
Reflections on “Tempest and Typhoon: User-Level Shared Memory”

Steven K. Reinhardt,* James R. Larus, and David A. Wood

Computer Sciences Department
University of Wisconsin–Madison

1210 West Dayton Street
Madison, WI 53706
wwt@cs.wisc.edu

Intr oduction
Tempestand Typhoon have emerged as among the

mostinfluentialcontributionsof theWisconsinWind Tun-
nel project,a collaborative effort with Prof. Mark D. Hill,
several staff members,anda large groupof graduatestu-
dents.This retrospective focuseson theoriginsof theTem-
pest and Typhoon ideas and their subsequent evolution.

The Beginnings
The seedsof the project began to germinatein late

1990 and early 1991 with our effort to rapidly prototype
large-scaleshared-memorymultiprocessors.Becauseother
researchgroupshada one-to two-yearleadin their proto-
typing efforts—and considerably more resources—our
projectstartedwith thegoalof exploiting theparallelcom-
puters that our departmentwas acquiring with funding
from NSF’s Institutional Infrastructure program.

During this exploratoryphase,we madethe essential
observation that shared-memorysystemspermit a contin-
uum of implementations,rangingfrom full hardwaresup-
port to software simulation/emulationon a message-
passingplatform. Moreover, in the middle lies a rich col-
lection of mixed hardware/software design alternatives.

An internalresearchnote,datedJuly 9, 1991,roughly
classified these alternatives into five levels:

Level 0: Software simulation/emulation.At this level,
shared-memoryprogramsexecuteon an unmodifiedmes-
sage-passingparallel platform. A program’s loads and
storesarereplacedwith calls to routinesthat simulatethe
shared-memory behavior of the proposed design.

Level 1: Shared virtual memory. This level incorporates
Kai Li’ s observation that addresstranslationhardwarecan
be usedto map sharedmemoryreferencesto local pages
anddetectnon-localreferences,albeitatcoarsegranularity.

Level 2: Fine-grain shared virtual memory. This level
makes the observation that sharedvirtual memorycanbe
implementedat a finer granularitygiven a mechanism—
suchas fine-grain“presence”bits—to detectwhen cache
blocks are not stored locally.

Level 3: Local hardware support.This level begins to
blur the distinctionbetweena test-bedanda prototype.It
extendslevel 2 with hardwaresupportto initiate requests
and handle responses on misses to remote data.

Level 4: Remote hardware support.The final level adds
hardware supportto handleexternal requeststo a node’s
memory—thatis, a directory controller. This last level
encompasses all-hardware implementations.

Initially, we consideredthese approachessolely as
alternativesfor evaluatingthehardwareof interest,ahighly
integratedhardware-centricsystem.Thisdiscussionleadto
the developmentof the WisconsinWind Tunnel (WWT),
the parallel simulation systemthat gave our project its
name[9]. The original version of WWT useda parallel
messagepassingmachine(a Thinking MachinesCM-5) to
simulatea hypotheticalsharedmemorymachine.WWT is
ahybrid of levels0 and2, andusestheCM-5’sECCbits to
implementfine-grain valid bits. Memory referencesthat
accessnon-localsharedmemorycausea trap, becauseof
eithera pagefault or an intentionallysetECCerror. Fine-
grain accesscontrol allowed direct execution of shared-
memoryprograms,which resultedin a very fastsimulator
that permitted rapid evaluation of hypothetical shared-
memory implementations.

Cooperative Shared Memory
WWT wasoriginally developedto evaluatean archi-

tectural approach called Cooperative Shared Memory
(CSM) [4]. CSM’s centralpremisewasthat hardwareand
software could cooperateto supportsharedmemoryeffi-
ciently. This cooperationtook two forms.First,a program-
ming performancemodel helped programmersidentify
expensive operations(so they couldavoid themwhenpos-
sible) and helped hardware designersidentify common

To appear in25 years of the International Symposia of Computer Architecture: Selected Papers, ed. Gurindar Sohi

* Currently at The University of Michigan, EECSDepartment,
1301 Beal Ave., Ann Arbor, MI 48109-2122; email:
stever@eecs.umich.edu.

