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Abstract

The eplosive gowth in the performance of maprocessas
and networks has eated a ne opportunity to educe the latency
of fine-gain communication. Miaprocessor clok speeds &
now appoading the gigahertzange. Network swith latencies
have dopped to tens of nanoseconds. Unfortunatitlis explo-
sive gowth also gposes prcessor accesses to the network inter-
face (NI) as a critical bottlen&cfor fine-gain communication.
Reseathers have poposed seeral techniques, sut as using
block loads and stas, UsetlLevel DMA, and Cohent Network
Interfaces, to alleiate this NI access bottlerlec

This paper is the fit to systematically identjfgxamine and
evaluate the & pammetes that underlie these design alterna-
tives. V& classify these pametes into two catgories: data
transfer and bffering paametes. The data ansfer paametes
captue how mesges ae transfered between internal memory
structules (eg. processor caees, main memory) of a computer
and a memoryus NI. The bffering palametes captue how and
where an NI luffers incoming network megges.

We evaluate seen memoryus Nis that we belie captue the
essential components of the design spaposed by these data
transfer and bffering paametes. These sen NIs abstct the
data transfer and bffering paametes of the NIs in TMC CM-5
[24], Fujitsu AP3000 [37], Princeton Usdrevel DMA [2], Digi-
tal Memory Channel [16], MIT StarJR [20], and two Cohent
Network Interfaces (CH{Q and CN,Q,,) [29].

Our results indicate that a high-performance NI design should
effectively use the bléctransfer melsanism of the memoryusb,
minimize pocessor imolvement for data émsfer directly transfer
messges between an NI and theopessor (at least in the com-
mon case), mvide plentiful liffering (possibly in main memory),
and minimize pycessor imolvement to Wffer incoming network
messges. The elative importance of these gemetes depends
both on the specific NI design and tiharacteristics of the appli-
cation.

As a coollary of this studywe find that, conarry to cowen-
tional wisdom, mapping an NI to theogessor egisters is usually
not the ideal hoice This is because pcessor egister memory is
a precious esouce, which does not mvide adequate uifering
for many applications.

1 Introduction

The term “computer” is perhaps a misnomer todaynodern
computer system often “communicates” with a communication
network more than it “computésA network interface (NI) degice
provides a computer with aatpvay to such eernal netwrks.

Unfortunately processor accesses to an NI threaten to become
a critical bottleneck in computers todahhis is because of tw
reasons. First, thexplosive grawvth in microprocessor and net-
work performance hasastly increased the rate at which proces-
sors communicate with xeernal networks. Microprocessors
continue to eolve with gigahertz clocks and increasingdds of
instruction-level parallelism. Neterk hardvare continues to
adwance twvards multi-gigbytes-pesecond bandwidth and tens-

of-nanoseconds switch latencies. Consequenrglyid processor
access to the NI is critical tofettively use such>aremely fast
microprocessor and nebrk hardvare.

Second, processor accesses to an NI form an important compo-
nent of end-to-end latepdor fine-grain communication. Fine-
grain communication underlies marraditional and emeging
application domains, such as parallel scientific applications [10],
network file systems [22], erld-wide web sersrs [1], and data-
base queries [23]. A major fraction of messages in these domains
are small messages that are less thaw &ifebytes.

Traditional Nls reside on the I/Oub and are accessed via
either uncached loads/stores or Direct Memory Access (DMA).
However, such traditional solutions cannot &lkge the NI access
bottleneck. ®days 1/0O huses dier latencies and bandwidth that
are a &ctor of tvw to ten varse than memoryuses. Consequently
several commercial NI designers and researcheve Ipaoposed
moving the NI from the 1/O bs to the memoryus. For example,
parallel computers, such as the TMC CM-5 [41], MelS2 [28],
andllntel Braflops [6] attach their NiIs directly to the memory
bus:

Both uncached accesses and DMA arve-performance solu-
tions to accessing an Nlwee residing on the memorws. Tra-
ditionally, uncached accesses transferred only between one to
eight bytes of data, which cannotestively use today 16- to 32-
byte wide memory ises (e.g. Sun UltraGiglane). On the other
hand, traditional DMA usually requires the operating system to
perform may tasks to initiate a transfer between memory and an
1/0 device. Consequentlythe awerhead to initiate a DMA transfer
can be as high as hundreds or thousands of instructions. This
makes traditional DMA highly indicient for small data transfers
that underlie fine-grain communication.

Fortunately today there xdsts a range of inn@ative solutions
that hae the potential to alléate this NI access bottleneckorF
example, the Sun UltraSparc processor [3%&msf nev userlevel
block load and store instructions. These block loads and stores can
move 64-byte blocks of data between an I/@ide and the float-
ing-point reisters. The Fujitsu AP3000 [38] parallel computer
uses these UltraSparc block load/store instructions to access its
NI. Blumrich, et al. [2] proposed a wemechanism called User
Level DMA (UDMA) that dramatically reduces the DMA initia-
tion overhead to just ter useflevel instructions. Alternately,
Mukherjee, et al. [29] proposed awelass of Nis called Coher-
ent Netvork Interfaces (CNIs) that intexte directly to the mem-
ory hus’ coherence protocol. This alls data transfer between a
processor cache and a CNI in whole cache block units and plenti-

1. Attaching the NI to the memory$ may require a non-standard inter-
face, which may prent third-party endors from manatturing NIs.
Mukherjee and Hill [30, 31] discussvezal solutions to this problem.
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from Sun Microsystems. The U.S. @wnment is authorized to reproduce and digteleprints for Geernmental purposes notwithstanding aopyright nota-
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or endorsements, eithexpressed or implied, of the Wright Laboratoryignics Directorate or the U.S. @&rnment.
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FIGURE 1. This figure demonstrates the impact of dat
transfer and buffering on the performance of a memory lis
NI for seven parallel scientific applications. Br these
measurements, we use a CM-5-li& network interface and
number of flow control buffers equal to 1. See Sectiof and
Section5 for a description of our CM-5-like NI, our flow
control scheme, and the applications.

ful buffering in main memory

In this paper we systematically identifxkamine, and \&luate
the key parameters that underlie these design alteestiA thor-
ough understanding of theseykparameters is critical to designing
high-performance NIs.

We classify thesedy parameters into twvcatgories: data trans-

f fferi . Th f .
er and lffering parameters. The data transfer parameters Captuﬁpgce Eposed by these parameters. As a corollary of this swely

hov messages are transferred between a processor and an NI.
buffering parameters capture where and/tam NI huffers incom-
ing network messages. Figuleshavs the impact of data transfer
and luffering parameters on the performance akseparallel sci-
entific applications studied in this pap€his figure shas that data
transfer and Wffering can respeately account for upto 42% and
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FIGURE 2. This figure shavs two workstation-lik e node:
connected via a netwrk. The network interface attaches
dir ectly to the memory hus.
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level NlIs [31] tageted for fine-grain communication. NIs that
require operating system intention for message send and receipt
or must transfer multi-ngabytes of data directly from a graphics
device or a disk (e.g. in a video sery may require optimizations
that are diferent from those discussed in this paper

We have two main contrilntions in this papeiFirst, we identify
and &amine the ky data transfer anduffering parameters that
underlie high-performance, udsewel NI designs for fine-grain
communication. Second, we undesake first systematic simula-
;'g,)n study that comparesvan NIs representag of the design

find that, contrary to caentional wisdom, mapping an NI to the
processor mgisters may not be the ideal choice. This is because pro-
cessor rgister memory is a precious resource, which may not pro-
vide adequateuffering for some applications.

