To appearin the proceeding®f the 5th InternationalSymposiunon High-PerformanceComputerArchitectuie (HPCA-5),0rlando, Flor-

ida, January 9-12, 1999.

Using Lamport Clocks to Reason About Relaxed Memory Models

Anne E. Condon, Mark D. Hill, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department
University of Wisconsin - Madison
{condon, markhi ||, pl akal , sori n} @s. wi sc. edu

Abstract

Cade coheenceprotocolsof currentshared-memorynul-
tiprocessos are difficult to verify. Our previouswork pro-
posedan extensionof Lamportslogical clodksfor showing
that multiprocessos canimplementsequentiakonsistency
(SC)with an SGIOrigin 2000-like directoryprotocolanda
Sun Gigaplane-lile split-transactionbus protocol. Many
commecial multiprocessos, however, implement more
relaxedmodels sud as SFARCTotal Stoe Order (TSO),a
variant of processor consistency and Compaq (DEC)
Alpha, a variant of weak consistency

This paperappliesLamportclocks to botha TSOand an
AlphaimplementationBothimplementationsre basedon
thesameSunGigaplane-lile split-transactionbus protocol
we previously used,but the TSOimplementatiorplacesa
first-in-first-out write buffer betweena processorand its
cache while the Alpha implementatiorusesa coalescing
write buffer. Both write buffers satisfy read requestsfor
pendingwrites (i.e., do bypassing)without requiring the
write to be immediatelywritten to cache Analysisshows
how to apply Lamport clocks to verify TSO and Alpha
specifications at the ahnitectural level.

Keywords: memoryconsisteng models,cachecoherence
protocols, protocol erification

1 Introduction

Shared-memorymultiprocessorsystemsare increasingly

employed both as seners (for computation, databases,

files,andtheweb)andasclients.To improve performance,
multiprocessoisystemdesignerausea variety of comple
andinteractingoptimizations.Theseoptimizationsinclude
cachecoherencevia snoopingor directory protocols,out-
of-order processorsand coalescingwrite buffers. These
optimizationsadd considerableompleity atthe architec-
turallevel andevenmorecompleity attheimplementation
level. Directory protocols,for example,requirethe system
to transitionfrom mary sharedcopiesof a block to one
exclusive one.Unfortunatelythis transitionmustbeimple-
mentedwith mary non-atomiclower-level transitionsthat
exposeadditionalrace conditions,buffering requirements,
and forward-progressconcerns.Due to this compleity,

This work is supportedn part by the National ScienceFoundationwith
grantsMIP-9225097 MIPS-9625558CCR 9257241 and CDA-9623632,
a WisconsinRomnesFellowship, and donationsfrom Sun Microsystems
and Intel Corporation.

industrial productgroupsspendmoretime verifying their
system than actually designing and optimizing it.

To verify a system, engineersshould unambiguously
definewhat “correct” means.For a shared-memonrgys-
tem,“correct” is definedby a memoryconsisteng model.
A memoryconsistencynodeldefinesfor programmershe
allowable behaior of hardware. A commonly-assumed
memory consisteng model requires a shared-memory
multiprocessorto appear to software as a multipro-
grammeduniprocessor This model was formalized by
LamportassequentiatonsistencySC)[12]. Assumethat
eachprocessomexecutesinstructionsand memory opera-
tionsin a dynamicexecutionorder called program order.
An executionis SCif thereexists a total orderof memory
operations(readsand writes) in which (a) the program
ordersof all processorarerespecte@nd(b) areadreturns
the value of the last write (to the sameaddress)in this
order A system is SC if it only permits SQexutions.

Our previous work [18,24] proved that abstractionsof a

SGI Origin 2000-like [5,13] directory protocolanda Sun

Gigaplane-lile [22] split-transactionbus protocol both

implementSC. Insteadof askingfor the off-line existence
of a total memoryorder we pretendto augmenthe hard-

warewith logical Lamportclodksto constructthe needed
orderdynamicallyasit executesnemoryoperationgsatis-
fying requirementa)). We thenprove thateveryload (read
instruction) returns the value of the last store (write

instruction)in this constructedrder Thus(b) is satisfied.
As with ary formal method,our Lamportclocksapproach
cannotreplacecorventionaltestingandvalidation.Never-

thelessit is our premisethat Lamportclockscanbe valu-

able when reasoning about the correctness of a

specificationof memoryorderingsemanticsat the archi-

tecturallevel, therebyaidingin the protocoldesignprocess
and reducing time spent oalidation later

While work on SCis valuable,mary commercialproces-
sorsimplementmorerelaxed memoryconsisteng models
in an effort to improve performanceAn exampleis the
insertionof FIFO or coalescingwrite buffers betweerthe
processorand the cache. Processorconsistentmodels,
suchasSFARC Total StoreOrder(TS0)[25], relaxthe SC
requirement(a): now, in the total ordering of memory
operationsa store(ST) canappearafter a load (LD) that
followsit in programorder More relaxed models,suchas
Compaq(DEC) Alpha [23], allow a processogreatfree-

domto re-ordemmemaoryoperationdbetweerfmemorybar-
riers’

This papershavs thatLamportclockscanbe usedto verify

shared-memorimplementationshat supportthe TSO and
Alpharelaxedmemorymodels.Towardsthis end,thepaper
malkes two primary contriloitions:

1. We provide cleannew memorymodeldefinitions,namely
WisconsinTSOandWsconsinAlpha,thataid in reasoning
aboutcorrectnes®f protocols.We shov thatprotocolssat-
isfying the WisconsinTSO and WisconsinAlpha memory
modelsalsosatisfy TSO[25] andAlpha [23], respectiely.
We considerthe Wisconsinmemory modelsto be more
intuitive thanthe original definitionsfor the following rea-
sons.Unlike the TSOdefinition,LDs alwaysgetthevalues
of STsthatoccurearlierin thetotal order Unlike the Alpha
definition, we use a total order

2. We extendour Lamporttimestampingschemeto proto-
colsfor boththe TSOand Alphamemorymodels.The key
is determiningat what point in the protocol an event is
timestampedandit is in this determinatiorthatthe proofs
of this paperdiffer from our previous work on SC. For
example,in the Alpha protocol,a LD that getsits value
from aprevious ST thatis still in thewrite buffer shouldbe
timestampedfterthe ST. But sincethe ST hasnotyetbeen
written to the cache the ST is not yet timestampedvhen
the LD is issued.Our timestampingschemehandlesthis
simply by waiting to timestampthe LD until the ST has
actually been written to the cache.

