To appearProceedings of the 1994 International Coefare on Parallel RrcessingAug. 1994.

Cachier: A Tool for Automatically Inserting CICO Annotations

Trishul M. Chilimbi and James R. Larus
Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706
[chilimbi, larus]@cs.wisc.edu

Abstract 1 Introduction

Shared memory in a parallel computer provides pro-
gramme[rs] W'thhthe r\:_alrl:able abstrtact]ion ofa shatretc_:i addre rite the program under a message-passing or a shared-
space—through which any part of a computation Canmemory model. Message passing requires the programmer

access_any_datum. _AIthough unn‘_orm_ access simplifies Pr0%, distribute data structures among processors and manage
gramming, it also hides communication, which can lead to

dates to data with messages. Explicitly managing com-
inefficient programs. The check-in, check-out (CICO) per- ub I g XPICty ging

; del f h h ¢ shared Imunication complicates the already fidifilt process of
ormance modet for cache-conerent, shared-memory para\'/vriting correct parallel programs. Shared memary the
lel computers helps a programmer identify the

N . other hand, dérs a simpler programming model since
commumcau_o N underlying memory referen_ces and shared data can be transparently accessed by any processor
account for its cost. CICO consists of annotations that Zrypically, scalable shared memory systems use a message-
programmer can use to elucidate commu_mcat|on and assing hardware base augmented by special hardware or
model that attributes costs to these annotations. The anng; ¢ - that implements a cache-coherence protocol—for
tations can also serve as directives to a memory system t8xamp|e Stanford DASH [14], MIT Alewife [3], or i/
impro"e program pe_rformance. Inserting cIco annota_- consin D,i&SW [10][18]. A read’ to or write from’a shared
tions requires reasoning about the dynamic cache thaV'or[nemory location will cause interprocessor communication
ofa program, Wh'Ch.'S not a_lways easy _ in some cases, depending whether the referenced data was

This paper descnibeachiet a tool that automatically cached locally or is stored remotelyhis communication
inserts CICO annotations into shared-memory programs. Acan seriously impair a prograsmperformance. Although it

no‘f{?' featbutre_ of dt?'s tool is its use of bo:_h d);namm mfor—”is often easier to write shared-memory programs, it may be
mation, obtained from a program execution trace, as well, o ificylt to write a fast program.

as static information, obtained from program analysis. W = '\ i oficient programs, a shared-memory program-

measured several benchmarks annotated by Cachier bPﬁer must be aware of the cost of memory references. The

running them on a siml_JIation of the EBWA ca_che _coher- check-in, check-out (CICO) shared-memory programming
ence protocol [10], which supports these directives. The erformance model proposed by Laatsal. [13] is a first

rt_asu_lt_s show that programs annotated by Cachier perfor tep in this direction. CICO exposes the communication
S|gn|f|ce_1ntly hetter than both pragrams without CICO underlying memory references in cache-coherent shared-
annotations and programs that were annotated t_)y hand. memory computers. CICO consists of annotations that a

Keywords: Shared-memorpyparallel programming per- programmer can use to capture the communication under-
formance mpdels, parallel programming tools, C"’mhe'lying shared-memory references and a cost model that
coherence, directory pratocols. attributes a cost to this communication.

The CICO annotations demarcate the point at which a
program first reads or writes a shared location and the point
at which the program finishes with the location. The model
consists of five annotations—check-out exclusive, check-
out shared, check-in, prefetch-exclusive, and prefetch-
shared. Check-out annotations indicate the need for exclu-

g:;fn;’;oé'(c'é gggggggdamj bart %3’22‘550';7'\‘;‘3’?2 SeR935TTT9, NSF sive or shared access to the cache block containing a speci-
uate School Grant. Our Thinking Machines CM-5 was purchased throughfied address. Prefetch annotations indicate the likelihood of

NSF Institutional Infrastructure Grant No. CDA-9024618 with matching gn access to the cache block in the near future. The check-
funding from the Univof Wisconsin Graduate School.

A programmer writing a parallel program can either

in annotation relinquishes access to the specified cach€achier also informs a programmer of potential data races
block. The CICO cost model provides a measure of theand false sharing. These events are undesirable because
communication incurred by non-local data references agheir timing-dependent interprocessor communication can
well as the cache-coherence protocol overhead required toause errors and complicates understanding a pragram’
maintain consistencyrhe CICO annotations do noffexdt performance. A programmer can use the information from

a prograns semantics. Cachier to eliminate some of these events.

The CICO annotations can also be used as hardware We measured the usefulness of CICO annotations as
directivesto a memory system to improve program perfor- memory-system directives by running several benchmarks
mance by reducing both communication latency and mes-on a simulator of the DiEW memory system protocol
sage trdfc. The memory system can use prefetch [21]. The CICO annotations inserted by Cachier outper-
annotations to reduce latency by overlapping communicaformed both the program without any annotations as well
tion with computation. The check-out exclusive annotationas a hand-annotated version. Interestingachier per-
can reduce the messagefirataused by write faultwhen formed better on programs with complex, dynamic mem-
a shared location is first read and then written. The checkeory access, which caused programmers the greatest trouble.
in annotation flushes shared data from the cache, thereby The rest of this paper isganized as follows. Section 2
reducing the number of invalidate messages. Even in thidriefly describes the CICO model with an example. Section
role as memory system directives, the annotations do no8 describes the computing environment in which Cachier
affect a prograns semantics. operates. Section 4 explains the techniques that Cachier