The rest of the paper is ganized as folles. Sectior? and

58% of the totalxecution time of these parallel programs. In other Section3 discuss the diérent data transfer andiffering parame-

words, proper choices of the data transfer arftebing parameters
can hae a dramatic impact on performance.

The data transfer andiffering parametersx@ose an enormous
NI design space. This is because these parameters can be im
mented in seeral diferent ways. In this paper wevaluate seen

memory lus Nis that we belie@ capture the essential components

of this design space. Thesevee memory bs Nls abstract theek
data transfer anduffering parameters of the Nls for the TMC CM-
5 [24], Fujitsu AP3000 [38], Princeton Usleevel DMA [2], Digi-
tal Memory Channel [16], MIT StarJR [20], and tw CNIs
(CNI5;Q and CNQ) [29].

We evaluate these NIs using ewmicrobenchmarks and\an
macrobenchmarks. Our results indicate that a high-performance
design must:

¢ effectively use the block transfer mechanism of current memor
buses,

® minimize processor ilvement for data transfer

® directly transfer messages between an NI and the processor
least in the common case,

® provide plentiful uffering, possibly in main memargnd

® minimize processor ilvement to bffer incoming netwrk mes-
sages.

The relatve importance of these parameters depends on both t
specific NI design and the characteristics of the application.

These obseantions are, hwever, applicable primarily to user

ters. Sectiod describes the gen memory bs Nis we studied in
this paper Sections describes our valuation methodology
Section6 discusses our results. Sectibmlescribes related ofk.

Idf.i;[]ally, Section8 presents our conclusions.

2 Data Transfer Parameters

An NI is a deice that sends and reees messages to and from
an ternal netwrk on behalf of the process@onsequentlythe
most important data sent and reeei by an NI are netwk mes-
sages. br high performance, NIs must transfer these messages rap-
idly between the internal memory structures (e.g. processor
registers, main memory) of a node and the Nk FRemory s Nlis

Nfrigure2), such data transfer occungeo the memory is.

We hae identified and will discuss threeykparameters that
influence the speed of such data transfer:

Yy

® size of transfer
* degree of processorvolvement for transfeand

® source and destination of transfer
2.1 Size of Tansfer

Today most high-performance memonysbs allov at least tw
data transfer sizes: small chunks (between one to eight bytes) and
medium-sized blocks (between 16-64 bytes). The latter is miore ef

H:é'ent than the former mechanism because block transfersfean ef

tively use the bandwidthvailable from wide memory uses and
amortize control eerheads, such asidarbitration, grant, and turn-



around time. ferred. Unfortunatelyusers cannot pvide authenticated piical
addresses of dataiffers without violating most operating systems’
protection model. Consequentli¥ls must be prepared to fetch
authentic piasical addresses from the operating system [35, 17, 42].

Several recent studies siahat applications canfettively use
such block transfersver the memory ts. Clearly if the typical
message size in fine-grain communication weranaliges, block
transfers ver the memory s would be useless. kaver, Cypher To avoid the complgity of building an NI that fetches and man-
et al. [10] found that in sen parallel scientific applications 30% of ages authentic piical addresses, Blumrich, et al. [2, 31] proposed
the messages were between 16 bytes and a kilobyte. Kayaand Pa lov-overhead data transfer initiation scheme called Useel
quale [22] found that the median message sizes for TCP and UOPMA (UDMA). In this scheme users prie authentic pysical
(mostly generated by the Naivk File System) trdic in a depart- addresses to the NI via a sequence ofugerlevel instructions: an
mental netwrk were 32 and 128 bytes respeely. They also  uncached store and an uncached load. AdditigridMA allows
found that 99% of TCP and 86% of the UDPftcafvas less than users to directly deposit data into user data structures.

200 bytes. l€eton, et al. [23] analyzed a debitcredit benchmark on a Unfortunately a key limitation of UDMA is that there is no
commercial database and found that all messages were less thap, ., technique toxtend UDMA in a general ay to a multipro-
20_0 bytes. In the sen parallel scientific appllcat_lons we studied in rammed symmetric multiprocessing (SMP) node. The UDMA
this paperwe found that theverage message size ranges betweerp,ehanism “requires the avinstruction sequence to be atomic.

19-230 bytes (dble4 in Sectiorb). However, in an SMP node, multiple such store-load sequences
Current microprocessorsfef three mechanisms tofectively issued by multiple processors simultaneously can Jeelapped

use the block transfer mechanism of memaryes. These are coa- leading to erroneous results. Markatos and ¥ates [26] shwed

lescing load/storeuffers, block loads/stores, and cache blocks. Athe UDMA initiation sequence can be made atomi¢,dmly under

coalescing load/storeufier coalesces a processoraccesses to restricted conditions.

consecutie addresses_ (and, in some cases, the same address) andThe multiprogramming problenated by UDMA can bever-

transfers them as a single blooleothe memory us. Therefore, a come using the third scheme in which processors and NIs commu-

processos accesses to Nigisters can be coalesced in the coalesc-niCate via cachable, shared memdiysend a message a processor
ing buffers and transferred as a single block. simply writes to a location shared between the processor and the NI
Block load/store instructions—recently introduced in the Sun(e.g. increment the shared tail pointer of a shared queue). The NI
UltraSparc processor [39]—alls a processor to me a block of  polls the shared location to determine the presence of a message.
data between a diee, such as main memory or NI, and the UltraS-Similarly, when a message ams at the NI, the NI sets a shared
parc floating point mgisters. The Fujitsu AP3000 machine useslocation that the processor monitors. This scheme doescmtlie
UltraSparc block load and store instructions to access the memosame multiprogramming problem of UDMA. This is because such
on the NI [37]. an NI can directly read and write data to a portion of the siser’
Finally, block transfer ver the memory s can be achied by address. space, which. is protepted by thg normal virtual memory
transferring data as cache blockswieger, this requires the NI to  Mechanisms. Heever, like the first mechanism, this scheme does
interact with the cache coherence signals, which are supported pgauire the NI to fetch gnd manage authentigsiial addresses_ to
most high-performance memoryges todayThis is necessary to Which the shared locations are mapped. Anothewsek of this
avoid hasing stale data in the processocache. Currentlymost approach is that the NI must remember to poll the cached, shared

DMA-based Nis transfer data in coherent, cache block unés o locations to check for me messages. This is because_, unlik
the memory bs to aoid this problem. RecentijMukherjee, et al. uncached accesses, cached accesses by the processor is usually not

[29] developed techniques using which processors and Nls caYliSible outside the processor cache.

communicate more fefctively via coherent, cache block transfers. Cached stores additionally alcspeculatie processors to gen-
erate messages speculaly [30]. A processos speculatie stores
2.2 Degee of Pocessor Iivolvement or Transfer are usually bffered locally inside the processor and committed

Perf f data t fer d d t onl the si ftonIy when the speculation succeeds. Consequenfiyocessor can
erformance of data transfer depends not only on the size of thee . agiely issue a store to the cachable memory location shared
transfer but also on hav much the processor isviolved in the

between the processor and the NI. The store willielaer, be visi-

transfer Two design alternates &ist. The processor can initiate ble (and the message committed) to the processor only after the
the transfer and ale the NI to manage the rest of the transfer speculation succeeds and commits.

