memory bus may require a non-standard inter-
face, which may prevent third-party vendors from manufacturing NIs.
Mukherjee and Hill [30, 31] discuss several solutions to this problem.

This work is supported in part by Wright Laboratory Avionics Directorate, Air Force Material Command, USAF, under grant #F33615-94-1-1525 and ARPA
order no. B550, National Science Foundation with grants MIP-9225097, MIPS-9625558, and CDA-9623632, a Wisconsin Romnes Fellowship, and donations
from Sun Microsystems. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of the Wright Laboratory Avionics Directorate or the U.S. Government.

2

ful buffering in main memory.

In this paper we systematically identify, examine, and evaluate
the key parameters that underlie these design alternatives. A thor-
ough understanding of these key parameters is critical to designing
high-performance NIs.

We classify these key parameters into two categories: data trans-
fer and buffering parameters. The data transfer parameters capture
how messages are transferred between a processor and an NI. The
buffering parameters capture where and how an NI buffers incom-
ing network messages. Figure1 shows the impact of data transfer
and buffering parameters on the performance of seven parallel sci-
entific applications studied in this paper. This figure shows that data
transfer and buffering can respectively account for upto 42% and
58% of the total execution time of these parallel programs. In other
words, proper choices of the data transfer and buffering parameters
can have a dramatic impact on performance.

The data transfer and buffering parameters expose an enormous
NI design space. This is because these parameters can be imple-
mented in several different ways. In this paper we evaluate seven
memory bus NIs that we believe capture the essential components
of this design space. These seven memory bus NIs abstract the key
data transfer and buffering parameters of the NIs for the TMC CM-
5 [24], Fujitsu AP3000 [38], Princeton User-Level DMA [2], Digi-
tal Memory Channel [16], MIT StarT-JR [20], and two CNIs
(CNI512Q and CNI32Qm) [29].

We evaluate these NIs using two microbenchmarks and seven
macrobenchmarks. Our results indicate that a high-performance NI
design must:

• effectively use the block transfer mechanism of current memory
buses,

• minimize processor involvement for data transfer,

• directly transfer messages between an NI and the processor, at
least in the common case,

• provide plentiful buffering, possibly in main memory, and

• minimize processor involvement to buffer incoming network mes-
sages.

The relative importance of these parameters depends on both the
specific NI design and the characteristics of the application.

These observations are, however, applicable primarily to user-

level NIs [31] targeted for fine-grain communication. NIs that
require operating system intervention for message send and receipt
or must transfer multi-megabytes of data directly from a graphics
device or a disk (e.g. in a video server) may require optimizations
that are different from those discussed in this paper.

We have two main contributions in this paper. First, we identify
and examine the key data transfer and buffering parameters that
underlie high-performance, user-level NI designs for fine-grain
communication. Second, we undertake the first systematic simula-
tion study that compares seven NIs representative of the design
space exposed by these parameters. As a corollary of this study, we
find that, contrary to conventional wisdom, mapping an NI to the
processor registers may not be the ideal choice. This is because pro-
cessor register memory is a precious resource, which may not pro-
vide adequate buffering for some applications.

The rest of the paper is organized as follows. Section2 and
Section3 discuss the different data transfer and buffering parame-
ters. Section4 describes the seven memory bus NIs we studied in
this paper. Section5 describes our evaluation methodology.
Section6 discusses our results. Section7 describes related work.
Finally, Section8 presents our conclusions.

2 Data Transfer Parameters
An NI is a device that sends and receives messages to and from

an external network on behalf of the processor. Consequently, the
most important data sent and received by an NI are network mes-
sages. For high performance, NIs must transfer these messages rap-
idly between the internal memory structures (e.g. processor
registers, main memory) of a node and the NI. For memory bus NIs
(Figure2), such data transfer occurs over the memory bus.

We have identified and will discuss three key parameters that
influence the speed of such data transfer:

• size of transfer

• degree of processor involvement for transfer, and

• source and destination of transfer.

2.1 Size of Transfer

Today most high-performance memory buses allow at least two
data transfer sizes: small chunks (between one to eight bytes) and
medium-sized blocks (between 16-64 bytes). The latter is more effi-
cient than the former mechanism because block transfers can effec-
tively use the bandwidth available from wide memory buses and
amortize control overheads, such as bus arbitration, grant, and turn-

ap
pb

t

ba
rn

es

ds
m

c

em
3d

m
ol

dy
n

sp
so

lv
e

un
st

ru
ct

ur
ed

0

25

50

75

100
%

 T
im

e

Data Transfer
Buffering
Rest

FIGURE 1. This figure demonstrates the impact of data
transfer and buffering on the performance of a memory bus
NI for seven parallel scientific applications. For these
measurements, we use a CM-5-like network interface and
number of flow control buffers equal to 1. See Section4 and
Section5 for a description of our CM-5-like NI, our flow
control scheme, and the applications.

cache

main
memory

memory bus

network interface

CPU

cache

main
memory

memory bus

network interface

CPU

Network

FIGURE 2. This figure shows two workstation-lik e nodes
connected via a network. The network interface attaches
dir ectly to the memory bus.

3

around time.

Several recent studies show that applications can effectively use
such block transfers over the memory bus. Clearly, if the typical
message size in fine-grain communication were a few bytes, block
transfers over the memory bus would be useless. However, Cypher,
et al. [10] found that in seven parallel scientific applications 30% of
the messages were between 16 bytes and a kilobyte. Kay and Pas-
quale [22] found that the median message sizes for TCP and UDP
(mostly generated by the Network File System) traffic in a depart-
mental network were 32 and 128 bytes respectively. They also
found that 99% of TCP and 86% of the UDP traffic was less than
200 bytes. Keeton, et al. [23] analyzed a debitcredit benchmark on a
commercial database and found that all messages were less than
200 bytes. In the seven parallel scientific applications we studied in
this paper, we found that the average message size ranges between
19-230 bytes (Table4 in Section5).

Current microprocessors offer three mechanisms to effectively
use the block transfer mechanism of memory buses. These are coa-
lescing load/store buffers, block loads/stores, and cache blocks. A
coalescing load/store buffer coalesces a processor’s accesses to
consecutive addresses (and, in some cases, the same address) and
transfers them as a single block over the memory bus. Therefore, a
processor’s accesses to NI registers can be coalesced in the coalesc-
ing buffers and transferred as a single block.

Block load/store instructions—recently introduced in the Sun
UltraSparc processor [39]—allows a processor to move a block of
data between a device, such as main memory or NI, and the UltraS-
parc floating point registers. The Fujitsu AP3000 machine uses
UltraSparc block load and store instructions to access the memory
on the NI [37].

Finally, block transfer over the memory bus can be achieved by
transferring data as cache blocks. However, this requires the NI to
interact with the cache coherence signals, which are supported by
most high-performance memory buses today. This is necessary to
avoid having stale data in the processor’s cache. Currently, most
DMA-based NIs transfer data in coherent, cache block units over
the memory bus to avoid this problem. Recently, Mukherjee, et al.
[29] developed techniques using which processors and NIs can
communicate more effectively via coherent, cache block transfers.

2.2 Degree of Processor Involvement for Transfer

Performance of data transfer depends not only on the size of the
transfer, but also on how much the processor is involved in the
transfer. Two design alternatives exist. The processor can initiate
the transfer and allow the NI to manage the rest of the transfer.
Alternatively, the processor itself can actively manage the transfer.1

Each of these options have different design and performance impli-
cations. We discuss these options below.

2.2.1 NI manages transfer

If the NI manages the transfer, then the processor is usually
required to only initiate the data transfer between the NI and the
internal memory structures of a node. Currently, a processor can
use one of three mechanisms to initiate rapid data transfer to or
from an NI: uncached load/store, User-Level DMA (UDMA), and
cached store. An uncached load or store from the processor to a
memory-mapped NI register can rapidly initiate data transfer from
user space. However, an NI also needs physical memory addresses
of data buffers from which it can obtain the data that must be trans-

1. A third option is possible in which a separate device or DMA engine
manages the data transfer. We do not consider this option here.

ferred. Unfortunately, users cannot provide authenticated physical
addresses of data buffers without violating most operating systems’
protection model. Consequently, NIs must be prepared to fetch
authentic physical addresses from the operating system [35, 17, 42].