DRAFT 92 May 27, 1998

cases(so they could optimize them). Second,CSM
encouragedhardware designersto concentrateexpen-
sive hardwareresourceson optimizing frequentopera-
tions and to fall back to software for complex, less
frequent cases.

Our programmingperformancemodel was called
Check-In/Check-Out(CICO). It asked programmersto
issue an advisory check_out directive before the
expected first use of shared data followed by a
check_in directive after the expectedlast use. We
furtherproposedDir1SW, a minimal directoryprotocol
that supportedCICO-conformingprogramsefficiently
(i.e., entirely in hardware). Violations of the CICO
model, which often required more complex protocol
operations,werehandledcorrectlybut lessquickly by
trappingto software.A later versionof Dir1SW, called
Dir1SW+, handledsomecommonCICO violations in
hardware as well [12].

Cooperative SharedMemory provided the philo-
sophicunderpinningsof Tempestand Typhoon.Hard-
ware and software should cooperateto achieve good
shared-memoryperformance.Programmersshould be
able to optimize performanceby exploiting hardware
mechanisms.Hardwaredesignersshouldfocuson pro-
viding efficient hardwaremechanisms,and,asmuchas
possible, leave policy to software.

WWT as a Shared Memory Machine
While designing and developing the Wisconsin

Wind Tunnel,we met developersof the emerging gen-
eration of MPPs, the Intel Paragon and Thinking
Machines CM-5. During these meetings,a frequent
misconceptionwas that WWT was a “real” shared-
memorysystem,not just a test-bed.Studentsrunning
programs on WWT also tended to blur this distinction.

In early 1993, we recognizedthat WWT was an
interestingfine-grainshared-memorysystemin its own
right, an observation that led to two parallel efforts.
First, we began to develop a performance-oriented
shared-memorysystemfor theCM-5, simplyby remov-
ing from WWT thecomponentsthatcalculatedtheper-
formanceof the hypotheticalhardware.This effort led
to the Blizzard system (discussed further below).

Second,we realizedthat a small amountof hard-
waresupportmightallow amessagepassingmachineto
achieve competitive sharedmemoryperformance.Our
first stepin thisdirectionwasajoint projectwith Think-
ing Machines and NimBus to develop an enhanced
memorycontroller(EMC) thatprovidedfirst-classfine-
grain accesscontrol.The short-termgoal wasto elimi-
natethe complex, relatively slow “hacks” requiredby
WWT to manipulateECCandto synthesizeafine-grain
read-onlystatevia pageprotection.The longer term

goalwasto developa “smartNI” thatcouldhandlethe
mostfrequentcasesof a simpleDir1SW-like coherence
protocol—mostlikely with a programmableprocessor.
The EMC chip was designedand fabricatedby Nim-
Bus.Sadly, Thinking Machinesnever usedit in a prod-
uct, largelybecauseof theadditionalproductrisk posed
by the enhanced features.

Typhoon
Typhoonemergedasthefollow-on to theEMC and

“smart NI” approach.To minimize our exposure to
Thinking Machines’s marketing decisions,we envi-
sionedasingleASIC thatwouldnot interferewith “nor-
mal” operationswithin a local node.The ASIC would
provide hardware snooping support for fine-grain
accesscontrol, an embeddedprotocol processorto
implementsomeor all of thecoherenceprotocol,anda
closely coupled network interface.

A majorgoalof Typhoonwasto increaseprogram-
ming flexibility beyondCSM,allowing programmersto
optimize known communicationpatternsaggressively.
The approachthat we chosewas to give programmers
directaccessto theraw mechanismsunderlyingshared-
memory protocols. An important differencebetween
Typhoonandour earlierDir1SW work camefrom our
realizationthat many protocolswe envisionedneeded
flexibility on therequesterside,not juston thedirectory
side.This approachfit well with the “smart NI” model
thatcalledfor usinga programmableprocessoror con-
troller to accessthe network interface. We refer the
readerbackto theoriginalpaperfor therestof themoti-
vation and design.