Alternatively, the processor itself can agtly manage the transfér
Each of these options ¥mdifferent design and performance impli- 2.2.2 Pocessor manages transfer

cations. V& discuss these options belo ) ) ] . . .
The preious subsection discusses solutions in which the pro-

2.2.1 NI manages transfer cessor initiates and the NI manages the data traksfealternatie

solution is to allav the processor to both initiate and manage the

data transfer For example, traditional program-controlled /O
quires direct processorimlvement to transfer data between the
rocessor and the NI. In this scheme a processor directly reads and

If the NI manages the transfehen the processor is usually
required to only initiate the data transfer between the NI and th
internal memory structures of a node. Currerdlyprocessor can

use one of three mechanisms to initiate rapid data transfer to Qr.. :

) rites data (instead of addresses) to memory-mappedgistess
fror?] adn NI: unZached Iosdéstlored Usewel DfMA (%DMA)' and via uncached loads and storesefvhe Ultrasparc block load and
cached store. dnl\tljlncgc ed loa (.)élst.or.e. rorg the prO(f:es?or ©sfhre instructions require processowrdilvement because these
memory-mapped NI gaster can rapidly initiate data transfer from o, ctions block the processor until the data transfer is complete.
user space. Heever, an NI also needs phical memory addresses

of data Inffers from which it can obtain the data that must be trans- Processomanaged transfers usually simplify the NI design
because an NI does not require authentigsiglal addresses to

access a message. A processowolvement for gery data trans-

fer, hawever, uses up precious processor resources, which can be
1. A third option is possible in which a separateicke or DMA engine  used for other purposes (e.g. computation). Both UDMA and cache
manages the data transféfe do not consider this option here. block transferswaid processor wolvement for data transfewhich




switches/routers usually priole only a fev hundred bytes ofuif-
ering (Tablel), which is usually sfitient to maintain the full
bandwidth through the switch/routétowever, if the receiing NI
fails to remee messages from the netik, the switches will block
and send backpressure to the senifi@reby clogging up the net-
work. Alternatvely, switches, such as the Myricom Myrinet, sim-
ply drop messages if the redieig NI fails to eject the message
from the netwark. For such netwrks either the NI must kia sufi-
cient huffering to rapidly remee messages from the netk or
software must guarantee reliable #@ely, which incurs substantial

Network Switch/Router Maximum Buffering

105 bytes per non-adayivirtual
channel [36]

31 bytes + 1 Kbyteudfer pool
shared between four ports [40]

20 bytes [13]

Cray T3E router
IBM Vulcan switch (SP2)

Myricom M2M switch
SGI Spider/Craylink switch |256 bytes per virtual channel [1]

TMC CM-5 netvork router |100 bytes [44]
TABLE 1. This table shavs the amount of luffering available
between an input port and an output port in five commecial
network switches/routers.

reduces processor occupgrend allevs overlap of computation
with data transfer

2.3 Souce and Destination of Tansfer

overhead.

The rest of this section discusse® tparameters that influence

the amount of bffering available to an NI: where the NUEers are
located (Sectio8.1) and hav much the processor isviolved to

buffer messages. (Secti@rR).
3.1 Location of NI Buffers

The location of NI bffers is influenced by tavgoals that may

often be conflicting. Wwant NI huffers to be located such that the

For both message send and reception data must be transferf@@Cessor can access them rapitipwever, we also vant the NI

between source and destination memories located in the proces

NI, or main memoryThe source and destination of data transfer

Jyyifers to be plentiful.

Allocating NI huffers in the NI itself allers direct and rapid data

impact performance in wvways: determining what technology is transfer between the NI and processddnfortunately supporting
used for the source and destination memories and whether or naige amounts of dedicated memory on the NIuffids messages

data traels from the source to the destination directly

may not be economically feasible. In contrast, main memory can

Memory technology influences performance because the perfoptPPOrt lage amounts of uffering, it may not allev rapid data

mance of current memorieqary widely DRAMs—the dominant
technology used for main memory—is usually muclwslothan
SRAMSs, which are used tailbd processor memories, such agise
ters and caches. Consequentignsferring messages between the
processor and NI via main mempayd not directly between the NI
and processorcan hurt performance. Additionallyransferring
messages between the processor and NI via main memory adds
extra hop @er the memory s, which addsxra lateng. Neverthe-
less, if the NI memory\erflows, it may be more useful tafber
messages in main memory rather than blocking the ankter
dropping the message.&Miscuss these issues in thetrsection.

3 Buffering Parameters

The amount of bffering available for an NI can he significant
impact on an NB performance. Nls can requiredaramounts of
buffering because of four reasons. Firstiiation in performance of
loosely-coupled microprocessors and ratwswitches and aewnt
of a \ariety useflevel communication protocols often create a tem-
porary mismatch between the rates at which atwnessages are
generated, transferred, and consumedfeBinfy smooths out these
rates and helps create a balanced system.

Second, limited bffering often forces a processor to constantly
monitor NI status changes and ramanessages from the Nuf
ers to &oid clogging up the netwk. This constant monitoring can
prevent the processor from doing useful computation.

Third, a limited amount ofudffering seerely restricts the dgee
of multiprogramming because these Niffers must be dided
among diferent processes. Alternagly, the operating system can
switch the lffers among processesjththis can be aery expen-
sive operation.

Fourth, unreliable netarks, such as the Myricom Myrinet,
requires Nls to perform some form ofvfle&control, such as all-to-
all buffer reseration or return-to-sendeto guarantee end-to-end
reliable message detiry. To avoid clogging the netark, such flav
control schemes may requiredaramounts ofiffering.

Unfortunately NIs cannot rely on netwk switches/routers to
provide this level of tuffering. Current commercial nebsk

transfers (Sectio.3). Traditionally, NIs have either allocated mes-

sage bffers in dedicated NI memarynain memoryor a tybrid
combination of the ta. We discuss the implications ofytbrid
designs in the ne subsection.

One compromise that alis the best of both is to distinguish
between the logical and y$ical location of NI bffers. Logically
V@@ can allocate the messagéférs in coherent, shared memory
which is plentiful. Phsically, hovever, such NI liffers can be
located in processor caches, main memoryNI memory A host
nodes coherence protocol ensures that thiedifit plysical copies
of the same (logical) messageffers are consistent across the
node. In such a design, the NI memory helsdike another proces-
sor cache in an SMP node. Thus, in the common case, the processor
can transfer data directly from the NI memory to the processor
cache. Hwever, if the NI memory werflows, the messages will be
automatically replaced from NI memory to main memavhich
allows plentiful luffering.

3.2 Degee of Pocessor livolvement or Buffering

If NI buffers are allocated both in dedicated NI memory and
main memory then either the processor or the NI must transfer
messages from the dedicated NI memory to main merhorthe
absence of such transfers, the recan fill up slaving dovn the
entire system. More criticallyn some situations, this can cause the
system to deadlock. This is because thevaitebility of message
buffers can cause gdic dependence in which multiple processors
are blocled (e.g. on a message sendjtimg for other blockd pro-
cessors to process incoming messages [24].

Transfer of messages from dedicatedfdrs to main memory
can be managed by either the processor or the NI. Who (processor
or NI) manages such transfers depends endften such bffering
is required. Br Nls that alvays store message data to a nedeqin
memory processor wolvement for ffering can seriously dgade
performance. In contrast, Nis that are designed with the assumption
that netvork “traffic jams” are rare occurrences may use processor
managed bffering as adllback mechanism.