To avoid the complexity of building an NI that fetches and man-
ages authentic physical addresses, Blumrich, et al. [2, 31] proposed
a low-overhead data transfer initiation scheme called User-Level
DMA (UDMA). In this scheme users provide authentic physical
addresses to the NI via a sequence of two user-level instructions: an
uncached store and an uncached load. Additionally, UDMA allows
users to directly deposit data into user data structures.

Unfortunately, a key limitation of UDMA is that there is no
known technique to extend UDMA in a general way to a multipro-
grammed symmetric multiprocessing (SMP) node. The UDMA
mechanism requires the two-instruction sequence to be atomic.
However, in an SMP node, multiple such store-load sequences
issued by multiple processors simultaneously can be overlapped
leading to erroneous results. Markatos and Katevenis [26] showed
the UDMA initiation sequence can be made atomic, but only under
restricted conditions.

The multiprogramming problem faced by UDMA can be over-
come using the third scheme in which processors and NIs commu-
nicate via cachable, shared memory. To send a message a processor
simply writes to a location shared between the processor and the NI
(e.g. increment the shared tail pointer of a shared queue). The NI
polls the shared location to determine the presence of a message.
Similarly, when a message arrives at the NI, the NI sets a shared
location that the processor monitors. This scheme does not face the
same multiprogramming problem of UDMA. This is because such
an NI can directly read and write data to a portion of the user’s
address space, which is protected by the normal virtual memory
mechanisms. However, like the first mechanism, this scheme does
require the NI to fetch and manage authentic physical addresses to
which the shared locations are mapped. Another drawback of this
approach is that the NI must remember to poll the cached, shared
locations to check for new messages. This is because, unlike
uncached accesses, cached accesses by the processor is usually not
visible outside the processor cache.

Cached stores additionally allow speculative processors to gen-
erate messages speculatively [30]. A processor’s speculative stores
are usually buffered locally inside the processor and committed
only when the speculation succeeds. Consequently, a processor can
speculatively issue a store to the cachable memory location shared
between the processor and the NI. The store will, however, be visi-
ble (and the message committed) to the processor only after the
speculation succeeds and commits.

2.2.2 Processor manages transfer

The previous subsection discusses solutions in which the pro-
cessor initiates and the NI manages the data transfer. An alternative
solution is to allow the processor to both initiate and manage the
data transfer. For example, traditional program-controlled I/O
requires direct processor involvement to transfer data between the
processor and the NI. In this scheme a processor directly reads and
writes data (instead of addresses) to memory-mapped NI registers
via uncached loads and stores. Even the Ultrasparc block load and
store instructions require processor involvement because these
instructions block the processor until the data transfer is complete.

Processor-managed transfers usually simplify the NI design
because an NI does not require authentic physical addresses to
access a message. A processor’s involvement for every data trans-
fer, however, uses up precious processor resources, which can be
used for other purposes (e.g. computation). Both UDMA and cache
block transfers avoid processor involvement for data transfer, which

4

reduces processor occupancy and allows overlap of computation
with data transfer.

2.3 Source and Destination of Transfer

For both message send and reception data must be transferred
between source and destination memories located in the processor,
NI, or main memory. The source and destination of data transfer
impact performance in two ways: determining what technology is
used for the source and destination memories and whether or not
data travels from the source to the destination directly.

Memory technology influences performance because the perfor-
mance of current memories vary widely. DRAMs—the dominant
technology used for main memory—is usually much slower than
SRAMs, which are used to build processor memories, such as regis-
ters and caches. Consequently, transferring messages between the
processor and NI via main memory, and not directly between the NI
and processor, can hurt performance. Additionally, transferring
messages between the processor and NI via main memory adds an
extra hop over the memory bus, which adds extra latency. Neverthe-
less, if the NI memory overflows, it may be more useful to buffer
messages in main memory rather than blocking the network or
dropping the message. We discuss these issues in the next section.

3 Buffering Parameters
The amount of buffering available for an NI can have significant

impact on an NI’s performance. NIs can require large amounts of
buffering because of four reasons. First, variation in performance of
loosely-coupled microprocessors and network switches and advent
of a variety user-level communication protocols often create a tem-
porary mismatch between the rates at which network messages are
generated, transferred, and consumed. Buffering smooths out these
rates and helps create a balanced system.

Second, limited buffering often forces a processor to constantly
monitor NI status changes and remove messages from the NI buff-
ers to avoid clogging up the network. This constant monitoring can
prevent the processor from doing useful computation.

Third, a limited amount of buffering severely restricts the degree
of multiprogramming because these NI buffers must be divided
among different processes. Alternatively, the operating system can
switch the buffers among processes; but, this can be a very expen-
sive operation.

Fourth, unreliable networks, such as the Myricom Myrinet,
requires NIs to perform some form of flow-control, such as all-to-
all buffer reservation or return-to-sender, to guarantee end-to-end
reliable message delivery. To avoid clogging the network, such flow
control schemes may require large amounts of buffering.

Unfortunately, NIs cannot rely on network switches/routers to
provide this level of buffering. Current commercial network

switches/routers usually provide only a few hundred bytes of buff-
ering (Table1), which is usually sufficient to maintain the full
bandwidth through the switch/router. However, if the receiving NI
fails to remove messages from the network, the switches will block
and send backpressure to the sender, thereby clogging up the net-
work. Alternatively, switches, such as the Myricom Myrinet, sim-
ply drop messages if the receiving NI fails to eject the message
from the network. For such networks either the NI must have suffi-
cient buffering to rapidly remove messages from the network or
software must guarantee reliable delivery, which incurs substantial
overhead.

The rest of this section discusses two parameters that influence
the amount of buffering available to an NI: where the NI buffers are
located (Section3.1) and how much the processor is involved to
buffer messages. (Section3.2).

3.1 Location of NI Buffers

The location of NI buffers is influenced by two goals that may
often be conflicting. We want NI buffers to be located such that the
processor can access them rapidly. However, we also want the NI
buffers to be plentiful.

Allocating NI buffers in the NI itself allows direct and rapid data
transfer between the NI and processor. Unfortunately, supporting
large amounts of dedicated memory on the NI to buffer messages
may not be economically feasible. In contrast, main memory can
support large amounts of buffering, but may not allow rapid data
transfers (Section2.3). Traditionally, NIs have either allocated mes-
sage buffers in dedicated NI memory, main memory, or a hybrid
combination of the two. We discuss the implications of hybrid
designs in the next subsection.

One compromise that allows the best of both is to distinguish
between the logical and physical location of NI buffers. Logically,
we can allocate the message buffers in coherent, shared memory,
which is plentiful. Physically, however, such NI buffers can be
located in processor caches, main memory, or NI memory. A host
node’s coherence protocol ensures that the different physical copies
of the same (logical) message buffers are consistent across the
node. In such a design, the NI memory behaves like another proces-
sor cache in an SMP node. Thus, in the common case, the processor
can transfer data directly from the NI memory to the processor
cache. However, if the NI memory overflows, the messages will be
automatically replaced from NI memory to main memory, which
allows plentiful buffering.

3.2 Degree of Processor Involvement for Buffering

If NI buffers are allocated both in dedicated NI memory and
main memory, then either the processor or the NI must transfer
messages from the dedicated NI memory to main memory. In the
absence of such transfers, the network can fill up slowing down the
entire system. More critically, in some situations, this can cause the
system to deadlock. This is because the unavailability of message
buffers can cause a cyclic dependence in which multiple processors
are blocked (e.g. on a message send) waiting for other blocked pro-
cessors to process incoming messages [24].

Transfer of messages from dedicated buffers to main memory
can be managed by either the processor or the NI. Who (processor
or NI) manages such transfers depends on how often such buffering
is required. For NIs that always store message data to a node’s main
memory, processor involvement for buffering can seriously degrade
performance. In contrast, NIs that are designed with the assumption
that network “traffic jams” are rare occurrences may use processor-
managed buffering as a fallback mechanism.