While the detailsof thetimestampingschemearenecessar-
ily differentfrom previouswork, a strengthof ourapproach
is that, with the timestampingschemen hand,the proofs
of correctnes®f the protocolsare almostidenticalto the
proofsin our previouswork on SC. Our protocolsfor TSO
and Alpha are basedon the same Gigaplane-lile split-
transactionbus protocol that we consideredin previous
work [24]. A similar result could easily be proved for a
directory-based implementation, as in Plakal et al. [18].

In the restof the paper we assumea blod to be a fixed-
size,contiguousalignedsectionof memory(usuallyequal
to the cacheline size). Also, LDs and STs operateon
words wherewe assumehatawordis containedn ablock
andis alignedat a word boundary Our schemecould be
extendedto handleLDs and STs on sub-unitsof a word
(half-wordsor bytes)which neednot be aligned.However,
this makes the specificationof the memory modelsvery
tedious without aygain in insight or clarity

The rest of this paperis organizedas follows. Section2
summarizesur previouswork thatusedLamportclocksto
reasonaboutthe correctnesf sharedmemory systems,
and discussesrelated work by others. We presentour
resultsfor TSOandAlphain Sections3 and4, respectiely.
Section5 summarizesour contribtutions and discusses
future work.

2 Related Work?!

2.1 Our Previous Work

Our previous work [18,24] proved that implementations
usinga SGI Origin 2000-like [5,13] directoryprotocoland
a Sun Gigaplane-lile [22] split-transactionbus protocol
both implementSC. Both implementationsisethree-state
invalidation-based coherence protocols.

Our reasoningmethodassociate$ogical timestampswith

loads, stores,and coherencesvents. We call our method
Lamport Clocks, becauseour timestamping modestly
extendsthelogical timestampd.amportdevelopedfor dis-
tributed systemg[11]. Lamport associatedh counterwith

eachhost. The counteris incrementedn local eventsand
its valueis usedto timestampoutgoingmessage<On mes-
sagereceipt,a hostsetsits counterto onegreaterthanthe
maximum of its former time and the timestampof the
incoming messageTimestampties are broken with host
ID. In this manney Lamport createsa total order using
these logical timestampswhere causality flows with

increasing logical time.

Our timestamping scheme extends Lamports 2-tuple
timestampsto three-tuples:<global . local . node-id>,
whereglobal takes precedencever local, andlocal takes
precedencever node-id (e.g.,3.10.11< 4.2.1).Coherence
messagespr transactions,carry global timestamps.In
addition, global timestampsorder LD and ST operations
relative to transactionsLocal timestampsare assignedo
LD andST operationsn orderto presere programorderin
Lamporttime amongoperationghat have the sameglobal
timestamp.They enablean unboundechumberof LD/ST
operationshetweentransactionsNode-ID, the third com-
ponentof a Lamporttimestampjs usedasan arbitrarytie-
brealer betweentwo operationswith the sameglobal and
local timestampsthusensuringthatall LD and ST opera-
tions are totally ordered.

Our prior proofsof SC usetwo timestampingclaims that
shav thatLDs andSTsareorderedrelative to transactions
“as intendedby the designel One of theseclaimsis that
for every LD and ST on a given block, properaccesss
ensuredby the most recenttransactionon that block in
Lamporttime. (In contrast,in real time, a processomay
performa LD on ablock after it hasansweredh requesto
relinquishthe block.) Roughly the otherclaim is that, in
logical time, transactionsare handledby processorén the
orderin whichthey arereceied.(In contrastjn realtime, a
processomayreceve transaction-relatethessage%ut of
order”.)

Sequentiakonsisteng is establishedising the conceptof
coheenceepodis An epochis aninterval of logical time
duringwhich anodehasread-onlyor read-writeaccesgo a
block of data.Thelife of ablockin logical time consistsof

1. This section borws from material in prgous work [18,24].

a sequencef suchepochsOur proof shavs that,in Lam-

porttime, operationdie within appropriateepochsThatis,

each LD lies within either a read-only or a read-write
epoch,andeachST lies within aread-writeepoch.In addi-

tion, the“correct” valueof ablockis passedrom onenode
to anotherbetweenepochs.The proofs of theseresults
build in a modularfashionuponthe timestampingclaims,
therebylocalizingagumentsdhasedn specificatiordetails.
The differenceshetweenthe proofsfor the bus and direc-

tory protocolsdiffer only in the detailsof thetimestamping
claims.

2.2 Other Related Wrk

Our Lamportclock methodcomplementselatedwork on
proving protocolscorrect.First, Lamport clocks are more

precise and formal than ad hoc reasoning or simulation.

Second,we find Lamport clocks easierto use and more

applicable to larger systems, but less rigorous than

approachesthat use state-spacesearch of finite-state
machinesor theorem-preing techniquesThesearerigor-

ous methodsthat can capturesubtle errors, but they are

often limited to small systemsbecauseof the statespace
explosionfor large,complicatedsystemsFor example,the

SGI Origin 2000 coherenceprotocol is verified for a 4-

clustersystemwith one cacheblock [7], the memorysub-

systemof the Sun S3.mp cache-cohereninultiprocessor
systemis verifiedfor onecacheblock[19], andthe SFARC

Relaxed Memory Order (RMO) memory consisteng

model is verified for small test programs[16]. Park and

Dill [17] proposeusing transactionaggreation to scale
beyond finite-statemethods.Our approachcan precisely
verify the operationof a protocolin a systemconsistingof

ary number of nodes and memory blocks.

