To appear ir25 yeas of the International Symposia of Computethitectule: Selected &pers, ed. Gurindar Sohi

Reflections on “Tempest and ¥phoon: UserLevel Shared Memory”
Steven K. Reinhardt,James R. Larus, and @d A. Wood

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706
wwt@cs.wisc.edu

Intr oduction

Tempestand Typhoon have emepged as among the
mostinfluential contribtutions of the WisconsinwWind Tun-
nel project,a collaboratve effort with Prof. Mark D. Hill,
several staf membersand a large group of graduatestu-
dents.Thisretrospeciie focuseson theoriginsof the Tem-
pest and ¥phoon ideas and their subsequevaiation.

The Beginnings

The seedsof the project began to germinatein late
1990 and early 1991 with our effort to rapidly prototype
large-scaleshared-memorynultiprocessorsBecausether
researctgroupshada one-to two-yearleadin their proto-
typing efforts—and considerably more resources—our
projectstartedwith the goal of exploiting the parallelcom-
puters that our departmentwas acquiring with funding
from NSF5 Institutional Infrastructure program.

During this exploratory phase we madethe essential
obsenation that shared-memorgystemspermit a contin-
uum of implementationstangingfrom full hardware sup-
port to software simulation/emulationon a message-
passingplatform. Moreover, in the middle lies a rich col-
lection of mibed hardvare/softvare design alternatgs.

An internalresearchote,datedJuly 9, 1991, roughly
classified these alternedis into fve levels:

Level 0: Software simulation/emulation.At this level,

shared-memorprogramsexecuteon an unmodifiedmes-
sage-passingarallel platform. A program$ loads and

storesare replacedwith calls to routinesthat simulatethe

shared-memory belimr of the proposed design.

Level 1: Shared virtual memory. This level incorporates
Kai Li’ s obsenation that addresgranslationhardware can

be usedto map sharedmemoryreferencego local pages
anddetectnhon-localreferencesalbeitat coarsegranularity

* Currently at The University of Michigan, EECS Department,
1301 Beal Ave., Ann Arbor, Ml 48109-2122; email:
stever@eecs.umich.edu.

Level 2: Fine-grain shaed virtual memory. This level
malkes the obsenation that sharedvirtual memorycanbe
implementedat a finer granularity given a mechanism—
suchas fine-grain“presence”bits—to detectwhen cache
blocks are not stored locally

Level 3: Local hardware support. This level begins to
blur the distinction betweena test-bedand a prototype.It
extendslevel 2 with hardware supportto initiate requests
and handle responses on misses to remote data.

Level 4: Remote hardvare support. The final level adds
hardware supportto handleexternal requestsdo a nodes
memory—thatis, a directory controller This last level
encompasses all-hardve implementations.

Initially, we consideredthese approachessolely as
alternatvesfor evaluatingthe hardwareof interest.a highly
integratedhardware-centricsystem This discussiorieadto
the developmentof the WisconsinWind Tunnel (WWT),
the parallel simulation systemthat gave our project its
name[9]. The original versionof WWT useda parallel
messag@assingnachine(a Thinking MachinesCM-5) to
simulatea hypotheticalsharednemorymachine WWT is
ahybrid of levels0 and2, anduseshe CM-5's ECCbits to
implementfine-grain valid bits. Memory referenceshat
accesqon-localsharedmemorycausea trap, becauseof
eithera pagefault or anintentionallysetECC error. Fine-
grain accesscontrol allowed direct execution of shared-
memoryprogramswhich resultedin a very fastsimulator
that permitted rapid evaluation of hypothetical shared-
memory implementations.

Cooperative Shaed Memory

WWT was originally developedto evaluatean archi-
tectural approach called Cooperatre Shared Memory
(CSM) [4]. CSM’s centralpremisewasthat hardwareand
software could cooperateto supportsharedmemory effi-
ciently. This cooperatiortook two forms.First, a program-
ming performancemodel helped programmersidentify
expensve operationgsothey could avoid themwhenpos-
sible) and helped hardware designersidentify common

cases(so they could optimize them). Second,CSM
encouragechardware designersto concentratesxpen-
sive hardware resource®n optimizing frequentopera-
tions and to fall back to software for comple, less
frequent cases.

