
Abstract
This paper investigates hardware support for fine-grain distrib-

uted shared memory (DSM) in networks of workstations. To
reduce design time and implementation cost relative to dedicated
DSM systems, we decouple the functional hardware components
of DSM support, allowing greater use of off-the-shelf devices.

We present two decoupled systems, Typhoon-0 and Typhoon-1.
Typhoon-0 uses an off-the-shelf protocol processor and network
interface; a custom access control device is the only DSM-specific
hardware. To demonstrate the feasibility and simplicity of this
access control device, we designed and built an FPGA-based ver-
sion in under one year. Typhoon-1 also uses an off-the-shelf proto-
col processor, but integrates the network interface and access
control devices for higher performance.

We compare the performance of the two decoupled systems
with two integrated systems via simulation. For six benchmarks on
32 nodes, Typhoon-0 ranges from 30% to 309% slower than the
best integrated system, while Typhoon-1 ranges from 13% to
132% slower. Four of the six benchmarks achieve speedups of 12
to 18 on Typhoon-0 and 15 to 26 on Typhoon-1, compared with 19
to 35 on the best integrated system. Two benchmarks are hampered
by high communication overheads, but selectively replacing
shared-memory operations with message passing provides speed-
ups of at least 16 on both decoupled systems. These speedups indi-
cate that decoupled designs can potentially provide a cost-effective
alternative to complex high-end DSM systems.

1  Introduction
Technological and economic trends make it increasingly cost-

effective to assemble large-scale parallel systems from off-the-
shelf workstations and networks [2]. These “networks of worksta-
tions”, or NOWs, primarily target message-passing applications.
Although shared-memory applications can be run on these
machines, the lack of explicit support for this model introduces
significant overheads. This paper explores hardware support for
cache-coherent distributed shared memory (DSM) on workstation-
based systems. In keeping with the original motivation for net-
works of workstations, we focus on leveraging off-the-shelf com-
ponents and minimizing the amount of custom, DSM-specific
hardware.

In a DSM system, processors transparently access both local
and remote memory using loads and stores. References to non-
local data are completed by copying the data into a local cache and
performing the reference on the copy. The functions required to
implement DSM can be divided into three areas:

• messaging provides the inter-node communication required for
parallel computation,

• access control detects memory references that require non-
local action, e.g., a load of data for which there is no valid
local copy, and

• protocol processing sequences messages and manipulates
access control to satisfy processor memory references while
maintaining a globally consistent image of memory.

Industry trends suggest that now, or in the near future, we can
apply commodity components in two of these three areas. General-
purpose microprocessors rapidly and flexibly sequence operations
and manage data, making them suitable for protocol processing.
Commercial network technologies such as switched Ethernet,
ATM, and Myrinet [7], and research efforts such as SHRIMP [6],
promise rapid advances in messaging performance. Access control
is the only function for which there is no prospective off-the-shelf
solution. We can leverage available components by decoupling
DSM support—that is, by building simple access control hardware
that co-exists with off-the-shelf processors and networks.

In contrast, dedicated DSM systems [1, 28, 13, 25, 33, 37] inte-
grate all three functions in custom hardware. This hardware pro-
vides high performance, but requires complex custom chips that
are costly both to design and to manufacture. At the other extreme,
many systems use no DSM-specific hardware. These systems send
messages over existing networks and do protocol processing in
software on general-purpose CPUs—as do the decoupled systems
we propose. However, they perform access control either entirely
in software [4, 39, 23] or using standard virtual memory hardware
[29, 10, 24]. The cost of avoiding custom hardware for access con-
trol is that the user must compromise on performance, program-
ming model, or both.
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This paper has two primary contributions: the design of two
decoupled systems, Typhoon-0 and Typhoon-1, and the quantita-
tive comparison of their (simulated) performance with two sys-
tems with integrated DSM support.

Both Typhoon-0 and Typhoon-1 rely on general-purpose CPUs
for protocol processing. Typhoon-0 also uses a generic network; a
custom access control module per node is its only DSM-specific
hardware. To demonstrate the feasibility and relative simplicity of
this access control device, two people implemented it in less than
one year using two FPGAs and two SRAMs [34]. Typhoon-1 uses
a similar access control device that also integrates the network
interface. This integration improves performance by eliminating
data movement through the protocol processor. Both devices use
cacheable control registers, a novel technique that increases the
efficiency of communication from bus devices to processors by
leveraging the local bus coherence protocol.

To exploit the flexibility of software protocol processing, both
decoupled designs run user-level protocol handlers and support the
Tempest interface [35]. This allows the use of previously written
application-specific protocols [14, 32], which selectively replace
shared-memory operations with message passing operations to
improve performance. Shadow spaces allow user-level handlers to
directly convey protected addresses to the bus devices [6, 19, 43].