Most parallel computers provide memory system direc- uses to insert CICO annotations. Section 5 illustrates the
tives similar to CICO directives. Perhaps the most commonuse of the annotations by a programmer to reduce a pro-
is a prefetch instruction. The Kendall Square KSR4] [1 gram’s communication cost. Section 6 evaluates the perfor-
provides a post-store instruction that broadcasts read-onlynance of several benchmarks that were annotated by
copies of a cache block to all other nodes that have it allo-Cachier Finally, Section 7 discusses related work.
cated but are in the invalid state. This operation is similar
though not identical, to a check-in. Even if a parallel com- 2 Programming Performance Model
puter does not support CICO directives, a programmer can

always use the information from the annotations to restruc- A Shared-memory programming performance model
ture a program to improve its performance. should aid a programmer in writingfiefent programs by

The first step in using the CICO model to compute a©xposing the communication underlying shared-memory

programs communication cost is to insert the annotations "€férences and by providing a measure of the cost of this
into a program. The accuracy of the cost calculation €ommunication. This section briefly describes the CICO

depends to a Ige extent on inserting the annotations so M0del [10] [13] with the help of an example.
they capture the communication behavior of a program., 1 c|co Model

Inserting CICO annotations requires reasoning about the
dynamic behavior of a program andemory system. This

is not easyeven for the simplest of programs.

This paper describes a tool—Cachier—that aids this
reasoning by automatically inserting CICO annotations
into shared-memory programs. Cachier uses a nove
approach of combining information about the dynamic
behavior of a program, obtained from its execution trace
with static information, obtained from program analysis.
The dynamic information enables Cachier to annotate com
plicated programs that manipulate poirtesed data struc- ary columns and rows are first copied to local arrays and

tL.”eS’ for which static anaIy_S|s_ IS |nfga5|ble. Even for then the stencil computation is performed locally:
simpler programs, the dynamic information augments and ‘ h i ¢

refines the static information. Since CICO annotations 'O eacb |m§seno & col o local

need not be placed perfectly accuratdiynamic informa- cfopy_(l)_unt alrJy rgws columns to focal arrays
tion from a single execution of the program isfisidnt. ofr J _._J'E Ot JB %

The static analysis converts raw data addresses from the or 1= ipt 0 tip 'cl) s &

trace into references to program variables and presents the compute stencil on cols row§
annotations in a readable form. The placement of the CICO annotations depends on the

In addition to automatically inserting CICO annotations, Size of the matrix as well as the size of the cache. If the
blocked matrix completely fits in the processors cache, the

The CICO model consists of check-out, check-in, and
prefetch annotations that a programmer adds to a program
and a cost model that uses these annotations to compute a
program$ shared-memory communication cosb. ilfus-

frate the CICO model, we consider a simple example of
Jacobi relaxation code on a matrix of sidex N This
example is from Hillet al [10]. Assume there a? pro-
'cessors (wher@l is a multiple ofP), each of which has
been assigned a block of the matrix consistiny/efrows,

Ljp to Uj, andN/P columnsL, to Uj,. Assume the bound-

CICO annotations appear as follows: 3 Cachier Overview
check_out_XU[Lip: Uip' Ljp: Ujp]
for each time stedo
check_out_shaed Boundary rows & columns
copy boundary rows & columns to local arrays Unannotated
check_inBoundary rows & columns
for j = Ljp to Uj, do
for i = Lj to Uy do

Cachier is a tool that automatically inserts CICO anno-
tations into shared-memory programs. Figure 1 shows the

Target Program

. execute read
compute stencil on columns and rows

check_ln U[Lip: Uip' Ljp: Ujp] —— . I .

The communication cost of the program can be found| WWT Filter trace Cachier
from the annotations. Assume thmtatrix elements fit in tamget file
a cache block and the matrix is stored in column major program ¢
order The check-out directives for the boundary columns trace
check out2N/bP blocks per time step and those for the Annotated arget
boundary rows check o@N/P blocks per time step, for a Program
total of 2N(1 + b)/bPblocks per time step. The check-out
for the matrix results ilN%/bP? blocks being checked out. Fig 1. Overview of the Cachier Framework

This is performed once. Thus if the program runsTor ,ocess that Cachier uses to annotate shared-memory pro-

time steps, theP? processors check out a total of grams. Cachier uses both dynamic and static information in
(2NPT(1+b)/b + Nib) cache blocks. _ order to efiectively insert CICO annotations. Section 4
If the block of the matrix assigned to a processor is 100gyains the need for both types of program information, as
large to fit in the cache, but individual columns of the \ye|| a5 Cachigs techniques for inserting the CICO anno-
matrix fit, the annotations appear as follows: tations. This section describes the computing environment

for each time stedo in which Cachier operates.
check_out_shaed Boundary rows & columns
copy boundary rows & columns to local arrays 3.1 Target Program Model
check_inBoundary rows & columns We studied programs from the Stanford Splash shared-
for j = Ljp to Uj, do memory benchmark suite [19]. These programs use barrier
check_out_exclusivdJ[Lip: Uips il synchronizations as their primary synchronization mecha-
fori= Lip to Ujp do nism. The programs also use locks. Howgegerery small
compute stencil on columns and rows fraction of the progrars’ total computation is performed
check_inU[Ly: Ujp,]] within lock-unlock intervals, so we ignore locks and con-
In this case, thB? processors check o(@NP(1+b)/b + centrate on the program model shown in Figure 2.
N2/b) cache blocks per time step, for a tota(2¥IP(1+b)/ Synchronization Barrier
b + N2/b)T cache blocks, if the program runs fbrtime * Epoch
steps. If the processor cache is too small to hold even a sin- .