Our programmingperformancemodel was called
Check-In/Check-Ou¢CICO). It asked programmergo
issue an advisory check_out directive before the
expected first use of shared data followed by a
check_i n directive after the expectedlast use. We
further proposedDirSW, a minimal directory protocol
that supportedCICO-conformingprogramsefficiently
(i.e., entirely in hardware). Violations of the CICO
model, which often required more comple« protocol
operationswere handledcorrectly but lessquickly by
trappingto software.A later versionof Dir;SW, called
Dir,SW+, handledsomecommonCICO violations in
hardware as well [12].

Cooperatie SharedMemory provided the philo-
sophicunderpinningsof Tempestand Typhoon.Hard-
ware and software should cooperateto achieve good
shared-memonperformance Programmersshould be
able to optimize performanceby exploiting hardware
mechanismsHardware designersshouldfocuson pro-
viding efficient hardware mechanismsand,asmuchas
possible, le@e poligy to software.

WWT as a Shaed Memory Machine

While designing and developing the Wisconsin
Wind Tunnel,we met developersof the emeping gen-
eration of MPPs, the Intel Paragon and Thinking
Machines CM-5. During these meetings,a frequent
misconceptionwas that WWT was a “real” shared-
memory system,not just a test-bed.Studentsrunning

programs on WWT also tended to blur this distinction.

In early 1993, we recognizedthat WWT was an
interestingfine-grainshared-memorgystemin its own
right, an obsenation that led to two parallel efforts.
First, we began to develop a performance-oriented
shared-memorgystemfor the CM-5, simply by remov-
ing from WWT the componentshatcalculatedhe per-
formanceof the hypotheticalhardware. This effort led
to the Blizzard system (discussed further blo

Secondwe realizedthat a small amountof hard-
waresupportmightallow a messag@assingnachineto
achieve competitve sharedmemoryperformanceOur
first stepin thisdirectionwasajoint projectwith Think-
ing Machinesand NimBus to develop an enhanced
memorycontroller(EMC) thatprovidedfirst-classfine-
grainaccesgontrol. The short-termgoal wasto elimi-
natethe comple, relatively slov “hacks” requiredby
WWT to manipulateECCandto synthesizea fine-grain
read-only state via page protection. The longer term

DRAFT 92

goalwasto developa“smartNI” thatcould handlethe
mostfrequentcaseof a simpleDir;SWHik e coherence
protocol—mostiik ely with a programmablerocessar
The EMC chip was designedand fabricatedby Nim-
Bus. Sadly Thinking Machinesnever usedit in a prod-
uct, largely becausef the additionalproductrisk posed
by the enhanced features.

Typhoon

Typhoonemegedasthefollow-onto the EMC and
“smart NI” approach.To minimize our exposureto
Thinking Machines$ marketing decisions,we ervi-
sionedasingleASIC thatwould notinterferewith “nor-
mal” operationswithin a local node.The ASIC would
provide hardware snooping support for fine-grain
accesscontrol, an embeddedprotocol processorto
implementsomeor all of the coherencerotocol,anda
closely coupled netark interface.

A majorgoalof Typhoonwasto increasgrogram-
ming flexibility beyond CSM, allowing programmerso
optimize known communicationpatternsaggressiely.
The approachthat we chosewasto give programmers
directaccesdgo theraw mechanismsinderlyingshared-
memory protocols. An important difference between
Typhoonand our earlier Dir{SW work camefrom our
realizationthat mary protocolswe ervisioned needed
flexibility ontherequesteside,notjustonthedirectory
side. This approacHfit well with the “smartNI” model
that calledfor usinga programmablgrocessopr con-
troller to accessthe network interface. We refer the
readerbackto theoriginal paperfor therestof the moti-
vation and design.