Using simulation, we quantify the performance impact of
decoupling—that is, given subsystems with similar capabilities,
what is the performance penalty for implementing those sub-
systems as separate components rather than integrating them into a
single device? We compare the performance of Typhoon-0 and
Typhoon-1 with two integrated systems. The first integrated sys-
tem is an idealized Simple COMA [18] implementation that com-
bines a network interface and access control with an infinitely fast
hardwired protocol state machine. The second, modeled after
Typhoon [37], replaces the state machine with a user-level proto-
col processor to allow execution of optimized application-specific
protocols. All of these systems can be built from off-the-shelf
workstations, unlike those that replace standard cache or memory
controllers, such as Alewife [1], FLASH [13], and S3.mp [33].

In our evaluation, all of the systems use a single processor per
node for computation, although small-scale (e.g., four-way) bus-
based multiprocessor nodes may be more cost-effective. All of the
designs we describe are compatible with multiprocessor nodes.
The decoupled systems add a second general-purpose CPU dedi-
cated to protocol processing. This configuration provides a direct
comparison to the integrated systems, which also have dedicated
protocol processing resources. However, in the long term, we
expect that decoupled systems will dynamically schedule protocol
processing along with computation across all of the processors in a
multiprocessor node [15].

We find, not surprisingly, that the decoupled designs have sig-
nificantly higher communication overheads. A simple remote miss
takes roughly four times longer on Typhoon-0 than on either of the
integrated systems. Typhoon-1’s integration of access control and
networking cuts this latency nearly in half, but is still twice as slow
as the integrated designs. However, the net effect on overall per-
formance is application dependent. Four of six benchmarks spend
more than half of their time computing on the integrated systems,
mitigating the impact of higher communication overheads. On 32
nodes, these benchmarks achieve speedups of 12 to 18 on
Typhoon-0 and 15 to 26 on Typhoon-1, compared with 19 to 35 on
the Simple COMA system. The other two benchmarks spend 30%
or less of their time computing on the integrated systems, so higher
overheads have a severe impact. However, application-specific
protocols significantly improve their performance, providing
speedups of 16 or more on both decoupled systems. These speed-
ups, combined with the simplicity of the required hardware, indi-

cate that decoupled designs have the potential to provide cost-
effective parallelism [46] for shared-memory programs.

In the next section, we describe the systems in more detail.
Section3 presents simulated performance results. Section4 dis-
cusses related work, and Section5 provides a summary and con-
clusions.

2  System descriptions
To study the performance impact of decoupling, we compare

four systems that use the same base workstation and network tech-
nology, but differ in the level of integration of DSM support. The
first part of this section discusses the common features of all four
systems. The second subsection describes the integrated systems.
The final subsection describes features common to both decoupled
systems and then the systems themselves.

2.1  Common framework
Figure1 depicts the common organization: a set of worksta-

tion-based nodes connected by a point-to-point network. The DSM
support hardware (represented by the “cloud” in Figure1) encom-
passes three components: access control, messaging, and protocol
processing.

As in Simple COMA [18] and Typhoon [37], each node’s local
DRAM acts as a cache for remote data using a combination of vir-
tual address translation and fine-grain access control. Virtual
address translation directs remote data accesses to local physical
memory. Accesses that require local memory allocation are
detected and handled via page faults.

The systems maintain coherence at cache-block granularity
(e.g., 32 to 128 bytes) using fine-grain access control. Each cache-
block-sized piece of memory has an associated access tag, which
may beread-write, read-only, or invalid. (These tags correspond,
respectively, to theexclusive, shared, and invalid states found in
most hardware caches.) Every processor memory access is
checked against the access tag of the referenced block. A conflict-
ing access (a read or write to an invalid block or a write to a read-
only block) causes ablock access fault, which suspends the access
and invokes a coherence protocol action. These actions are per-
formed by hardware on Simple COMA and by software handlers
on the other systems. The protocol resumes the access once the
conflict is resolved (e.g., after the remote data is fetched). Non-
conflicting accesses proceed normally.

A snooping device on the memory bus enforces fine-grain
access control using the signals intended for local bus-based
coherence.1 On every bus transaction caused by a processor cache
miss, the device checks its on-board tag store in parallel with the
main memory access. If the access conflicts with the tag, the

1.  We assume an ownership-based invalidation protocol with write-back
caches. Other bus protocols do not necessarily preclude implementing
access control via snooping, but they are less common and introduce some
complications, so we do not address them here.
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device inhibits the memory controller’s response (as if to perform
a cache-to-cache transfer) and suspends the access. If the access
does not conflict with the tag, the device allows the memory con-
troller to respond. In the case of a read access to a read-only block,
the device asserts the “shared” bus signal to force the processor
cache to load the block in a non-exclusive state. A subsequent
write to the block will cause the processor to initiate an invalida-
tion operation on the bus, which the device can then detect and
suspend.

Once a block is loaded into the processor’s cache, accesses that
hit cannot be snooped; these hits must be guaranteed not to conflict
with the access tag. For this reason, tag changes that decrease the
accessibility of a block (e.g., from read-write to invalid) require a
bus transaction to invalidate any copies that may be in the hard-
ware caches.