Anotherformal approactdevisedby ShenandArvind uses
term rewriting to specify and prove the correctnessof
coherenceprotocols[21]. Their techniqueinvolves shav-
ing thata systemwith cachesanda systemwithout caches
can simulate each other This approachlends itself to
highly succinctformal proofs.We find Lamportclockseas-
ier to grasp,while not lacking expressie power. Term
rewriting relies on an ordering of rewrite rules (each of
which correspondgo an event) and, as such,may benefit
from the Lamport clock technique which can ordeargs.

Third, we find Lamportclockseasierto useandof similar
formal power to mary of the othermethodsusedto define
andverify relaxedmemorymodels[1, 2, 3, 6, 8, 9, 20]. Of
particularnotearetheapproachesf Collier [3] andGhara-
chorlooetal. [8] thatmodela write asp sub-operation$o
eachof p processorsWe find their approachesnore gen-
eral but harderto usethan our approachthat splits TSO
stores (writes) into two componentsand leaves Alpha
stores atomic.

Finally, Lamport Clocks have also beenusedin other
researchincludinga paperby NeigerandToueg [15]. They
describea classof problemsfor which, if a clock-based

algorithm is proven correct assumingreal-time synchro-
nizedclocks,thenit mustalsobe correctevenif run with
logical clocks. Onedifferencebetweerthis work andours
is that the protocols we consider are not clock-based.
Rather we attach(logical) clocksto clock-freeprotocols,
in order to prue correctness of the protocols

3 Total Store Order (TSO)

SFARC Total StoreOrder(TSO)[25] is avariantof proces-
sor consistency9,10] that hasbeenimplementedon Sun
multiprocessordor mary years.TSO relaxes SC in that
LDs canbe orderedaheadof STswhich precedethemin

programorder(solong asthereareno interveningmemory
barriersandthe two operationsareto differentlocations).
We study TSO becausét is formally andpublicly defined,
but we expectthat our resultscan be mappedto the Intel

Architecture-32(1A-32) memory model (Section 7.2 of

[4]), the other dominant processor consisyemodel.

We now defineTSO, WisconsinTSO,a TSO implementa-
tion, a Lamporttimestampingcheméor thatimplementa-
tion, and its corresponding proof.

3.1 Defining TSO

TSOappliesto a systemwith multiple processorgssuinga
variety of instructions For our purposeswe areconcerned
with word loads(LDs), word storeg STs)andmemorybar-
riers (MBs) issuedto regular memory(i.e., excluding I/O
space)We consideronly memorybarriersatleastasstrong
astype “MB #StoreLoad, i.e., barrierswhich guarantee
that all prior STs are completedbefore arny future LD,
while wealer memorybarriersareregardedasno-ops(e.g.,
“MB #LoadLoad").AppendixD of the SFARC Architec-
ture Manual Version 9 [25] defines TSO by defining
Relaxed Memory Order (RMO) and then adding con-
straints to form TSO. ¥/give the combined result.

Let <, denoteprogram order. Programordertotally orders
all L[?s, STs,andMBs at the sameprocessoandit is thus
a partial ordereer all processors.

Let <, be a total ordering of all LD and ST operations.

Then<,, is saidto bein total store order (TSO)if thefol-
lowing constraintsold. Thefirst two constraintsarecalled
“memory orderconstraints. Let X andY be a pair of LD
or ST operations.

1) If X <pY andeitherX isaLD orY isaST, thenX <,
Y.

2) f X<p MB <p Y then X g, .

The final constraint restricts possibkdwes of LDs:

3) Let X bealLD of word w. Thenthe value of X is the
value of the greatest S3ay Y to wordw in memory
order taken over all STsto word w that either occur
beforeX in memoryorderor occurbeforeX in program
order (lut possibly after X in memory order).

Intuitively, constraintsl and2 saythatmemoryordermay
only violate processororderto delaya ST after a subse-
guentLD whenthereis no intervening MB. In all other
casesmemory order respectsprogramorder (i.e., LD <,

LD, LD <p ST, and ST <, ST’ are presered by memory
order).Constraint3 saysthata LD shouldreturnthe last
valuewritten to the sameword in memoryunlessthereis a

pending ST to the sameword (earlierin programorder)
thathasnot yet occurredn memoryorder In this casethe

value from the pendingST shouldbe returned.So if one
looks at the memoryorder it appeas asif the LD getsits

value from a ST that “happens in the futture.

An executionof an implementationsatisfiesTSO if there
existsanorderingof theLDs andSTsin the executionthat
satisfiesTSO. An implementatiorsatisfiesTSO if all exe-
cutions of that implementation satisfy TSO.

3.2 Wisconsin TSO

We now define some propertiesof an ordering which
malesverificationeasier TSO’s condition 3 allows a load
to getavaluefrom a“future” store.WisconsinTSO elimi-
natesthis oddity by splitting eachstoreinto a STyjyate and
a STpypiic. both of which have the samevalue. Each LD
getS|ts value from the pastbut may returnthe value of a
STorivate for which the correspondindSTy,pjic hasnot yet
occurred The goal in this caseis to modeI write buffer
bypassingvherestoresenterthe write buffer on a ST,
and eit with a STpjic-

rlvate

Let <,, denoteanorderingof LDs, STyjyates and STy pjicS-
We saythat<W is in Wisconsintotal store order(Wlsconsm
TSO) if the follaving conditions hold.

1’) The ordering (<) of LDs and STyjyates is consistent
with programorder Thatis, if X andY areeitheralLD
or & STyivate then X ¢ Y if and only if X <, Y.

2") For each STSTyrivate <w STpublic

3) If Xand Y are STs and XY then Xypiic <w Y public:

4) If anMB occursbetweenST andLD in programorder
then S-F)ublic <w LD.

5") Let X beaLD of wordw atprocessop;. Thenthevalue
of X is thevalueof themostrecentST to w in <, thatis
either:

a) the mostrecentSTjyate to word w at p;, if for some

ST <, X to word w, the correspondindsTppiic is after

Xin <, or
b) the most recent Jpjic to word w, otherwise.

