
This work is supportedin part by the NationalScienceFoundationwith
grantsMIP-9225097,MIPS-9625558,CCR9257241,andCDA-9623632,
a WisconsinRomnesFellowship, anddonationsfrom SunMicrosystems
and Intel Corporation.

To appearin theproceedingsof the5th InternationalSymposiumonHigh-PerformanceComputerArchitecture (HPCA-5),Orlando,Flor-
ida, January 9-12, 1999.

1

Using Lamport Clocks to Reason About Relaxed Memory Models

Anne E. Condon, Mark D. Hill, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department

University of Wisconsin - Madison
{condon,markhill,plakal,sorin}@cs.wisc.edu

Abstract
Cachecoherenceprotocolsof currentshared-memorymul-
tiprocessors are difficult to verify. Our previouswork pro-
posedanextensionof Lamport’s logical clocksfor showing
that multiprocessors can implementsequentialconsistency
(SC)with anSGIOrigin 2000-likedirectoryprotocolanda
Sun Gigaplane-like split-transactionbus protocol. Many
commercial multiprocessors, however, implement more
relaxedmodels,such asSPARCTotal Store Order (TSO),a
variant of processor consistency, and Compaq (DEC)
Alpha, a variant of weak consistency.

This paperappliesLamportclocks to both a TSOand an
Alphaimplementation.Both implementationsare basedon
thesameSunGigaplane-like split-transactionbusprotocol
we previouslyused,but the TSOimplementationplacesa
first-in-first-out write buffer betweena processorand its
cache, while the Alpha implementationusesa coalescing
write buffer. Both write buffers satisfy read requestsfor
pendingwrites (i.e., do bypassing)without requiring the
write to be immediatelywritten to cache. Analysisshows
how to apply Lamport clocks to verify TSO and Alpha
specifications at the architectural level.

Keywords: memoryconsistency models,cachecoherence
protocols, protocol verification

1 Intr oduction

Shared-memorymultiprocessorsystemsare increasingly
employed both as servers (for computation,databases,
files,andtheweb)andasclients.To improve performance,
multiprocessorsystemdesignersusea variety of complex
andinteractingoptimizations.Theseoptimizationsinclude
cachecoherencevia snoopingor directoryprotocols,out-
of-order processors,and coalescingwrite buffers. These
optimizationsaddconsiderablecomplexity at thearchitec-
tural level andevenmorecomplexity at theimplementation
level. Directoryprotocols,for example,requirethesystem
to transition from many sharedcopiesof a block to one
exclusiveone.Unfortunately, this transitionmustbeimple-
mentedwith many non-atomiclower-level transitionsthat
exposeadditionalraceconditions,buffering requirements,
and forward-progressconcerns.Due to this complexity,

industrialproductgroupsspendmoretime verifying their
system than actually designing and optimizing it.

To verify a system, engineersshould unambiguously
definewhat “correct” means.For a shared-memorysys-
tem,“correct” is definedby a memoryconsistency model.
A memoryconsistencymodeldefinesfor programmersthe
allowable behavior of hardware. A commonly-assumed
memory consistency model requires a shared-memory
multiprocessor to appear to software as a multipro-
grammeduniprocessor. This model was formalized by
Lamportassequentialconsistency(SC)[12]. Assumethat
eachprocessorexecutesinstructionsand memoryopera-
tions in a dynamicexecutionordercalledprogram order.
An executionis SCif thereexistsa total orderof memory
operations(readsand writes) in which (a) the program
ordersof all processorsarerespectedand(b) areadreturns
the value of the last write (to the sameaddress)in this
order. A system is SC if it only permits SC executions.

Our previous work [18,24] proved that abstractionsof a
SGI Origin 2000-like [5,13] directoryprotocolanda Sun
Gigaplane-like [22] split-transactionbus protocol both
implementSC.Insteadof askingfor theoff-line existence
of a total memoryorder, we pretendto augmentthehard-
warewith logical Lamportclocks to constructthe needed
orderdynamicallyasit executesmemoryoperations(satis-
fying requirement(a)).Wethenprovethatevery load(read
instruction) returns the value of the last store (write
instruction)in this constructedorder. Thus(b) is satisfied.
As with any formal method,our Lamportclocksapproach
cannotreplaceconventionaltestingandvalidation.Never-
theless,it is our premisethatLamportclockscanbevalu-
able when reasoning about the correctness of a
specificationof memoryorderingsemanticsat the archi-
tecturallevel, therebyaidingin theprotocoldesignprocess
and reducing time spent on validation later.

While work on SC is valuable,many commercialproces-
sorsimplementmorerelaxedmemoryconsistency models
in an effort to improve performance.An example is the
insertionof FIFO or coalescingwrite buffers betweenthe
processorand the cache.Processorconsistentmodels,
suchasSPARC TotalStoreOrder(TSO)[25], relaxtheSC
requirement(a): now, in the total ordering of memory
operations,a store(ST) canappearafter a load (LD) that
follows it in programorder. More relaxedmodels,suchas
Compaq(DEC) Alpha [23], allow a processorgreatfree-

2

domto re-ordermemoryoperationsbetween“memorybar-
riers.”

Thispapershows thatLamportclockscanbeusedto verify
shared-memoryimplementationsthatsupporttheTSOand
Alpharelaxedmemorymodels.Towardsthisend,thepaper
makes two primary contributions:

1. We providecleannew memorymodeldefinitions,namely
WisconsinTSOandWisconsinAlpha,that aid in reasoning
aboutcorrectnessof protocols.Weshow thatprotocolssat-
isfying the WisconsinTSO andWisconsinAlpha memory
modelsalsosatisfyTSO[25] andAlpha [23], respectively.
We considerthe Wisconsinmemory models to be more
intuitive thantheoriginal definitionsfor the following rea-
sons.Unlike theTSOdefinition,LDs alwaysgetthevalues
of STsthatoccurearlierin thetotalorder. Unlike theAlpha
definition, we use a total order.