Each node interfaces to the network through a pair of 64-bit–
wide hardware queues, one in each direction. Sending a message
requires writing a header word indicating the destination node and
message length, followed by the message data, into the send
queue. A message is received by reading words out of the receive
queue. A separate signal indicates when a message is waiting at the
head of the receive queue. In Typhoon, Typhoon-0, and
Typhoon-1, the message queues are memory-mapped and directly
accessible from user-level software via loads and stores, as in the
CM-5. The queues are directly accessed by the Simple COMA sys-
tem’s hardware state machine. Though it is impossible to predict
the commodity network interface of the future, we believe that it
will provide a queue abstraction [8] and have roughly similar per-
formance characteristics.

2.2  Integrated systems
To provide a reference point for the decoupled designs’ perfor-

mance, we study two systems that tightly integrate DSM support
functions in a single device.

The first system is an idealized implementation of Simple
COMA [18]. The network interface queues and access control
snooping logic are tightly coupled with an infinitely fast hardwired
state machine implementing a full-map invalidation-based coher-
ence protocol. We assume this device has zero-cycle access to all
protocol state information. Only network queue and memory bus
interface delays are charged.

The second system, Typhoon [37], combines a network inter-
face, access control logic, and a user-level protocol processor on a
single device (see Figure2). Dispatch hardware rapidly invokes
user handlers in response to message arrivals and block access
faults. By virtue of running on the integrated processor, these han-
dlers have single-cycle access to the memory-mapped registers
that manipulate access control and send and receive message data.

Typhoon implements access control using a “reverse transla-
tion lookaside buffer”, or RTLB. The RTLB is an on-chip cache
indexed by physical page number. Each entry contains the page’s
access tags, the corresponding virtual page number, and a pointer
to the per-page protocol data structure. Each bus transaction is
checked against the tags stored in the RTLB. On an access fault,
the virtual page number is used to reverse translate the physical
address from the bus to a virtual address for the user-level handler.

The Typhoon device also contains a block buffer and an inde-
pendent block transfer unit to stage data between the network and
memory. The buffer has address tags, like a cache, to accelerate the
completion of remote misses. Arriving data is written into the
buffer and the tag is set to match the memory address. Data
requested by the compute processor (e.g., when it retries a faulting
access) can be fetched from the buffer (as a cache-to-cache trans-
fer) without waiting for the data to be written to memory. The
block buffer also keeps data transfers from polluting the protocol
processor’s data cache.

2.3  Decoupled systems
Simple COMA and Typhoon rely on complex, highly inte-

grated devices to provide high performance. This section presents
two decoupled designs, Typhoon-0 and Typhoon-1, that sacrifice
some of this performance to reduce design cost and complexity.
Both perform protocol processing in software on general-purpose
CPUs. Typhoon-0 also uses a generic network interface.

In this paper, we assume that Typhoon-0 and Typhoon-1 have a
dedicated protocol processor per node, corresponding to the pro-
cessor on the integrated Typhoon’s network interface device. How-
ever, protocol processing can be dynamically scheduled along with
computation across all of the CPUs in a node.

The down side of decoupling is its effect on performance. The
components must communicate across the system bus, which is
both slower than an on-chip interconnect and subject to conten-
tion. Both Typhoon-0 and Typhoon-1 use a novel technique,
cacheable control registers, to efficiently transfer information
across the bus. A cacheable control register is a device register
accessed using the local bus cache coherence protocol. When the
register is read, the device responds with a cache block of data.
Whenever the contents of the register change, the device issues a
bus transaction to invalidate the cached copy. A cacheable control
register has two features:

• As long as the register’s value does not change (and the block
is not replaced), repeated accesses are satisfied in the proces-
sor’s cache, reducing access latency and bus traffic. This
allows a processor to efficiently poll the register. Because
interrupts are expensive in modern CPUs, the protocol proces-
sor polls for events in both Typhoon-0 and Typhoon-1.

• An entire cache block of data is transferred in a single burst. If
multiple words of data must be fetched from the device, a burst
is much more efficient than a series of uncached loads, each
requiring a separate bus transaction.

Another issue is the protected communication of addresses
across the bus. Tempest’s user-level protocol software needs to
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Figure 2. A Typhoon node, including a block diagram of the
network interface/access control/protocol processor device. RTLB
is the reverse TLB; BB is the block buffer; the BAF buffer holds

information on block access faults. The second network send
queue is for use by the compute processor(s).
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manipulate access control hardware using virtual addresses. How-
ever, passing virtual addresses as data requires a translation and a
protection check in the receiving component. We avoid both of
these using a shadow space[6, 19, 43]. The access control device
supports a physical address range—the “shadow space”—as large
as, and at a fixed offset from, the machine’s physical memory.
Accesses to the shadow space are interpreted as operations on the
real memory space. A user process can directly access a shadow
space page if and only if it has permission to manipulate the corre-
sponding physical memory page.