Network Switch/Router Maximum Buffering

Cray T3E router 105 bytes per non-adaptive virtual
channel [36]

IBM Vulcan switch (SP2) 31 bytes + 1 Kbyte buffer pool
shared between four ports [40]

Myricom M2M switch 20 bytes [13]

SGI Spider/Craylink switch 256 bytes per virtual channel [15]

TMC CM-5 network router 100 bytes [44]

TABLE 1. This table shows the amount of buffering available
between an input port and an output port in five commercial
network switches/routers.

5

4 Network Interface Implementations
This section describes the seven NIs we evaluate in this paper.

Given the enormity of the design space exposed in Section2 and
Section3, it would be hard to evaluate each and every component
individually. Hence, we have selected seven NIs that, we believe,
capture the essential components of the data transfer and buffering
parameters. For all of our NIs, we assume a uniform network and
flow control mechanism described in Section5.

We use the Mukherjee, et al. [29] classification of NIs to character-
ize the NIs we study in this paper. In this classification NIiX
denotes traditional fifo-based NIs and CNIiX denotes coherent net-
work interfaces. Processors interact with CNIiXs with coherent,
cache block transfers. The subscripti denotes the size of the NI
queue exposed to the processor. The default unit of i is memory/
cache blocks, but can also be specified in 4-byte words by adding
the suffix ‘w’. The placeholder X could either be empty, Q, or Qm.
X empty represents the simple case where a NI exposes only part or
whole of one network message. X = Q represents the more complex
case where the exposed portion of the NI queue is managed as a
memory queue with explicit head and tail pointers. X = Qm denotes
that thehome of the explicit memory-based NI queues are in main
memory. The home of a physical address is the I/O device or mem-
ory module that services requests to that address (when the address
is not cached) and accepts the data on writebacks (e.g. due to cache
replacements). The absence of ‘m’ implies that the NI serves as the
home for the NI queues. All of our CNI implementations use the
three optimizations—lazy pointer, message valid bit, and sense
reverse—described in [29].

Table2 lists the seven NIs we evaluate in this paper. Column
two of this table gives a simple description of these NIs to aid read-
ers in remembering which NI is which. We will use both descrip-
tions (column one and two) interchangeably in the rest of the paper.

NI2w is aCM-5-like NI in which the processor can access only
the first two words of the NI fifo. We study two variants of NI2w.
Section6.2 compares a memory bus NI2w with other memory bus
NIs. Section6.3 uses an NI2w, which can be accessed in a single

cycle, to approximate a processor-register-mapped NI. To distin-
guish this NI2w from the memory bus NI2w, we call it the single-
cycle NI2w.

NI64w+Udma (Udma-based NI) allows the processor to examine
the first 64 words of the NI fifo (256 bytes) and optionally transfer
them to memory via the UDMA mechanism at both send and
receive nodes (Section2.2.1). Although the Udma-based NI imple-
mentation allows overlap of computation and data transfer, the mes-
saging software waits until each UDMA transfer is complete. This
reduces the complexity in the messaging software and avoids
changes to the macrobenchmarks. This allows a uniform compari-
son across all seven NIs.

NI16w+Blkbuf is anAP3000-like NI, which allows the processor
to load and store 16 words (64 bytes) from the head of the fifo to a
64-byte send or receive block buffer located in the processor.1 The
processor accesses the block buffer via a load/store interface. These
block buffers approximate the UltraSparc block load and store
mechanism.

CNI0Qm is aStart-JR-like NI for which message queues reside
in main memory. The ‘0’ in CNI0Qm indicates that CNI0Qm does
not cache any message in the NI. CNI0Qm approximates the data
transfer and buffering characteristics of the MIT StarT-JR NI [20].
However, unlike CNI0Qm, the StarT-JR NI resides on the I/O bus
and does not use the lazy pointer and sense reverse optimizations.

(NI16w+Blkbuf)S(CNI0Qm)R approximates theMemory Channel
NI [16]. It denotes a hybrid NI in which the send interface resem-
bles NI16w+Blkbuf (AP3000-like NI) and the receive interface
resembles CNI0Qm (the Start-JR-like NI). However, unlike the Dig-
ital Memory Channel NI, which attaches itself to the PCI I/O bus,
we attach our Memory Channel-like NIdirectly to the memory bus
to perform a uniform comparison with other NIs. Additionally, we
do not use the multicast feature of the Memory Channel network
because we focus specifically on its NI’s data transfer and buffering

1. The Fujitsu AP3000 NI has another mechanism to access the NI. For
simplicity, we limit our discussion only to the way it accesses the NI via the
processor’s block load/store instructions.

Network
Interfaces

Simple description
Data Transfer Parameters Buffering

ParametersSend Receive

Size Who manages
transfer?

Source Size Who manages
transfer?

Destination Location Processor
Involved?

NI2w TMC CM-5 NI-like
[41]

Uncached Processor Processor
Registers

Uncached Processor Processor
Registers

NI / VM Yes

NI64w+Udma Princeton Udma-
based [2]

Block NI Cache/
Memory

Block NI Memory NI / VM /
Memory

Yes

NI16w+Blkbuf Fujitsu AP3000-like
[37]

Block Processor Block
Buffer

Block Processor Block
Buffer

NI / VM Yes

CNI0Qm MIT StarT-JR-like
[20]

Block NI Cache /
Memory

Block NI Memory Memory No

(NI16w+Blkbuf)S
(CNI0Qm)R

DEC Memory
Channel NI-like [16]

Block Processor Block
Buffer

Block NI Memory Memory No

CNI512Q Wisconsin CNI with
no cache [29]

Block NI Cache /
Memory

Block NI Processor
Cache

NI / VM Yes

CNI32Qm Wisconsin CNI with
cache [29]

Block NI Cache /
Memory

Block NI Processor
Cache

NI Cache /
Memory

No

TABLE 2. This table classifies the seven memory bus NIs we evaluated in this paper. Block denotes block transfer, Memory denotes
main memory, and VM denotes virtual memory. See Section4 for an explanation of the taxonomy we use for NIs. NIs that involve
the processor to manage data transfer between the NI and the processor have higher processor occupancy compared to the NIs that
use NI-managed data transfers.

6

parameters.

CNI512Q denotes aCNI with no cache. Its send and receive
queues contain 512 64-byte blocks.

CNI32Qm is aCNI with a cache. That is, memory on the NI for
both the send and receive queues is treated as 32-entry caches (with
64 byte cache blocks). Our CNI32Qm implementation improves
upon the CNIiQm implementation described in [29] in two respects.
These improvements are based on the observation that the CNI
queues are read in a fifo order. First, if the receive cache is full with
valid messages pending consumption, then the CNI bypasses the
receive cache and writes fresh incoming messages directly into
main memory. This scheme allows messages at the head of the
queue to be read via fast cache-to-cache transfers.

Second, writing messages to the CNI queues via the CNI receive
cache can cause unnecessary cache replacements ofdead messages
(that is, messages already consumed by the processor). A simple
comparison of the head and tail pointers is sufficient to determine if
a message is dead. Unfortunately, under the lazy pointer optimiza-
tion the CNI does not usually maintain a current copy of the head.
Hence, we force the CNI to update the head whenever it flushes a
message to main memory.

5 Methodology
This section describes our system assumptions and the seven

macrobenchmarks we used to evaluate the NIs. Section6 presents
the results from the evaluation. We use the Wisconsin Wind
TunnelII simulator [32] for all of our evaluations.

5.1 System Assumptions

In this section we describe our system parameters
(Section5.1.1) and network assumptions (Section5.1.2).

5.1.1 System Parameters

Table3 shows the system parameters common to all of our sim-
ulation models. All simulations assume a one GHz, dual-issue
HyperSPARC-like processor. We have chosen a slightly aggressive

processor speed to model next generation processor architectures.
Although our simulations do not model a dynamically-scheduled
processor, which is likely to dominate in the future, we believe that
both our quantitative comparisons and qualitative trends can be
extrapolated to these processors. This is because our primary focus
is onrelative performance of different NIs using the same base pro-
cessor model, and not on the absolute performance of a particular
processor architecture.

