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Intr oduction

Tempestand Typhoon have emepged as among the
mostinfluential contribtutions of the WisconsinwWind Tun-
nel project,a collaboratve effort with Prof. Mark D. Hill,
several staf membersand a large group of graduatestu-
dents.Thisretrospeciie focuseson theoriginsof the Tem-
pest and ¥phoon ideas and their subsequevaiation.

The Beginnings

The seedsof the project began to germinatein late
1990 and early 1991 with our effort to rapidly prototype
large-scaleshared-memorynultiprocessorsBecausether
researctgroupshada one-to two-yearleadin their proto-
typing efforts—and considerably more resources—our
projectstartedwith the goal of exploiting the parallelcom-
puters that our departmentwas acquiring with funding
from NSF5 Institutional Infrastructure program.

During this exploratory phase we madethe essential
obsenation that shared-memorgystemspermit a contin-
uum of implementationstangingfrom full hardware sup-
port to software simulation/emulationon a message-
passingplatform. Moreover, in the middle lies a rich col-
lection of mibed hardvare/softvare design alternatgs.

An internalresearchote,datedJuly 9, 1991, roughly
classified these alternedis into fve levels:

Level 0: Software simulation/emulation.At this level,

shared-memorprogramsexecuteon an unmodifiedmes-
sage-passingarallel platform. A program$ loads and

storesare replacedwith calls to routinesthat simulatethe

shared-memory belimr of the proposed design.

Level 1: Shared virtual memory. This level incorporates
Kai Li’ s obsenation that addresgranslationhardware can

be usedto map sharedmemoryreferencego local pages
anddetectnhon-localreferencesalbeitat coarsegranularity
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Level 2: Fine-grain shaed virtual memory. This  level
malkes the obsenation that sharedvirtual memorycanbe
implementedat a finer granularity given a mechanism—
suchas fine-grain“presence”bits—to detectwhen cache
blocks are not stored locally

Level 3: Local hardware support. This level begins to
blur the distinction betweena test-bedand a prototype.It
extendslevel 2 with hardware supportto initiate requests
and handle responses on misses to remote data.

Level 4: Remote hardvare support. The final level adds
hardware supportto handleexternal requestsdo a nodes
memory—thatis, a directory controller This last level
encompasses all-hardve implementations.

Initially, we consideredthese approachessolely as
alternatvesfor evaluatingthe hardwareof interest.a highly
integratedhardware-centricsystem This discussiorieadto
the developmentof the WisconsinWind Tunnel (WWT),
the parallel simulation systemthat gave our project its
name[9]. The original versionof WWT useda parallel
messag@assingnachine(a Thinking MachinesCM-5) to
simulatea hypotheticalsharednemorymachine WWT is
ahybrid of levels0 and2, anduseshe CM-5's ECCbits to
implementfine-grain valid bits. Memory referenceshat
accesqon-localsharedmemorycausea trap, becauseof
eithera pagefault or anintentionallysetECC error. Fine-
grain accesscontrol allowed direct execution of shared-
memoryprogramswhich resultedin a very fastsimulator
that permitted rapid evaluation of hypothetical shared-
memory implementations.

Cooperative Shaed Memory

WWT was originally developedto evaluatean archi-
tectural approach called Cooperatre Shared Memory
(CSM) [4]. CSM’s centralpremisewasthat hardwareand
software could cooperateto supportsharedmemory effi-
ciently. This cooperatiortook two forms.First, a program-
ming performancemodel helped programmersidentify
expensve operationgsothey could avoid themwhenpos-
sible) and helped hardware designersidentify common



cases(so they could optimize them). Second,CSM
encouragechardware designersto concentratesxpen-
sive hardware resource®n optimizing frequentopera-
tions and to fall back to software for comple, less
frequent cases.

Our programmingperformancemodel was called
Check-In/Check-Ou¢CICO). It asked programmergo
issue an advisory check_out directive before the
expected first use of shared data followed by a
check_i n directive after the expectedlast use. We
further proposedDirSW, a minimal directory protocol
that supportedCICO-conformingprogramsefficiently
(i.e., entirely in hardware). Violations of the CICO
model, which often required more comple« protocol
operationswere handledcorrectly but lessquickly by
trappingto software.A later versionof Dir;SW, called
Dir,SW+, handledsomecommonCICO violations in
hardware as well [12].