2.3.1  Typhoon-0
Typhoon-0 separates DSM support functions across three com-

ponents: a protocol processor, a network interface, and a fine-grain
access control device. The first two components are off-the-shelf
devices, while the third is custom hardware. To demonstrate the
feasibility of the access control device, we implemented it for a
cluster of SPARCstation 20 workstations [34]. The device is a
standard-sized MBus module (approximately 3.3" by 5.8") con-
taining two Altera 81188-2A FPGAs (each containing 12,000
“usable gates”), two 4M by 1 static RAMs, and a few miscella-
neous parts. Each workstation has two ROSS HyperSPARC CPUs;
by software convention, one acts as the compute processor and the
other acts as the protocol processor. The nodes in our Typhoon-0
implementation are connected by a Myricom Myrinet network [7].

Figure3 shows a block diagram of a Typhoon-0 node. Access
tags are implemented as a two-bit directory with one tag for every
block in physical memory. The bus logic observes every coherent
bus transaction, and indexes the tag SRAM with the physical
address. Depending on the tag value and the access type, the bus
logic may intervene in the transaction, as described in Section2.1.
The Typhoon-0 card only provides fine-grain access control; it
does not duplicate the full functionality of the Typhoon RTLB.
Reverse translation and per-page state lookup are performed in
software using an inverted page table structure.

Typhoon-0 provides protected user-level tag access using a
shadow space, as described above. A read from the shadow space
returns the corresponding tag value. A block’s tag is modified by
writing the new tag value to the shadow space. When access to a
block is downgraded (e.g., from read-write to invalid), Typhoon-0
issues a read-invalidate bus operation to invalidate any cached
copies and retrieve the current version, which may be in a proces-
sor’s cache. The block buffer (shown in Figure3) stores the data
returned by the read-invalidate. The block buffer is a cacheable
control register, so a processor can read its contents in a single
burst.

Figure 3. A Typhoon-0 node, including a block diagram of the
access control device.

1

Bus Interface

to memory bus

addr

2

data

Cache

NI

Cache

AC

compute
CPU

protocol
CPU

Mem

Tag
SRAM

Block
Buffer

Status
Regsfrom NI

to network

Because data must be copied explicitly to and from the network
interface, every shared-memory data transfer passes through the
protocol processor twice—once on the sender and once on the
receiver. Even for network interfaces that support DMA, like the
Myrinet in our actual implementation, cache block transfers typi-
cally are too small to amortize setup overheads.

A protocol action that combines a data transfer and a block
access change must be sequenced carefully. For example, to send a
writable (potentially modified) block to another node, the protocol
processor changes the tag—causing a read-invalidate from the
access control device—then copies the contents of the block buffer
to the network interface. The protocol processor cannot directly
access the block after the tag has changed because Typhoon-0 must
enforce access tags for both CPUs to avoid illegal bus protocol
states. The system cannot send the block data before the tag is
changed, or writes made by the compute processor after the send
but before the tag change would be lost.

A similar situation arises when a message arrives containing
data for a previously invalid block. The message handler cannot
directly write the data without changing the block’s access tag, but
changing the tag first would create a race where another thread
could access the old contents. Instead, the message handler writes
the data via an uncached alias that bypasses the access tag check.
Once memory is updated, the tag can be upgraded.

Typhoon-0 supports dispatch of access fault and message han-
dlers using a cacheable control register called thedispatch register.
The dispatch register combines a user-specified base address with
status information to form a program counter [21]. The status por-
tion of the PC forms an index into a code table, much like a pro-
cessor trap vector table. The protocol processor polls for events by
performing an indirect jump to the PC location. If no events are
pending, the code table entry simply returns to the polling loop.
The cacheable nature of the register allows efficient polling when
the status changes infrequently. The burst transfer capability of the
cacheable register is used on access faults to transfer the physical
address of the block on which the fault occurred, the access type
(read or write), and the block’s tag value in a single bus operation.
This data is formatted to accelerate fault handling. For example,
the physical page number is in a separate word and is pre-shifted to
form an index into the inverted page table. Only eight instructions
are required to determine the virtual address of the faulting block
and select and invoke a handler specific to the page and fault type.1

The Typhoon-0 dispatch register signals message arrivals as
well as access faults. The message status is controlled by an exter-
nal signal, shown in Figure3, that is connected to the network
interface. The network interface’s message arrival interrupt signal
(if any) can be routed to the Typhoon-0 card. (The SPARCstation
implementation of Typhoon-0 uses a status LED signal from the
Myrinet network interface.) The integration of access fault and
message status allows a single poll on a (cacheable) value to check
for all possible protocol events. Unlike Typhoon, Typhoon-0’s dis-
patch logic only notifies the processor of the existence of a mes-
sage; the NI must explicitly be accessed to determine the address
of the message handler to invoke.

2.3.2  Typhoon-1
Typhoon-1 combines access control and the network interface

on a single device, as shown in Figure4. Typhoon-1 significantly
improves performance over Typhoon-0 without a large increase in
complexity. No major new control or datapath features are added

1.  This total comprises two loads to the cacheable dispatch register, an
indirect jump on the dispatch PC, two loads to read the 128-bit inverted
page table entry, one load to read the protocol handler PC, an indirect call
to the handler, and an OR to combine the virtual page number with the
page offset. Assuming cache hits, this sequence takes ten cycles on the
HyperSPARC, which has a one cycle load-use delay.



other than the network interface itself, which could be a separate
single-chip device such as the Myrinet LANai [7], Dolphin/LSI
Logic SCI NodeChip [30], or Cray SCX adapter [40]. Typhoon-1
incorporates three specific advances over Typhoon-0: user-level
cache block DMA with combined access control, a tagged block
buffer, and enhanced message dispatching.