2. We extendour Lamport timestampingschemeto proto-
cols for both theTSOandAlphamemorymodels.Thekey
is determiningat what point in the protocol an event is
timestamped,andit is in this determinationthat theproofs
of this paperdiffer from our previous work on SC. For
example, in the Alpha protocol, a LD that gets its value
from apreviousST thatis still in thewrite buffer shouldbe
timestampedafter theST. But sincetheSThasnotyetbeen
written to the cache,the ST is not yet timestampedwhen
the LD is issued.Our timestampingschemehandlesthis
simply by waiting to timestampthe LD until the ST has
actually been written to the cache.

While thedetailsof thetimestampingschemearenecessar-
ily differentfrom previouswork, astrengthof ourapproach
is that, with the timestampingschemein hand,the proofs
of correctnessof the protocolsarealmostidentical to the
proofsin our previouswork on SC.Our protocolsfor TSO
and Alpha are basedon the sameGigaplane-like split-
transactionbus protocol that we consideredin previous
work [24]. A similar result could easily be proved for a
directory-based implementation, as in Plakal et al. [18].

In the restof the paper, we assumea block to be a fixed-
size,contiguous,alignedsectionof memory(usuallyequal
to the cacheline size). Also, LDs and STs operateon
words, whereweassumethataword is containedin ablock
and is alignedat a word boundary. Our schemecould be
extendedto handleLDs and STs on sub-unitsof a word
(half-wordsor bytes)which neednot bealigned.However,
this makes the specificationof the memory modelsvery
tedious without any gain in insight or clarity.

The rest of this paperis organizedas follows. Section2
summarizesourpreviouswork thatusedLamportclocksto
reasonabout the correctnessof sharedmemory systems,
and discussesrelated work by others. We presentour
resultsfor TSOandAlpha in Sections3 and4, respectively.
Section5 summarizesour contributions and discusses
future work.

2 Related Work1

2.1 Our Previous Work

Our previous work [18,24] proved that implementations
usinga SGI Origin 2000-like [5,13] directoryprotocoland
a Sun Gigaplane-like [22] split-transactionbus protocol
both implementSC. Both implementationsusethree-state
invalidation-based coherence protocols.

Our reasoningmethodassociateslogical timestampswith
loads,stores,and coherenceevents.We call our method
Lamport Clocks, becauseour timestamping modestly
extendsthe logical timestampsLamportdevelopedfor dis-
tributed systems[11]. Lamport associateda counterwith
eachhost.The counteris incrementedon local eventsand
its valueis usedto timestampoutgoingmessages.On mes-
sagereceipt,a hostsetsits counterto onegreaterthanthe
maximum of its former time and the timestampof the
incoming message.Timestampties are broken with host
ID. In this manner, Lamport createsa total order using
these logical timestamps where causality flows with
increasing logical time.

Our timestamping scheme extends Lamport’s 2-tuple
timestampsto three-tuples:<global . local . node-id>,
whereglobal takesprecedenceover local, and local takes
precedenceover node-id (e.g.,3.10.11< 4.2.1).Coherence
messages,or transactions,carry global timestamps.In
addition, global timestampsorder LD and ST operations
relative to transactions.Local timestampsare assignedto
LD andSToperationsin orderto preserveprogramorderin
Lamporttime amongoperationsthathave thesameglobal
timestamp.They enablean unboundednumberof LD/ST
operationsbetweentransactions.Node-ID, the third com-
ponentof a Lamporttimestamp,is usedasanarbitrarytie-
breaker betweentwo operationswith the sameglobal and
local timestamps,thusensuringthat all LD andST opera-
tions are totally ordered.

Our prior proofsof SC usetwo timestampingclaims that
show thatLDs andSTsareorderedrelative to transactions
“as intendedby the designer.” Oneof theseclaims is that
for every LD and ST on a given block, properaccessis
ensuredby the most recent transactionon that block in
Lamport time. (In contrast,in real time, a processormay
performa LD on a block after it hasanswereda requestto
relinquishthe block.) Roughly, the other claim is that, in
logical time, transactionsarehandledby processorsin the
orderin whichthey arereceived.(In contrast,in realtime,a
processormayreceive transaction-relatedmessages“out of
order”.)

Sequentialconsistency is establishedusingthe conceptof
coherenceepochs. An epochis an interval of logical time
duringwhichanodehasread-onlyor read-writeaccessto a
block of data.Thelife of a block in logical time consistsof

1. This section borrows from material in previous work [18,24].

3

a sequenceof suchepochs.Our proof shows that, in Lam-
port time,operationslie within appropriateepochs.Thatis,
each LD lies within either a read-only or a read-write
epoch,andeachST lies within a read-writeepoch.In addi-
tion, the“correct” valueof ablock is passedfrom onenode
to anotherbetweenepochs.The proofs of theseresults
build in a modularfashionuponthe timestampingclaims,
therebylocalizingargumentsbasedonspecificationdetails.
The differencesbetweenthe proofs for the bus anddirec-
tory protocolsdiffer only in thedetailsof thetimestamping
claims.

2.2 Other Related Work

Our Lamportclock methodcomplementsrelatedwork on
proving protocolscorrect.First, Lamportclocksaremore
precise and formal than ad hoc reasoning or simulation.

Second,we find Lamport clocks easierto use and more
applicable to larger systems, but less rigorous than
approachesthat use state-spacesearch of finite-state
machinesor theorem-proving techniques.Thesearerigor-
ous methodsthat can capturesubtle errors,but they are
often limited to small systemsbecauseof the statespace
explosionfor large,complicatedsystems.For example,the
SGI Origin 2000 coherenceprotocol is verified for a 4-
clustersystemwith onecacheblock [7], the memorysub-
systemof the Sun S3.mp cache-coherentmultiprocessor
systemis verifiedfor onecacheblock [19], andtheSPARC
Relaxed Memory Order (RMO) memory consistency
model is verified for small test programs[16]. Park and
Dill [17] proposeusing transactionaggregation to scale
beyond finite-statemethods.Our approachcan precisely
verify theoperationof a protocolin a systemconsistingof
any number of nodes and memory blocks.