gle column, the check-out annotations would appear imme-
diately before a reference and the check-in annotations
would appear immediately after a reference. This would

Synchronization Barrier

suggest blocking the loop to improve program performance .
[8][12]. In the first version of the program, each processor
checked out a total ®/bP cache blocks per column of the Synchronization Barrier

matrix (ignoring the check-outs for the boundary elements
which are anyway the same for both versions), while in the
second version, each processor checked out a toMi /of Epochs are code segments that execute between two
bP cache blocks per column. synchronization events. Our program model consists of
This example shows how the CICO annotations can beepochs demarcated by barrier synchronization points. This
used to compute and understand a programs communicds a fairly general model as most parallel computers pro-
tion cost as well as suggest ways of restructuring it tovide support for barriers. Also most programs using barri-
reduce this cost. ers typically perform the bulk of their computation in the
intervals between barriers.

Fig. 2 Program Model

3.2 Wisconsin WIind Tunnel (WWT) manner Suppose that in epoéhtwo processorX andY

The Wisconsin Whd Tunnel (WWT) [18] is an accurate have a data race on a particular variable. Say prociEssor
parallel architecture simulator that runs on a Thinking used that variable in the previous epoch. Since the shared
Machines CM-5 computer [20]. It uses a technique calleddata caches are flushed at every epoch bournplagessor
virtual prototyping, by which it only simulates those fea- Y may end up with the variable in its cache in the next
tures of the parallel architecture that are not present in th&poch, rather than the other way around. This may cause
native hardware. Wuse it to simulate DjsW [10], [21], the program to generate féifent results. Collection of
which is a cache-coherence directory protocol that has suptrace information also slows the prograrakecution. On a
port for programs written within the CICO modeleWin simulator like WWT time dilation does not fafct the pro-
the unannotated @et program on WWT to generate its grams behaviar
execution trace. .

3.4 Cachier

3.3 Dynamic Pogram Information The input to Cachier consists of an unannotategktar

The dynamic information obtained from a program’ program and its trace file. Cachier parses the unannotated
execution trace enables Cachier to insert annotations intéarget program and constructs its abstract syntax tree and
complicated programs that manipulate poittased data control flow graph. Cachier combines both the static and
structures, which are diiult to analyze staticall\Even for dynamic program information to determine which CICO
programs amenable to static analysis, dynamic informationannotations are to be inserted. It modifies the program’
supplements the static information since static analysisabstract syntax tree to include the annotations and produces
alone can produce overly conservative estimates of sharingn annotated tget program by unparsing this modified
[1]. The trace file contains information about a cache miss,abstract syntax tree. The annotategeamprogram is the
including its type, the address being accessed, the prograrsame as the unannotatedgtsr program, except for the
counter at that point, the node making the access, and th€ICO annotations inserted by Cachier
epoch in which the access occurred (see Figure 3).

4 Inserting CICO Annotations

Node no., Barrier PC, Barrier VT
o This section describes the techniques used by Cachier to
Shared Wite M.'SS - Address insert CICO annotations into shared-memory programs and
. illustrates them with an example. In order to insert annota-
. tions, three key questions have to be answered—what to
Shared Read 'Y“SS Address Epoch CICO?, where to CICO?, and how to CICO? These ques-
. tions are answered in Sections 4.1, 4.2 and 4.3 respectively
) Section 4.4 provides an example to illustrate these tech-
Shared Wite F?ult - Address nigues. Section 4.5 discusses a few issues related to the
. technique Cachier uses to insert the annotations.
¢ Cachier operates in two distinct phases. In the first
Node no.. Barrier PC. Barrier VT phase, Cachier processes and assimilates information about
v ' the epoch from the trace file and determines the annota-
N tions. Trace processing consists of removing addresses

Fig. 3 Trace File Format involved in shared write faults from the list of shared read

Each processts shared data cache is flushed at everymisses, updating the list of shared write misses to include
barrier synchronization to improve the quality of the trace addresses involved in shared write faults, and storing label-
data generated, as only accesses that miss in these cacH# information contained in the trace to aid mapping
show up in the trace. There is no time ordering of accessegddresses to program data structures. Cachier also deter-
within an epoch. However epochs are ordered by the barmines locations involved in data races and false sharing. A
rier Virtual Times (VT’). potential data race exists if two or more processors access

The information in the trace, such as program countersthe same address within the same epoch and at least one
and addresses, are collected during program execution bfccess is a write. False sharing results from two or more
WWT and stored in a hash table. At each synchronizationProcessors accessingféient addresses in the same cache
barrier in the program, the processors’ shared data cachdgock. Cachier next uses the equations described in Section
are flushed and information in the hash table is written to4.1 to compute addresses to be checked-out exclusive,
the trace file. Collection of trace information mafeefa ~ checked-out shared and checked-in. Finallgchier uses
programs behavior in two ways. First, it mayfedt the static information from program analysis along with the
behavior of a program that has data races in the following@belling information in the trace to map addresses to pro-

gram data structures and program counters to lines in thels caches and helps to eliminate many unnecessary check-

program text. in, check-out pairs at epoch boundaries. Using only a sin-
In the second phase, Cachier uses this information tagle epoch history simplifies the calculations. Morepver

place these annotations in a readable form, as described since an epoch performs agaramount of computation, a