First, Typhoon-1 uses Typhoon-0’s shadow space to support
user-level DMA at cache-block granularity so that data transfers
need not pass through the protocol processor. In effect, Typhoon-0
interprets a write to the shadow space as a command to change a
block’s access tag; Typhoon-1 simply adds a few new commands.
One of these commands copies the corresponding memory block
to the message send queue; another effectively copies data from
the message receive queue to the memory block. An additional set
of commands atomically combine an access tag modification with
block DMA to or from the network queues. These commands
eliminate the awkward copies Typhoon-0 must perform when
invalidating a modified block or receiving data for a previously
invalid block. Since Typhoon-0 can become a bus master and issue
burst transactions, these additional features do not significantly
increase complexity.

The shadow space mapping solves the address translation and
protection issues usually associated with user-level DMA [5].
Because the DMA size is limited to a single cache block, there is
only a small window during which the virtual-to-physical transla-
tion must remain valid, so we can use a simple technique to pre-
vent the DMA mechanism from using a stale translation [19].
Typhoon-1 provides a single status bit that indicates that a DMA is
outstanding; the operating system temporarily disables DMA initi-
ation and waits for this bit to clear before invalidating a translation
that was potentially used for DMA.

A second enhancement, borrowed from the integrated
Typhoon, is the addition of address tags and snooping to the block
buffer. Copies from the network to memory are performed by mov-
ing the data into the block buffer and tagging it with the destination
physical address; the new data will be provided on a future access
to that block as a cache-to-cache transfer. The data is also written
to memory in the background, but unlike Typhoon-0 this copy is
not on the critical path of a remote miss.

Typhoon-1’s third major improvement over Typhoon-0 is
greater support for message handler dispatch. When a message
arrives, the entire message header is transferred in the dispatch
register block, saving several uncached loads per message receive.
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Figure 4. A Typhoon-1 node, including a block diagram of the
network interface/access control device.
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3  Performance evaluation
In this section, we use simulation to compare the performance

of our four designs. First we describe the simulation parameters
and methodology, then we present results for a simple microbench-
mark and a set of macrobenchmarks.

We simulate 32-node systems. Each node has a 200MHz dual-
issue SPARC processor. We assume a perfect instruction cache and
a 1MB direct-mapped data cache with 64-byte address blocks and
32-byte subblocks. The instruction latencies, issue rules, and
memory hierarchy are modeled after the Ross HyperSPARC [38,
41].

The processor(s), memory, access control and/or network inter-
face devices within each node are connected by a 50MHz MBus.
The MBus is a 64-bit, multiplexed address/data bus that maintains
coherence on 32-byte blocks using a MOESI protocol [42]. On a
cache miss, the critical word is returned from main memory 140 ns
(seven bus cycles or 28 processor cycles) after the request is issued
on the MBus. Miss detection, processor/bus clock synchroniza-
tion, and bus arbitration add 11-14 processor cycles to the total
miss latency. Bus occupancy, contention, and arbitration are fully
simulated.

To isolate the effects of decoupling, Typhoon-0, Typhoon-1,
and the integrated Typhoon are given the same protocol-process-
ing resource—a dedicated CPU, identical to the compute CPU.
Although this assumption results in a more controlled experiment,
it diverges from expected practice in two ways. First, the symmet-
ric dual-processor nodes of the decoupled designs may be more
efficiently used by dynamically scheduling protocol handlers and
computation across both processors. Second, the design effort
required for an actual Typhoon implementation would likely result
in an integrated protocol processor that is a generation or more
behind the compute processor.

Timing parameters for the Typhoon-0 and Typhoon-1 access
control devices are taken from our FPGA-based Typhoon-0 imple-
mentation. The devices are clocked at bus speed, 50Mhz. Tag and
control register accesses take three and four bus cycles, respec-
tively. For reads to cacheable control registers, the first data word
is returned in three bus cycles and additional words are returned on
every second cycle.

Our simulated Typhoon-0’s network interface is an indepen-
dent MBus device, similar to the CM-5 NI, with a message arrival
signal that feeds the access control device’s dispatch register. Reg-
ister access delays are set to match our measured results from the
CM-5: seven bus cycles for reads and three for writes.

The integrated Typhoon’s embedded protocol processor is
identical to the primary CPU, as discussed above. This processor
has single-cycle memory-mapped access to all on-chip control reg-
isters and the network interface queues. Up to 64 bits of data per
cycle can be transferred between the network interface queues and
the data cache or block buffer. We assume an infinite RTLB.

The Simple COMA controller processes each access fault or
message with zero overhead, including manipulation of protocol
state and the injection of an arbitrary number of messages. Events
are processed at a maximum rate of 200MHz. Messages observe
latency due to network transport, potential queueing at the control-
ler, and fetching data over the MBus. Due to the structure of our
simulator, messages observe an additional cycle of pipelined
latency between arrival and processing.