Anotherformal approachdevisedby ShenandArvind uses
term rewriting to specify and prove the correctnessof
coherenceprotocols[21]. Their techniqueinvolves show-
ing thata systemwith cachesanda systemwithout caches
can simulate each other. This approachlends itself to
highly succinctformalproofs.Wefind Lamportclockseas-
ier to grasp, while not lacking expressive power. Term
rewriting relies on an ordering of rewrite rules (eachof
which correspondsto an event) and,assuch,may benefit
from the Lamport clock technique which can order events.

Third, we find Lamportclockseasierto useandof similar
formal power to many of theothermethodsusedto define
andverify relaxedmemorymodels[1, 2, 3, 6, 8, 9, 20]. Of
particularnotearetheapproachesof Collier [3] andGhara-
chorlooet al. [8] thatmodela write asp sub-operationsto
eachof p processors.We find their approachesmoregen-
eral but harderto use than our approachthat splits TSO
stores (writes) into two componentsand leaves Alpha
stores atomic.

Finally, Lamport Clocks have also been used in other
research,includingapaperby NeigerandToueg [15]. They
describea classof problemsfor which, if a clock-based

algorithm is proven correct assumingreal-time synchro-
nizedclocks,thenit mustalsobe correcteven if run with
logical clocks.Onedifferencebetweenthis work andours
is that the protocols we consider are not clock-based.
Rather, we attach(logical) clocks to clock-freeprotocols,
in order to prove correctness of the protocols

3 Total Store Order (TSO)

SPARC TotalStoreOrder(TSO)[25] is avariantof proces-
sor consistency[9,10] that hasbeenimplementedon Sun
multiprocessorsfor many years.TSO relaxes SC in that
LDs canbe orderedaheadof STswhich precedethemin
programorder(solongasthereareno interveningmemory
barriersandthe two operationsareto different locations).
We studyTSObecauseit is formally andpublicly defined,
but we expect that our resultscanbe mappedto the Intel
Architecture-32(IA-32) memory model (Section 7.2 of
[4]), the other dominant processor consistency model.

We now defineTSO,WisconsinTSO,a TSOimplementa-
tion, a Lamporttimestampingschemefor that implementa-
tion, and its corresponding proof.

3.1 Defining TSO

TSOappliesto a systemwith multiple processorsissuinga
varietyof instructions.For our purposes,we areconcerned
with word loads(LDs), wordstores(STs)andmemorybar-
riers (MBs) issuedto regular memory(i.e., excluding I/O
space).Weconsideronly memorybarriersat leastasstrong
as type “MB #StoreLoad,” i.e., barrierswhich guarantee
that all prior STs are completedbefore any future LD,
while weakermemorybarriersareregardedasno-ops(e.g.,
“MB #LoadLoad”).AppendixD of the SPARC Architec-
ture Manual Version 9 [25] defines TSO by defining
Relaxed Memory Order (RMO) and then adding con-
straints to form TSO. We give the combined result.

Let <p denoteprogramorder. Programordertotally orders
all LDs, STs,andMBs at thesameprocessorandit is thus
a partial order over all processors.

Let <m be a total ordering of all LD and ST operations.

Then<m is saidto be in total store order (TSO) if the fol-
lowing constraintshold.Thefirst two constraintsarecalled
“memory orderconstraints.” Let X andY be a pair of LD
or ST operations.

1) If X <p Y andeitherX is a LD or Y is a ST, thenX <m
Y.

2) If X <p MB <p Y then X <m Y.

The final constraint restricts possible values of LDs:

4

3) Let X be a LD of word w. Then the valueof X is the
value of the greatest ST, say Y, to wordw in memory
order, taken over all STs to word w that either occur
beforeX in memoryorderor occurbeforeX in program
order (but possibly after X in memory order).

Intuitively, constraints1 and2 saythatmemoryordermay
only violate processororder to delay a ST after a subse-
quentLD when there is no intervening MB. In all other
cases,memoryorder respectsprogramorder (i.e., LD <p
LD´, LD <p ST, andST <p ST´ arepreserved by memory
order).Constraint3 saysthat a LD shouldreturn the last
valuewritten to thesameword in memoryunlessthereis a
pendingST to the sameword (earlier in programorder)
thathasnot yet occurredin memoryorder. In this case,the
value from the pendingST shouldbe returned.So if one
looksat thememoryorder, it appears asif theLD getsits
value from a ST that “happens in the future.”

An executionof an implementationsatisfiesTSO if there
existsanorderingof theLDs andSTsin theexecutionthat
satisfiesTSO.An implementationsatisfiesTSO if all exe-
cutions of that implementation satisfy TSO.

3.2 Wisconsin TSO

We now define some propertiesof an ordering which
makesverificationeasier. TSO’s condition3 allows a load
to geta valuefrom a “future” store.WisconsinTSOelimi-
natesthis oddity by splitting eachstoreinto a STprivateand
a STpublic, both of which have the samevalue.EachLD
getsits value from the pastbut may return the valueof a
STprivate for which the correspondingSTpublic hasnot yet
occurred.The goal in this caseis to model write buffer
bypassingwherestoresenterthewrite buffer on a STprivate
and exit with a STpublic.

Let <w denoteanorderingof LDs, STprivates andSTpublics.
Wesaythat<w is in Wisconsintotal storeorder (Wisconsin
TSO) if the following conditions hold.

1’) The ordering(<w) of LDs and STprivates is consistent
with programorder. That is, if X andY areeithera LD
or a STprivate, then X <p Y if and only if X <w Y.

2’) For each ST, STprivate <w STpublic.

3’) If X and Y are STs and X <p Y then Xpublic <w Ypublic.

4’) If anMB occursbetweenST andLD in programorder
then STpublic <w LD.

5’) Let X beaLD of wordw atprocessorpi. Thenthevalue
of X is thevalueof themostrecentSTto w in <w thatis
either:
a) themostrecentSTprivate to word w at pi, if for some
ST <p X to word w, the correspondingSTpublic is after

X in <w , or

b) the most recent STpublic to wordw, otherwise.