An execution of an implementationsatisfiesWisconsin
TSOIif thereexists an orderingof the LDs, STpyjyares and
STouplic Sin theexecutlonthatsatlsf|e$N|sconS|nTSO An

|mpIementatlonsatlsflesW|sconsmTSO if all executions
of that implementation satisfy Mtonsin TSO.

Gil Neiger[14] hasdevelopedan alternatve TSO defini-
tion asatotal orderof LDs andSTsin whicha LD always
getthevalueof themostrecentST. Thisis doneby moving
eachLD thatreturnsavaluefrom a STyjqte to be afterthe

corresponding Sfpjic

Claim 1: An implementatiorthat satisfieswWisconsinTSO
also satisfies TSO.

A proof of this claim can be found in Appendix*A

3.3 TSO Implementation Wth FIFO Write
Buffers

A commonTSO implementationapproachseparategach
processofrom its cachewith a FIFO write buffer. Caches
are kept coherentwith a write-invalidate coherenceproto-
col sufiicient for implementingSC. A MB can be imple-
mentedby having a processoflushiits write buffer before
proceedingpasta MB, without the cachesor coherence
protocolever seeingMBs. We usethis approachherein a
manner similar to the Sun Ultra Enterprise 6000 with
UltraSFARC Il processors.

We begin with a brief summaryof the SCimplementation
that Sorin et al. [24] describefor a Gigaplane-lile split-
transactiorbus (the overall approachwould be similar for
the directory-basedmplementatiordescribedby Plakalet
al. [18]). Memoryblocksmaybecachedasinvalid, Shaed,
or Exclusive The A-state (addressstate)recordshow the
block is cachedandis usedfor respondingto subsequent
bus transactions.The protocol seeksto maintain the
expectedinvariants(e.g., a block is Exclusivein at most
one cache)and providesthe usualcoherencdransactions:
Get-Shaed (GETS), Get-Exclusive (GETX), Upgrade
(UPG, for upgradingthe block from Sharedto Exclusie),
and Writebadk (WB). As with the Gigaplane,coherence
transactionsmmediatelychangethe A-state,regardlessof
whenthe dataarrives.If a processoissuesa GETX trans-
actionandthenseesa GET Stransactiorfor the sameblock
by anothemrocessaqrthe processos A-statefor the block
will go from Invalid to Exclusive to Shared regardlessof
whenit obtainsthedata.ln an SCimplementationthe pro-
cessorchecksthe A-stateof a block beforeexecutingLDs
andSTsonthatblock. Onamiss,the processoensureghe

1. Theconverseof this claim canalsobeproved,but it is notnec-
essary for our proof of correctness, and we omit it here due to
space constraints.

appropriateA-statefor that block by sendinga coherence

transaction on theus.

stores stores stores
loads loads loads|

— | FFO — | FFO — | FFO
WRITE
BUFFER

WRITE
BUFFER

WRITE
BUFFER

CACHE CACHE CACHE

Coherence Protocol
Bus / Network
Memory

FIGURE 1. Our TSO Implementation

To corvertthis SCimplementatiorinto a TSOimplementa-
tion, we inserta FIFO write buffer betweera processoand
its cache(asshawn in Figurel), andwe adda MB instruc-
tion. Therestof theimplementatior{externalto theproces-
sorandwrite-buffer) obeys the coherencerotocoloutlined
above. The processolissuesLDs, STs, and MBs in pro-

gramordet Below, we specifyexactly whathappensvhen

the processoissuesone of theseinstructions.The proces-
sor completesissuingan instruction before proceedingto

issue the nd one in program order

Stores: A ST issuesinto a FIFO write buffer (considered
internalto the processor)n aneventdenotedasa STyyyate
Entriesin the write buffer arethe size of processowords
Eventually theseentriesare flushedfrom the write-buffer
to the cachein the sameorderthatthey enteredthe write
buffer, andthis actiity is independentf theissuingof STs
by the processarThe event wherebyan entry is flushed
from the write buffer to the cache,oncethe processohas
establishedhatthe correspondindplock’s A-stateis Exclu-
sive, is called a ST, i By establish we meanthat the
processorchecksthe A-state of the block andif it is not
Exclusie, then the coherenceprotocol is invoked to
changehe A-stateto Exclusive. Notethatthe Exclusive A-
state is a prerequisite for a G fic but not for a Siyate

Loads: Toissuea LD, theprocessofirst checksn its write
buffer for a ST to the sameword. We referto this actionas
a CHECK(LD). If the LD hits in the write buffer, thenthe
LD getsthe valueof the mostrecentsuchSTyyate in pro-
gram order Note thata LD cannotovertale a ST to the
write buffer, becausehe protocoldoesnot startto issuea
LD until issuingof all previous STs(in programorder)has
beencompletedlIf theLD missesn thewrite buffer, thenit
is treatedustlike aLD in the SCprotocolandhasto goto
thecacheThatis, the processoestablishethatthe A-state
of the block in the cacheis Sharedor Exclusie; if neces-
sary it invokesthe coherencerotocol(the detailsof which
areasdescribedy Sorinetal. [24]). In this case theissu-

ing of the LD completeswhen the processorestablishes
that the A-state of the block is Sharedor Exclusie. We
assumethatLDs do not overlapwith STy picS to the same
addressin the sensehatthe interval dunng whichalD is
issuedcannotoverlap with the STy i flushing interval,
startingwhenthe processomestablisheghat the A-stateis
Exclusive and continuing until the flush is completed.

MBs: Upon issuing a MB, our implementationsimply
flushesall entriesin the write buffer to the cachebefore
issuingary moreoperationsA moreaggressie implemen-
tation could perhapanark all the entriesin someway and
then ensurethat subsequenttoherencetransactionsare
allowedto happeronly whenall marked entrieshave been
flushed from the writeffer.