Sections 4.2 and 4.3. variable left unused in the cache for multiple epochs is very
)) likely to be replaced before it can be reused.
4.1 Choosing CICO Annotations To find Performance CICO annotations for each epoch,

CICO annotations serve two roles. They allow a pro- cachier uses these equations:
grammer to reason about the communication in his pro-
gram and also permit the memory system to improve
program performance.olbe useful for reasoning about
communication, the annotations have to expose all com- i e
munication. On the other hand, to improve prggram perfor- ci [epoch i] =DRFS{ SW - SW., 4} +
mance we want to optimize the annotations by removing DRFS{ SR N SW,,} + DRFS { §}
unnecessary annotations wherever possibte. satisfy ~ where the notation is the same as above.
these conflicting goals, Cachier produces either Program- The DinSW protocol [10][21] that uses CICO annota-
mer or Performance CICO annotations. tions as memory directives performs an implicit check-out

For each epoch, Cachier determines the set of locationgxclusive at each shared write miss and an implicit check-
that should be checked-out, including their mode—sharedout shared at each shared read miss. Placing explicit check-

co_x [epoch i] =DRFS{ shated write faul{- SW_ 1 }
+ DRFS { shaed write fault}
co_s[epochi]l={}

or exclusive—and the set of locations to check-mfifd out’s for these cases reduces performance because of the
these sets for epodh Cachier uses the following set of overhead of the additional operation. Howewveany loca-
equations tions are read before being written, which results in their

1 _PPFEC being in the cache read-only at the time of the write. An
co_x [epoch i] =DRFS{ SW- SW._; } + DRFS { SW} he _ S
co_s [epoch i =FS{ SR - SR., } + FS { SR} explicit check-out exclusive, before the read, can eliminate

- 1 _BPEC the extra message tfiafto upgrade a shared to an exclu-
ci [epoch i] =DRFS{ § - + DRFS
[ep l {S-S+4 (s} sive copy These are the only locations Cachier checks out
where: _ o (unless, of course, they were already checked out in the
¢ i-1is the previous epoch antl is the next epoch, previous epoch).

* co_x co_sandci are the locations that should be ~ The check-in annotations inserted by Cachier at the end
checked-out exclusive, checked-out shared andof epochs has three parts. The first are shared locations, not

checked-in respectively involved in either data races or false sharing, that were
* SWis shared write misses shared write faulfs(in \yitten to in the current epoch, and are not going to be

epoch), written by the same processor in the next epoch. The sec-
* SRis shared read misses shared write faulfs (in ond are shared locations, again not involved in either data

epoch}, races or false sharing, that were read by some processor in
* § =SW+SR the current epoch and which will be written by some pro-

* DRFSis a function on a set of addresses that returnscessor in the next epoch. The last are shared locations that

those addresses that are either involved in a data race Qfere involved in either a data race or in false sharing in the
in false sharing.@RFSis its complementary function) cyrrent epoch.

* FSis afunction on a set of addresses that returns a sub- 1o make these ideas cleareonsider the example in
set of those addresses that are involved in false sharing=igyre 4.

(FSis its complementary function). . ~ Using the equations for Programmer CICO, Cachier

_ The basic idea behind these equations is that if there iginds the following CICO annotations for epoch i: co_s(c),
either a data race or false sharing on a locaticache ¢ s(a) & ci(c), ci(d). The Performance CICO annotations
block, then a processor should check it out and check itor the same epoch is just ci(c). If epoch i-1 was the first
back in immediatelyThe rationale is that since multiple epoch in the program, then the Programmer CICO for that

processors are contending for this block, it will remain in a epoch will be as follows: co_x(a), co_x(b), co_s(d) & ci(a).
processds cache only for a short time before another pro- The performance CICO for the same epoch will be just
cessor claims it. On the other hand, if a location is notgj(a). The check-in for a is necessary as there is a potential

involved in data races or false sharing, then a processogata race on that variable (the trace does not maintain any
should check it out only if it was not checked out in the grgering of accesses within an epoch).

previous epoch by the same procesSamilarly, a proces-
sor should check-in a location only if it is not going to use 4.2 Placement of CICO Annotations
it again in the next epoch. This annotation placement mod- The placement of CICO annotations depends on the role

P P+1 regions of memory to be mapped onto program data struc-
: s tures. The programmer uses a macro to label a continuous
write (a) ~_| write () g region of shared-memory with a name. 0se Cachiera
Epoch i-1’_> read (d) R N read(a) programmer must label all important shared data struc-
tures.
=4 write (b) - Cachier uses the prograsrabstract syntax tree to ana-
. _» read (d) lyze its loop structure. This information helps structure the
Epoch i CICO annotations in a form that makes it easy for the pro-
read (a) read (c) grammer to read the annotations. This process involves
collapsing annotations, either by placing them inside pro-
Epoch i+1 write (c) read (b) g gram loops, or by generating new loops for themillTis-
trate this step, consider the following piece of codeit§
right is the result of naive insertion of CICO annotations
Fig. 4 followed by Cachieis more sophisticated insertion.

they serve, whether the location is involved in either a data fori=1toNstep2do for=1toNstep2do

race or false sharing, and the relative sizes of the data set Alll=.... (’Tthk—OUt—x[']
and the shared data cache. Static program information od ArE'] _k".' Al
guides the decisions. Cachier models the finite capacity of fo“r“ilz 1to N do Ocd eck_inAll]
a cache (but not its limited associativity) to improve its Al = fori = 1to N do
placement of CICO annotations.