An execution of an implementationsatisfiesWisconsin
TSO if thereexists an orderingof the LDs, STprivates and
STpublic s in theexecutionthatsatisfiesWisconsinTSO.An
implementationsatisfiesWisconsinTSO if all executions
of that implementation satisfy Wisconsin TSO.

Gil Neiger [14] hasdevelopedan alternative TSO defini-
tion asa total orderof LDs andSTsin which a LD always
getthevalueof themostrecentST. This is doneby moving
eachLD thatreturnsa valuefrom a STprivateto beafterthe
corresponding STpublic.

Claim 1: An implementationthatsatisfiesWisconsinTSO
also satisfies TSO.

A proof of this claim can be found in Appendix A.1

3.3 TSO Implementation With FIFO Write
Buffers

A commonTSO implementationapproachseparateseach
processorfrom its cachewith a FIFO write buffer. Caches
arekept coherentwith a write-invalidatecoherenceproto-
col sufficient for implementingSC. A MB can be imple-
mentedby having a processorflush its write buffer before
proceedingpast a MB, without the cachesor coherence
protocolever seeingMBs. We usethis approachherein a
manner similar to the Sun Ultra Enterprise6000 with
UltraSPARC II processors.

We begin with a brief summaryof the SC implementation
that Sorin et al. [24] describefor a Gigaplane-like split-
transactionbus (the overall approachwould be similar for
the directory-basedimplementationdescribedby Plakalet
al. [18]). MemoryblocksmaybecachedasInvalid, Shared,
or Exclusive. The A-state(addressstate)recordshow the
block is cachedand is usedfor respondingto subsequent
bus transactions.The protocol seeks to maintain the
expectedinvariants(e.g., a block is Exclusivein at most
onecache)andprovidesthe usualcoherencetransactions:
Get-Shared (GETS), Get-Exclusive (GETX), Upgrade
(UPG,for upgradingtheblock from Sharedto Exclusive),
and Writeback (WB). As with the Gigaplane,coherence
transactionsimmediatelychangethe A-state,regardlessof
whenthedataarrives.If a processorissuesa GETX trans-
actionandthenseesaGETStransactionfor thesameblock
by anotherprocessor, theprocessor’s A-statefor theblock
will go from Invalid to Exclusive to Shared,regardlessof
whenit obtainsthedata.In anSCimplementation,thepro-
cessorcheckstheA-stateof a block beforeexecutingLDs
andSTson thatblock.Onamiss,theprocessorensuresthe

1. Theconverseof thisclaimcanalsobeproved,but it is notnec-
essary for our proof of correctness, and we omit it here due to
space constraints.

5

appropriateA-statefor that block by sendinga coherence
transaction on the bus.

To convert thisSCimplementationinto aTSOimplementa-
tion, we insertaFIFOwrite buffer betweenaprocessorand
its cache(asshown in Figure1), andwe adda MB instruc-
tion. Therestof theimplementation(externalto theproces-
sorandwrite-buffer) obeys thecoherenceprotocoloutlined
above. The processorissuesLDs, STs, and MBs in pro-
gramorder. Below, we specifyexactly whathappenswhen
the processorissuesoneof theseinstructions.The proces-
sor completesissuingan instructionbeforeproceedingto
issue the next one in program order.

Stores: A ST issuesinto a FIFO write buffer (considered
internalto theprocessor)in aneventdenotedasa STprivate.
Entriesin thewrite buffer arethesizeof processorwords.
Eventually, theseentriesareflushedfrom the write-buffer
to the cachein the sameorder that they enteredthe write
buffer, andthisactivity is independentof theissuingof STs
by the processor. The event wherebyan entry is flushed
from the write buffer to the cache,oncethe processorhas
establishedthatthecorrespondingblock’sA-stateis Exclu-
sive, is called a STpublic. By establish, we meanthat the
processorchecksthe A-stateof the block and if it is not
Exclusive, then the coherenceprotocol is invoked to
changetheA-stateto Exclusive.NotethattheExclusiveA-
state is a prerequisite for a STpublic but not for a STprivate.

Loads: To issueaLD, theprocessorfirst checksin its write
buffer for a ST to thesameword.We referto this actionas
a CHECK(LD). If the LD hits in the write buffer, then the
LD getsthevalueof themostrecentsuchSTprivate in pro-
gram order. Note that a LD cannotovertake a ST to the
write buffer, becausethe protocoldoesnot start to issuea
LD until issuingof all previousSTs(in programorder)has
beencompleted.If theLD missesin thewrite buffer, thenit
is treatedjust like a LD in theSCprotocolandhasto go to
thecache.Thatis, theprocessorestablishesthattheA-state
of the block in the cacheis Sharedor Exclusive; if neces-
sary, it invokesthecoherenceprotocol(thedetailsof which
areasdescribedby Sorinet al. [24]). In this case,the issu-

ing of the LD completeswhen the processorestablishes
that the A-stateof the block is Sharedor Exclusive. We
assumethatLDs do not overlapwith STpublics to thesame
address,in thesensethat theinterval duringwhich a LD is
issuedcannotoverlap with the STpublic flushing interval,
startingwhen the processorestablishesthat the A-stateis
Exclusive and continuing until the flush is completed.

MBs: Upon issuing a MB, our implementationsimply
flushesall entriesin the write buffer to the cachebefore
issuingany moreoperations.A moreaggressive implemen-
tation could perhapsmark all the entriesin someway and
then ensurethat subsequentcoherencetransactionsare
allowedto happenonly whenall markedentrieshave been
flushed from the write-buffer.

3.4 Timestamping for TSO Implementation

We now presenta schemethat assignslogical timestamps
to theeventsof interestthatoccurduringany executionof a
programon our implementationof TSO.We definean M-
operation (or simply anM-op) to bea LD or STprivate. M-
opsareorderedby programorderatasingleprocessor. Our
schemeassignstimestampsto M-ops,STpublics andcoher-
ence protocol transactions (GETX, GETS, UPG, WB).