Tempest

Programmersieededan abstractionof Typhoons
shared-memorynechanismdgo develop protocols.Ini-
tially, we borraved from the internal WWT interfaces
andassignedccachmemoryblock anaccesgontroltag.
Accesseghatconflictedwith thereferencedlock’s tag
invokeda userspecifiechandler We initially referredto
this abstraction simply as the “tagged block model”.

Two importantchange®ccurredn late 1993.First,
we recognizedhe fundamentaimportanceof the pro-
grammingabstractionThe taggedblock modelapplied
equallywell to the nascenall-softwareBlizzard system
asto Typhoon,andit clearly madesenseo supportthe
sameprotocolprogrammingnterfaceon both systems.
Although our original intent was merely to develop a
simple abstractionfor Typhoon, we endedup with a
powerful abstractionfor which Typhoonwas just one
implementation.Second,we gave the abstractiona
“first class” nameto reflect our appreciationfor its
importance.We chose Tempest,in keepingwith the

May 27, 1998

Wind Tunnelgroup’ practiceof namingnearly every-
thing afterawind (fortunately childrenhave beenunaf-
fected by this practice).

Subsequentlythe Tempesinterface[5] becamehe
focusof muchof the WWT group’s researchTempest
stable powerful abstractiongnabledoarallel,synegis-
tic researclon both sidesof the interface.On the sys-
tem side, we began to explore the broad range of
possibleTempestimplementationsOther group mem-
bers simultaneouslyinvestigated the implications of a
flexible protocol interface for applications,program-
mers,andcompilers.A key goalemepgedto have Tem-
pest provide application portability acrossa diverse
rangeof implementationseachwith differentcost/per-
formance objecties.

Blizzard: An All-softwar e Tempest System

The Blizzard systemsare a family of Tempest
implementationghat run on stock hardware[11]. One
variant, Blizzard-E, usesWWT’s “ECC hack” to pro-
vide fine-grain accesscontrol. Another variant, Bliz-
zard-S,usesexecutableediting [7] to add explicit in-
line checks.Both versionswere initially implemented
on the CM-5 and later portedto the WisconsinCOW,
our clusterof 40 Myrinet-connectedsun SparcStation
20s.0ur researcton the applicationsof Tempestbene-
fited greatly from the availability of a real (not simu-
lated), relatiely stable €Empest platform.

Typhoon-0: Minimal Hard ware for Tempest

A key aspectof the Typhoondesignis the (ab)use
of existing snoopingcachecoherencerotocolsto pro-
vide hardwarefine-grainaccesgontrolon anotherwise
unmodified platform. We decidedto demonstratehe
feasibility of this approachby implementinga proto-
type accessontrol boardfor the Sun SparcStatiorand
populatingthe 40 nodesof the COW. Theresultingsys-
tem, Typhoon-0[10], can be viewed eitherasa proto-
type of the more highly integrated Typhoon or as a
minimal-hardvare Tempest implementation. Unlike
Typhoon, Typhoon-Orelies on off-the-shelfdevicesfor
eachnodes network interface and protocol processor
In the processf our designandanalysisof Typhoon-0,
we recognizedthe benefitsof an intermediatedesign,
Typhoon-1[10], that integratesthe network interface
(but not the protocol processor)with Typhoon-05
access control unit.

1. Thispracticecreatecanunnecessargmountof confusion
amongthe meteorologicallychallenged,who could not
tell a Tempest from aylphoon.

DRAFT

93

Custom Protocol Demonstrations

Oneof our early experimentsinvesticatedthe per-
formancegainsmadepossibleby writing custom appli-
cation-specific protocols [3]. The performance
improvementsfor three applicationkernelson the 32-
nodeBlizzard/CM-5systemrangedfrom 1.4—16times,
which strongly encouragedis to extendthis approach.
Subsequentexperiments [8] also demonstratedthe
value of customprotocolsin running parallelirregular
applications. However, the efforts of mary students
shaved that writing customprotocolswasdifficult and
time consuming.