In the case of Programmer CICO, Cachier tries to place od Zh.e(ik—OUtAm
check-out annotations as close to the beginning of an epoch chec[lg ?nl;bl[i]
and check-in annotations as close to the end of an epoch as od —

possible under the cache size constraints. This placement
facilitates use of these annotations by the programmer to
reason about a program. Since an epoch can span multiple
functions, Cachier uses static program information to place

check-out annotations close to the beginning of the func-

tions in which the locations are referenced and check-in

annotations close to the end of these functions, again sub-
ject to cache size constraints.

In the case of Performance CICO, Cachier tries to place
all annotations as close to the accesses as possible in an -
attempt to reduce interprocessor communication. Since a CheCk—'nA['] .
naive attempt to do this will result in code size explosion, it Moreover since an epoch can be executed multiple
uses static information about the program, especially thdimes, Cachier ensures that the annotations are not dupli-

loop structure to present the annotations in a readable forn@ted. Cachier also flags data races and false sharing, to
enable the programmer to use locks in the case of data

4.3 Presentation of CICO Annotations races or pad the relevant data structures in the case of false

For CICO annotations to be readable by a programmersharing, to alleviate the problem.
they must be presented in a compact, easily understandable) :
form. To achieve this goal, Cachier uses static program#-4 Example Cachier Annotations _
information, obtained from its control flow graph and Consider the following example which performs matrix
abstract syntax tree, as well as some information from thenultiplication of two dense matrices, each of size N x N
programs trace. using an unconventional technique explained belear

In the case of shared read misses, it may not be alway§iMPlicity, N is a multiple of Pthe square root of the num-
possible to map an address to a program variable by exarmRer of processors and each processor is assigned a block of
ination of the line. For example, consider the following "OWS: Lip t0 Uy, and columns, i to Uy, of the B matrix.
line: fori=1to Ndo

Cli, /1 = C[i,] + All, K] * Bk,] for k = Lyp to Uy do

To map a shared read miss on this line of code to a par- t=All, k]
ticular variable, further information is required. In such forj = Ljp to Uj, do _
cases, Cachier uses another utility which allows labelled Cli, 1=Cl[i, j] + t* B[k,]]

for i=1to N step 2 do
check_out_XAJ[i]
Ali] = ...

for i=2to N-1step 2 do
check_out_XAJ[i]

fori=1to Ndo
Alil = ...

Figure 5 illustrates the technique used to multiply the forj = L, to U;, do
matrices. check_out_XCJi, j]
/***Data Race on CJi, j] ***/

Cli, 1 =C[i, j] + t* B[k,]]
Lip check_inC[i, j]

O Uyp In this case the check-out shared annotations are absent
as DirSW performs an implicit check-out shared on each
shared read miss. So an explicit check-out shared annota-

Lo Yp bkp Up b Yo tion would just result in an overhead due to address genera-
Matrix C Matrix A Matrix B tion translation. However the check-out exclusive
] annotation for matrix C is still present because it incurs a
Fig. 5 shared write fault, which would have otherwise upgraded a

Each processor is assigned a block of the B matrixshared copy of the block to be writable. The check-in anno-
which is not shared. The A matrix is read shared by thetation for matrix C is placed immediately after it is refer-
processors and the C matrix (result matrix) is read as welenced, due to the presence of the data race. The check-in
as write shared. This follows from the technique used toannotations for matrices A and B are omitted as they are
multiply the matrices in which each processor updates thenot write shared.
result matrix with the values it computes.

In the case that the matrix size and the cache size aré-5 Discussion
such that the entire matrix does not fit in the procéssor ~ CICO annotations do notfatt a prograns semantics.
cache but individual rows/columns do, Cachier inserts theThus, even if the annotations are inserted at inappropriate

following CICO annotations. points in the program, they onlyfaét its performance.
These are the Programmer CICO annotations insertecdflso while it is conceivable that the instrumentation added
by Cashier to trace the program may substantially alter its memory
for i=1to Ndo access pattern causing Cachier to insert the annotations at
for k = Ly to Uy, do ?nappro.priate plag:es, we have not 9b§erved guch behavior
check_out_SA[i, K] in practice. Cachier can use dynamic information obtamed
t= A, K] from a single executlo.n of the program t_o place annotations
check_out_SB[K, Ljp : U] as the CICO annotations are not required to be perfectly
forj = Lj to Uj, do accurate. . o _ _
check_out_XC[i, j] . Cachier co_mblngs dynqmlc |nformat|on obtained from a
/**Data Race on C[i, j] ***/ single gxecutlon with static analysis of'tr.\e program. The
Cli, jl = Cli, j] + t * BK,] altgrnatlye would have been to use a training set rqther than
check_inCJi, j] a_lsmgle input data set to obtain dyr)amlc program informa-
check_inB[k, Ljp : Ujp] tion. However' we found that the fidifence between exe-
check_inA[i, K] cuting a Cachier annotated program on the same input data

set used to generate the dynamic information as opposed to
xecuting the program on afeifent data set was small (<
%) even for a dynamic application likBarnes We