All of our benchmarks are run on the Tempest parallel program-
ming interface [19]. Message-passing benchmarks use only Tem-
pest’s active messages. Shared-memory codes on Tempest also use
active messages, but assume hardware support for fine-grain access
control. Codes with custom protocols use a combination of the two.

5.1.2 Network and Flow Control

All of our simulations ignore network topology. We assume
messages take 40 nanoseconds (ns) to traverse the network from
injection of the last byte at the source to arrival of the first at the
destination. Recently, Dai and Panda [11] have shown that network
contention can significantly degrade the performance of some
shared-memory applications. However, because we focus on rela-
tive performance using the same base network model, we believe
our quantitative results and qualitative trends can be extrapolated to
more realistic networks. Additionally, our abstract network model
frees us from the idiosyncrasies of a particular network implemen-
tation and allows us to focus our attention purely on the NI.

We model hardware flow control for all NIs using a scalable
end-to-end flow control scheme calledreturn-to-sender [14]. In this
scheme, the sending NI allocates an empty buffer for a message and
injects the message into the network. If the receiving NI has a free
buffer to accept the message, it sends an acknowledgment to the
sender to deallocate the sender’s buffer. However, if the receiving
NI cannot accept the incoming message due to lack of buffers, it
returns the message to the sender. The sender must consume the
returning message from the network into the previously allocated
buffer and retry the send later. To prevent deadlock (or message
loss), these returning messages must have a guaranteed path back to
the sender. This can be achieved through a second network (either
virtual or physical). The return-to-sender flow control strategy is
scalable (unlike, for example, all-to-all buffer reservation [27])
because the number of network message buffers allocated in the NI
is independent of the number of nodes in the parallel machine.

In our simulations, we will uniformly vary the number of net-
work message buffers allocated at the sender and receiver. Through-
out the rest of this paper we call this parameterflow control buffers.
So, for example, if the number of flow control buffers = 4 that
implies that each NI has four outgoing buffers and four incoming
network message buffers allocated for flow control.

5.2 Macrobenchmarks

Table4 depicts the seven macrobenchmarks used in this study.
Appbt is a parallel three-dimensional computational fluid dynamics
application [5] from the NAS benchmark suite. It consists of a cube
divided into subcubes among processors. Communication occurs
between neighboring processors along the boundaries of the sub-
cubes through Tempest’s default invalidation-based shared memory
protocol [34].

Barnes simulates the interaction of a system of bodies in three
dimensions using the Barnes-Hut hierarchical N-body method [43].
Communication occurs between all processors in an irregular fash-
ion through Tempest’s default shared memory protocol.

Dsmc studies the properties of a gas by simulating the move-
ment and collision of a large number of particles in a three-dimen-

a. We assume 60 ns access time for all NIs except CNI512Q.
Because CNI512Q is much larger we expect it to be built with com-
modity DRAM with access time characteristics similar to main
memory (i.e., 120 ns in our system).

System Parameters

Number of parallel machine nodes 16

Processor speed 1 GHz

Cache block size 64 bytes

Cache size one megabyte

Cache associativity direct-mapped

Main memory access time 120 ns

Memory bus coherence protocol MOESI

Memory bus width 256 bits

Memory bus clock time 250 MHz

Network message size 256 bytes

Network latency 40 ns

NI memory access time 60 nsa

TABLE 3. This table shows our common system parameters
we assumed for all of our NIs.

7

sional domain with discrete simulation Monte Carlo method [33].
Dsmc’s primary communication phase uses fine-grain active mes-
sages to move molecules from one processor to another after every
iteration.

Em3d models three-dimensional electromagnetic wave propaga-
tion [8]. It iterates over a bipartite graph consisting of directed
edges between nodes. Each node sends two integers to its neighbor-
ing nodes through a custom update protocol [12].Several update
messages (with 12 byte payload) can be in flight, which like
spsolve, can create bursty traffic patterns.

Moldyn is a molecular dynamics application, whose computa-
tional structure resembles the non-bonded force calculation in
CHARMM [4]. The main communication occurs in a custom bulk
reduction protocol [33]. One execution of the reduction protocol
iterates as many times as there are processors. In each of these iter-
ations, a processor sends 1.5 kilobytes of data to the same neighbor-

ing processor through Tempest’s virtual channels.

Spsolve [7] is a very fine-grained iterative sparse-matrix solver
in which active messages propagate down the edges of a directed
acyclic graph (DAG). All computation happen at nodes of the DAG
within active message handlers. The messaging overhead is critical
because each active message carries only a 12 byte payload and the
total computation per message is only one double-word addition.
Several active messages can be in flight, which can create bursty
traffic patterns.

Unstructured is a computational fluid dynamics application that
uses an unstructured mesh to model a physical structure, such as an
airplane wing or body [33]. This application has a static, single-pro-
ducer, multiple-consumer communication pattern. Updates to a sin-
gle consumer are batched and sent in bulk messages.

6 Results
This section examines the seven NIs’ performance with two

microbenchmarks (Section6.1) and seven macrobenchmarks
(Section6.2). Finally, Section6.3 compares the performance of the
single-cycle NI2w with CNI32Qm (CNI with a cache), which per-
forms the best for six of our seven macrobenchmarks and slightly
worse than the AP3000-like NI for unstructured.

6.1 Microbenchmarks

In this section we characterize the performance of seven NIs
using two microbenchmarks: round-trip latency and bandwidth.
These microbenchmarks capture the baseline performance of these
NIs.

An alternative approach would be to characterize the NIs using
the Berkeley LogP model [9]. The LogP model characterizes NI
accesses with three parameters: latency (L), overhead or processor
occupancy (o), and bandwidth (g). However, we refrain from using
this model because the latency and overhead components of this
model do not uniformly capture the same metrics for all of our NIs.
For example, for coherent network interfaces, the latency compo-
nent includes both the latency to transfer a message from the pro-
cessor’s cache to the NI and the network latency. In contrast, for
CM-5-like NIs, the latency component captures only the network
latency, while the actual data transfer is included in the overhead/
occupancy component of the model. Nevertheless, the LogP model
does help us understand qualitatively the performance of these NIs.
For example, NIs that require processor involvement for data trans-
fer have a higher processor occupancy compared to NIs that them-
selves manage the data transfer (Section2.2.2).

6.1.1 Round-Trip Latency

Table5 shows the process-to-process round-trip latency and
bandwidth for our seven NIs. These numbers include the messaging
layer overhead for copying a message from the NI to a user-level
buffer and vice versa. Thus, for all NIs, except the Udma-based NI,
data begins in the sending processor’s cache and ends in the receiv-
ing processor’s cache, rather than simply moving from memory to
memory. Only for the Udma-based NI data begins in the sending
processor’s cache, but ends in the receiving processor’s memory.

The round-trip latency numbers in Table5 shows three impor-
tant results. First, each of the three data transfer parameters—size
of transfer, degree of processor involvement for transfer, and
source/destination of transfer—have significant impact on the
round-trip latency of each NI. Carefully choosing these parameters
can improve the round-trip latency by more than a factor of three.
Second, the relative importance of these parameters depend on the
specific NI design. Third, among the seven NIs, CNI32Qm—the
CNI with a cache—offers the best round-trip latency because it
optimizes the three data transfer parameters.

Benchmark Input
Data Set

Key
Message
Pattern

Message
Size

(bytes)

% of
Messages

appbt 24x24x24
cubes,
4 iter

Near neighbor 12
32

67%
32%

barnes 16K parti-
cles

Irregular 12
16

140

67%
4% s
29%

dsmc 48600
initial
particles,
9720 cells,
20 iter

Fine-grain
messages,
producer-
consumer

12
44

140

45%
25%
26%

em3d 16K nodes,
degree 5,
10%
remote,
span 6, 10
iter

Fine-grain
messages

12
20

2%
98%

moldyn 2048 parti-
cles,
30 iter

Bulk reduction 8
12

140
3084

5%
65%
27%
2%

spsolve 3720 ele-
ments

Fine-grain
messages

8
12
20

6%
3%

91%

unstructured 9428
nodes,
59863
edges,
5864 faces,
10 iter

Single-
producer,
multiple-
consumer

8

351
(average)

35%

64%

TABLE 4. Summary of macrobenchmarks. Message size
includes both header and payload. The first six
macrobenchmarks have distinct peaks at the message sizes
described above. However, unstructured shows only one
distinct peak at 8 bytes. Beyond that it shows a range of
message sizes varying between 12-1812 bytes. Here we report
the average message size for this range. Percentages of each
macrobenchmark may not sum to 100% because of the
presence of a trivial fraction of messages of other sizes.