Tempest
Programmersneededan abstractionof Typhoon’s

shared-memorymechanismsto develop protocols.Ini-
tially, we borrowed from the internalWWT interfaces
andassignedeachmemoryblock anaccesscontrol tag.
Accessesthatconflictedwith thereferencedblock’s tag
invokedauser-specifiedhandler. Weinitially referredto
this abstraction simply as the “tagged block model”.

Two importantchangesoccurredin late1993.First,
we recognizedthe fundamentalimportanceof the pro-
grammingabstraction.Thetaggedblock modelapplied
equallywell to thenascentall-softwareBlizzardsystem
asto Typhoon,andit clearlymadesenseto supportthe
sameprotocolprogramminginterfaceon bothsystems.
Although our original intent was merely to develop a
simple abstractionfor Typhoon,we endedup with a
powerful abstractionfor which Typhoonwas just one
implementation.Second,we gave the abstractiona
“first class” name to reflect our appreciationfor its
importance.We choseTempest,in keeping with the

DRAFT 93 May 27, 1998

Wind Tunnelgroup’s practiceof namingnearlyevery-
thingafterawind (fortunately, childrenhavebeenunaf-
fected by this practice).1

Subsequently, theTempestinterface[5] becamethe
focusof muchof theWWT group’s research.Tempest’s
stable,powerful abstractionsenabledparallel,synergis-
tic researchon both sidesof the interface.On the sys-
tem side, we began to explore the broad range of
possibleTempestimplementations.Othergroupmem-
berssimultaneouslyinvestigatedthe implicationsof a
flexible protocol interface for applications,program-
mers,andcompilers.A key goalemergedto have Tem-
pest provide application portability acrossa diverse
rangeof implementations,eachwith differentcost/per-
formance objectives.

Blizzard: An All-softwar e Tempest System
The Blizzard systemsare a family of Tempest

implementationsthat run on stockhardware [11]. One
variant,Blizzard-E,usesWWT’s “ECC hack” to pro-
vide fine-grain accesscontrol. Another variant, Bliz-
zard-S,usesexecutableediting [7] to add explicit in-
line checks.Both versionswere initially implemented
on the CM-5 and later portedto the WisconsinCOW,
our clusterof 40 Myrinet-connectedSun SparcStation
20s.Our researchon theapplicationsof Tempestbene-
fited greatly from the availability of a real (not simu-
lated), relatively stable Tempest platform.

Typhoon-0: Minimal Hard ware for Tempest
A key aspectof the Typhoondesignis the (ab)use

of existing snoopingcachecoherenceprotocolsto pro-
vide hardwarefine-grainaccesscontrolon anotherwise
unmodifiedplatform. We decidedto demonstratethe
feasibility of this approachby implementinga proto-
typeaccesscontrol boardfor theSunSparcStationand
populatingthe40 nodesof theCOW. Theresultingsys-
tem, Typhoon-0[10], canbe viewed eitherasa proto-
type of the more highly integrated Typhoon or as a
minimal-hardware Tempest implementation. Unlike
Typhoon,Typhoon-0relieson off-the-shelfdevicesfor
eachnode’s network interfaceand protocol processor.
In theprocessof our designandanalysisof Typhoon-0,
we recognizedthe benefitsof an intermediatedesign,
Typhoon-1[10], that integratesthe network interface
(but not the protocol processor)with Typhoon-0’s
access control unit.

1. This practicecreatedanunnecessaryamountof confusion
amongthe meteorologicallychallenged,who could not
tell a Tempest from a Typhoon.

Custom Protocol Demonstrations
Oneof our early experimentsinvestigatedthe per-

formancegainsmadepossibleby writing custom,appli-
cation-specific protocols [3]. The performance
improvementsfor threeapplicationkernelson the 32-
nodeBlizzard/CM-5systemrangedfrom 1.4–16times,
which stronglyencouragedus to extendthis approach.
Subsequentexperiments [8] also demonstratedthe
valueof customprotocolsin runningparallel irregular
applications.However, the efforts of many students
showed that writing customprotocolswasdifficult and
time consuming.