Data Transfer Parameters Buffering
Network Simple description Send Receve Parameters
Interfaces Size |Whomanages Source | Size |Whomanages Destination | Location | Processor
transfer? transfer? Involved?
NToy, TMC CM-5 NI-like [Uncached Processor [ProcessofUncached Processor | Processor | NI7VM Yes
[41] Registers| Registers
NlgantUdma  |Princeton Udma- Block NI Cache/ | Block NI Memory | NI/VM/ Yes
based [2] Memory Memory
NI, gntBIkbuf  [Fujitsu AP3000-lile| Block Processor | Block Block Processor Block NI/ VM Yes
[37] Buffer Buffer
CNIgQn MIT StarT-JR-like Block NI Cache /| Block NI Memory Memory No
[20] Memory
(NI1gy*+Blkbuf)s|DEC Memory Block Processor | Block Block NI Memory | Memory No
(CNIgQmr Channel Nl-lile [16] Buffer
CNI5 Q Wisconsin CNI with  Block NI Cache /| Block NI Processor | NI/ VM Yes
no cache [29] Memory Cache
CNI3Qm Wisconsin CNI with  Block NI Cache /| Block NI Processor |NI Cache No
cache [29] Memory Cache Memory

TABLE 2. This table classifies the seen memory kus NiIs we &aluated in this paper Block denotes block transferMemory denotes
main memory, and VM denotes virtual memory See Sectiod for an explanation of the taxonomy we useof Nlis. Nis that involve
the processor to manage data transfer between the NI and theqmessor hae higher processor occupancy compad to the Nls that
use NI-managed data transfers.

cycle, to approximate a processegistermapped NI. © distin-
guish this N}, from the memory s Nb,,, we call it the single-
cycle Ny,

Nlg4ntUdma (Udma-based NBllows the processor toxamine
the first 64 words of the NI fifo (256 bytes) and optionally transfer
them to memory via the UDMA mechanism at both send and
receve nodes (Sectiol.2.1). Although the Udma-based NI imple-
mentation allars overlap of computation and data transtee mes-
saging softare vaits until each UDMA transfer is complete. This
We use the Mukherjee, et al. [29] classification of Nis to charactefreduces the comptity in the messaging sofawe and weoids
ize the NIs we study in this papdn this classification NK  changes to the macrobenchmarks. Thisagla uniform compari-
denotes traditional fifo-based NIs and @Nélenotes coherent net- son across all sen Nis.

work interfaces. Processors interact with ©f¢l with coherent, NI, 6,7+ Blkbuf is anAP3000-lile NI, which allavs the processor
cache block transfers. The subsciigtenotes the size of the NI o Joad and store 16awds (64 bytes) from the head of the fifo to a
queue gposed to the processdrhe deéult unit ofi is memory/  64-byte send or reaa block luffer located in the processbﬂ'he
cache blocks, Uit can also be specified in 4-bytends by adding processor accesses the bloakér via a load/store inteate. These
the sufix ‘w’. The placeholder X could either be emp@, or Q,,. block huffers approximate the UltraSparc block load and store
X empty represents the simple case where apbges only part or  mechanism.

whole of one netark message. X = Q represents the more cample  CNIyQ,, is aStart-JR-lile NI for which message queues reside
case where thexposed portion of the NI queue is managed as an main memoryThe ‘0’ in CNKQ,, indicates that CNRQ,, does
memory queue withxglicit head and tail pointers. X = Qdenotes  not cache anmessage in the NI. Cp,,, approximates the data
that thehomeof the eplicit memory-based NI queues are in main transfer and iiffering characteristics of the MIT StadR NI [20].
memory The home of a pisical address is the 1/Odee or mem-  However, unlike CNEQp, the Star{JR NI resides on the 1/Oub
ory module that services requests to that address (when the addr@8d does not use the lazy pointer and senvegse optimizations.

is not cached) and accepts the data on writebacks (e.g. due to cache(Nl;g,+Blkbuf)g(CNIpQp,)r approximates thélemory Channel
replacements). The absence mf implies that the NI sees as the NI [16]. It denotes aybrid NI in which the send inteate resem-
home for the NI queues. All of our CNI implementations use the®!®S Nhey*BIkbuf (AP3000-lile NI) and the recee interfice

o ; ‘i resembles CNQ,,, (the Start-JR-lik NI). Hovever, unlike the Dig-
:gr/ifsgitggzgtifgsmlé% pointemessage alid bit, and sense ital Memory Channel NI, which attaches itself to the PCI I(3,b

Table2 I h NI | in thi Col we attach our Memory Channel4iNI directly to the memoryus
able2 lists the seen NIs we ealuate In this papeiColumn 1, herform a uniform comparison with other Nis. Additionatie
two .Of this table gies a s_lmple (_jescrl_ptlon o_f these NIs to aid read-do not use the multicast feature of the Memory Channelanktw
ers in remembering which NI is which.eMill use both descrip-

. . . because we focus specifically on itsd\ffata transfer andifferin
tions (column one and by interchangeably in the rest of the paper P y g

4 Network Interface Implementations

This section describes thevea NIs we ealuate in this paper
Given the enormity of the design spac@a@sed in Sectiof and
Section3, it would be hard tovaluate each andvery component
individually. Hence, we ha selected sen Nis that, we belie,
capture the essential components of the data transfeuéfedriy
parameters. ¢t all of our NIs, we assume a uniform netw and
flow control mechanism described in Section

Nl,,, is aCM-5-like NIin which the processor can access only
the first two words of the NI fifo. V@ study tve variants of Njy, 1. The Fujitsu AP3000 NI has another mechanism to access theml. F
Section6.2 compares a memory Nb,, with other memory s simplicity, we limit our discussion only to theay it accesses the NI via the
NIs. Sectior6.3 uses an NJ,, which can be accessed in a single processos block load/store instructions.



processor speed to modelxhgeneration processor architectures.

System Rrameters Although our simulations do not model a dynamically-scheduled

Number of parallel machine nodes 16 processarwhich is likely to dominate in the future, we beléethat

Processor speed 1 GHZ both our quantitate comparisons and_qualimi trends can be
extrapolated to these processors. This is because our primary focus

Cache block size 64 byteg is onrelativeperformance of diérent NIs using the same base pro-

Cache size one meabyt cessor model, _and not on the absolute performance of a particular
processor architecture.

Cache associafiy direct-mapped

All of our benchmarks are run on therfipest parallel program-
Main memory access time 120 ng ming interfice [19]. Message-passing benchmarks use osy- T
pests actve messages. Shared-memory codesampEst also use

Memory lus coherence protocol MOESI active messagesubassume hardave support for fine-grain access
Memory tus width 256 bitg control. Codes with custom protocols use a combination of the tw
Memory lus clock time 250 MHz 5.1.2 Netvork and Flow Control
Network message size 256 bytes All of our simulations ignore newvk topology We assume
Network lateny 40 ng messages tak40 nanoseconds (ns) toveese the netark from
) injection of the last byte at the source toadriof the first at the
NI memory access time 60 né destination. Recentlypai and Bnda [11] hee shovn that netvrk
TABLE 3. This table shavs our common system parameter contention can significantly deade the performance of some
we assumeddr all of our Nis. shared-memory applications. Wever, because we focus on rela-
. tive performance using the same base adtwnodel, we belie
a. We assume 60 ns access time for all Nksept CNE; Q. our quantitatie results and qualita trends can bexerapolated to
Because CNJ;Q is much lager we &pect it to be bilt with com- more realistic neterks. Additionally our abstract netwk model
modity DRAM with access time characteristics similar to n frees us from the idiosyncrasies of a particular netimplemen-
memory (i.e., 120 ns in our system). tation and allws us to focus our attention purely on the NI.
parameters. We model hardare flav control for all NIs using a scalable