We define a notion of binding for M-ops and STpublics
which is useful for presentingthe timestampingscheme.
Intuitively, thebinding time of anoperationis thepoint in
realtime whenthatoperationhasbeen“committed” by the
processor. STprivates are bound when the corresponding
entriesenter the write buffer. STpublics are bound at the
time that theExclusive A-stateof thetargetblock is estab-
lishedby theprocessor. LDs thathit in thewrite buffer are
bound at the time that the correspondingCHECK(LD)
occurs.LDs that miss in the write buffer areboundat the
time that the A-statefor the correspondingblock is estab-
lishedby theprocessor. BothSTpublicsandLDs thatmissin
thewrite buffer aresaidto beboundto thecoherencetrans-
action that obtained the block in the appropriate A-state.

Our timestampsare 3-tuples:<global-time.local-time.pro-
cessorID>. We give rulesbelow for assigningglobal and
local times to the variouseventsthat we timestamp.The
processorID actsasa tie-breaker. Conceptually, eachpro-
cessorhasa globalanda local clock which getupdatedin
real time for transactionsaswell asM-ops andSTpublics,
respectively.

Transactionsaretotally orderedby thebusin real time and
we definethe global time of a transactionto be its rank in
this ordering,with the first transactionbeing assigneda
global time of 1. At the momentthat the A-stateof a pro-
cessorchangesdueto a transaction,theglobalclockof that
processoris incrementedto equal the global time of that
transaction,while thelocal clock (andthelocal component
of the transaction’s timestamp) are set to 0.

EachM-op andSTpublic is assigneda timestampat thetime
that it is bound. If an M-op and STpublic happento be
boundat the samemomentin real time, we assumethat

WRITE
BUFFER

PROC

CACHE

FIFO
WRITE
BUFFER

PROC

CACHE

FIFO
WRITE
BUFFER

PROC

CACHE

FIFO

Coherence Protocol
Bus / Network

Memory

stores stores stores
loads loadsloads

FIGURE 1. Our TSO Implementation

6

they areassignedtimestampsin somearbitrary(but deter-
ministic) ordering (e.g., M-ops are always timestamped
first). Note that a LD that missesin the write buffer anda
STpublic canneverbeboundat thesametimebecauseof the
real-time ordering propertiesof the protocol. The local
clock is incrementedby 1 to equalthe local componentof
the timestampassigned.Theglobal timestampis thevalue
of theglobalclock at themomentthattheM-op or STpublic
is bound.

3.5 Proof of Correctness of TSO Implementation

We show thatfor any executionof our implementation,the
timestampsof STprivates, STpublics, and LDs producea
Lamportordering<w thatsatisfiesproperties1´ to 5´ of the
WisconsinTSOdefinition.Thatproperties1´ to 4´ aresat-
isfied follows from thereal-timeorderingpropertiesof the
protocol,thetimestampingscheme,andtheorderin which
eventsarebound.Property5´ is provedasfollows.Wecon-
sider two possible situations for LD X:

1) Supposethat for someST <p X, both to thesameword,
X <w STpublic. Let Zprivate be the most recentSTprivate to
word w at pi (prior to X in <w). It must be that Zpublic
occursafter X in <w, by property 3´ of Section3.2. We
needto show that X’s value equalsthat of Zprivate. Since
instructionsareissuedin programorderandissueintervals
arenon-overlapping,Zprivate is in pi’s write buffer beforepi
performsCHECK(X). We claim that Zprivate is still present
in thewrite buffer whenpi performsCHECK(X); otherwise,
at themomentthecheckis done,Zpublic would alreadybe
bound,causingX to bebound(to a transaction)in realtime
AFTER Zpublic is bound.Sincetimestampsareconsistent
with bindingorder, this would contradictthefactthatX <w
Zpublic. Hence, X must get the value of Zprivate.

2) Supposethat for all ST <p X, both to the sameword,
STpublic <w X. It cannotbe thecasethatX takesthevalue
of any STprivate; if X wereto take the valueof a STprivate,
sayZprivate, thenX wouldbeboundBEFOREZpublic, since
the interval in which X is issueddoesnot overlapwith the
interval in which Zpublic occurs. This contradicts our
assumptionin theprevioussentencebecausebindingorder
is consistentwith <w. HenceX gets the value of some
STpublic andis boundto sometransaction.Let Zpublic bethe
mostrecentSTpublic beforeX in <w (notnecessarilyatpro-
cessorpi). We needto show that X getsthe valueZpublic.
Theproofof this is identicalto theproofsof themaintheo-
remsin ourSCresearch[18,24],exceptthatSTsneedto be
replacedby STpublics and the definitions of binding and
timestampingthereneedto be replacedby the definitions
of binding and timestamping in Section3.4.

Henceall executionsof theimplementationsatisfyWiscon-
sin TSO and so the implementationsatisfiesWisconsin
TSO. By Claim 1, the implementation also satisfies TSO.

4 Alpha

TheCompaq(DEC)Alphamemorymodel[23] is aweakly
consistentmodelthatrelaxestheorderingrequirementsata
givenprocessorbetweenany accessesto differentmemory
locationsunlessorderingis explicitly statedwith theuseof
aMemoryBarrier(MB). Wefirst definetheAlphamemory
model, introducea collection of constraintson orderings
which we refer to asWisconsinAlpha, andprove the rela-
tionship betweenAlpha and Wisconsin Alpha. We then
describeanAlpha implementation,presenta timestamping
schemefor theimplementation,andprove thattheordering
producedby the timestampingschemesatisfiesWisconsin
Alpha, thus showing that the implementationcorrectly
implements the Alpha memory model.

4.1 Defining Alpha

As with TSO,we areconcernedmainly with a systemcon-
taining multiple processorsissuingword LDs, word STs
andMBs (orderedby programorderat a singleprocessor)
to regular memory (not I/O space).The Alpha memory
model is formally definedthrough the useof two orders
that must be observed with respectto memory accesses.
Thefirst order, programissueorder, is apartialorderonthe
memoryoperations(LDs, STs)issuedby agivenprocessor.
Issueorderrelaxesprogramorderin that thereis no order
betweenaccessesto differentlocationswithout intervening
MBs. Issueorder enforcesorder betweenaccessesto the
samelocation,orderbetweenany accessandan MB, and
order betweenMBs. The secondorder, accessorder, is a
total order of operationson a single memory location
(regardless of the processors that issued them).