For the case of Programmer CICO, Cachier inserts
annotations to check-out shared matrices A and B as the
are only read. Matrix C which is read as well as written is, " - . .
checked-out exclusive. The data race on elements of matrigjhes\/;;rlso': t?::ee dtont;\'n?iéﬁﬁ?g;&;ﬁ;ﬁi;ﬁ;goﬁt nc?)tm-
C is flagged and the check-out/ check-in annotations for > y y ’

these elements are placed as close to the reference as pos jnes this with a static analysis of the program source. Sec-

ble. On the other hand, since elements of matrices A & Bondly, it appears that even dynamic applications are not all

are not involved in a data race, their corresponding check:[hat dynamic as far as memory access patterns are con-
cerned. Moreoverther measurements show that program

out (check-in) annotations are placed as close to the begin- S : . .
ning (end) of the epoch as is possible under cache size Cor:]b_ehawor is typically independent of the input data set [7].

straints. The notation-,g: U., indicates that the annotation . .
i ip
is in a loop generated by Cachier 5 Restructuring with CICO
The Performance CICO annotations inserted by Cachier This section illustrates how the CICO annotations

look as follows inserted by Cachier can be used to restructure a program.
fori=1to Ndo We do this using the same matrix multiply example from

for k = Ly, to Uy do the previous section. The annotations inserted by Cachier

t = Al[i, K] indicate that the communication bottleneck is due to the

Hand CICG without prefetch
chier inserted CICO without prefetch

Relative Virtual Times|
Fiid
N

Hand CICQ with prefetch
Cachier inserted CICO with prefetch

Virtual Time / Base Case

N

mrm barnes tameaty ocadan
Dirtsw , 32 Procs , 258 K target cache

Fig. 6

cache block race on elements of the result matrix. MoreN?P/2 (2 * N * N/4P *P) check-outs for elements of
over, this race can cause an incorrect result due to multipleatrix C out of which there is a cache block race on only
processors reading the same value of the C matrix at thé¢?P/4 of them which is protected by a lock.

same time, modifying it, and writing it back. This race is

compounded by the fact that a single cache block contairt@ Performance of Automatic CICO

multiple adjacent elements of the result matrix (in this case . .
4 elements). Since a cache block is the minimum granular- NS section compares the performance of several
ity at which an element can be checked out, a solutioHn@nnotated shared-memory programs against hand-
would be to restructure the program as follows. First eaclfiserted CICO and Cachiannotated CICO versions of
processor copies the portion of the C matrix that it will bdn® same program. The hand CICO was carefully done
updating into a local arrafach processor then performs OVer @ period of a few weeks with the aid of existing pro-

the computation on the C matrix localgnd finally copies filing tools by individuals with a detailed understanding of
back its local portion of the C matrix. the problem and cache-coherence protocol. Cachier pro-

for i = 1to N do duced the automgtic QICO version. All simulationg were
forj = Ly, to U step4 do run on the Wéconsin th Tunnel (WWT) [18]. The sim-
checJE outhSC[i i ulgtfad computer consists of 32 processor nodes, each con-
di j'_j +§] _ é[i P:j+3] taining a processprshared-memory module, cache, and
che,ck. inCli, i T network interface. The cache is 256 KB, 4-way set-asso-
- ' ciative with a cache block size of 32 bytee Wsed WWT

for 1lo:r 1kt9|'>|d?0 Uv do to simulate a directory-based E®W cache-coherence
t_: Akﬁ K kp protocol [10] [21].

For this evaluation we use five benchmarRarnes
| g | . . Ocean,Mp3d (from the SPLASH Benchmark suite [19]),
Bl 11 = Coli. J] + t* Blk,]] Matrix Multiply, and Tomcatv (a parallel version of the

for j = Lj, to Uy, do

for]Ico:r.l_tol__l\lgou' step4 do SPEC Benchmark)Barnes performs a gravitational N-
Jlo_ck”z:[i j]”o P body simulation using the Barnes-Hut algorithme ¥im-

ulated it for a data set of size 1024 bod@seanperforms

a cuboidal ocean basin simulation using Gauss-Seidel with

check_inCJi, | S_uccessive Over Relgxation.eVEiml.JIated.it for a grid

unlock Cli ’j] size of 9.8 X 9$Mp3d S|mulat.es rarefied f!wd ro_w of |de—_

Th i ’h d & total OFKN * N/P * N/P alized diatomic molecules in a three-dimensional active

- e original program had a total of KN _ space. W simulated it for 50,000 molecules and 10 time