3.4 Timestamping or TSO Implementation

We now presenta schemehat assigndogical timestamps
to the eventsof interestthatoccurduringary executionof a
programon our implementatiorof TSO. We definean M-
opention (or simply anM-op) to bea LD or STyiyate M-
opsareorderedby programorderatasmgleprocessorOur
schemeassigngimestampgo M-ops, ST,,,piicS andcoher-
ence protocol transactions (GETX, GETS, UPG, WB).

We define a notion of binding for M-ops and STy S
which is useful for presentmgthetlmestampmgscheme.
Intuitively, the binding time of an operationis the pointin
realtime whenthatoperatiorhasbeen“‘committed” by the
processar STyiyates are bound when the corresponding
entriesenter the write buffer. STy i are bound at the
time thatthe Exclusive A-stateof thetargetblock is estab-
lishedby the processarl.Ds thathit in the write buffer are
bound at the time that the correspondingCHECK(LD)
occurs.LDs that missin the write buffer are boundat the
time that the A-statefor the correspondindlock is estab-
lishedby the processorBoth STy ;s andLDs thatmissin
thewrite buffer aresaidto beboundto the coherencérans-
action that obtained the block in the appropriate A-state.

Our timestampsare 3-tuples:<global-time.local-time.pro-
cessorD>. We give rulesbelow for assigningglobal and
local timesto the various eventsthat we timestamp.The
processolD actsasa tie-brealer. Conceptuallyeachpro-
cessothasa globalanda local clock which getupdatedn
real time for transactionsas well as M-ops and STy pjicS,
respectiely.

Transactionsretotally orderedby the busin realtime and
we definethe globaltime of atransactiorto be its rankin
this ordering, with the first transactionbeing assigneda
globaltime of 1. At the momentthatthe A-stateof a pro-
cessoilchangesiueto atransactionthe globalclock of that
processolis incrementedo equalthe global time of that
transactionyhile the local clock (andthelocal component
of the transactios’'timestamp) are set to 0.

EachM-op andSTypjic is assigned timestampat thetime
that it is bound. If an M-op and ST, pjic happento be
boundat the samemomentin real t|me we assumethat

they areassignedimestampsn somearbitrary (but deter-
ministic) ordering (e.g., M-ops are always timestamped
first). Notethata LD that missesin the write buffer anda
STouplic cannever beboundatthe sametime becausef the
real time ordering propertiesof the protocol. The local
clockis incrementedy 1 to equalthe local componenof
the timestampassignedThe globaltimestampis the value
of theglobalclock atthe momentthatthe M-op or ST pjic
is bound.

3.5 Proof of Correctness of TSO Implementation

We shaw thatfor any executionof ourimplementationthe
timestampsof STyyateS, STpypiicS, and LDs produce a
Lamportordermg< thatsausﬂeaoroperueSL to 5" of the
WisconsinTSO definition. That propertiesl” to 4" aresat-
isfied follows from the real-timeorderingpropertiesof the
protocol,the timestampingschemeandthe orderin which
eventsarebound.Property5” is provedasfollows. We con-
sider two possible situations for LD X:

1) Supposehatfor someST <, X, bothto the sameword,
X <y STpublic L€t Zprivate be the mostrecentSTyjyate to
word w at pi (prior to X in <). It must be that Zjic
occursafter X in <, by property3” of Section3. 2 We
needto shav that X's value equalsthat of Z, 4 Since
instructionsareissuedin programorderand|ssue|ntervals
arenon-overlapping,Zyivateis in p;’s write buffer beforep;
performsCHECK(X). \Xle claim that Ziyate is still present
in thewrite buffer whenp; performsCHECK(X) otherwise,
atthe momentthe checkis done,Z,,jic would alreadybe
bound,causingX to bebound(to atransacnon)n realtime
AFTER Z, pjic Is bound. Sincetimestampsare consistent
with bindingorder, this would contradictthefactthatX <,
Zpuplic Hence, X must get thealue of Zyjjyate

2) Supposethat for all ST <, X, both to the sameword,
SToublic <w X. It cannotbe the casethat X takesthe value
of ary STorivate if X wereto take the value of a STyiyate

sayZpyivate thenX would beboundBEFOREZ, pjic, smce
themter\al in which X is issueddoesnot overlapW|th the
intenval in which Z,pj;c occurs. This contradicts our
assumptiorin the previous sentencéecausainding order
is consistentwith <,,. Hence X gets the value of some
STpublicandis boundto sometransactionLet Z,,,ic bethe
mostrecentST ublic beforeX in <, (notnecessanl;atpro—
cessom;). We needto shav thatx getsthe value Z,, pjjc.

Theproofof thisis identicalto the proofsof the malntheo-
remsin our SCresearclil18,24],exceptthat STsneedto be
replacedby ST, ics and the definitions of binding and
tlmestamplnghere needto be replacedby the definitions
of binding and timestamping in Sectidnt.

Henceall executionsof theimplementatiorsatisfyWiscon-
sin TSO and so the implementationsatisfiesWisconsin

TSO. By Claim 1, the implementation also satisfies TSO.

4 Alpha

TheCompaq[DEC) Alphamemorymodel[23] is aweakly
consistentnodelthatrelaxesthe orderingrequirementsta

given processobetweenrary accesset differentmemory
locationsunlessorderingis explicitly statedwith the useof

aMemoryBarrier(MB). Wefirst definethe Alphamemory
model, introducea collection of constraintson orderings
which we referto asWisconsinAlpha, andprove the rela-

tionship betweenAlpha and Wisconsin Alpha. We then
describean Alphaimplementationpresenia timestamping
schemdor theimplementationandprove thatthe ordering
producedby the timestampingschemesatisfiesWisconsin
Alpha, thus shaving that the implementationcorrectly
implements the Alpha memory model.

4.1 Defining Alpha

As with TSO,we areconcernednainly with a systemcon-
taining multiple processorsssuingword LDs, word STs
andMBs (orderedby programorderat a single processor)
to regular memory (not I/O space).The Alpha memory
modelis formally definedthroughthe use of two orders
that must be obsered with respectto memory accesses.
Thefirst order programissueorder, is apartialorderonthe
memoryoperationgLDs, STs)issuedby agivenprocessar
Issueorderrelaxesprogramorderin thatthereis no order
betweeraccessew differentlocationswithout intervening
MBs. Issueorder enforcesorder betweenaccesseso the
samelocation, order betweenary accessandan MB, and
order betweenMBs. The secondorder accessorder is a
total order of operationson a single memory location
(regardless of the processors that issued them).