Programming Support

In responseo theseproblems the projectinvesti-
gatedprogrammindanguagesndtoolsto supportcus-
tom protocoldevelopmentOneeffort leadto the Teapot
languagefor writing and verifying custom protocols
[2]. This languagehalwed the size of a protocol, but
moreimportantly enableduseof automaticverification
tools,drasticallyreducingthetime andeffort to produce
a working protocol.

Another attack on the difficulty of writing proto-
cols, wasto shift the burdenof exploiting themfrom a
programmerto a compilet Several efforts clearly
shavedthatcompilersfor high-level programmindan-
guagezouldexploit customprotocolsto producecode
with robust parallel performancethat in mary cases
exceededhand-writtencode.Initially, thiswork focused
on researclparallel languagessuchas C**, in which
Tempessupporteda novel parallelprogrammingnodel
[6]. However, with theassistancef the PortlandGroup,
we werealsoableto shav that customprotocolscould
greatly expandthe rangeof High Performancd-ortran
(HPF) programs that ran well [1].

Summary

The Tempestand Typhoonpaperwasthe first of a
broad collection of Tempest-relategpapersfrom the
Wisconsin Wind Tunnel project (see
http://ww. cs. w sc. edu/ ~wwt). Its impact
within Wisconsinhasbeenconsiderablegontrituting to
8 Ph.D.dissertationand8 Mastersdegrees We suspect
its impact beyond Wisconsinhas also beenconsider-
able, lut we leae that galuation to others.

Acknowledgments

Many have asledabouttheabsencef Mark Hill as
anauthorof the TyphoonpapersMark hasbeena con-
stant co-leaderand contritutor to the Wind Tunnel
project, including the Tempestand Typhoonresearch.
In mid-summerl993,Mark unilaterallydistancechim-
self from the Typhooneffort—againstour objections—

May 27, 1998

to help potentialtenureletter writers differentiateour
contritutions from his own. Despite staying at arm’s
length,Mark madenumerousontritutionsto this work
andhasbeenactively involvedin the Tempestollow-on
projects.

Mary studentshave contrituted to the Tempest
work. We would like to singleoutone,RobPfile, for his
efforts to implement theyphoon-0 prototype.

This work receved financial supportfrom a num-
ber of sourceslnitial supportcamefrom the National
ScienceFoundationsPYI/NYI program(grants CCR-
9157366 and CCR-9357779).Primary support for
Typhoon came from Michael Foster of the NSF's
ExperimentalSystemsprogram (grant MIP-9225097).
Gil WeigandandBob Lucasof the DefenseAdvanced
Research Projects Ageng/ supported the Blizzard
implementationg ARPA Order Number B550). Dave
Douglas,Bob Zak, and Greg Papadopolousprovided
technical and financial support from Thinking
Machines Corporation and later Sun Microsystems.
Additional supportwasprovided by a Univ. of Wiscon-
sin Graduate School Grant, a Wisconsin Alumni
ResearchroundationFellowship, an AT&T Ph.D.Fel-
lowship,anddonationsrom Digital EquipmentCorpo-
ration, Xerox Corporation,the Portland Group. Our
Thinking MachinesCM-5 and WisconsinCOW were
purchasedthrough NSF Institutional Infrastructure
Grant CDA-9024618with matchingfunding from the
Univ. of Wisconsin Graduate School.

About the Authors:

StevenK. Reinhardicompletechis PhDat the Uni-
versity of Wisconsinon the Typhoonimplementations
of the Tempestinterface.He is currently an Assistant
Professorof Electrical Engineeringand ComputerSci-
enceat the University of Michigan, where he is con-
ductingresearcton parallelcomputerarchitecturesand
systems.

JamesR. Larusis an AssociateProfessoinf Com-
puterSciencestthe University of Wisconsin—Madison.
His researchincludes programming languagesand
compilers, the design and programmingof shared-
memoryparallelcomputersprogramprofiling andtrac-
ing, and programx@cutable editing.