To emphasize the performance impact of DSM support, we
assume an aggressive network latency of 100 processor cycles
(500 ns) from the injection of the tail at the sending network inter-
face to the arrival of the head at the receiving interface. Although
dedicated MPP interconnects may surpass this speed, current off-
the-shelf networks are typically slower by an order of magnitude



or more. Contention occurs at network inputs and outputs, but not
internally. We assume that the network is reliable.

End-to-end flow control is enforced by the network interface.
Each node may have at most four messages outstanding to each
other node. The NI generates an acknowledgment as each message
is read by the protocol processor. We avoid deadlock by buffering
blocked messages at the sending node and injecting them as
acknowledgments arrive. The Simple COMA controller has an
infinite send buffer and can inject a buffered message one cycle
after an acknowledgment is received. On the Typhoon systems, the
run-time library queues blocked messages in the sender’s address
space and sets an NI mode bit that causes acknowledgments to
invoke a software handler in the same manner as protocol mes-
sages. This handler sends queued messages and clears the mode bit
when the queue is empty.

Fine-grain access control is performed as described in
Section2.1. On a block access fault, the access control device
inhibits the memory controller and gives the requesting processor a
“relinquish and retry” response, forcing the processor to re-arbi-
trate for the bus. The access control device masks the arbiter to
keep the processor off the bus until the access can be completed
[28]. While this may be difficult to implement on existing systems,
its performance is representative of emerging systems which sup-
port deferred responses, either explicitly (like the Intel P6 [17]) or
using a split-transaction bus. (Unfortunately, our SPARCstation 20
implementation must generate a bus error; the kernel trap vector is
modified to spin on a flag which is set when the data arrives.)

Results were obtained using a detailed execution-driven dis-
crete-event simulator. The cache, MBus, and device simulation are
detailed enough that they were used for initial design verification
of the Typhoon-0 implementation. Actual SPARC binaries are
rewritten (using a tool based on EEL [27]) to replace memory
accesses with calls to the simulator and to add instrumentation to
count instruction execution cycles. All software protocols were
written in C and compiled and linked with the simulated bench-
marks. Full application results were obtained by simulating the
nodes of a system in parallel on a Thinking Machines CM-5 using
a conservative, synchronous parallel simulation algorithm based
on the Wisconsin Wind Tunnel [36].

3.1  Micro-evaluation
To gain insight into the overheads of these systems, we trace a

single remote read miss and break down the latency into its com-
ponents. We assume a cache page has been previously allocated on
the caching node and the block is unshared at the home node. On
the caching node, the miss access invokes a block access fault han-
dler—part of the hardware state machine on Simple COMA, or
software on the Typhoon systems—which sends a request to the
home node. At the home, the message handler downgrades the
block from read-write to read-only and sends a copy to the
requester. Back at the caching node, the response message handler
writes the data to memory, changes the block’s tag to read-only,
and signals the compute processor to retry the access.

The results are presented in Table1. Our common system
assumptions lead to a minimum latency of 299 processor cycles.
The home node latency includes two bus cycles (eight processor
cycles) to request and acquire the bus and ten bus cycles (40 pro-
cessor cycles) to fetch the block. (Block data is not pipelined into
the network.) On the caching node, the final step (“fetch data,
resume”) includes seven bus cycles (28 processor cycles) to fetch
the critical word and three processor cycles to forward the data to
the CPU and complete the load. The idealized Simple COMA sys-
tem requires one additional cycle per message, for a total of 301
processor cycles, or about 1.5µs. For comparison, the FLASH
designers report remote read miss latencies of 1.11 and 1.45µs,

depending on whether the data is dirty in the remote processor’s
cache [20].1

Because these fundamental latencies dominate, Typhoon takes
only 33% longer to satisfy the miss despite the cost of running
software handlers. The decoupled designs do not fare as well in
this comparison. Going from Typhoon to Typhoon-1, the miss
latency roughly doubles; going to Typhoon-0, it nearly doubles
again. As expected, this correlates with a large increase in the
number of bus transactions needed to satisfy the miss.

We also timed this remote miss on our Typhoon-0 implementa-
tion. The results cannot be directly compared with the simulation
because the current platform has slower processors (66 MHz rather
than 200 MHz) and a much slower network (a Myricom Myrinet
with the interface on the 25 MHz SBus I/O bus). However, we can
determine the implementation’s coherence overhead by subtract-
ing the total miss latency—72µs—from the round trip time for
sending a short request and a receiving a 32-byte reply—67µs on
our messaging layer. This leaves 5µs, or 330 processor cycles, for
the block access fault detection and handler dispatch on the cach-
ing node, the tag downgrade on the home, and the tag upgrade and
CPU restart back on the caching node—a value not out of line with
those presented in Table1.

3.2  Macro-evaluation
To determine how these overheads translate into application

performance, we simulated the six shared-memory benchmarks
listed in Table2. Appbt is from the NAS parallel benchmark suite

1.   Because our systems always fetch data over the coherent memory bus,
latencies are independent of data’s hardware cache status.