A third order the“before” order is definedto bethetransi-
tive closureover all of the issueordersand accesorders.
An executionof animplementatiorobeys the Alpha mem-
ory model if:

¢ for every memorylocation,thereexists anaccesrder
for which thereareno two memoryoperationsA andB
(not necessarilyto the sameaddress)suchthat A is
before B, and B is also before A.

¢ aloadreturnsthe value of the mostrecentstoreto the
same location in access order

An implementatiorsatisfiesAlpha if all executionsof that
implementation satisfy Alpha.

4.2 Wisconsin Alpha

Althoughthe Alpha memorymodelseemsgo have little in
commonwith the stricter sequentialconsisteng, we will

shav that the differencesbetweenthe two modelscanbe
constrainedto behaior internal to the processor(i.e.,
everythingnotincludingthe cacheandtherestof themem-
ory subsystem)An executionof animplementationsatis-
fies the WisconsinAlpha memorymodelif thereexists a
total ordering of all loads, stores, and MBs, such that:

¢ all of the issue orders are respected.

¢ aloadreturnsthe value of the mostrecentstoreto the
same location in this total order

An implementatiorsatisfiesWisconsinAlpha if all execu-
tions of that implementation satisfyi¥%onsin Alpha.

Claim 2: An implementationthat satisfies Wisconsin
Alpha also satisfies Alpha.

A proof of this claim can be found in Appendix'B.

4.3 An Alpha Implementation Using Coalescing
Write Buffers

— Coa\escwné
— | Wite

Coherence Protocol

Bus / Network

Memory

FIGURE 2. Our Alpha Implementation

Each processorin an Alpha implementationinternally
obseresissueorder It canreorderloadsandstoresto dif-
ferentmemorylocationsaslong asthereis no intervening
MB. The multiprocessorimplementationincludes some
numberof theseprocessorgonnectedogethereitherby a
sharedbus or a network. The cachecoherenceprotocol
usedin eithercaseis the sameasthe sharedbus protocol
[24] or thedirectoryprotocol[18] thatwe describedn pre-
viouswork. Ourimplementatioris looselymodeledaftera
multiprocessorusing the Compaqg (DEC) Alpha 21264
microprocessor

Each processorissuesLDs and STs in program order
Storesareissuedto a coalescingwrite buffer whichis con-
sideredto be internalto the processarEntriesin the write
buffer arethe size of cachelines. Storesto the samecache
line arecoalescedn the sameentry andif two storeswrite
to the sameword, the correspondingentry will hold the
valuewritten by the storethatwasissuediater. Entriesare
eventually flushed from the write buffer to the cache,
althoughnot necessarilyin the orderin which they were
issuedto the write buffer. Exclusive permissionis not

1. Theconverseof this claim canalsobeproved,but it is notnec-
essary for our proof of correctness, and we omit it here due to
space constraints.

requiredto issuea storeto thewrite buffer, but it is required
to flush the store from the writeitfer to the cache.

A LD thathits in the write buffer returnsthe valuethatis

foundthere,andthis actiondoesnot requirethatline to be
flushedfrom the buffer to the cache The Alphamodel,like
most weak memory models, is tailored to include non-
blocking cachesThis optimizationallows the processoto

overlap readlateny with other usefulwork, so LDs that
missin thewrite buffer areissuedo aloadqueuewhichwe
considerto beinternalto the processarThesel Ds arehan-
dled by our existing SC coherenceprotocol with the fol-

lowing difference: a reply from the memory system
satisfiesall LDs to thatlocationthatarein theloadqueueat
the momentthat the processoestablisheghat the A-state
is Sharedor Exclusie. If the datawasalreadyin the cache
in the appropriateA-state, then the LD can be satisfied
immediately We assumehat thereis no overlap between
the issuing of LDs and the flushing of STsto the same
address once Exclws permission is obtained.

Thisimplementatiorusesa simplemechanisnior handling
MBs, which is to stall the processomntil the load queue
and the write buffer are empty Figure?2 illustrates our
Alpha implementation,where everything outside of the
dottedboxesis exactly the sameasin our earlier sequen-
tially consistent implementation.

4.4 Timestamping or Alpha Implementation

Thetimestampingchemdor the Alpha implementatioris
quite similar to that usedfor the TSO implementation.
Coherencéransactionsffect the processorsglobalclocks
in thesamefashion.EachLD andST is timestampedt the
momentthatit is bound,andit is in this determinationof
whenalD or STis boundwhereAlpha differsfrom TSO.
A STis consideredo be boundwhenthe Exclusive A-state
of thetargetblock s establishedby the processarSincean
entire cacheline is written at once, all of the storesin a
buffer entry (including coalescedtoresto the sameword)
areboundatthe sametime, but they aretimestampedoas
to presereissueorder A LD thathitsin thewrite buffer is
bound exactly when that ST was bound, but it is times-
tampedafter that ST to presere issueorder If the LD
missesin the write buffer, it is bound when the block
becomesgpresenin theappropriatéA-state.At the moment
thateachLD or ST is bound,thelocal clockis incremented
by 1 andthelocal componenbf thetimestamps setto the
updatedvalue. The global timestampis the value of the
global clock at the moment that theeat is timestamped.