David A. Wood s an AssociateProfessonf Com-
puter Sciencesand Electricaland ComputerEngineer-
ing at the University of Wisconsin—Madison.His
researctspanscomputerarchitectureemphasizingar-
allel computer design, implementation, andleation.

DRAFT 94

References

(1]

(3]

[4]

[5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

S.ChandraandJ. R. Larus.Optimizing communication
in HPF programs on fine-grain distributed shared
memory In Sixth ACM SIGPLAN Symposiumon
Principles & Practice of Parallel Programming pages
100-111, June 1997.

S.Chandra, B. Richards, and J.R. Larus. Teapot:
Language support for writing memory coherence
protocols. In Proceedings of the SIGPLAN '96

Confeence on Programming Languaje Design and

Implementation (PLD|)May 1996.

B. Falsafi, A. R. Lebeck,S.K. Reinhardt,l. Schoinas,
M. D. Hill, J.R. Larus, A. Rogers,and D. A. Wood.
Application-specific protocols for userlevel shared
memory In Proceedingof Supecomputing'94, pages
380-389, Nu. 1994.

M. D. Hill, J.R. Larus, S.K. Reinhardt,and D. A.
Wood. Cooperatie shared memory: Software and
hardware for scalable multiprocessors. ACM
Transactionson Computer Systems 11(4):300-318,
Nov. 1993. Earlier grsion appeared in ASPLOS V

M. D. Hill, J.R. Larus,and D. A. Wood. Tempest:A
substratdor portableparallelprogramsin Proceedings
of COMPCON '95, pages327-332, San Francisco,
California, Mar 1995.

J.R. Larus, B. Richards,and G. Viswanathan.LCM:

Memory system support for parallel language
implementation. In Proceedings of the Sixth
International Confeenceon Architectual Supportfor

Programming Languaies and Opemting Systems
(ASPLOS Vl)pages 208-218, Oct. 1994.

J.R. LarusandE. Schnarr EEL: Machine-independent
executableediting. In Proceedingof the SIGPLAN'95
Confeence on Programming Languaye Design and
Implementation (PLD|)pages 291-300, June 1995.

S.S. Mukherjee,S.D. SharmaM. D. Hill, J.R. Larus,
A. Rogers,and J. Saltz. Efficient supportfor irregular
applicationson distributed-memorymachinesin Fifth
ACM SIGPLANSymposiunen Principles& Practiceof
Parallel Programming (PPOPR)July 1995.

S.K. Reinhardt,M. D. Hill, J.R. Larus,A. R. Lebeck,
J.C. Lewis, and D. A. Wood. The Wisconsin Wind
Tunnel: Virtual prototyping of parallel computers.In
Proceedingsof the 1993 ACM SigmetricsConfeence
on Measuementand Modeling of ComputerSystems
pages 4860, May 1993.

S.K. Reinhardt, R.W. Pfile, and D.A. Wood.
Decoupled hardware support for distributed shared
memory In Proceedings of the 23rd Annual
International Symposiumon Computer Architecture,
pages 34-43, May 1996.

I. Schoinas B. Falsafi, A. R. Lebeck,S.K. Reinhardt,
J.R. Larus,andD. A. Wood. Fine-grainaccesscontrol
for distributed sharedmemory In Proceedingsof the
Sixth International Confeence on Architectumal
Supportfor Programming Languajes and Opemating
Systems (ASPLOS Ypages 297-306, Oct. 1994.

D. A. Wood, S.Chandra,B. Falsafi, M. D. Hill, J.R.
Larus, A. R. Lebeck, J.C. Lewis, S.S. Mukherjee,
S.Palacharla,and S.K. Reinhardt. Mechanismsfor
cooperatie sharedmemory In Proceedingof the 20th
Annual International Symposium on Computer
Architecture, pagesl56—168May 1993.Also appeared
in CMG Transactions, Spring 1994.

May 27, 1998