) ) end-to-end flar control scheme calleeturn-to-sendef14]. In this
CNI53Q denotes &CNI with no cabe Its send and rec&  scheme, the sending NI allocates an empffebfor a message and
queues contain 512 64-byte blocks. injects the message into the neth If the receiing NI has a free

CNI3,Qp is aCNI with a cabe That is, memory on the NI for buffer to accept the message, it sends an aclesigment to the
both the send and reweiqueues is treated as 32-entry caches (wittpender to deallocate the sendemiffer. However, if the receting
64 byte cache blocks). Our CNQ,, implementation impnees NI cannot accept the incoming message due to lackiftérb, it
upon the CNR,,, implementation described in [29] indwespects. ~ feturns the message to the sendére sender must consume the
These impreements are based on the obaion that the CNI  returning message from the netl into the preiously allocated
queues are read in a fifo ordEirst, if the recaie cache is full with ~ buffer and retry the send latefo prevent deadlock (or message
valid messages pending consumption, then the CNI bypasses ti§s), these returning messages muse laeguaranteed path back to
recel’e cache and writes fresh incoming messages directly int§1e senderThis can be achied through a second nedrk (either
main memory This scheme alless messages at the head of the Virtual or ptysical). The return-to-sender Wocontrol stratgy is
queue to be read viadt cache-to-cache transfers. scalable (unlik, for example, all-to-all bffer reseration [27])
" . . because the number of nettk messageuifers allocated in the NI

Second, writing messages to the CNI queues via the CNVeecei g i jependent of the number of nodes in the parallel machine.
cache can cause unnecessary cache replacemeeisdrhessages

(that is, messages already consumed by the processor). A simple In our simulations, we will uniformly ary the number of net-
comparison of the head and tail pointers ificieht to determine if ~Work messagetifers allocated at the sender and reeeilhrough-
a message is dead. Unfortunatelgder the lazy pointer optimiza- Out the rest of this paper we call this paramfitev contol buffers.
tion the CNI does not usually maintain a currentycopthe head. S0, for &ample, if the number of flo control tuffers = 4 that

Hence, we force the CNI to update the head wimmie flushes a  implies that each NI has four outgoingffers and four incoming
message to main memory network messageuiffers allocated for fiw control.

5 Methodology 5.2 Macrobenchmarks

This section describes our system assumptions and ¥ee se  Table4 depicts the sen macrobenchmarks used in this study
macrobenchmarks we used tliate the Nis. Sectioh presents  Appbtis a parallel three-dimensional computational fluid dynamics
the results from the valuation. V& use the \gconsin Whd application [5] from the NS benchmark suite. It consists of a cube

Tunnelll simulator [32] for all of our ealuations. divided into subcubes among processors. Communication occurs
. between neighboring processors along the boundaries of the sub-

5.1 System Assumptions cubes throughd@mpess defult invalidation-based shared memory

. . . grotocol [34].
In this section we describe our system parameter ) ) ) o
(Section5.1.1) and netark assumptions (Sectidnl.2). Barnessimulates the interaction of a system of bodies in three
dimensions using the Barnes-Hut hierarchical N-body method [43].
5.1.1 System Rrameters Communication occurs between all processors in aguilae fash-

.__ion through &mpest defult shared memory protocol.
Table3 shavs the system parameters common to all of our sim- 9 P yp

ulation models. All simulations assume a one GHz, dual-issue Dsmcstudies the properties of agby simulating the nve-
HyperSRRC-like processoie hare chosen a slightly aggressi ~ ment and collision of a lge number of particles in a three-dimen-



Benchmark |Input Key Message % of
Data Set |Message Sizel Message
Pattern (bytes)
appbt 24x24x24 |Near neighbor 12 67%
cubes, 32 32%)
4 iter
barnes 16K parti- |Irregular 12 67%
cles 16 4% S
140 29%
dsmc 48600 Fine-grain 12 45%
initial messages, 44 25%
particles, |producer 140 26%
9720 cells, |consumer
20 iter
em3d 16K nodes, Fine-grain 12 2%
degree 5, |messages 20 98%
10%
remote,
span 6, 10
iter
moldyn 2048 parti- | Bulk reduction 8 5%
cles, 12 65%
30 iter 140 27%
3084 2%
spsohe 3720 ele- |Fine-grain 8 6%
ments messages 12 3%
20 91%
unstructured 9428 Single- 8 35%
nodes, producer
59863 multiple- 351 64%
edges, consumer (average
5864 fces,
10 iter

TABLE 4. Summary of macrobenchmarks. Message siz
includes both header and payload. The first si
macrobenchmarks hae distinct peaks at the message siz
described abae. However, unstructured shavs only one
distinct peak at 8 bytes. Begnd that it shows a range of
message sizesavying between 12-1812 bytes. Herwe eport
the average message sizeff this range. Rercentages of eacl
macrobenchmark may not sum to 100% because of tt
presence of a twial fraction of messages of other sizes.

sional domain with discrete simulation Monte Carlo method [33]

Dsmc’s primary communication phase uses fine-grairvacties-
sages to mee molecules from one processor to another afterye
iteration.

Em3dmodels three-dimensional electromagnetmavpropag-

ing processor throughefmpess virtual channels.

Spsolve7] is a \ery fine-grained iterate sparse-matrix sodv
in which actve messages propatg devn the edges of a directed
agyclic graph (DAG). All computation happen at nodes of the®
within actve message handlers. The messagiusgh®ad is critical
because each aeti message carries only a 12 byte payload and the
total computation per message is only one douldetvaddition.
Several actve messages can be in flight, which can creatsty
traffic patterns.

Unstructuedis a computational fluid dynamics application that
uses an unstructured mesh to modelysiglal structure, such as an
airplane wing or body [33]. This application has a static, single-pro-
ducer multiple-consumer communication pattern. Updates to a sin-
gle consumer are batched and sentilk messages.

6 Results

This section kamines the sen NIs' performance with tov
microbenchmarks (Sectidhl) and seen macrobenchmarks
(Section6.2). Finally Section6.3 compares the performance of the
single-g/cle Nly,, with CNI3Q, (CNI with a cache), which per-
forms the best for six of ourwen macrobenchmarks and slightly
worse than the AP3000-BkNI for unstructured.

6.1 Microbenchmarks

In this section we characterize the performance oérseNIs
using two microbenchmarks: round-trip latgn@nd bandwidth.
These microbenchmarks capture the baseline performance of these
Nls.

An alternatve approach wuld be to characterize the NlIs using
the Berleley LogP model [9]. The LogP model characterizes NI
accesses with three parameters: latghg, overhead or processor
occupang (0), and bandwidth (g). heever, we refrain from using
this model because the latgnand owerhead components of this
model do not uniformly capture the same metrics for all of our Nls.
For example, for coherent netwk interfaces, the lategccompo-
nent includes both the latgnto transfer a message from the pro-
cessors cache to the NI and the netk lateng. In contrast, for
CM-5-like Nls, the latenc component captures only the netlw
lateng, while the actual data transfer is included in tkierbead/
occupang component of the model. Mertheless, the LogP model
does help us understand qualitaly the performance of these Nis.
For example, Nis that require processovatvement for data trans-
fer have a higher processor occupgrmompared to NlIs that them-
selves manage the data transfer (Sec#@n?2).

