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Intr oduction
Tempestand Typhoon have emerged as among the

mostinfluentialcontributionsof theWisconsinWind Tun-
nel project,a collaborative effort with Prof. Mark D. Hill,
several staff members,anda large groupof graduatestu-
dents.This retrospective focuseson theoriginsof theTem-
pest and Typhoon ideas and their subsequent evolution.

The Beginnings
The seedsof the project began to germinatein late

1990 and early 1991 with our effort to rapidly prototype
large-scaleshared-memorymultiprocessors.Becauseother
researchgroupshada one-to two-yearleadin their proto-
typing efforts—and considerably more resources—our
projectstartedwith thegoalof exploiting theparallelcom-
puters that our departmentwas acquiring with funding
from NSF’s Institutional Infrastructure program.

During this exploratoryphase,we madethe essential
observation that shared-memorysystemspermit a contin-
uum of implementations,rangingfrom full hardwaresup-
port to software simulation/emulationon a message-
passingplatform. Moreover, in the middle lies a rich col-
lection of mixed hardware/software design alternatives.

An internalresearchnote,datedJuly 9, 1991,roughly
classified these alternatives into five levels:

Level 0: Software simulation/emulation.At this level,
shared-memoryprogramsexecuteon an unmodifiedmes-
sage-passingparallel platform. A program’s loads and
storesarereplacedwith calls to routinesthat simulatethe
shared-memory behavior of the proposed design.

Level 1: Shared virtual memory. This level incorporates
Kai Li’ s observation that addresstranslationhardwarecan
be usedto map sharedmemoryreferencesto local pages
anddetectnon-localreferences,albeitatcoarsegranularity.

Level 2: Fine-grain shared virtual memory. This level
makes the observation that sharedvirtual memorycanbe
implementedat a finer granularitygiven a mechanism—
suchas fine-grain“presence”bits—to detectwhen cache
blocks are not stored locally.

Level 3: Local hardware support.This level begins to
blur the distinctionbetweena test-bedanda prototype.It
extendslevel 2 with hardwaresupportto initiate requests
and handle responses on misses to remote data.

Level 4: Remote hardware support.The final level adds
hardware supportto handleexternal requeststo a node’s
memory—thatis, a directory controller. This last level
encompasses all-hardware implementations.

Initially, we consideredthese approachessolely as
alternativesfor evaluatingthehardwareof interest,ahighly
integratedhardware-centricsystem.Thisdiscussionleadto
the developmentof the WisconsinWind Tunnel (WWT),
the parallel simulation systemthat gave our project its
name[9]. The original version of WWT useda parallel
messagepassingmachine(a Thinking MachinesCM-5) to
simulatea hypotheticalsharedmemorymachine.WWT is
ahybrid of levels0 and2, andusestheCM-5’sECCbits to
implementfine-grain valid bits. Memory referencesthat
accessnon-localsharedmemorycausea trap, becauseof
eithera pagefault or an intentionallysetECCerror. Fine-
grain accesscontrol allowed direct execution of shared-
memoryprograms,which resultedin a very fastsimulator
that permitted rapid evaluation of hypothetical shared-
memory implementations.

Cooperative Shared Memory
WWT wasoriginally developedto evaluatean archi-

tectural approach called Cooperative Shared Memory
(CSM) [4]. CSM’s centralpremisewasthat hardwareand
software could cooperateto supportsharedmemoryeffi-
ciently. This cooperationtook two forms.First,a program-
ming performancemodel helped programmersidentify
expensive operations(so they couldavoid themwhenpos-
sible) and helped hardware designersidentify common
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cases(so they could optimize them). Second,CSM
encouragedhardware designersto concentrateexpen-
sive hardwareresourceson optimizing frequentopera-
tions and to fall back to software for complex, less
frequent cases.

Our programmingperformancemodel was called
Check-In/Check-Out(CICO). It asked programmersto
issue an advisory check_out directive before the
expected first use of shared data followed by a
check_in directive after the expectedlast use. We
furtherproposedDir1SW, a minimal directoryprotocol
that supportedCICO-conformingprogramsefficiently
(i.e., entirely in hardware). Violations of the CICO
model, which often required more complex protocol
operations,werehandledcorrectlybut lessquickly by
trappingto software.A later versionof Dir1SW, called
Dir1SW+, handledsomecommonCICO violations in
hardware as well [12].