Programming Support
In responseto theseproblems,the project investi-

gatedprogramminglanguagesandtoolsto supportcus-
tomprotocoldevelopment.Oneeffort leadto theTeapot
languagefor writing and verifying custom protocols
[2]. This languagehalved the size of a protocol, but
moreimportantly, enableduseof automaticverification
tools,drasticallyreducingthetimeandeffort to produce
a working protocol.

Another attackon the difficulty of writing proto-
cols,wasto shift the burdenof exploiting themfrom a
programmer to a compiler. Several efforts clearly
showedthatcompilersfor high-level programminglan-
guagescouldexploit customprotocols,to producecode
with robust parallel performancethat in many cases
exceededhand-writtencode.Initially, thiswork focused
on researchparallel languages,suchas C**, in which
Tempestsupportedanovel parallelprogrammingmodel
[6]. However, with theassistanceof thePortlandGroup,
we werealsoableto show that customprotocolscould
greatlyexpandthe rangeof High PerformanceFortran
(HPF) programs that ran well [1].

Summary
The TempestandTyphoonpaperwasthe first of a

broad collection of Tempest-relatedpapersfrom the
Wisconsin Wind Tunnel project (see
http://www.cs.wisc.edu/~wwt). Its impact
within Wisconsinhasbeenconsiderable,contributing to
8 Ph.D.dissertationsand8 Mastersdegrees.Wesuspect
its impact beyond Wisconsinhas also beenconsider-
able, but we leave that evaluation to others.

Acknowledgments
Many haveaskedabouttheabsenceof Mark Hill as

anauthorof theTyphoonpapers.Mark hasbeena con-
stant co-leaderand contributor to the Wind Tunnel
project, including the Tempestand Typhoonresearch.
In mid-summer1993,Mark unilaterallydistancedhim-
self from theTyphooneffort—againstour objections—

DRAFT 94 May 27, 1998

to help potential tenureletter writers differentiateour
contributions from his own. Despitestaying at arm’s
length,Mark madenumerouscontributionsto this work
andhasbeenactively involvedin theTempestfollow-on
projects.

Many studentshave contributed to the Tempest
work. Wewould like to singleoutone,RobPfile,for his
efforts to implement the Typhoon-0 prototype.

This work received financialsupportfrom a num-
ber of sources.Initial supportcamefrom the National
ScienceFoundationsPYI/NYI program(grantsCCR-
9157366 and CCR-9357779).Primary support for
Typhoon came from Michael Foster of the NSF’s
ExperimentalSystemsprogram(grant MIP-9225097).
Gil WeigandandBob Lucasof the DefenseAdvanced
Research Projects Agency supported the Blizzard
implementations(ARPA Order Number B550). Dave
Douglas,Bob Zak, and Greg Papadopolousprovided
technical and financial support from Thinking
Machines Corporation and later Sun Microsystems.
Additional supportwasprovidedby a Univ. of Wiscon-
sin Graduate School Grant, a Wisconsin Alumni
ResearchFoundationFellowship,an AT&T Ph.D.Fel-
lowship,anddonationsfrom Digital EquipmentCorpo-
ration, Xerox Corporation, the Portland Group. Our
Thinking MachinesCM-5 and WisconsinCOW were
purchased through NSF Institutional Infrastructure
Grant CDA-9024618with matchingfunding from the
Univ. of Wisconsin Graduate School.

About the Authors:
StevenK. Reinhardtcompletedhis PhDat theUni-

versity of Wisconsinon the Typhoonimplementations
of the Tempestinterface.He is currently an Assistant
Professorof ElectricalEngineeringandComputerSci-
enceat the University of Michigan, wherehe is con-
ductingresearchon parallelcomputerarchitecturesand
systems.