Cooperatie SharedMemory provided the philo-
sophicunderpinningsof Tempestand Typhoon.Hard-
ware and software should cooperateto achieve good
shared-memonperformance Programmersshould be
able to optimize performanceby exploiting hardware
mechanismsHardware designersshouldfocuson pro-
viding efficient hardware mechanismsand,asmuchas
possible, le@e poligy to software.

WWT as a Shaed Memory Machine

While designing and developing the Wisconsin
Wind Tunnel,we met developersof the emeping gen-
eration of MPPs, the Intel Paragon and Thinking
Machines CM-5. During these meetings,a frequent
misconceptionwas that WWT was a “real” shared-
memory system,not just a test-bed.Studentsrunning

programs on WWT also tended to blur this distinction.

In early 1993, we recognizedthat WWT was an
interestingfine-grainshared-memorgystemin its own
right, an obsenation that led to two parallel efforts.
First, we began to develop a performance-oriented
shared-memorgystemfor the CM-5, simply by remov-
ing from WWT the componentshatcalculatedhe per-
formanceof the hypotheticalhardware. This effort led
to the Blizzard system (discussed further blo

Secondwe realizedthat a small amountof hard-
waresupportmightallow a messag@assingnachineto
achieve competitve sharedmemoryperformanceOur
first stepin thisdirectionwasajoint projectwith Think-
ing Machinesand NimBus to develop an enhanced
memorycontroller(EMC) thatprovidedfirst-classfine-
grainaccesgontrol. The short-termgoal wasto elimi-
natethe comple, relatively slov “hacks” requiredby
WWT to manipulateECCandto synthesizea fine-grain
read-only state via page protection. The longer term
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goalwasto developa“smartNI” thatcould handlethe
mostfrequentcaseof a simpleDir;SWHik e coherence
protocol—mostiik ely with a programmablerocessar
The EMC chip was designedand fabricatedby Nim-
Bus. Sadly Thinking Machinesnever usedit in a prod-
uct, largely becausef the additionalproductrisk posed
by the enhanced features.

Typhoon

Typhoonemegedasthefollow-onto the EMC and
“smart NI” approach.To minimize our exposureto
Thinking Machines$ marketing decisions,we ervi-
sionedasingleASIC thatwould notinterferewith “nor-
mal” operationswithin a local node.The ASIC would
provide hardware snooping support for fine-grain
accesscontrol, an embeddedprotocol processorto
implementsomeor all of the coherencerotocol,anda
closely coupled netark interface.

A majorgoalof Typhoonwasto increasgrogram-
ming flexibility beyond CSM, allowing programmerso
optimize known communicationpatternsaggressiely.
The approachthat we chosewasto give programmers
directaccesdgo theraw mechanismsinderlyingshared-
memory protocols. An important difference between
Typhoonand our earlier Dir{SW work camefrom our
realizationthat mary protocolswe ervisioned needed
flexibility ontherequesteside,notjustonthedirectory
side. This approacHfit well with the “smartNI” model
that calledfor usinga programmablgrocessopr con-
troller to accessthe network interface. We refer the
readerbackto theoriginal paperfor therestof the moti-
vation and design.

Tempest

Programmersieededan abstractionof Typhoons
shared-memorynechanismdgo develop protocols.Ini-
tially, we borraved from the internal WWT interfaces
andassignedccachmemoryblock anaccesgontroltag.
Accesseghatconflictedwith thereferencedlock’s tag
invokeda userspecifiechandler We initially referredto
this abstraction simply as the “tagged block model”.

Two importantchange®ccurredn late 1993.First,
we recognizedhe fundamentaimportanceof the pro-
grammingabstractionThe taggedblock modelapplied
equallywell to the nascenall-softwareBlizzard system
asto Typhoon,andit clearly madesenseo supportthe
sameprotocolprogrammingnterfaceon both systems.
Although our original intent was merely to develop a
simple abstractionfor Typhoon, we endedup with a
powerful abstractionfor which Typhoonwas just one
implementation.Second,we gave the abstractiona
“first class” nameto reflect our appreciationfor its
importance.We chose Tempest,in keepingwith the
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Wind Tunnelgroup’ practiceof namingnearly every-
thing afterawind (fortunately childrenhave beenunaf-
fected by this practice).