Cooperative SharedMemory provided the philo-
sophicunderpinningsof Tempestand Typhoon.Hard-
ware and software should cooperateto achieve good
shared-memoryperformance.Programmersshould be
able to optimize performanceby exploiting hardware
mechanisms.Hardwaredesignersshouldfocuson pro-
viding efficient hardwaremechanisms,and,asmuchas
possible, leave policy to software.

WWT as a Shared Memory Machine
While designing and developing the Wisconsin

Wind Tunnel,we met developersof the emerging gen-
eration of MPPs, the Intel Paragon and Thinking
Machines CM-5. During these meetings,a frequent
misconceptionwas that WWT was a “real” shared-
memorysystem,not just a test-bed.Studentsrunning
programs on WWT also tended to blur this distinction.

In early 1993, we recognizedthat WWT was an
interestingfine-grainshared-memorysystemin its own
right, an observation that led to two parallel efforts.
First, we began to develop a performance-oriented
shared-memorysystemfor theCM-5, simplyby remov-
ing from WWT thecomponentsthatcalculatedtheper-
formanceof the hypotheticalhardware.This effort led
to the Blizzard system (discussed further below).

Second,we realizedthat a small amountof hard-
waresupportmightallow amessagepassingmachineto
achieve competitive sharedmemoryperformance.Our
first stepin thisdirectionwasajoint projectwith Think-
ing Machines and NimBus to develop an enhanced
memorycontroller(EMC) thatprovidedfirst-classfine-
grain accesscontrol.The short-termgoal wasto elimi-
natethe complex, relatively slow “hacks” requiredby
WWT to manipulateECCandto synthesizeafine-grain
read-onlystatevia pageprotection.The longer term

goalwasto developa “smartNI” thatcouldhandlethe
mostfrequentcasesof a simpleDir1SW-like coherence
protocol—mostlikely with a programmableprocessor.
The EMC chip was designedand fabricatedby Nim-
Bus.Sadly, Thinking Machinesnever usedit in a prod-
uct, largelybecauseof theadditionalproductrisk posed
by the enhanced features.

Typhoon
Typhoonemergedasthefollow-on to theEMC and

“smart NI” approach.To minimize our exposure to
Thinking Machines’s marketing decisions,we envi-
sionedasingleASIC thatwouldnot interferewith “nor-
mal” operationswithin a local node.The ASIC would
provide hardware snooping support for fine-grain
accesscontrol, an embeddedprotocol processorto
implementsomeor all of thecoherenceprotocol,anda
closely coupled network interface.

A majorgoalof Typhoonwasto increaseprogram-
ming flexibility beyondCSM,allowing programmersto
optimize known communicationpatternsaggressively.
The approachthat we chosewas to give programmers
directaccessto theraw mechanismsunderlyingshared-
memory protocols. An important differencebetween
Typhoonandour earlierDir1SW work camefrom our
realizationthat many protocolswe envisionedneeded
flexibility on therequesterside,not juston thedirectory
side.This approachfit well with the “smart NI” model
thatcalledfor usinga programmableprocessoror con-
troller to accessthe network interface. We refer the
readerbackto theoriginalpaperfor therestof themoti-
vation and design.

Tempest
Programmersneededan abstractionof Typhoon’s

shared-memorymechanismsto develop protocols.Ini-
tially, we borrowed from the internalWWT interfaces
andassignedeachmemoryblock anaccesscontrol tag.
Accessesthatconflictedwith thereferencedblock’s tag
invokedauser-specifiedhandler. Weinitially referredto
this abstraction simply as the “tagged block model”.

Two importantchangesoccurredin late1993.First,
we recognizedthe fundamentalimportanceof the pro-
grammingabstraction.Thetaggedblock modelapplied
equallywell to thenascentall-softwareBlizzardsystem
asto Typhoon,andit clearlymadesenseto supportthe
sameprotocolprogramminginterfaceon bothsystems.
Although our original intent was merely to develop a
simple abstractionfor Typhoon,we endedup with a
powerful abstractionfor which Typhoonwas just one
implementation.Second,we gave the abstractiona
“first class” name to reflect our appreciationfor its
importance.We choseTempest,in keeping with the
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Wind Tunnelgroup’s practiceof namingnearlyevery-
thingafterawind (fortunately, childrenhavebeenunaf-
fected by this practice).1

Subsequently, theTempestinterface[5] becamethe
focusof muchof theWWT group’s research.Tempest’s
stable,powerful abstractionsenabledparallel,synergis-
tic researchon both sidesof the interface.On the sys-
tem side, we began to explore the broad range of
possibleTempestimplementations.Othergroupmem-
berssimultaneouslyinvestigatedthe implicationsof a
flexible protocol interface for applications,program-
mers,andcompilers.A key goalemergedto have Tem-
pest provide application portability acrossa diverse
rangeof implementations,eachwith differentcost/per-
formance objectives.