8

Below we examine five interesting comparisons revealed by
Table5:

The Udma-based NI performs better than CM-5-like NI only for
messages greater than 96 bytes

The Udma-based NI’s round-trip latency is worse than CM-5-
like NI for messages with payload less than 96 bytes (the exact
breakeven point is not shown in the table), but substantially better
as the message payload increases beyond this size. This is because
for small messages, the Udma-based NI’s high initiation overhead
(one uncached store + one uncached load + switch bus master from
processor to NI) offsets its two advantages: ability to transfer mes-
sages in blocks and ability to directly deposit data in user space
without processor involvement. Hence, for our macrobenchmarks
the Udma-based NI attempts to use the UDMA mechanism only for
messages with payload greater than 96 bytes.

The AP3000-like performs substantially better than the Udma-
based NI

The AP3000-like NI performs substantially better (more than a
factor of two) than the Udma-based NI, even though all transfers
are managed by processor for the AP3000-like NI. This is because
like the Udma-based NI, it transfers messages in blocks, but unlike
the Udma-based NI, it has a low initiation overhead (an uncached
store) andit transfers data directly to the fast receive block buffer
residing on the processor chip (and not into slower main memory).

The Start-JR-like NI and AP3000-like NI have a crossover point

The Start-JR-like NI outperforms the AP3000-like NI for mes-
sages less than 64 bytes (size of the block buffer) because the
AP3000-like NI has higher overhead (12 processor cycles) to flush
and load the send and receive block buffers respectively. Beyond a
64-byte message payload, the AP3000-like NI’s overhead is amor-
tized and consequently it outperforms the Start-JR-like NI. The

Memory Channel-like NI’s round-trip latency is almost similar to
that of the Start-JR-like NI, which indicates that the send side of the
Start-JR-like NI and the Memory Channel-like NI exhibit almost
similar performance.

CNI512Q outperforms the Start-JR-like NI

CNI512Q—the CNI with no cache and queues allocated in dedi-
cated CNI memory—outperforms Start-JR-like NI, even though the
memory on CNI512Q is as slow as main memory. The difference
arises because of two reasons. First, on the receive side messages
are steered to processor caches directly from the NI and not via
main memory, which adds additional latency for the Start-JR-like
NI. Second, on the send side, for messages larger than a cache
block (i.e., 64 bytes), CNI512Q prefetches cache blocks as the pro-
cessor composes them in its cache. For example, while a processor
is composing a cache block of a message, CNI512Q fetches the pre-
vious block of the same message. This fetch is initiated by CNI512Q
when it observes the processor’s request for exclusive access for a
subsequent cache block of a message. If a cache block is fetched
too early even before entire cache block is written, then CNI512Q
can re-fetch it when the message is ready for delivery. Thus, avoid-
ing processor involvement for data transfer allows simultaneous
transfer and creation of a message. Unlike CNI512Q, the Start-JR-
like NI cannot prefetch cache blocks of a message because it does
respond to the memory coherence signals (e.g. coherent invalida-
tions).

CNI32Qm shows the best round-trip latency

CNI32Qm—the CNI with a cache—shows the best round-trip
latency among our seven NIs because it provides all the benefits of
CNI512Q, but with smaller and faster cache memories compared to
CNI512Q. Therefore, overall it outperforms all other NIs by roughly
20%-342% for message payload between 8-256 bytes.

In summary, we find that low latency transfer can be achieved
for small messages via block transfers, minimal processor involve-
ment, and direct processor-to-NI transfers. The relative importance
of these parameters depend on the specific NI designs.

6.1.2 Bandwidth

The bandwidth numbers in Table5 show trends similar to the
round-trip latency numbers with two key exceptions that we discuss
below.

The AP3000-like NI offers significantly greater bandwidth com-
pared to the Start-JR-like NI and CNI512Q

This is because at the receive side the AP3000-like NI transfers
messages directly from the small and fast NI memory to the receive
block buffer located next to the processor. This is significantly
faster than reading messages from the slower main memory for the
Start-JR-like NI and slower NI memory for CNI512Q.

Without throttling CNI32Qm’s bandwidth is worse than the AP3000-
like NI, even though CNI32Qm’s latency is significantly better.

This is becauseCNI32Qm’s send bandwidth is significantly
greater than its receive bandwidth. This causes CNI32Qm’s receive
cache to overflow, which forces the receiving processor to pick up
most messages from main memory, like the Start-JR-like NI. How-
ever, appropriately throttling the sending processor after every send
can help improve CNI32Qm’s bandwidth by preventing the receive
cache from overflowing. This allows the receiving processor to pick
up messages from the fast CNI32Qm memory, instead of slower

Network
Interface

Round-Trip
Latency

Bandwidth

8 64 256 8 64 256 4096

CM-5-like NI 2.41 5.25 15.11 17 54 63 69

Udma-based NI 4.48 5.83 10.10 7 42 78 109

AP3000-like NI 1.95 2.48 4.47 26 154 234 298

Start-JR-like NI 1.54 2.38 5.04 29 119 191 221

Memory Channel-
like NI

1.55 2.42 4.89 27 119 191 221

CNI512Q 1.56 2.22 4.17 28 134 209 259

CNI32Qm 1.29 1.78 3.42 36 120 189 209

CNI32Qm+Throttle n/a n/a n/a 36 158 272 351

TABLE 5. This table shows the process-to-process round-trip
latency (in microseconds) for 8-, 64-, and 256-byte message
payload and process-to-process bandwidth (megabytes per
second) for 8-, 64-, 256-, and 4096-byte message payload. Each
message contains an eight-byte header. CNI32Qm+Throttle
thr ottles the sender to match the maximum message
consumption rate of the receiving NI. Send throttling does not
significantly change the bandwidth attained by any other NI.
For all these numbers, we set the number of flow control
buffers = 8.

9

main memory. However, we do not see this effect in our mac-
robenchmarks.

Overall, with send throttling, CNI32Qm achieves a bandwidth of
351 megabytes/second, which is significantly greater than the band-
width offered by any other NI.

6.2 Macrobenchmarks

This section discusses the performance of our seven NIs with
seven macrobenchmarks (Table4). Overall, we can draw two con-
clusions. First, the data transfer parameters have significant impact
on the performance of all seven macrobenchmarks. Second, buffer-
ing only affects two of the macrobenchmarks: em3d and spsolve.
This is because both these benchmarks generate small messages
more rapidly than the receiving processor can consume. Conse-

quently, for em3d and spsolve, buffering is more important than
data transfer.

We do not, however, attempt to quantify the relative importance
of each of the three data transfer and two buffering parameters. This
is because the extent to which each parameter affects a mac-
robenchmark depends on the specific NI design and the mac-
robenchmark itself. Nevertheless, it should be noted that each of
these parameters directly affects performance. This is because for
pure shared-memory applications, such as appbt and barnes, which
communicate using a request-response protocol, all the parameters
adds latency to the requests and responses. For pure message-pass-
ing applications, such as em3d and spsolve, the receive side is the
bottleneck. Consequently, all the parameters on the receive side is
on the critical path. The rest of the applications that use hybrid pro-

appbt barnes dsmc em3d moldyn spsolve unstructured

appbt barnes dsmc em3d moldyn spsolve unstructured

(a)

(b)
FIGURE 3. This figures compares the execution time of seven NIs on our seven macrobenchmarks. Both (a) and (b) are normalized
to the AP3000-like NI with number of flow control buffers = 8. # buffers denotes the number of flow control buffers. (a) compares
the performance of our three fifo-based NIs for differ ent levels of flow control buffering. The black shade represents the execution
time with infinite flow control buffering. Lighter shades represent the incremental execution time penalty for thr ee flow control
buffering levels (8, 2, and 1). (b) compares the performance of four coherent network interfaces with number of flow control buffers
= 2. I However, because these NIs themselves provide plentiful buffering, their perf ormance is largely insensitive to the number of
flow control buffers. MC-lik e NI denotes the Memory Channel-like NI.