A third order, the“before” order, is definedto bethetransi-
tive closureover all of the issueordersandaccessorders.
An executionof an implementationobeys theAlpha mem-
ory model if:

• for every memorylocation,thereexistsanaccessorder
for which thereareno two memoryoperationsA andB
(not necessarilyto the sameaddress)such that A is
before B, and B is also before A.

• a load returnsthe valueof the mostrecentstoreto the
same location in access order.

An implementationsatisfiesAlpha if all executionsof that
implementation satisfy Alpha.

4.2 Wisconsin Alpha

Although theAlpha memorymodelseemsto have little in
commonwith the stricter sequentialconsistency, we will
show that the differencesbetweenthe two modelscanbe
constrainedto behavior internal to the processor(i.e.,
everythingnot includingthecacheandtherestof themem-
ory subsystem).An executionof an implementationsatis-
fies the WisconsinAlpha memorymodel if thereexists a
total ordering of all loads, stores, and MBs, such that:

7

• all of the issue orders are respected.

• a load returnsthe valueof the mostrecentstoreto the
same location in this total order.

An implementationsatisfiesWisconsinAlpha if all execu-
tions of that implementation satisfy Wisconsin Alpha.

Claim 2: An implementation that satisfies Wisconsin
Alpha also satisfies Alpha.

A proof of this claim can be found in Appendix B.1

4.3 An Alpha Implementation Using Coalescing
Write Buffers

Each processorin an Alpha implementationinternally
observesissueorder. It canreorderloadsandstoresto dif-
ferentmemorylocationsaslong asthereis no intervening
MB. The multiprocessorimplementationincludes some
numberof theseprocessorsconnectedtogethereitherby a
sharedbus or a network. The cachecoherenceprotocol
usedin eithercaseis the sameasthe sharedbus protocol
[24] or thedirectoryprotocol[18] thatwedescribedin pre-
viouswork. Our implementationis looselymodeledaftera
multiprocessorusing the Compaq (DEC) Alpha 21264
microprocessor.

Each processorissuesLDs and STs in program order.
Storesareissuedto a coalescingwrite buffer which is con-
sideredto be internalto the processor. Entriesin the write
buffer arethesizeof cachelines.Storesto thesamecache
line arecoalescedin thesameentryandif two storeswrite
to the sameword, the correspondingentry will hold the
valuewritten by thestorethatwasissuedlater. Entriesare
eventually flushed from the write buffer to the cache,
althoughnot necessarilyin the order in which they were
issued to the write buffer. Exclusive permissionis not

requiredto issueastoreto thewrite buffer, but it is required
to flush the store from the write buffer to the cache.

A LD that hits in the write buffer returnsthe valuethat is
foundthere,andthis actiondoesnot requirethat line to be
flushedfrom thebuffer to thecache.TheAlphamodel,like
most weak memory models, is tailored to include non-
blockingcaches.This optimizationallows theprocessorto
overlap readlatency with other useful work, so LDs that
missin thewrite buffer areissuedto a loadqueuewhichwe
considerto beinternalto theprocessor. TheseLDs arehan-
dled by our existing SC coherenceprotocol with the fol-
lowing difference: a reply from the memory system
satisfiesall LDs to thatlocationthatarein theloadqueueat
the momentthat the processorestablishesthat the A-state
is Sharedor Exclusive. If thedatawasalreadyin thecache
in the appropriateA-state, then the LD can be satisfied
immediately. We assumethat thereis no overlapbetween
the issuing of LDs and the flushing of STs to the same
address once Exclusive permission is obtained.

This implementationusesasimplemechanismfor handling
MBs, which is to stall the processoruntil the load queue
and the write buffer are empty. Figure2 illustrates our
Alpha implementation,where everything outside of the
dottedboxes is exactly the sameas in our earliersequen-
tially consistent implementation.

4.4 Timestamping for Alpha Implementation

Thetimestampingschemefor theAlpha implementationis
quite similar to that used for the TSO implementation.
Coherencetransactionsaffect theprocessors’globalclocks
in thesamefashion.EachLD andST is timestampedat the
momentthat it is bound,andit is in this determinationof
whena LD or ST is boundwhereAlpha differsfrom TSO.
A ST is consideredto beboundwhentheExclusiveA-state
of thetargetblock is establishedby theprocessor. Sincean
entire cacheline is written at once,all of the storesin a
buffer entry (includingcoalescedstoresto the sameword)
areboundat thesametime,but they aretimestampedsoas
to preserve issueorder. A LD thathits in thewrite buffer is
bound exactly when that ST was bound,but it is times-
tampedafter that ST to preserve issueorder. If the LD
missesin the write buffer, it is bound when the block
becomespresentin theappropriateA-state.At themoment
thateachLD or ST is bound,thelocalclock is incremented
by 1 andthelocal componentof thetimestampis setto the
updatedvalue. The global timestampis the value of the
global clock at the moment that the event is timestamped.

4.5 Proof of Corr ectnessof Alpha Implementation

We show thateachexecutionof theAlpha implementation
satisfiesWisconsinAlpha. In previous work [18,24], we
provedthatansplit-transactionbusprotocolandadirectory
protocol obeyed sequentialconsistency. Parts of these
proofsrely on the processorsbinding memoryaccessesin
programorder. To prove thatour targetAlpha implementa-

1. Theconverseof thisclaimcanalsobeproved,but it is notnec-
essary for our proof of correctness, and we omit it here due to
space constraints.