* P?) check-outs for elements of matrix C on which theregiens Matrix Multiply multiplies two matrices by dividing

is a cache block race. The restructured program only hg§em into blocks. W simulated it for a matrix size of 256

check _out_XCJi, j]
Cli,j:j+3]=C[i,j:j+3]+hj:j+3]

x 256. We simulatedlomcatvfor 10 iterations on a grid of improvement is due to a reduction in the time spent servic-
size 1024 x 1024. The input data sets used to obtain théng shared data cache misses and write faults as well as a
execution trace for Cachier werefdient than the data sets reduction in the number of these events. The greatest per-
used in the performance comparison. formance improvement is obtained f@ceanand Mp3d,
Figure 6 displays the execution times of these pro-both of which have the highest degree of sharing among
grams, normalized to the version without CICO annota-the Splash benchmarks. l@cean 88% of loads read
tions. ForMatrix Multiply, the CICO annotations (without shared data and 68% of the stores write shared data,
the prefetch annotation) inserted by Cachier show a 16%whereas forMp3d the corresponding numbers are 71%
improvement in performance, as compared to the versior(shared reads) and 80% (shared writes) respectively [19].
without CICO annotations and a slight improvement over On the other hand, iBarnes, where the performance
the hand-annotated version. In this program, one processamprovement is not as lge, the degree of sharing is much
initializes the matrices with random values. Part of the lower—25.5% of the loads are shared data reads and only
improvement arises from checking-in these matrices afterl.3% of the stores are shared data writes [19].
initialization. Also, the result matrix is read-write shared Moreover Cachierannotated versions of the programs
by the processors, so checking-out the required matrix eleeonsistently outperformed the hand-annotated versions,
ments exclusive eliminates upgrades of shared blocks to bavhich shows that inserting annotations by hand is not an
writable. In addition, checking in the result values after a easy task, especially for programs with dynamic memory
processor computes them reduces the number of invalidaaccess patterns. In addition, sincdedtént input data sets
tion messages that have to be sent. The smédkelifce in were used to insert the annotations and to compare perfor-
performance between the hand-annotated and Cachiemance, the results show that Caclsiemnotations are not
annotated versions is due to a few unnecessary annotatiorwverly specialized to a particular execution.
in the former Using the prefetch annotation, Cachier
improves the program performance by around 20%. In the7 Related Wbrk

hand-annotated version of the program, the prefetch anno- . . .))
tations were inappropriately placed. Inserting CICO annotations appears similar to inserting

For Barnesas well, the version of the program anno- primitives for software cache coherence [4][5][15]. The
tated by Cachier outperforms the version without any crucial diference is that coherence primitives must be con-

annotations by around.% and the hand-annotated version servatively inserted.densure correct execution, software
by 2%. In this case the hand-annotated version missed §2¢h€ coherence schemes must invalidate data along all
few annotations. The prefetch annotations are not very sucP0SSible program execution paths. Moreovee schemes
cessful in further improving performance due to the pro- €anNot use dynamic program information and rely solely
grams complicated pointer data structures. on conservative static analysis. CICO annotations, on the
For Tomcaty the CICO annotations do not have géar ~ Other hand, do notict a prograns semantics and hence
effect on its performance as it performs little communica- CaChier can aggressively insert annotations by combining
tion relative to its computation (around 90% of its execu- dynamic program information with static program analy-

tion time is spent in computation). Fddcean the SIS _
annotations inserted by Cachier improve program perfor- Other work studied how to prefetch data so as to overlap

mance by around 20% without prefetch, and by 25% with qommunication with computation and reduce commu_nica—
prefetch. This is also a 7% improvement over the hand-on latency [2][9][16]. Howeverthese schemes relied

annotated version in both cases. Fp3d the Cachier solely on static program analysis and were able to prefetch
annotated version outperforms the unannotated version b{iat@ only in scientific codes with fairly static memory
25% and the hand-annotated version by 45%. The hand@cCess patterns that a compiler can analyze. Cachier uses
annotated version defs from both checking-in cache dynamic information as well, which works in more circum-
blocks too early at certain places, (i.e., before a processo§tances. It also uses check-ins to flush data from a proces-

finished with the block) as well as neglecting to check-in SOT'S cache. This results in a reduction in messagecteaf
blocks at other places. well as communication latency

These results emphasize thdidifity in hand-inserting ~_ 1echniques for race detection in the context of debug-
CICO annotations, especially for programs with dynamic ging programs have either used dynamic information from

memory access patterns. They also show that Caghier & prograns execution trace or static information from an
annotations are successful in improving program perfor-2nalysis of the program text [17]. A few techniques have

mance, even for complicated programs IRarnes and used dynamic information as well as static information [6].
Mp3d ’that contain pointebased data structures and However the static information supplements the dynamic

dynamic memory access patterns. This performancénformatior‘ by ruling out races in certain parts of the pro-
gram, thereby precluding the need to trace those parts. The

actual race detection uses dynamic information. The Management of Programmable Cachefpceedings of the 1988
dynamic information used for race detection is similar to International Conference on Parallel Processifupl. 2 Software),

) . (Aug., 1988), pp. 229-238.
that used by Cachier except for a couple of kefextinces. 6] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua, “Event

The trace file used by Cachier does not contain all shared = Synchronization Analysis for Debugging Parallel Programs”,
memory locations read and written, rather it contains only Supercomputing ‘8qNov., 1989), pp. 580-588. N
those that cause cache misses. Also while the trace hasl[@ J- A Fisher, and S. M. Freudenberger, “Predicting Conditional

lati deri b h o h . Branch Directions from Previous Runs of a PrograPndceedings of
relative oraering between synchronization events, there IS e sth International Conference on Architectural Support for

no ordering maintained on other events (i.e. shared data Programming Languages and Operating Syste(@ept., 1992), pp
cache misses) between two synchronization events (i.e. an 8595 N _ _
epoch) [8] Dennis Gannon, William Jalby, and K. Gallivan, “Strategies for
' Cache and Local Memory Management by Global Program
Transformation”Journal of Parallel and Distributed Computing
8 Conclusions (Vol. 5, 1988), pp. 587-616.
[9] E. Gornish, E. Granston, and A. Veidenbaum, “Compiler Directed
The CICO model is a practical shared-memory pro- Data Prefetching in Multiprocessors with Memory Hierarchies”,

gramming performance model. Howeviﬁarrequires a pro- International Conference on Supercomputih§90.