4.5 Proof of Corr ectnesof Alpha Implementation

We shaw that eachexecutionof the Alpha implementation
satisfiesWisconsinAlpha. In previous work [18,24], we
provedthatansplit-transactiorbus protocolandadirectory
protocol obeyed sequential consisteng. Parts of these
proofsrely on the processordinding memoryaccessem

programorder To prove thatour target Alpha implementa-

tion obeys the WisconsinAlpha memory model, we can
useeitherproof (dependingon whetherour interconnects

a bus or a network) aslong aswe considerthat binding

orderis now a partialorderratherthanatotal order Specif-
ically, we needto modify the proofsof claimsmadeabout
the binding of memory operationsto coherenceransac-
tionssothatreferenceso theearliestmemoryoperatiorare
replacedwith referencesto any of the earliestmemory
operations,since there could be more than one that is

boundat the sametime. Henceall executionsof theimple-

mentationsatisfyWisconsinAlpha andsotheimplementa-
tion satisfies Wisconsin Alpha. By Claim 2, the

implementation also satisfies Alpha.

5 Conclusions and Futue Work

High performanceshared-memorymultiprocessorsoften
incorporaterelaxed memory consisteng models. These
implementationsmay use mary hardware optimizations,
suchaswrite buffers andout-of-orderissue,andit is diffi-
cult to verify that a comple« implementationsatisfiesa
given relaxed consisteng model. We have extendedour
Lamportclock verificationtechniqueto handletwo relaxed
consisteng models:processorconsisteng and weak con-
sisteng. Reasoningwvith Lamportclocks, we have shavn
that two sampleimplementationssatisfy a processoicon-
sistentmodel (Total Store Order) and a weakly consistent
model (Alpha), respeatly.

Futurework with Lamportclockswill extendthe methodto
reasonaboutconsistent/O andthe detectionof deadlock
andlivelock. We areinterestedn automatingthe verifica-
tion process.

6 Acknowledgments

This work hasbenefitedrom feedbackirom mary people,
includingRobertCypher JamessoodmankErik Hagersten,
Daniel Lenoski, Paul Loewenstein,Gil Neiger and David
Wood.

7 References

[1] SaritaV. Adve and Mark D. Hill. Weak Ordering—A
New Definition. In Proceedingsof the 17th Annual
International Symposiumon Computer Architecture
pages 2—-14, Seattle, Washington, May 28-31, 1990.

[2] Hagit Attiya andRoy Friedman A Correctnes€ondition
for High-performanceultiprocessorsin Proceedingof
the 24th Annual ACM S mRAosmmon the Theory of
Computing pages 679-690, May 1992.

[3] William W. Collier. Reasoning About
Architectures Prentice-Hall, Inc., 1992.

[4] Intel Corporation. Pentium Pro Family Developer’s
Manual, Version3: Operating SystemWriter's Manual
January 1996.

[5] David Culler, JaswindePal Singh, and Anoop Gupta.
Draft of Parallel ComputerArchitecture: A Hardware/
Software Approach chapter 8: Directory-basedCache
Coherence. Morgan Kaufmann, 1997.

[6] Michel Dubois, Christoph Scheurich,and Faye Briggs.

Parallel

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Memory Access Buffering in Multiprocessors. In
Proceedingf the 13th Annualinternational Symposium
on Computer Architecturgpages 434—-442, June 1986.

AsgeirTh. EirikssonandKen L. McMillan. UsingFormal
Verification/Analysis Methods on the Critical Path in
SystemsDesign: A CaseStudy. In Proceedingsof the
ComputetAidedVerificationConferenceliege,Belgium,
1995. Appears as LNCS 939, Springer Verlag.

Kourosh Gharachorloo,SaritaV. Adve, Anoop Gupta,
JohnL. Hennessyand Mark D. Hill. SpecifyingSystem
Requirements for Memorg Consistency Models.
TechnicalReportCS-TR-1199Universityof Wisconsin-
Madison, December 1993.

Kourosh GharachorlooDaniel Lenoski, JamesLaudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory Consistencyand Event Ordering in Scalable
Shared-memoryMultiprocessorsiIn Proceedingsof the
17th Annual International Symposiumon Computer
Architecture pages 15-26, May 1990.

J.Goodman. Cache Consistency and _Sequential
Consistency. Technical Report6l, |EEE Scalable
Coherent Interface Working Group, 1989.

LeslieLamport.Time, Clocksandthe Orderingof Events
in a Distributed System.Communicationof the ACM,
21(7):558-565, July 1978.

LeslieLamport.How to MakeaMultiprocessoiComputer
that Correctly ExecutesMultiprocess Programs.|IEEE
'{g%sactlonmnComputersC- 8(9):241-2485eptember

James. LaudonandDaniel Lenoski. The SGI Origin: A
ccNUMA Highly ScalableServer.In Proceedingof the
24thInternational Symposiunon ComputerArchitecture
Denver, CO, June 1997.

Gil Neiger. Private communication, October 1998.

Gil Neiger and Sam Toueg. Simulatin%Synchronized
ClocksandCommonKnowledgein DistributedSystems.
Journal of the Assaociationfor Computing Machinery

40(2):334-367, April 1993.

Seun?joon Park and DavidL. Dill. An Executable
Specification,Analyzer and Verifier for RMO (Relaxed

emory Order). In"Proceedingsof the 7th Annual ACM
Symposiumon Parallel Algorithms and Architectures
pages34-41,SantaBarbaraCalifornia,July 17-19,1995.

SeungjoorParkandDavid L. Dill. Verificationof FLASH
CacheCoherencélrotocolby Aggregationof Distributed
Transactions.In_Proceedingsof the 8th Annual ACM
Symposiumon Parallel Algorithms and Architectures
pages 288-296, Padua, Italy, June 24—-26, 1996.

Manoj Plakal, DanielJ. Sorin, AnneE. Condon, and
Mark D. Hill. Lamport Clocks: Verifying a Director
Cache-Coherencerotocol. In Proceedingsof the 10t
Annual ACM Symposiunon Parallel Architecturesand
Algorithms PuertoVallarta,Mexico,June28—-July2 1998.

Fong Pong, Michael Browne, Andreas Nowatzyk, and
Michel Dubois. DesignVerification of the S3.mpCache-
CoherentShared-MemongsystemIEEE Transactionon
Computers47(1):135-140, January 1998.