JamesR. Larusis an AssociateProfessorof Com-
puterSciencesat theUniversityof Wisconsin–Madison.
His research includes programming languagesand
compilers, the design and programming of shared-
memoryparallelcomputers,programprofiling andtrac-
ing, and program executable editing.

David A. Wood is anAssociateProfessorof Com-
puterSciencesandElectricalandComputerEngineer-
ing at the University of Wisconsin–Madison.His
researchspanscomputerarchitecture,emphasizingpar-
allel computer design, implementation, and evaluation.

References

[1] S.ChandraandJ.R. Larus.Optimizingcommunication
in HPF programs on fine-grain distributed shared
memory. In Sixth ACM SIGPLAN Symposiumon
Principles& Practiceof Parallel Programming, pages
100–111, June 1997.

[2] S.Chandra, B. Richards, and J.R. Larus. Teapot:
Language support for writing memory coherence
protocols. In Proceedings of the SIGPLAN ’96
Conference on Programming Language Design and
Implementation (PLDI), May 1996.

[3] B. Falsafi, A. R. Lebeck,S.K. Reinhardt,I. Schoinas,
M. D. Hill, J.R. Larus, A. Rogers,and D. A. Wood.
Application-specific protocols for user-level shared
memory. In Proceedingsof Supercomputing’94, pages
380–389, Nov. 1994.

[4] M. D. Hill, J.R. Larus, S.K. Reinhardt, and D. A.
Wood. Cooperative shared memory: Software and
hardware for scalable multiprocessors. ACM
Transactions on Computer Systems, 11(4):300–318,
Nov. 1993. Earlier version appeared in ASPLOS V.

[5] M. D. Hill, J.R. Larus, and D. A. Wood. Tempest:A
substratefor portableparallelprograms.In Proceedings
of COMPCON ’95, pages327–332, San Francisco,
California, Mar. 1995.

[6] J.R. Larus, B. Richards,and G. Viswanathan.LCM:
Memory system support for parallel language
implementation. In Proceedings of the Sixth
International Conferenceon Architectural Supportfor
Programming Languages and Operating Systems
(ASPLOS VI), pages 208–218, Oct. 1994.

[7] J.R. LarusandE. Schnarr. EEL: Machine-independent
executableediting.In Proceedingsof theSIGPLAN’95
Conference on Programming Language Design and
Implementation (PLDI), pages 291–300, June 1995.

[8] S.S. Mukherjee,S.D. Sharma,M. D. Hill, J.R. Larus,
A. Rogers,and J.Saltz. Efficient supportfor irregular
applicationson distributed-memorymachines.In Fifth
ACM SIGPLANSymposiumonPrinciples& Practiceof
Parallel Programming (PPOPP), July 1995.

[9] S.K. Reinhardt,M. D. Hill, J.R. Larus,A. R. Lebeck,
J.C. Lewis, and D. A. Wood. The Wisconsin Wind
Tunnel: Virtual prototyping of parallel computers.In
Proceedingsof the 1993 ACM SigmetricsConference
on Measurementand Modeling of ComputerSystems,
pages 48–60, May 1993.

[10] S.K. Reinhardt, R. W. Pfile, and D. A. Wood.
Decoupled hardware support for distributed shared
memory. In Proceedings of the 23rd Annual
International Symposiumon Computer Architecture,
pages 34–43, May 1996.

[11] I. Schoinas,B. Falsafi, A. R. Lebeck,S.K. Reinhardt,
J.R. Larus,andD. A. Wood.Fine-grainaccesscontrol
for distributed sharedmemory. In Proceedingsof the
Sixth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS VI), pages 297–306, Oct. 1994.

[12] D. A. Wood, S.Chandra,B. Falsafi, M. D. Hill, J.R.
Larus, A. R. Lebeck, J.C. Lewis, S.S. Mukherjee,
S.Palacharla,and S.K. Reinhardt. Mechanismsfor
cooperative sharedmemory. In Proceedingsof the20th
Annual International Symposium on Computer
Architecture, pages156–168,May 1993.Also appeared
in CMG Transactions, Spring 1994.