M
C

 -
lik

e
N

I
S

ta
rt

-J
R

-li
ke

 N
I

C
N

I 5
12

Q
C

N
I 3

2Q
m

M
C

-li
ke

 N
I

S
ta

rt
-J

R
-li

ke
 N

I
C

N
I 5

12
Q

C
N

I 3
2Q

m

M
C

-li
ke

 N
I

S
ta

rt
-J

R
-li

ke
 N

I
C

N
I 5

12
Q

C
N

I 3
2Q

m

M
C

-li
ke

 N
I

S
ta

rt
-J

R
-li

ke
 N

I
C

N
I 5

12
Q

C
N

I 3
2Q

m

M
C

-li
ke

 N
I

S
ta

rt
-J

R
-li

ke
 N

I
C

N
I 5

12
Q

C
N

I 3
2Q

m

M
C

-li
ke

 N
I

S
ta

rt
-J

R
-li

ke
 N

I
C

N
I 5

12
Q

C
N

I 3
2Q

m

M
C

-li
ke

 N
I

S
ta

rt
-J

R
-li

ke
 N

I
C

N
I 5

12
Q

C
N

I 3
2Q

m

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

C
M

-5
-li

ke
 N

I
U

dm
a-

ba
se

d
N

I
A

P
30

00
-li

ke
 N

I

0.0

1.0

2.0

3.0
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e # buffers = infinite
buffers = 8
buffers = 2
buffers = 1

10

tocols—that is, both message passing and shared memory—conse-
quently have the same behavior.

We divide our discussion into two parts and examine the results
in detail. First, we discuss the performance of the CM-5-like NI, the
Udma-based NI, and the AP3000-like NI (Section6.2.1). These NIs
rely on NI memory to buffer network messages (via the flow control
buffers). These three NIs are fifo-based NIs, but differ in the way
they pop/push data to the fifos. For such push and pop the CM-5-
like NI uses uncached loads/stores, the Udma-based NI uses User-
Level DMA (or UDMA), and AP3000-like uses block loads/stores.

Second, we discuss the Memory Channel-like NI, the Start-JR-
like NI, CNI512Q, and CNI32Qm, (Section6.2.2). These NIs pro-
vide plentiful buffering in main memory without requiring a pro-
cessor’s involvement. All these four NIs are either fully coherent or
partially coherent. They differ primarily in the way the NI queues
are allocated. The Memory Channel-like NI allocates receive
queues in main memory. The Start-JR-like NI allocates both send
and receive queues in main memory. CNI512Q allocates the queues
in dedicated CNI memory. Finally, CNI32Qm allocates queues in
main memory, but caches them in a CNI cache.

6.2.1 Comparison of Three Fifo-based NIs

Figure3a compares the execution time for the three fifo-based
NIs. The black bars, which show the execution time for the three
NIs for infinite flow control buffering, allow us to isolate the impact
of the data transfer parameters on the macrobenchmarks. With infi-
nite flow control buffering, the Udma-based NI outperforms the
CM-5-like NI by 0-15% and the AP3000-like NI outperforms the
Udma-based NI by 11-44%. The Udma-based NI performs similar
to or better than the CM-5-like NI because it uses the UDMA
mechanism only for large payloads and falls back on uncached
loads and stores, like the CM-5-like NI, for smaller messages. The
AP3000-like NI’s lower latency and greater bandwidth
(Section6.1) clearly help improve the macrobenchmarks’ perfor-
mance.

The lighter bars in Figure3a show the increase in execution time
as we reduce the number of flow control buffers. Clearly, the num-
ber of flow control buffers have a significant impact on perfor-
mance. Figure3a shows two interesting results about flow control
buffering. First, for all three NIs and all of our seven applications,
increasing the number of flow control buffers from one to two sig-
nificantly improves performance (between 6-40%). However,
increasing the number of flow control buffers beyond two buys only
modest performance gains (less than 19%) for most applications,
except em3d and spsolve.

Second, the number of flow control buffers has significant
impact on em3d and spsolve. This is because both em3d and
spsolve generate bursts of small messages (less than 20 bytes) more
rapidly than the receiving NI can consume. Consequently, the lack
of flow control buffers has a dramatic impact on performance. For
em3d and spsolve increasing the number of flow control buffers
from two to infinity improves performance by 29-40% and 78-
101% respectively for the three NIs. Actually, increasing the num-
ber of flow control buffers to 128 for em3d and 33 for spsolve cap-
tures most of the performance gains that can be achieved from an
infinite number of flow control buffers.

6.2.2 Comparison of Four Coherent Network Interfaces

Figure3b compares the execution time (normalized to the
AP3000-like NI for flow control buffers = 8) of four NIs that are
either partially or fully coherent. These NIs provide NI-managed,
plentiful buffering in main memory on the receive side. Conse-
quently, these NIs are largely insensitive to the number of flow con-
trol buffers.

Figure3b shows three interesting results. First, the performance
of the Memory Channel-like NI varies widely for the seven mac-
robenchmarks. It performs significantly better than the AP3000-like
NI, with the number of flow control buffers = 8, for em3d and
spsolve because it provides plentiful buffering in main memory
without direct processor involvement. It performs almost similar to
the AP3000-like NI for appbt, barnes, dsmc, and moldyn because
these macrobenchmarks do not gain significantly from plentiful
buffering. It performs worse than the AP3000-like NI for unstruc-
tured because unstructured’s large messages effectively use the
greater bandwidth provided by the AP3000-like NI (Table5).

Second, among the four NIs shown in Figure3b, the Memory
Channel-like NI performs the worst and CNI32Qm performs the
best. CNI32Qm—the CNI with a cache—outperforms the Memory
Channel-like NI by 2-26% for the seven macrobenchmarks due to
its lower latency and higher bandwidth (Table5). CNI32Qm also
outperforms The AP3000-like NI—the best fifo-based NI—and
CNI512Q—the CNI with queues allocated in main memory—for all
applications, except unstructured. It appears that the most important
feature of unstructured’s communication is to stream data from the
sender to the receiver. Both the AP3000-like NI and CNI512Q has
less overhead for this data streaming compared to CNI32Qm, which
incurs extra overhead due to its cache management (e.g. cache
replacement). Consequently, CNI32Qm performs marginally worse
than the AP3000-like NI and CNI512Q for unstructured. Like
Mukherjee, et al. [29], we find that CNI32Qm is competitive with
CNI512Q with much less memory.

Third, a comparison of the Start-JR-like NI and CNI32Qm shows
that caching messages in a CNI cache, as in CNI32Qm, provides a
performance boost of 2-13% for the seven macrobenchmarks. An
examination of NI-related memory bus transactions reveals that
CNI32Qm reduces the number of main memory to processor cache
transactions by 54% (averaged across the seven macrobenchmarks).
This is because CNI32Qm provides messages to the processor via
direct CNI-cache-to-processor-cache transfers. Further, as the per-
formance gap between microprocessors and main memory widens,
we expect CNI32Qm to provide significantly better performance
than the Start-JR-like NI because of two reasons. First, because
CNI32Qm caches are small, they can be built with faster SRAMs,
thereby providing lower latency to transfer messages. Second,
CNI32Qm satisfies more than 50% of the processor’s accesses to the
NI directly from its cache, which avoids message steering via main
memory.

Overall, we find that CNI32Qm—the coherent interface with a
cache—performs the best because it optimizes all of the five data
transfer and buffering parameters. In summary, CNI32Qm:

• effectively uses the block transfer mechanism of current memory
buses by transferring messages in cache blocks;

• minimizes processor involvement for data transfer by initiating
the transfer using a cachable store and decoupling the processor
and NI via memory-mapped, cachable queues;

• directly transfers messages from the NI cache to the processor
cache in the common case;

• provides plentiful buffering in main memory; and

• allows the NI to directly deposit messages into main memory,
when the NI cache overflows.