6.1.1 Round-Tip Latency

Table5 shavs the process-to-prcessround-trip lateng and
bandwidth for our sgen Nis. These numbers include the messaging

layer overhead for coging a message from the NI to a uterel

buffer and vice ersa. Thus, for all NIs xeept the Udma-based NI,
data bgins in the sending processocache and ends in the reeei
ing processos cache, rather than simply wieg from memory to

memory Only for the Udma-based NI datagires in the sending

tion [8]. It iterates wer a bipartite graph consisting of directed processog cache, tit ends in the recéng processos memory

edges between nodes. Each node sena#ntegers to its neighbor-

ing nodes through a custom update protocol [I¥reral update

messages (with 12 byte payload) can be in flight, whicha lik

spsole, can createussty trafic patterns.

The round-trip latencnumbers in @ble5 shavs three impor-
tant results. First, each of the three data transfer parameters—size
of transfer degree of processor wlvement for transferand
source/destination of transfer—ea significant impact on the

Moldyn is a molecular dynamics application, whose computa+ound-trip lateng of each NI. Carefully choosing these parameters
tional structure resembles the non-bonded force calculation inan imprae the round-trip laterycby more than aafctor of three.

CHARMM [4]. The main communication occurs in a custoutkb

Second, the relatt importance of these parameters depend on the

reduction protocol [33]. Onexecution of the reduction protocol specific NI design. Third, among thevea NIs, CNQ,,—the
iterates as mantimes as there are processors. In each of these iteENI with a cache—dérs the best round-trip latendecause it
ations, a processor sends 1.5 kilobytes of data to the same neighboptimizes the three data transfer parameters.



Network Round-Trip Bandwidth
Interface Latency

8 | 64| 256 | 8 | 64 | 256|4096
CM-5-like NI 2.41|5.25/15.11| 17 | 54 | 63 | 69
Udma-based NI |4.48|5.83|10.10 7 | 42| 78 | 109
AP3000-like NI 1.95(2.48| 4.47| 26 | 154|234 | 298
Start-JR-lile NI 1.54|2.38| 5.04| 29 | 119|191 221
Memory Channel 1.55(2.42| 4.89| 27 |119| 191 | 221
like NI
CNI51 Q 1.56|2.22| 4.17 | 28 |134| 209| 259
CNI3Qm 1.29|1.78| 3.42| 36 |120| 189| 209
CNIzQytThrottle| n/fa| nfa| nfa | 36 | 158| 272| 351

TABLE 5. This table shavs the process-to-pocess ound-trip
latency (in microseconds) dr 8-, 64-, and 256-byte messar
payload and process-to-pocess bandidth (megabytes per
second) ér 8-, 64-, 256-, and 4096-byte message payload. E:
message contains an eight-byte heade€NI3,Q,+Throttle
throttles the sender to match the maximum messa
consumption rate of the eceving NI. Send throttling does not
significantly change the banaidth attained by any other NI.
For all these numbers, we set the number of flo control
buffers = 8.

Below we e&amine five interesting comparisonsvealed by
Table5:

The Udma-based NI performs better than CM-B-INI only for
messges geater than 96 bytes

The Udma-based Ni’round-trip lateng is worse than CM-5-
like NI for messages with payload less than 96 bytes {het e
brealeven point is not shen in the table), bt substantially better
as the message payload increasg®te this size. This is because
for small messages, the Udma-based Nigh initiation @erhead
(one uncached store + one uncached load + switstmtaster from
processor to NI) déets its tvo adantages: ability to transfer mes-

Memory Channel-lik NI's round-trip lateng is almost similar to
that of the Start-JR-I& NI, which indicates that the send side of the
Start-JR-lile NI and the Memory Channel-#kNI exhibit almost
similar performance.

CNI5,Q outperforms the Start-JR-&KNI

CNiIg1Q—the CNI with no cache and queues allocated in dedi-
cated CNI memory—outperforms Start-JReli|, ezen though the
memory on CNi;Q is as sl as main memoryThe diference
arises because of twreasons. First, on the reseiside messages
are steered to processor caches directly from the NI and not via
main memorywhich adds additional latepdor the Start-JR-lik
NI. Second, on the send side, for messagegeidahan a cache
block (i.e., 64 bytes), CY{Q prefetches cache blocks as the pro-
cessor composes them in its cacha. é&ample, while a processor
is composing a cache block of a message &I fetches the pre-
vious block of the same message. This fetch is initiated by QNI
when it obseres the processarrequest forxelusive access for a
subsequent cache block of a message. If a cache block is fetched
too early gen before entire cache block is written, then &MD
can re-fetch it when the message is ready foveisli Thus, &oid-
ing processor wolvement for data transfer alls simultaneous
transfer and creation of a message. UnliiNk,Q, the Start-JR-
like NI cannot prefetch cache blocks of a message because it does
respond to the memory coherence signals (e.g. coheratidax
tions).

CNI3,Qp, shows the besbund-trip latency

CNIz,Qn—the CNI with a cache—shs the best round-trip
latengy among our seen NlIs because it pvies all the benefits of
CNI5, Q, but with smaller anddster cache memories compared to
CNI5; Q. Therefore, werall it outperforms all other Nis by roughly
20%-342% for message payload between 8-256 bytes.

In summarywe find that lav lateny transfer can be achied
for small messages via block transfers, minimal processolvit
ment, and direct processtar-NI transfers. The relat importance
of these parameters depend on the specific NI designs.

6.1.2 Bandvidth

sages in blocks and ability to directly deposit data in user space The bandwidth numbers inable5 shav trends similar to the
without processor irolvement. Hence, for our macrobenchmarks found-trip lateng numbers with tw key exceptions that we discuss
the Udma-based NI attempts to use the UDMA mechanism only fdpelon.

messages with payload greater than 96 bytes.

The AP3000-lie NI ofers significantly geater bandwidth com-

The AP3000-lie performs substantially better than the Udma- Pared to the Start-JR-I&kNI and CN4;Q

based NI

This is because at the regeiside the AP3000-l&k NI transfers

The AP3000-lile NI performs substantially better (more than amessages directly from the small aadtfNI memory to the rece

factor of tw) than the Udma-based Nien though all transfers
are managed by processor for the AP3008-Nk. This is because
like the Udma-based NI, it transfers messages in bloaksintike
the Udma-based NI, it has ananitiation overhead (an uncached
store) andt transfers data directly to thadt receie block huffer
residing on the processor chip (and not intevslomain memory).

The Start-JR-lik NI and AP3000-li& NI have a @sswer point

The Start-JR-lik NI outperforms the AP3000-8kNI for mes-
sages less than 64 bytes (size of the bloaffel) because the
AP3000-like NI has higherwerhead (12 processoyates) to flush
and load the send and raeeblock luffers respectiely. Beyond a
64-byte message payload, the AP300@-W’s overhead is amor-
tized and consequently it outperforms the Start-JR-M. The

block hkuffer located net to the processorThis is significantly
faster than reading messages from theesianain memory for the
Start-JR-lile NI and slaver NI memory for CN{; Q.