.

Step S-COMA Typhoon Typhoon-1 Typhoon-0

C
ac

hi
ng

 n
od

e detect L1 cache miss,
issue bus transaction 10 10 10 10

detect access fault,
dispatch handler 0 6 101 101

get fault state 0 16 18 18

send msg 0 13 45 45

request msg latency 100 100 100 100

H
om

e 
no

de

dispatch msg handler 1 6 78 159

read msg 0 3 7 40

directory lookup,
branch 0 20 20 20

send msg header 0 17 38 52

fetch data, change
tag, send 48 48 122 293

response msg latency 100 100 100 100

C
ac

hi
ng

 n
od

e

dispatch msg handler 1 6 78 159

read msg header 0 3 7 40

read msg data,
change access tag 0 12 20 261

unmask CPU, reissue
bus transaction 10 10 32 32

fetch data, resume 31 31 31 31

To
ta

l 200 MHz CPU cycles 301 401 807 1461

50 MHz bus cycles 76 101 202 366

bus transactions 3 3 16 36

Table 1. Breakdown of remote miss latency. Values are 200 MHz
processor cycle counts except where noted.



[3], parallelized for shared memory [9].Barnes is from the
SPLASH-2 suite [44].Em3d is a shared-memory version of an
original Split-C program from Berkeley [12].Dsmc, moldyn, and
unstructured are irregular applications originally from Maryland
[32]. All of the benchmarks are written in C and compiled with gcc
version 2.6.3 at optimization level -O2.

All of the benchmarks exceptem3d use a first-touch migrate-
once scheme [31] to improve the assignment of pages to home
nodes. The first node to touch a page after the parallel phase of the
program begins becomes the page’s home for the remainder of the
execution. This scheme is simple to implement and guarantees that
every page is assigned to one of the nodes that references it.Em3d
explicitly allocates the graph so that writes are always to local
pages.

Although we simulate the full application, we focus on the por-
tion of execution where a production version will spend most of its
time by measuring only the second and following computation
iterations. For most of the applications, iteration times are very
regular, so we can get meaningful results with only a few itera-
tions. There are two exceptions. Inmoldyn, the molecule interac-
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Figure 5. Speedups on 32-node systems.
SC=Simple COMA, T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

Bench-
mark

Application
domain

Primary data
structure(s) Data set

appbt CFD 3D array 32x32x32 array, 5 iterations

barnes hierarchical
N-body oct-tree 16,384 bodies, dtime=0.025,

tstop=0.075 (4 iterations)

dsmc
Monte Carlo
particle-in-
cell

cell array,
particle list

48,000 particles in 9720
cells, increasing to 72,000
particles, 400 iterations

em3d electro-
magnetics

static bipartite
graph

192,000 nodes, degree 5,
5% remote edges,
20 iterations

moldyn molecular
dynamics

molecule list,
interaction list

8788 particles,
30 iterations, interaction list
rebuilt once

unstruc-
tured CFD static mesh 9428 nodes, 59863edges,

5864faces, 5iterations

Table 2. Benchmark descriptions and inputs.

tion list is occasionally rebuilt, resulting in an iteration that is an
order of magnitude longer than the others; we simulate far enough
to include the first of these rebuilds.Dsmc simulates gas particles
in a region with an incoming flow, so at first the number of parti-
cles increases with each iteration. It is impractical to simulate far
enough to reach steady state, so we arbitrarily chose to run for 400
iterations. As the number of particles increases, the speedup also
increases, but very slowly; we do not expect results for a longer
run to be qualitatively different.

Figure5 shows speedups for 32-node systems relative to our
best sequential version on a workstation identical to one node of
the parallel system. The shorter, shaded bars indicate the speedup
for the unmodified shared-memory applications. For the Tempest
systems, this merely requires linking with the standard protocol
library, which implements the same sequentially consistent full-
map invalidation protocol used in the Simple COMA system. The
unmodified benchmarks achieve speedups of 19 or better on the
Simple COMA system, with the exception ofunstructured at
under five. (The large speedups forappbt andem3d with the cus-
tom protocol are due to cache and TLB effects.)

We ran all of the benchmark/system combinations for block
sizes of 32, 64, 128, and 256 bytes. For the larger block sizes,
every inter-node coherence action involves multiple 32-byte MBus
blocks. Due to space restrictions, we only present results for 64-
byte coherence blocks. The 64-byte block size is within 5% of the
best performance for most cases. The only exceptions areem3d on
Typhoon-1, which does 20% better with a 256-byte block size, and
unstructured, for which each of the systems does 10-20% better at
128 or 256 bytes.