Blizzard: An All-softwar e Tempest System
The Blizzard systemsare a family of Tempest

implementationsthat run on stockhardware [11]. One
variant,Blizzard-E,usesWWT’s “ECC hack” to pro-
vide fine-grain accesscontrol. Another variant, Bliz-
zard-S,usesexecutableediting [7] to add explicit in-
line checks.Both versionswere initially implemented
on the CM-5 and later portedto the WisconsinCOW,
our clusterof 40 Myrinet-connectedSun SparcStation
20s.Our researchon theapplicationsof Tempestbene-
fited greatly from the availability of a real (not simu-
lated), relatively stable Tempest platform.

Typhoon-0: Minimal Hard ware for Tempest
A key aspectof the Typhoondesignis the (ab)use

of existing snoopingcachecoherenceprotocolsto pro-
vide hardwarefine-grainaccesscontrolon anotherwise
unmodifiedplatform. We decidedto demonstratethe
feasibility of this approachby implementinga proto-
typeaccesscontrol boardfor theSunSparcStationand
populatingthe40 nodesof theCOW. Theresultingsys-
tem, Typhoon-0[10], canbe viewed eitherasa proto-
type of the more highly integrated Typhoon or as a
minimal-hardware Tempest implementation. Unlike
Typhoon,Typhoon-0relieson off-the-shelfdevicesfor
eachnode’s network interfaceand protocol processor.
In theprocessof our designandanalysisof Typhoon-0,
we recognizedthe benefitsof an intermediatedesign,
Typhoon-1[10], that integratesthe network interface
(but not the protocol processor)with Typhoon-0’s
access control unit.

1. This practicecreatedanunnecessaryamountof confusion
amongthe meteorologicallychallenged,who could not
tell a Tempest from a Typhoon.

Custom Protocol Demonstrations
Oneof our early experimentsinvestigatedthe per-

formancegainsmadepossibleby writing custom,appli-
cation-specific protocols [3]. The performance
improvementsfor threeapplicationkernelson the 32-
nodeBlizzard/CM-5systemrangedfrom 1.4–16times,
which stronglyencouragedus to extendthis approach.
Subsequentexperiments [8] also demonstratedthe
valueof customprotocolsin runningparallel irregular
applications.However, the efforts of many students
showed that writing customprotocolswasdifficult and
time consuming.

Programming Support
In responseto theseproblems,the project investi-

gatedprogramminglanguagesandtoolsto supportcus-
tomprotocoldevelopment.Oneeffort leadto theTeapot
languagefor writing and verifying custom protocols
[2]. This languagehalved the size of a protocol, but
moreimportantly, enableduseof automaticverification
tools,drasticallyreducingthetimeandeffort to produce
a working protocol.

Another attackon the difficulty of writing proto-
cols,wasto shift the burdenof exploiting themfrom a
programmer to a compiler. Several efforts clearly
showedthatcompilersfor high-level programminglan-
guagescouldexploit customprotocols,to producecode
with robust parallel performancethat in many cases
exceededhand-writtencode.Initially, thiswork focused
on researchparallel languages,suchas C**, in which
Tempestsupportedanovel parallelprogrammingmodel
[6]. However, with theassistanceof thePortlandGroup,
we werealsoableto show that customprotocolscould
greatlyexpandthe rangeof High PerformanceFortran
(HPF) programs that ran well [1].

Summary
The TempestandTyphoonpaperwasthe first of a

broad collection of Tempest-relatedpapersfrom the
Wisconsin Wind Tunnel project (see
http://www.cs.wisc.edu/~wwt). Its impact
within Wisconsinhasbeenconsiderable,contributing to
8 Ph.D.dissertationsand8 Mastersdegrees.Wesuspect
its impact beyond Wisconsinhas also beenconsider-
able, but we leave that evaluation to others.
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