Subsequentlythe Tempesinterface[5] becamehe
focusof muchof the WWT group’s researchTempest
stable powerful abstractiongnabledoarallel,synegis-
tic researclon both sidesof the interface.On the sys-
tem side, we began to explore the broad range of
possibleTempestimplementationsOther group mem-
bers simultaneouslyinvestigated the implications of a
flexible protocol interface for applications,program-
mers,andcompilers.A key goalemepgedto have Tem-
pest provide application portability acrossa diverse
rangeof implementationseachwith differentcost/per-
formance objecties.

Blizzard: An All-softwar e Tempest System

The Blizzard systemsare a family of Tempest
implementationghat run on stock hardware[11]. One
variant, Blizzard-E, usesWWT’s “ECC hack” to pro-
vide fine-grain accesscontrol. Another variant, Bliz-
zard-S,usesexecutableediting [7] to add explicit in-
line checks.Both versionswere initially implemented
on the CM-5 and later portedto the WisconsinCOW,
our clusterof 40 Myrinet-connectedsun SparcStation
20s.0ur researcton the applicationsof Tempestbene-
fited greatly from the availability of a real (not simu-
lated), relatiely stable €Empest platform.

Typhoon-0: Minimal Hard ware for Tempest

A key aspectof the Typhoondesignis the (ab)use
of existing snoopingcachecoherencerotocolsto pro-
vide hardwarefine-grainaccesgontrolon anotherwise
unmodified platform. We decidedto demonstratehe
feasibility of this approachby implementinga proto-
type accessontrol boardfor the Sun SparcStatiorand
populatingthe 40 nodesof the COW. Theresultingsys-
tem, Typhoon-0[10], can be viewed eitherasa proto-
type of the more highly integrated Typhoon or as a
minimal-hardvare Tempest implementation. Unlike
Typhoon, Typhoon-Orelies on off-the-shelfdevicesfor
eachnodes network interface and protocol processor
In the processf our designandanalysisof Typhoon-0,
we recognizedthe benefitsof an intermediatedesign,
Typhoon-1[10], that integratesthe network interface
(but not the protocol processor)with Typhoon-05
access control unit.

1. Thispracticecreatecanunnecessargmountof confusion
amongthe meteorologicallychallenged,who could not
tell a Tempest from aylphoon.
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Custom Protocol Demonstrations

Oneof our early experimentsinvesticatedthe per-
formancegainsmadepossibleby writing custom appli-
cation-specific protocols [3]. The performance
improvementsfor three applicationkernelson the 32-
nodeBlizzard/CM-5systemrangedfrom 1.4—16times,
which strongly encouragedis to extendthis approach.
Subsequentexperiments [8] also demonstratedthe
value of customprotocolsin running parallelirregular
applications. However, the efforts of mary students
shaved that writing customprotocolswasdifficult and
time consuming.

Programming Support

In responseo theseproblems the projectinvesti-
gatedprogrammindanguagesndtoolsto supportcus-
tom protocoldevelopmentOneeffort leadto the Teapot
languagefor writing and verifying custom protocols
[2]. This languagehalwed the size of a protocol, but
moreimportantly enableduseof automaticverification
tools,drasticallyreducingthetime andeffort to produce
a working protocol.

Another attack on the difficulty of writing proto-
cols, wasto shift the burdenof exploiting themfrom a
programmerto a compilet Several efforts clearly
shavedthatcompilersfor high-level programmindan-
guagezouldexploit customprotocolsto producecode
with robust parallel performancethat in mary cases
exceededhand-writtencode.Initially, thiswork focused
on researclparallel languagessuchas C**, in which
Tempessupporteda novel parallelprogrammingnodel
[6]. However, with theassistancef the PortlandGroup,
we werealsoableto shav that customprotocolscould
greatly expandthe rangeof High Performancd-ortran
(HPF) programs that ran well [1].

Summary

The Tempestand Typhoonpaperwasthe first of a
broad collection of Tempest-relategpapersfrom the
Wisconsin Wind Tunnel project (see
http://ww. cs. w sc. edu/ ~wwt ). Its impact
within Wisconsinhasbeenconsiderablegontrituting to
8 Ph.D.dissertationand8 Mastersdegrees We suspect
its impact beyond Wisconsinhas also beenconsider-
able, lut we leae that galuation to others.
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