6.3 Single-Cycle NI2w vs. CNI32Qm

Figure4 compares the performance of CNI32Qm with an NI2w
NI, whose memory can be accessed by the processor in a single
cycle. Thus, our single-cycle NI2w approximates processor-register-

11

mapped NIs in research machines, such as the MIT M-machine
[14].1

Figure4 shows two interesting results. First, CNI32Qm—the
CNI with a cache—outperforms our single-cycle NI2w for spsolve
and em3d for small number of flow control buffers. Processor-regis-
ter-mapped NIs are likely to have a small number of flow control
buffers because of two reasons. First, a processor’s register memory
is a precious resource and its size is severely constrained by its
access time. Second, the demands of multiprogramming require
that the NI2w buffers be either partitioned among multiple processes
or saved and restored across context switches. The first solution
limits the number of flow control buffers allocated per process and
the second solution increases the context-switch time. Further, our
single-cycle NI2w cannot also rely on commercial NIs for plentiful
buffering (see Table1). Consequently, CNI32Qm’s ability to buffer
messages in NI caches and main memory without processor
involvement makes its performance better or comparable to the sin-
gle-cycle NI2w for spsolve and em3d. For example, for flow control
buffers = 2, CNI32Qm’s performance is better than the single-cycle
NI2w by 18% for spsolve and comparable for em3d. For spsolve
and em3d, the breakeven point between CNI32Qm and the single-
cycle NI2w occurs when the number flow control buffers equals 32
and 2 respectively.

Second, for the five macrobenchmarks other than spsolve and
em3d, CNI32Qm is within 15% of the performance of the single-
cycle NI2w (averaged across the five macrobenchmarks).

The above results suggest that in the absence of adequate buffer-
ing, mapping an NI directly to the processor registers may not
always be the optimal design point. Perhaps a two-level register
memory hierarchy for NI registers can make such processor-regis-
ter-mapped NIs competitive with a memory bus NI, such as
CNI32Qm.

7 Related Work
To the best of our knowledge, this paper is the first to systemati-

cally identify, examine, and explore the data transfer and buffering
parameters that underlie the design of high-performance NIs for

1. Unlike our single-cycle NI2w, a processor in the MIT M-machine can
compute directly from the NI registers, which allows zero-cycle access to
the NI registers for some cases.

fine-grain communication. Mukherjee, et al. [29] examined NI2w
and four Coherent Network Interfaces (including CNIiQm and
CNIiQ) and found that transferring messages in cache block units
and buffering messages in coherent memory space can improve per-
formance. However, they neither examined alternative block trans-
fer or buffering mechanisms nor evaluated the key parameters that
affect the performance of such NIs.

Karamcheti and Chien [21] compared the messaging support in
TMC CM-5 and Cray T3D and concluded that requiring processor
involvement for message reception can significantly degrade per-
formance. We improve upon their work by exposing and examining
the design space of data transfer and buffering parameters. Blum-
rich, et al. [3] compared the SHRIMPI and SHRIMPII NIs, but did
not explore alternate data transfer and buffering mechanisms.
Mackenzie, et al. [25] studied the effect of buffering using a syn-
thetic workload and concluded that buffering messages in virtual
memory can occur only rarely for realistic applications. However,
in contrast we found that for two of our seven macrobenchmarks,
buffering can play a significant role in improving performance.
Henry and Joerg [18] compared the performance of three NIs
mapped respectively to the processor registers, L1 cache bus, and
an off-chip L2 cache bus. However, unlike our study, they did not
examine the impact of buffering on the performance of these NIs.

8 Conclusions
In this paper we have systematically identified, examined, and

explored the key parameters that affect the design of high-perfor-
mance NIs targeted for fine-grain communication. We classified
these parameters into two categories: data transfer and buffering
parameters. The data transfer parameters capture how messages are
transferred between internal memory structures (e.g. processor
caches, main memory) of a computer and a memory bus NI. The
buffering parameters capture where and how an NI buffers incom-
ing network messages. We found that each of the three data transfer
parameters—size of transfer, degree of processor involvement for
transfer, and source/destination of transfer—and two buffering
parameters—location of buffers and degree of processor involve-
ment for buffering—can have a significant impact on performance.

Using two microbenchmarks and seven macrobenchmarks we
evaluated seven memory bus NIs that we believe captured the
essential components of the design space exposed by the five data
transfer and buffering parameters. These seven NIs abstract the data
transfer and buffering parameters of the NIs in TMC CM-5, Fujitsu
AP3000, Princeton User-Level DMA, Digital Memory Channel,
MIT StarT-JR, and two Coherent Network Interfaces—CNI512Q
and CNI32Qm—proposed by Mukherjee, et al. [29].

Overall, we found that among these seven NIs, CNI32Qm—a
coherent network interface that treats memory on the interface as a
cache—performed the best because it optimizes all five data trans-
fer and buffering parameters. It:

• effectively uses the block transfer mechanism of current memory
buses by transferring messages in cache blocks,

• minimizes processor involvement for data transfer by initiating
the transfer using a cachable store and decoupling the processor
and NI via memory-mapped, cachable queues,

• directly transfers messages from the NI cache to the processor
cache in the common case,

• provides plentiful buffering in main memory, and

• allows the NI to directly deposit messages into main memory,
when the NI cache overflows.

As a corollary of this study, we found that, contrary to conven-

FIGURE 4. This figure compares the execution time of a single-
cycle NI2w for differ ent levels of flow control buffering. The
vertical axis is normalized to the CNI32Qm on the memory bus.
CNI32Qm is independent of flow control buffering because it
provides plentiful buffering in main memory.

1 2 4 8 16 32 64 128
Number of Flow Control Buffers

0.0

0.5

1.0

1.5

2.0
N

or
m

al
iz

ed
 E

xe
cu

tio
n

T
im

e
spsolve
em3d
dsmc
moldyn
barnes
unstructured
appbt

12

tional wisdom, mapping an NI to the processor registers may not
always be the ideal choice. This is because processor register mem-
ory is a precious resource, which may not provide adequate buffer-
ing for some applications. Consequently, for two of our seven
macrobenchmarks, we found that CNI32Qm outperformed a proces-
sor-register-mapped NI with small amounts of buffering.

Acknowledgments
We would like to thank Nick Carter, Bob Felderman, Mike

Galles, Leonidas Konthothanassis, Whay Lee, Ken Mackenzie,
Toshi Shimizu, and Bob Zak for providing helpful information
regarding various commercial and experimental networks and net
work interfaces. We would also like to thank Tom Anderson, Satish
Chandra, Rebecca Hoffman, Stefanos Kaxiras, and T.N.Vijayku-
mar, who provided very helpful comments on earlier drafts of this
paper.

References
[1] Martin Arlitt and CareyL. Williamson. Web Server Workload Characterization:

The Search for Invariants. InProceedings of the 1996 ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages 126–137, 1996.

[2] MatthiasA. Blumrich, Cesary Dubnicki, EdwardW. Felten, and Kai Li. Protected
User-level DMA for the SHRIMP Network Interface. InProceedings of the Second
IEEE Symposium on High-Performance Computer Architecture, February 1996.

[3] MattiasA. Blumrich, Cezary Dubnicki, EdwardW. Felten, Kai Li, and MalenaR.
Mesarina. Two Virtual Memory Mapped Network Interface Designs. InHot
Interconnects II, 1994.

[4] B. R. Brooks, R.E. Bruccoleri, B.D. Olafson, D. J. States, S.Swamintathan, and
M. Karplus. Charmm: A program for macromolecular energy, minimization, and
dynamics calculation.Journal of Computational Chemistry, 4(187), 1983.

[5] Doug Burger and Sanjay Mehta. Parallelizing Appbt for a Shared-Memory
Multiprocessor. Technical Report 1286, Computer Sciences Department, University
of Wisconsin–Madison, September 1995.

[6] Joseph Carbonaro and Frank Verhoorn. Cavallino: The Teraflops Router and NIC.
In Hot Interconnects IV, pages 157–160, 1996.

[7] Fred Chong, Shamik Sharma, Eric Brewer, and Joel Saltz. Multiprocessor Runtime
Support for Irregular DAGs. In R.Kalia and P.Vashishta, editors,Toward Teraflop
Computing and New Grand Challenge Applications. Nova Science Pulishers, Inc.,
1995.