Without thiottling CNk,Q,,'s bandwidth is wae than the AP3000-
like NI, een though CNLQ,,'s latency is significantly better

This is becaus€CNI3Qy's send bandwidth is significantly
greater than its reagd bandwidth. This causes GND,,'s receve
cache to werflow, which forces the recging processor to pick up
most messages from main memdilye the Start-JR-li& NI. How-
ever, appropriately throttling the sending processor afteryesend
can help impree CNk,Q,,'s bandwidth by preenting the recee
cache from werflowing. This allavs the receiing processor to pick
up messages from thast CN,Q,, memory instead of shwer
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FIGURE 3. This figures compaes the execution time of s&n NIs on our sgen maciobenchmarks. Both (a) and (b) a& normalizec
to the AP3000-like NI with number of flow control buffers = 8. # huffers denotes the number of flav control buffers. (a) compases
the performance of our three fifb-based Nls ér differ ent levels of flov control buffering. The black shade epresents the executic
time with infinite flow control buffering. Lighter shades epresent the incemental execution time penalty dr three flav control
buffering levels (8, 2, and 1). (b) compas the perbrmance of bur coherent network interfaces with number of flow control buffers
= 2. | However, because these Nls themsals provide plentiful buffering, their perf ormance is lamgely insensitive to the number o
flow control buffers. MC-lik e NI denotes the Memory Channel-lile NI.

main memory However, we do not see this fett in our mac- quently for em3d and spsady huffering is more important than

robenchmarks. data transfer
Overall, with send throttling, CMNbQ,, achieves a bandwidth of We do not, havever, attempt to quantify the relaé importance
351 meabytes/second, which is significantly greater than the bandsf each of the three data transfer and hwffering parameters. This
width offered by ag other NI. is because thextent to which each parameterfeats a mac-
robenchmark depends on the specific NI design and the mac-
6.2 Macrobenchmarks robenchmark itself. Nertheless, it should be noted that each of

these parameters directlyfedts performance. This is because for
pure shared-memory applications, such as appbt and barnes, which
communicate using a request-response protocol, all the parameters
adds lateng to the requests and responsas. [fure message-pass-

) 5 ing applications, such as em3d and spsollie receie side is the
ing only afects o of the macrobenchmarks: em3d and spsolv bottleneck. Consequentlgll the parameters on the reeeside is

This is because both these benchmarks generate small messaggsye critical path. The rest of the applications that ybeichpro-
more rapidly than the recéng processor can consume. Conse-

This section discusses the performance of ouerséls with
seven macrobenchmarksdble4). Owrall, we can dra two con-
clusions. First, the data transfer parameteve Iségnificant impact
on the performance of all\sen macrobenchmarks. Secondifér-



tocols—that is, both message passing and shared memory—conse-Figure3b shavs three interesting results. First, the performance

quently hae the same behir.

We divide our discussion into twparts andxamine the results
in detail. First, we discuss the performance of the CM-&Mk the
Udma-based NI, and the AP3000€iklI (Sectior6.2.1). These Nls
rely on NI memory to bffer network messages (via the facontrol
buffers). These three Nis are fifo-based Nig, differ in the vay
they pop/push data to the fifosoFsuch push and pop the CM-5-
like NI uses uncached loads/stores, the Udma-based NI uses U
Level DMA (or UDMA), and AP3000-lik uses block loads/stores.

Second, we discuss the Memory Channed-W, the Start-JR-
like NI, CNk1Q, and CN,Q,,, (Section6.2.2). These NIs pro-
vide plentiful uffering in main memory without requiring a pro-

cessors involvement. All these four Nlis are either fully coherent or

partially coherent. Thediffer primarily in the vay the NI queues
are allocated. The Memory ChanneleikNl allocates recee
queues in main memaryrhe Start-JR-lik NI allocates both send
and recaie queues in main memor@NIs;Q allocates the queues
in dedicated CNI memoryFinally, CNI3,Q,, allocates gqueues in
main memorybut caches them in a CNI cache.

6.2.1 Comparison of Thee Fib-based Nis

Figure3a compares thexecution time for the three fifo-based
NIs. The black bars, which sivothe eecution time for the three
Nls for infinite flov control luffering, allov us to isolate the impact
of the data transfer parameters on the macrobenchmaitksirifi/
nite flov control hffering, the Udma-based NI outperforms the
CM-5-like NI by 0-15% and the AP3000-¢kNI outperforms the

of the Memory Channel-lé& NI varies widely for the sen mac-
robenchmarks. It performs significantly better than the AP30@0-lik
NI, with the number of flo control luffers = 8, for em3d and
spsohe because it prwides plentiful liffering in main memory
without direct processorolvement. It performs almost similar to
the AP3000-lile NI for appbt, barnes, dsmc, and moldyn because
these macrobenchmarks do natirg significantly from plentiful

Jyyffering. It performs wrse than the AP3000-8kNI for unstruc-

tured because unstructuredage messages fettively use the
greater bandwidth puwided by the AP3000-li NI (Table5).

Second, among the four NlIs st in Figure3b, the Memory
Channel-lile NI performs the wrst and CNd,Q,,, performs the
best. CN§Q,,—the CNI with a cache—outperforms the Memory
Channel-lile NI by 2-26% for the sen macrobenchmarks due to
its lower lateng and higher bandwidth éble5). CNL.Q,, also
outperforms The AP3000-kk NI—the best fifo-based Nl—and
CNl5, Q—the CNI with queues allocated in main memory—for all
applications, xcept unstructured. It appears that the most important
feature of unstructures’communication is to stream data from the
sender to the reoadr. Both the AP3000-li& NI and CN§;Q has
less werhead for this data streaming compared tozgQ}, which
incurs &tra overhead due to its cache management (e.g. cache
replacement). ConsequentigNI3,Q,, performs maginally worse
than the AP3000-l& NI and CN4;Q for unstructured. Li
Mukherjee, et al. [29], we find that CNQ,, is competitve with
CNil5,Q with much less memary

Third, a comparison of the Start-JRdiNI and CN§,Q,,, shavs

Udma-based NI by 11-44%. The Udma-based NI performs similaat caching messages in a CNI cache, as i, L}, provides a

to or better than the CM-5-EkNI because it uses the UDMA
mechanism only for lae payloads andafis back on uncached
loads and stores, kkthe CM-5-lile NI, for smaller messages. The
AP3000-like NI's lowver lateng and greater bandwidth
(Section6.1) clearly help impnee the macrobenchmarks’ perfor-
mance.

The lighter bars in Figurga shev the increase inecution time
as we reduce the number ofWl@ontrol kuffers. Clearly the num-
ber of flav control huffers hae a significant impact on perfor-
mance. Figur@a shavs two interesting results about focontrol
buffering. First, for all three NiIs and all of ourvea applications,
increasing the number of flocontrol uffers from one to tw sig-
nificantly improves performance (between 6-40%). wéoer,
increasing the number of flocontrol huffers begond two buys only
modest performanceais (less than 19%) for most applications,
except em3d and spsay

Second, the number of ¥lo control luffers has significant
impact on em3d and spselvThis is because both em3d and

performance boost of 2-13% for thevee macrobenchmarks. An
examination of Nl-related memoryub transactions veals that
CNI3Qp, reduces the number of main memory to processor cache
transactions by 54% \araged across thevem macrobenchmarks).
This is because CHJQ,, provides messages to the processor via
direct CNI-cache-to-processoache transfers. Furthexs the per-
formance gp between microprocessors and main memory widens,
we epect CNE,Q,, to provide significantly better performance
than the Start-JR-l&k NI because of tav reasons. First, because
CNI3.Q, caches are small, thean be bilt with faster SRAMSs,
thereby preiding lower lateng to transfer messages. Second,
CNI3Qp, satisfies more than 50% of the processaccesses to the

NI directly from its cache, whichvaids message steering via main
memory

Overall, we find that CNbLQ,—the coherent inteace with a
cache—performs the best because it optimizes all of thedfita
transfer and bffering parameters. In summagNIz,Qyy:

¢ effectively uses the block transfer mechanism of current memory

spsole generateursts of small messages (less than 20 bytes) more buses by transferring messages in cache blocks;

rapidly than the receing NI can consume. Consequentlye lack
of flow control huffers has a dramatic impact on performanae. F
em3d and spsodvincreasing the number of flocontrol huffers
from two to infinity improves performance by 29-40% and 78-
101% respectely for the three NlIs. Actuallyncreasing the num-
ber of flav control huffers to 128 for em3d and 33 for spskap-
tures most of the performanceins that can be achied from an
infinite number of flav control luffers.