Dennis Shashaand Marc Snir. Efficient and Correct
Executionof ParallelProgramghat ShareMemory. ACM
Transactionson ProgrrammlngLanguagesmd ystems
10(2):282-312, April 1988.

Xiaowei Shen and Arvind. Specification of Memory

ModelsandDesignof ProvablyCorrectCacheCoherence
Protocols.Group Memo 398, Massachusettinstitute of

Technology, June 1997.

A. Singhal, D. Broniarczyk, F.Cerauskis, J.Price,
L. Yuan, C.Cheng, D. Doblar, S.Fosth, N. Agarwal,

K. Harvey, E. Hagerstenand B. Liencres.Gigaplane:A

High Performanc®usfor LargeSMPs Hot Interconnects
IV, pages 41-52, 1996.

RichardL. Sites, editor. Alpha Architecture Reference

Manual Digital Press, 1992.

[24] DanielJ. Sorin,Manoj Plakal,Mark D. Hill, andAnneE.
Condon. Lamport Clocks: ReasoningAbout Shared-
Memory Correctness.Technical Report CS-TR-1367,
University of Wisconsin-Madison, March 1998.

[25] DavidL. WeaverandTom Germondgeditors.TheSPARC
Architecture Manual, Version 9. Prentice Hall, 1994.
SPARC International, Inc.

Appendix A: Proof of relationship between
Wisconsin TSO and TSO

Claim 1: An implementatiorthat satisfiesWisconsinTSO
also satisfies TSO.

Proof: Supposéhat animplementatiorsatisfieswisconsin
TSO,i.e.,for every executiononthatimplementationthere
existsatotal ordering<,, of theLDs, STyiyateS, andSTy -
licS satisfying Wisconsin TSO. We claim that the imple-

mentationsatisfiesTSO. To shaw this, we shawv that each
executionthat satisfieswisconsinTSO also satisfiesTSO.
Thisis doneby defininga new ordering<y, of justLDs and
STs by remaving all STyiyates @and using the order of

STouplic to definethe orderof eachST. We claim that the
resultingordering<,, satisfiesTSO. To seethis, consider
the requirements of TSO:

1.IfX<pYandXisalLDorYisaSkhen X ¢, Y.

* First,supposehatX isalLD. Therearetwo possibilities
forY: (@)Y isalLD. Thisfollowsfrom1". (b)Y isaST.
This follows from 1" and2’, sinceby 17, X <y, Y private

and by 2", Yrivate <w Y public:

* The other possibility is that X andY are STs. In this
case Xpublic <w Y public PY property2’ andhenceX <,
Y.

2.1f anMB occursbetweerX andY in programorder then
X<y Y.

Again, we have separatecasesdependingwhat X and Y
are:

* XisalD. ThenX <, Y andsoby ourargumentin 1, X
<m Y.

e XisaSTandyY is a SFollows from 3".
e XisaSTandYisalD.dllows from4".

3. Let X bea LD of word,andY bethe ST to word w in
memoryorder(<,,) satisfyingthe constraintof property3.
Let W bethe ST (eithera STpyp)ic OF @ STyyiyate to Wordw
in Wisconsinorder(<,,) satisfyingthe constraintf prop-
erty 5. We need to shwthat Y = W

* SupposéhatW is a STy pjic, call it Wpypjic Then,from
the constraintsn 5" on W, no ST beforeX in program
orderhasits ST, pjic &fterX in Wisconsinorder There-
fore, Wpypiic is the greatesSTpp)ic in Wisconsinorder
(and henceW is the greatestST in memory order),
taken over all STpypiicS Zpybiic t0 word w for which
either (i) Zpypjic occursbefore X in Wisconsinorder
(i.e. Z occursbefore X in memory order) or (i) Z

occursbhefore X in programorder (sincethereare no
STsZ in catgory (ii) thatarenot alreadyin cateyory
(). Hence Y =W

* Supposethat W is @ STyjyate Call it Wpiyate Since
Wrivate Satisfiesthe constraintsof 57, Wyyjyate Mustbe
themostrecentST,ate 8t processop beforeX in Wis-
consin order (andpso W must be the mostrecentST
before X in programorder by 1°), and Wpjic must
occurafter X in Wisconsinorder Sincethetimestamps
of STpupiics agreewith the order of the corresponding
STsin programorder (by 3°), Wyypjic is the greatest
SToublic IN Wisconsinorder taken over all STypicS
Zyyplic to word w for which either (i) Zpp)ic Occurs
beforeX in Wisconsinorderor (ii) Z occursbeforeX in
program orderTherefore, Y = W

Appendix B: Proof of relationship between
Wisconsin Alpha and Alpha

Claim 2: An implementatiorthatsatisfiesVisconsinAlpha
model also satisfies Alpha.

Proof: Supposehat animplementatiorsatisfieswWisconsin
Alphai.e., for eachexecutionof thatimplementationthere
exists a total orderingof LDs, STsand MBs that satisfies
the constraintsof Wisconsin Alpha. We showv that the
implementationalso satisfiesAlpha by shaving that each
such execution also satisfiesthe constraintsof Alpha.
Givenanordering<,, of LDs, STsandMBs in anexecution
that satisfiesWisconsin Alpha, let us define the access
orderfor word w to bethe orderingof LDs andSTson that
word in <, and the issueorder at a processorto be the
orderingof LDs, STsand MBs issuedat that processoin
<, The“before” orderingis the transitive closureof issue
order and accessorder We now shawv that the two con-
straintsof Alpha are met by thesedefinitions of access
order and “before”™

* Let A andB beary 2 memoryoperationsn the execu-
tion. Without loss of generality supposehat operation
A is beforeoperationB. Sincethe beforeorderis the
transitve closureof the accessand issueorders,and
since<,, respectdoth accessaandissueorders,thenA
<w B. Hence,it cannotbe that B is also before A,
becausentherwiseB <, A, which is impossiblesince
Wisconsin Alpha order is a total order

¢ A LD returnsthe value of the mostrecentstoreto the
samelocationin the <, orderingwhich, from our defi-
nition of accessorder above, is also the most recent
store to the same location in access order