[8] D. E. Culler, A.Dusseau, S.C. Goldstein, A.Krishnamurthy, S.Lumetta, T.von
Eicken, and K.Yelick. Parallel Programming in Split-C. InProceedings of
Supercomputing ’93, pages 262–273, November 1993.

[9] David Culler, LokTin Liu, Richard Martin, and Chad Yoshikawa. Assessing Fast
Network Interfaces.IEEE Micro, 16(1), February 1996.

[10] R. Cypher, A.Ho, S.Konstatinidou, and P.Messina. Architectural Requirements
of Parallel Scientific Applications with Explicit Communication. InProceedings
of the 20th Annual International Symposium on Computer Architecture, pages 2–
13, 1993.

[11] Donglai Dai and DhabaleswarK. Panda. How Much Does Network Contention
Affect Distributed Shared Memory Performance? InProceedings of the 1997
International Conference on Parallel Processing, 1997.

[12] Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis Schoinas, MarkD. Hill,
James Larus, Anne Rogers, and David Wood. Application-Specific Protocols for
User-Level Shared Memory. InProceedings of Supercomputing ’94, pages 380–
389, November 1994.

[13] Bob Felderman, Myricom. Personal Communication, March 1997.

[14] Marco Fillo, StephenW. Kekler, WilliamJ. Dally, NicholasP. Carter, Andrew
Chang, Yevgeny Gurevich, and WhayS. Lee. The M-Machine Multicomputer.
Technical Memo A.I. Memo No. 1532, MIT, March 1995.

[15] Mike Galles. Scalable Pipelined Interconnect for Distributed Endpoint Routing: The
SGI Spider Chip. InHot Interconnects IV, pages 141–146, 1996.

[16] RichardB. Gillett. Memory Channel Network for PCI.IEEE Micro, 16(1):12–18,
February 1996.

[17] John Heinlein, Kourosh Gharachorloo, ScottA. Dresser, and Anoop Gupta.
Integration of Message Passing and Shared Memory in the Stanford FLASH
Multiprocessor. In Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS VI), pages 38–50, 1994.

[18] DanaS. Henry and ChristopherF. Joerg. A Tightly-Coupled Processor-Network
Interface. InProceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS V), pages
111–122, October 1992.

[19] Mark D. Hill, JamesR. Larus, and DavidA. Wood. Tempest: A Substrate for
Portable Parallel Programs. InCOMPCON ’95, pages 327–332, San Francisco,
California, March 1995. IEEE Computer Society.

[20] JamesC. Hoe and Mike Ehrlich. StarT-JR: A Parallel System from Commodity
Technology. Computation Structures Technical Memo 384, MITLCS, Oct 1996.

[21] Vijay Karamcheti and AndrewA. Chien. A Comparison of Architectural Support
for Messaging in the TMC CM-5 and the Cray T3D. InProceedings of the 22nd
Annual International Symposium on Computer Architecture, pages 298–307, 1995.

[22] Jonathan Kay and Joesph Pasquale. The Importance of Non-Data Touching
Processing Overheads in TCP/IP. InSIGCOMM93, pages 259 – 268, 1993.

[23] Kimberly A. Keeton, ThomasE. Anderson, and DavidA. Patterson. LogP
Quantified: The Case for Low-Overhead Local Area Networks. InHot Interconnects
III , 1995.

[24] CharlesE. Leiserson, ZahiS. Abuhamdeh, DavidC. Douglas, CarlR. Feynman,
MaheshN. Ganmukhi, JeffreyV. Hill, W. Daniel Hillis, BradleyC. Kuszmaul,
Margaret A.St. Pierre, DavidS. Wells, MonicaC. Wong, Shaw-Wen Yang, and
Robert Zak. The Network Architecture of the Connection Machine CM-5. In
Proceedings of the Fifth ACM Symposium on Parallel Algorithms and Architectures
(SPAA), July 1993.

[25] Kenneth Mackenzie, John Kubiatowicz, Matthew Frank, Walter Lee, Anant
Agarwal, and M.Frans Kaashoek. UDM: User Direct Messaging for General-
Purpose Multiprocessing. Technical Memo 556, MIT Laboratory for Computer
Science, March 1996.

[26] EvangelosP. Markatos and Manolis G.H. Katevenis. User-Level DMA without
Operating System Kernel Modification. InProceedings of the Third IEEE
Symposium on High-Performance Computer Architecture, 1997.

[27] Richard Martin. HPAM: An Active Message Layer for a Network of HP
Workstations. InHot Interconnects II, 1994.

[28] Meiko World Inc. Computing Surface 2: Overview Documentation Set, 1993.

[29] ShubhenduS. Mukherjee, Babak Falsafi, MarkD. Hill, and DavidA. Wood.
Coherent Network Interfaces for Fine-Grain Communication. InProceedings of the
23rd Annual International Symposium on Computer Architecture, pages 247–258,
May 1996.

[30] ShubhenduS. Mukherjee and MarkD. Hill. A Case for Making Network Interfaces
Less Peripheral. InHot Interconnects V, 1997. Also available from ftp://
ftp.cs.wisc.edu/wwt/hotinter97_case.ps.

[31] ShubhenduS. Mukherjee and MarkD. Hill. A Survey of User-Level Network
Interfaces for System Area Networks. Technical Report 1340, Computer Sciences
Department, University of Wisconsin–Madison, February 1997.

[32] ShubhenduS. Mukherjee, StevenK. Reinhardt, Babak Falsafi, Mike Litzkow, Steve
Huss-Lederman, MarkD. Hill, JamesR. Larus, and DavidA. Wood. Wisconsin
Wind Tunnel II: A Fast and Portable Parallel Architecture Simulator. InWorkshop
on Performance Analysis and Its Impact on Design (PAID), June 1997.

[33] ShubhenduS. Mukherjee, ShamikD. Sharma, MarkD. Hill, JamesR. Larus, Anne
Rogers, and Joel Saltz. Efficient Support for Irregular Applications on Distributed-
Memory Machines. InFifth ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming (PPOPP), pages 68–79, July 1995.

[34] StevenK. Reinhardt, JamesR. Larus, and DavidA. Wood. Tempest and Typhoon:
User-Level Shared Memory. InProceedings of the 21st Annual International
Symposium on Computer Architecture, pages 325–337, April 1994.

[35] Ioannis Schoinas and MarkD. Hill. Address Translation Mechanisms in Network
Interfaces. InProceedings of the Fourth International Symposium on High-
Performance Computer Architecture (HPCA), February 1998.

[36] Steve Scott and GregoryM. Thorson. The Cray T3E Network: Adaptive Routing
in a High Performance 3D Torus. InHot Interconnects IV, pages 147–156, 1997.

[37] Toshi Shimizu, Fujitsu. Personal Communication, June 1997.

[38] O. Shiraki, M.Nagatsuka, T.Horie, Y.Koyanagi, T.Shimizu, and H.Ishihata. AP-
Net Advanced High-Performance Network for Scalable Parallel Server. InHot
Interconnects IV, 1996.

[39] SPARC Technology Business.UltraSPARC-I User’s Manual, Revision 1.0,
September 1995.

[40] CraigB. Stunkel, DennisG. Shea, Bulent Abali, Mark Atkins, CarlA. Bender,
Don.G. Grice, PeterH. Hochschild, DouglasJ. Joseph, Ben.J. Nathanson,
RichardA. Swetz, RobertF. Stucke, Michael Tsao, and PhilipR. Varker. The SP2
Communication Subsystem.IBM System Journal, 34(2):185–204, 1995.

[41] Thinking Machines Corporation. The Connection Machine CM-5 Technical
Summary, 1991.

[42] Matt Welsh, Anindya Basu, and Thorsten von Eicken. Incorporating Memory
Management into User-Level Network Interfaces. InHot Interconnects V, 1997.

[43] StevenCameron Woo, Moriyoshi Ohara, Evan Torrie, JaswinderPal Singh, and
Anoop Gupta. The SPLASH-2 Programs: Characterization and Methodological
Considerations. InProceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 24–36, July 1995.

[44] Bob Zak, Sun Microsystems. Personal Communication, March 1997.