. . [10] Mark D. Hill, James R. Larus, Steven R. Reinhardt, and David A.
grammer to reason about a progmmynamlc behavior Wood, “Cooperative Shared Memory: Software and Hardware for

and the memory system, which can béidift. This paper Scalable MultiprocessorsACM Transactions on Computer Systems
describes Cachiga tool for automatically inserting CICO (Nov., 1993), pp. 300-318. _
annotations into shared-memory programs. It uses a novdilll Kendall Square ResearciKendall Square Research Technical

approach of combining information about the dynamic summary1992.
PP ining | I u y ! [12] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolfe “The

behavior of a program, from its execution trace, with static' ~ cache Performance and Optimizations of Blocked Algorithms”,
information from an analysis of the program source. The Proceedings of the 4th International Conference on Architectural

resulting CICO annotations can be both read by a program- fggf)or;“;o%'gf‘;grammi”g Languages and Operating Systps,

mer to help in reasoning about Commumcatlon_m the pro'[13] James R. Larus, Satish Chandra, and David A. Wood, “CICO: A
gram, as well as used by a memory system to improve the ~practical Shared-Memory Programming Performance Model",
programs performance. In experiments on several bench- Workshop on Portability and Performance for Parallel Processing

. . . (July, 1993), To appear: Ferrante & Hey ed2artability and
marks, CICO annotations inserted by Cachier outper- 5.t ance for Parallel Procssrs.

formed both unannotated as well as hand'annOtateqM] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-

versions of the programs. Dietrich Weber, Anoop Gupta, John Hennessy, Mark Horowitz, and
Monica Lam, “The Stanford DASH Multiprocessor’|EEE
Computer(March, 1992), pp. 63-79.

Acknowledgements [15] Sang Lyul Min, and Jean-Loup Baer, “A Timestamp-based Cache
We would like to thank Alvy Lebeck for the filter used Coherence Scheme”Proceedings of the 1989 International
to generate a programexecution trace. Also Babak Fal- fggg)”%r“f%%”z Parallel Processingyol. 1 Architecture), (Aug.,
safi e,md A|Vy Lebeck p.rowded Valu_able help with thisW [16] Todd C. Mowry, Monica S. Lam, and Anoop Gupta, “Design and
consin Wnd Tunnel simulatar Satish Chandra, Babak Evaluation of a Compiler Algorithm for Prefetchingtoceedings of

Falsafi, Alvy Lebeck and Shubu Mukherjee provided the the 5th International Conference on Architectural Support for

hand-annotated versions of the benchmarks. g;_’%’f‘mm'”g Languages and Operating Sysie@ept., 1992), pp.

[17] Robert H. Netzer. Race Condition Detection for Debugging Shared-
References Memory Parallel Programs. Ph.D. thesis, University of Wisconsin-

[1] Sarita V. Adve, Vikram S. Adve, Mark D. Hill, and Mary K. Vernon, Madison, 19,91' . .
“Comparison of Hardware and Software Cache Coherence Schemes’[18] SteverK. Reinhardt, MarlD. Hill, JamesR. Larus, AlvinR. Lebeck,
Proceedings of the 18th Annual International Symposium on Jame<C. Lewis, and David A. Wood, “The Wisconsin Wind Tunnel:

Computer ArchitecturgJune, 1991), pp. 298-308. Virtual Prototyping of Parallel Computerd®roceedings of the 1993

[2] David Callahan, Ken Kennedy, and Allan Porterfield, “Software égmpigrgetsntz;&o; felrgegg;e p(:)n 4l\él_eggurement and Modeling of
Prefetching”,Proceedings of the 4th International Conference on 4 Y o '

Architectural Support for Programming Languages and Operating [19]Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta,
Systems(April, 1991), pp. 40-52. “SPLASH: Stanford Parallel Applications for Shared Memory”,

[3] David Chaiken, John Kubiatowics, and Anant Agarwal, “LimitLESS Co.mp'uter Archl'tecture NewWarch, 1992), pp.I 5-44.)
Directories: A Scalable Cache Coherence Schefmceedings of [20] Thinking Machines CorporatioriThe Connection Machine CM-5

the 4th International Conference on Architectural Support for Technical Summary991.

Programming Languages and Operating Systegril, 1991), pp. [21] David A. Wood, Satish Chandra, Babak Falsafi, Mark D. Hill, James

224-234. R. Larus, Alvin L. Lebeck, James C. Lewis, Shubhendu S. Mukherjee,
[4] J.Cheong, and A.V. Veidenbaum, “A Cache Coherence Scheme with Subbarao Palacharla, and Steven K. Reinhardt, “Mechanisms for

Fast Selective Invalidation”Proceedings of the 15th Annual Cooperative Shared MemoryProceedings of the 20th Annual

International Symposium on Computer Architect(ane, 1988), pp. International Symposium on Computer Architect{iay 1993), pp.

299-307. 156-168.

[5] Ron Cytron, Steve Karlovsky, and Kevin P. McAuliffe, “Automatic

10