6.2.2 Comparison of Bur Coherent Network Interfaces

Figure3b compares thexecution time (normalized to the
AP3000-like NI for flov control huffers = 8) of four Nls that are
either partially or fully coherent. These Nis pide NI-managed,
plentiful buffering in main memory on the reeei side. Conse-
quently these Nlis are Igely insensitre to the number of fl® con-
trol buffers.
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® minimizes processor wlvement for data transfer by initiating
the transfer using a cachable store and decoupling the processor
and NI via memory-mapped, cachable queues;

* directly transfers messages from the NI cache to the processor
cache in the common case;

® provides plentiful liffering in main memory; and

® allows the NI to directly deposit messages into main memory
when the NI cacheverflows.

6.3 Single-Cycle N4, vs. CNI3,Qp,

Figure4 compares the performance of Gp@Q,, with an Nb,,
NI, whose memory can be accessed by the processor in a single
cycle. Thus, our singleycle NI, approximates processmyister



®—e spsolve fine-grain communication. Mukherjee, et al. [28amined N,
20 . . — lm—mem3d and four Coherent Netwk Interfaces (including CNQp, and
&— @ dsmc CNI;,Q) and found that transferring messages in cache block units
A—A moldyn and huffering messages in coherent memory space can vieper-
I barnes formance. Hwrever, they neither @amined alternate block trans-
151 nstructured T fer or uffering mechanisms nowaluated the & parameters that
affect the performance of such Nis.

Karamcheti and Chien [21] compared the messaging support in
TMC CM-5 and Cray T3D and concluded that requiring processor
involvement for message reception can significantlyratte per-
formance. V& improve upon their wrk by exposing and xamining
the design space of data transfer anffebing parameters. Blum-
rich, et al. [3] compared the SHRIMRNnd SHRIMPII Nis, but did
not eplore alternate data transfer andffering mechanisms.
Mackenzie, et al. [25] studied thefeft of tuffering using a syn-
thetic workload and concluded thatiffering messages in virtual
memory can occur only rarely for realistic applicationsweer,

Normalized Execution Time

o
o

4 8 16 32 128

Number of Flow Control Buffers

64

FIGURE 4. This figure compates the execution time of a singl
cycle Ny, for different levels of flov control buffering. The
vertical axis is normalized to the CNg,Q,,, on the memory lus.
CNI3,Qy, is independent of flov control buffering because it
provides plentiful buffering in main memory.

map
[14].

Figure4 shavs two interesting results. First, ChNRQ,—the
CNI with a cache—outperforms our singlgete Nl,,, for spsole
and em3d for small number of ficcontrol huffers. Processenegis-
termapped Nls are Iy to hae a small number of fle control
buffers because of twreasons. First, a processargister memory
is a precious resource and its size igesely constrained by its
access time. Second, the demands of multiprogramming requi

in contrast we found that for twof our sgen macrobenchmarks,
buffering can play a significant role in imping performance.
Henry and Joer [18] compared the performance of three Nis
mapped respeetely to the processor gesters, L1 cacheus, and
an of-chip L2 cache bs. Havever, unlike our studythey did not

Ped NlIs in research machines, such as the MIT M-machirf&amine the impact ofuifering on the performance of these Nis.

8 Conclusions

In this paper we hee systematically identified xamined, and
explored the ky parameters that fetct the design of high-perfor-
mance NIs tageted for fine-grain communication. eéAtlassified
these parameters into awcategories: data transfer andiffering
parameters. The data transfer parameters capturenessages are
teansferred between internal memory structures (e.g. processor

that the Nj,, buffers be either partitioned among multiple processestaches, main memory) of a computer and a memosyNi. The
or saved and restored across codtewitches. The first solution buffering parameters capture where ana/lem NI huffers incom-

limits the number of fle control huffers allocated per process and
the second solution increases the carssvitch time. Furtherour
single-gcle Nl cannot also rely on commercial Nis for plentiful
buffering (see @blel). Consequent]yCNIz;Q,,'s ability to luffer
messages in NI caches and main memory without process

involvement maks its performance better or comparable to the sin-

gle-gycle Niy,, for spsohe and em3d. ¢f example, for flev control
buffers = 2, CN§,Q,,'s performance is better than the singlele
NI, by 18% for spsok and comparable for em3dorFspsole
and em3d, the breaken point between CN}Q,, and the single-
cycle Nl,,, occurs when the numberwiccontrol tuffers equals 32
and 2 respeately.

Second, for the f&y macrobenchmarks other than spsaind
em3d, CN§,Qp, is within 15% of the performance of the single-
cycle Nl,,, (averaged across the §ymacrobenchmarks).

The abee results suggest that in the absence of adequfiée-b
ing, mapping an NI directly to the processogiséers may not
always be the optimal design point. Perhaps e-lewel register
memory hierarch for NI registers can maksuch processoegis-
termapped NIs competité with a memory s NI, such as

CNI3Qm:
7 Related Work

To the best of our kwdedge, this paper is the first to systemati-
cally identify, examine, and xplore the data transfer andffering

ing network messages. ¥found that each of the three data transfer
parameters—size of transfetegree of processor wlvement for
transfer and source/destination of transfer—ancdb tuffering
parameters—Ilocation ofuffers and dgree of processor olve-
grent for lffering—can heae a significant impact on performance.

Using two microbenchmarks and@n macrobenchmarks we
evaluated seen memory bs Nlis that we belie captured the
essential components of the design spapesed by the fiv data
transfer and bifering parameters. Thesevea Nis abstract the data
transfer and bffering parameters of the Nls in TMC CM-5, Fujitsu
AP3000, Princeton Usérevel DMA, Digital Memory Channel,
MIT StarT-JR, and tw Coherent Netark Interlaces—CN4;,Q
and CNk-Q,—proposed by Mukherjee, et al. [29].

Overall, we found that among thesevese NiIs, CN§,Q—a
coherent netark interface that treats memory on the inded as a
cache—performed the best because it optimizes alldata trans-
fer and liffering parameters. It:

¢ effectively uses the block transfer mechanism of current memory
buses by transferring messages in cache blocks,

® minimizes processor wolvement for data transfer by initiating
the transfer using a cachable store and decoupling the processor
and NI via memory-mapped, cachable queues,

e directly transfers messages from the NI cache to the processor

cache in the common case,

parameters that underlie the design of high-performance Nis for

1. Unlike our single-gcle Nl,,,, a processor in the MIT M-machine can
compute directly from the NI gisters, which allevs zero-gcle access to
the NI re@isters for some cases.
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® provides plentiful liffering in main memoryand

¢ allows the NI to directly deposit messages into main memory
when the NI cacheverflows.

As a corollary of this studyve found that, contrary to ceen-



tional wisdom, mapping an NI to the process@isiers may not

[19]

always be the ideal choice. This is because procesgistaemem-

ory is a precious resource, which may notvfite adequateusfer-

ing

macrobenchmarks, we found that Gp@Q,,, outperformed a proces-
sorregistermapped NI with small amounts ofifering.
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