Load
Queue

Load
Queue

Load
Queue

Coalescing
Write
Buffer

Coalescing
Write
Buffer

Coalescing
Write
Buffer

Coherence Protocol

Bus / Network

Memory

storesloads stores

PROC PROC PROC

CACHE CACHE CACHE

loads loads
stores

FIGURE 2. Our Alpha Implementation

8

tion obeys the WisconsinAlpha memorymodel, we can
useeitherproof (dependingon whetherour interconnectis
a bus or a network) as long as we considerthat binding
orderis now apartialorderratherthana totalorder. Specif-
ically, we needto modify theproofsof claimsmadeabout
the binding of memory operationsto coherencetransac-
tionssothatreferencesto theearliestmemoryoperationare
replacedwith referencesto any of the earliest memory
operations,since there could be more than one that is
boundat thesametime.Henceall executionsof theimple-
mentationsatisfyWisconsinAlpha andsotheimplementa-
tion satisfies Wisconsin Alpha. By Claim 2, the
implementation also satisfies Alpha.

5 Conclusions and Future Work

High performanceshared-memorymultiprocessorsoften
incorporaterelaxed memory consistency models. These
implementationsmay use many hardware optimizations,
suchaswrite buffersandout-of-orderissue,andit is diffi-
cult to verify that a complex implementationsatisfiesa
given relaxed consistency model. We have extendedour
Lamportclock verificationtechniqueto handletwo relaxed
consistency models:processorconsistency andweakcon-
sistency. Reasoningwith Lamportclocks,we have shown
that two sampleimplementationssatisfy a processorcon-
sistentmodel (Total StoreOrder)anda weakly consistent
model (Alpha), respectively.

Futurework with Lamportclockswill extendthemethodto
reasonaboutconsistentI/O andthe detectionof deadlock
andlivelock.We areinterestedin automatingthe verifica-
tion process.

6 Acknowledgments

This work hasbenefitedfrom feedbackfrom many people,
includingRobertCypher, JamesGoodman,Erik Hagersten,
Daniel Lenoski,Paul Loewenstein,Gil Neiger, andDavid
Wood.

7 References

[1] SaritaV. Adve and Mark D. Hill. Weak Ordering—A
New Definition. In Proceedingsof the 17th Annual
International Symposiumon Computer Architecture,
pages 2–14, Seattle, Washington, May 28–31, 1990.

[2] Hagit Attiya andRoy Friedman.A CorrectnessCondition
for High-performanceMultiprocessors.In Proceedingsof
the 24th Annual ACM Symposiumon the Theory of
Computing, pages 679–690, May 1992.

[3] William W. Collier. Reasoning About Parallel
Architectures. Prentice-Hall, Inc., 1992.

[4] Intel Corporation. Pentium Pro Family Developer’s
Manual, Version3: OperatingSystemWriter’s Manual.
January 1996.

[5] David Culler, JaswinderPal Singh, and Anoop Gupta.
Draft of Parallel ComputerArchitecture: A Hardware/
Software Approach, chapter 8: Directory-basedCache
Coherence. Morgan Kaufmann, 1997.

[6] Michel Dubois, ChristophScheurich,and Faye Briggs.

Memory Access Buffering in Multiprocessors. In
Proceedingsof the13thAnnualInternationalSymposium
on Computer Architecture, pages 434–442, June 1986.

[7] AsgeirTh. EirikssonandKenL. McMillan. UsingFormal
Verification/Analysis Methods on the Critical Path in
SystemsDesign: A CaseStudy. In Proceedingsof the
ComputerAidedVerificationConference, Liege,Belgium,
1995. Appears as LNCS 939, Springer Verlag.

[8] Kourosh Gharachorloo,SaritaV. Adve, Anoop Gupta,
JohnL. Hennessy,andMark D. Hill. SpecifyingSystem
Requirements for Memory Consistency Models.
TechnicalReportCS-TR-1199,Universityof Wisconsin–
Madison, December 1993.

[9] KouroshGharachorloo,Daniel Lenoski, JamesLaudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory Consistencyand Event Ordering in Scalable
Shared-memoryMultiprocessors.In Proceedingsof the
17th Annual International Symposiumon Computer
Architecture, pages 15–26, May 1990.

[10] J.Goodman. Cache Consistency and Sequential
Consistency. Technical Report61, IEEE Scalable
Coherent Interface Working Group, 1989.

[11] LeslieLamport.Time,ClocksandtheOrderingof Events
in a Distributed System.Communicationsof the ACM,
21(7):558–565, July 1978.

[12] LeslieLamport.How to MakeaMultiprocessorComputer
that Correctly ExecutesMultiprocess Programs.IEEE
TransactionsonComputers, C-28(9):241–248,September
1979.

[13] JamesP. LaudonandDanielLenoski.TheSGI Origin: A
ccNUMA Highly ScalableServer.In Proceedingsof the
24thInternationalSymposiumon ComputerArchitecture,
Denver, CO, June 1997.

[14] Gil Neiger. Private communication, October 1998.
[15] Gil Neiger and Sam Toueg. Simulating Synchronized

ClocksandCommonKnowledgein DistributedSystems.
Journal of the Associationfor Computing Machinery,
40(2):334–367, April 1993.

[16] Seungjoon Park and DavidL. Dill. An Executable
Specification,Analyzer and Verifier for RMO (Relaxed
Memory Order).In Proceedingsof the 7th AnnualACM
Symposiumon Parallel Algorithms and Architectures,
pages34–41,SantaBarbara,California,July17–19,1995.

[17] SeungjoonParkandDavidL. Dill. Verificationof FLASH
CacheCoherenceProtocolby Aggregationof Distributed
Transactions.In Proceedingsof the 8th Annual ACM
Symposiumon Parallel Algorithms and Architectures,
pages 288–296, Padua, Italy, June 24–26, 1996.

[18] Manoj Plakal, DanielJ. Sorin, AnneE. Condon, and
Mark D. Hill. Lamport Clocks: Verifying a Directory
Cache-CoherenceProtocol. In Proceedingsof the 10th
Annual ACM Symposiumon Parallel Architecturesand
Algorithms, PuertoVallarta,Mexico,June28–July21998.

[19] Fong Pong, Michael Browne, AndreasNowatzyk, and
Michel Dubois.DesignVerification of theS3.mpCache-
CoherentShared-MemorySystem.IEEE Transactionson
Computers, 47(1):135–140, January 1998.

[20] Dennis Shashaand Marc Snir. Efficient and Correct
Executionof ParallelProgramsthatShareMemory.ACM
Transactionson ProgrammingLanguagesand Systems,
10(2):282–312, April 1988.

[21] Xiaowei Shen and Arvind. Specification of Memory
ModelsandDesignof ProvablyCorrectCacheCoherence
Protocols.Group Memo 398, MassachusettsInstitute of
Technology, June 1997.

[22] A. Singhal, D. Broniarczyk, F. Cerauskis, J.Price,
L. Yuan, C. Cheng, D. Doblar, S.Fosth, N. Agarwal,
K. Harvey,E. Hagersten,and B. Liencres.Gigaplane:A
High PerformanceBusfor LargeSMPs.Hot Interconnects
IV, pages 41–52, 1996.

[23] RichardL. Sites, editor. Alpha Architecture Reference

9

Manual. Digital Press, 1992.
[24] DanielJ.Sorin,Manoj Plakal,Mark D. Hill, andAnneE.

Condon. Lamport Clocks: ReasoningAbout Shared-
Memory Correctness.Technical Report CS-TR-1367,
University of Wisconsin-Madison, March 1998.

[25] DavidL. WeaverandTomGermond,editors.TheSPARC
Architecture Manual, Version 9. Prentice Hall, 1994.
SPARC International, Inc.

Appendix A: Proof of relationship between
Wisconsin TSO and TSO

Claim 1: An implementationthat satisfiesWisconsinTSO
also satisfies TSO.

Proof:Supposethatan implementationsatisfiesWisconsin
TSO,i.e., for everyexecutiononthatimplementation,there
existsa total ordering<w of theLDs, STprivates,andSTpub-
lics satisfying WisconsinTSO. We claim that the imple-
mentationsatisfiesTSO.To show this, we show that each
executionthat satisfiesWisconsinTSO alsosatisfiesTSO.
This is doneby defininganew ordering<m of justLDs and
STs by removing all STprivates and using the order of
STpublic to definethe orderof eachST. We claim that the
resultingordering<m satisfiesTSO. To seethis, consider
the requirements of TSO:

1. If X <p Y and X is a LD or Y is a ST, then X <m Y.

• First,supposethatX is aLD. Therearetwo possibilities
for Y: (a)Y is aLD. This follows from 1´. (b) Y is aST.
This follows from 1´ and2´, sinceby 1´, X <w Yprivate
and by 2´, Yprivate <w Ypublic.

• The other possibility is that X and Y are STs. In this
case,Xpublic <w Ypublic by property2’ andhenceX <m
Y.

2. If anMB occursbetweenX andY in programorder, then
X <m Y.

Again, we have separatecasesdependingwhat X and Y
are:

• X is aLD. ThenX <p Y andsoby ourargumentin 1, X
<m Y.

• X is a ST and Y is a ST. Follows from 3´.

• X is a ST and Y is a LD. Follows from 4´.

3. Let X be a LD of word, andY be the ST to word w in
memoryorder(<m) satisfyingtheconstraintsof property3.
Let W betheST (eithera STpublic or a STprivate) to word w
in Wisconsinorder(<w) satisfyingtheconstraintsof prop-
erty 5’. We need to show that Y = W.

• SupposethatW is aSTpublic, call it Wpublic. Then,from
the constraintsin 5´ on W, no ST beforeX in program
orderhasits STpublic afterX in Wisconsinorder. There-
fore, Wpublic is thegreatestSTpublic in Wisconsinorder
(and henceW is the greatestST in memory order),
taken over all STpublics Zpublic to word w for which
either (i) Zpublic occursbefore X in Wisconsinorder
(i.e. Z occurs before X in memory order) or (ii) Z

occursbeforeX in programorder (sincethereare no
STsZ in category (ii) that arenot alreadyin category
(i)). Hence Y = W.

• Supposethat W is a STprivate, call it Wprivate. Since
Wprivate satisfiesthe constraintsof 5´, Wprivate mustbe
themostrecentSTprivateatprocessorp beforeX in Wis-
consin order (and so W must be the most recentST
before X in programorder by 1´), and Wpublic must
occurafterX in Wisconsinorder. Sincethetimestamps
of STpublics agreewith the orderof the corresponding
STs in programorder (by 3´), Wpublic is the greatest
STpublic in Wisconsin order, taken over all STpublics
Zpublic to word w for which either (i) Zpublic occurs
beforeX in Wisconsinorderor (ii) Z occursbeforeX in
program order. Therefore, Y = W.

Appendix B: Proof of relationship between
Wisconsin Alpha and Alpha

Claim2: An implementationthatsatisfiesWisconsinAlpha
model also satisfies Alpha.

Proof:Supposethatan implementationsatisfiesWisconsin
Alpha i.e., for eachexecutionof thatimplementation,there
exists a total orderingof LDs, STsandMBs that satisfies
the constraintsof Wisconsin Alpha. We show that the
implementationalsosatisfiesAlpha by showing that each
such execution also satisfies the constraintsof Alpha.
Givenanordering<w of LDs, STsandMBs in anexecution
that satisfiesWisconsin Alpha, let us define the access
orderfor word w to betheorderingof LDs andSTson that
word in <w, and the issueorder at a processorto be the
orderingof LDs, STsandMBs issuedat that processorin
<w. The “before” orderingis the transitive closureof issue
order and accessorder. We now show that the two con-
straintsof Alpha are met by thesedefinitions of access
order and “before”:

• Let A andB beany 2 memoryoperationsin theexecu-
tion. Without lossof generality, supposethat operation
A is beforeoperationB. Sincethe beforeorder is the
transitive closureof the accessand issueorders,and
since<w respectsboth accessandissueorders,thenA
<w B. Hence, it cannot be that B is also before A,
becauseotherwiseB <w A, which is impossiblesince
Wisconsin Alpha order is a total order.

• A LD returnsthe valueof the most recentstoreto the
samelocationin the<w orderingwhich, from our defi-
nition of accessorder above, is also the most recent
store to the same location in access order.