For each of the Tempest systems, we also ran existing custom
protocols that were hand-optimized for each application [14, 32].
In general, these protocols use the programmer’s knowledge of
sharing and synchronization patterns to send explicit update mes-
sages for critical data in the computation loop. Speedups for these
versions are presented as the taller, hatched bars in Figure5. These
protocols were written and optimized for a very different system—
Blizzard-E [39] on the CM-5—with much slower processors and
even higher relative overheads. Although their impact is reduced
by the lower overheads of these hardware-assisted systems, all of
the protocols still provide some improvement over the default



shared memory. Two show dramatic improvement even on
Typhoon—a factor of two forem3d and almost five forunstruc-
tured—causing them to outperform the Simple COMA system by
nearly the same margins as well. Moving to Typhoon-1 and
Typhoon-0, the higher overheads leave greater room for improve-
ment, so the more efficient protocols have a greater impact. Only
for moldyn and barnes do the custom protocols on each of the
Tempest platforms fail to outperform standard shared memory on
any system—including Simple COMA. Of course, prefetching and
weak consistency could improve performance on all of the plat-
forms.

To facilitate a direct comparison of the systems, Figure6 pre-
sents execution times for the standard shared-memory benchmarks
normalized to the Simple COMA system for each benchmark. We
break out the time spent on read, write, and synchronization stalls.
Nearly all of the remaining time is computation, so we label that
segment “compute”, even though it includes some factors (such as
TLB misses) that are negligible in all of these cases.

For every application, the total stall time increases significantly
as we move from Simple COMA to the decoupled designs—by
92% to 525% for Typhoon-0 and by 41% to 181% for Typhoon-1.
However, the effect of this increase on bottom-line performance
varies according to the contribution of the stall times to the overall
execution.

We can roughly divide the benchmarks into groups according
to the fraction of time spent on computation in the Simple COMA
system.Appbt, barnes, dsmc, and moldyn form the first group,
spending 65% or more of the Simple COMA execution in compu-
tation. For these benchmarks, the effect of increased overheads is
mitigated by their smaller overall contribution. Typhoon-0 is at
most 94% slower than Simple COMA (71% excludingappbt), and
Typhoon-1 is at most 38% slower. In the second group,em3d and
unstructured, less than 32% of the Simple COMA execution is
spent computing. Here, the decoupled designs show their weak-
ness, turning in performance a factor of two or more slower than
Simple COMA.Unstructured fails to produce much speedup for
any platform.Em3d’s speedup stems primarily from cache and
TLB effects: the data set is over 20MB, so the uniprocessor exe-
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Figure 6. Execution time breakdown for standard shared memory applications.
SC=Simple COMA, T=Typhoon, T1=Typhoon-1, T0=Typhoon-0.

cution spends over 90% of its time waiting for cache and TLB
misses.

This grouping of the benchmarks also predicts the effectiveness
of the application-specific protocols. Intuitively, the applications
with higher overheads have more to gain by eliminating those
overheads. As mentioned above,em3d and unstructured show
impressive gains, while the improvements fordsmc and moldyn
barnes are smaller. Appbt straddles the fence: the customized pro-
tocol gains a factor of 2 on Typhoon-0 but only 18% on Typhoon.

The application-specific protocols also serve to diminish the
performance difference between the various Tempest implementa-
tions. Typhoon-0 is 22% to 71% slower than Typhoon for the stan-
dard shared memory benchmarks, but only 6% to 17% slower for
the custom protocols. Similarly, Typhoon-1’s worst-case perfor-
mance disadvantage is reduced from 48% to 11%. There are two
reasons for this trend. First, the custom protocols eliminate most of
the demand fetches from the computation iterations. The access
control mechanism is only lightly used, if at all, so its overheads
are insignificant. Second, the optimized communication in the cus-
tom protocols usually takes the form of message sends from the
compute processor. These sends must cross the bus on all three
systems; the tight coupling of the network interface and protocol
processor on Typhoon only improves performance on the receiv-
ing node.

4  Related work
Alewife [1] was the first hybrid hardware/software DSM sys-

tem. As with later variants from other researchers [22, 45, 16], cus-
tom hardware generates requests and handles responses on the
caching side and implements some basic directory functions. In all
of these designs, a single device integrates this hardware control
with the cache and/or memory controllers and the network inter-
face. To avoid deadlock, the CPU must handle interrupts while
memory accesses are outstanding, precluding some existing off-
the-shelf microprocessors.

FLASH [13], StarT-NG [11], and Typhoon [37] perform all
protocol processing—on both the directory and the caching
nodes—in software. FLASH and Typhoon execute protocol soft-



ware on a custom processor integrated with the network interface;
FLASH also incorporates the memory controller on this device.
Like Typhoon-0 and Typhoon-1, StarT-NG uses a commodity CPU
as a protocol processor, although StarT-NG places the network
interface on the CPU’s level 2 cache bus.

Typhoon-0 and Typhoon-1 use virtual address translation to
map remote pages into local DRAM, a feature shared with
Typhoon, Simple COMA [18], and page-based software DSM sys-
tems [29, 10, 24]. Because cached remote data is transparently
accessed, protocol handlers are only executed when coherence
action is required. In contrast, StarT-NG runs a software handler
for every remote reference that misses in the hardware cache, even
if the data is cached in local DRAM; FLASH must execute soft-
ware on every local hardware cache miss.

Kontothanassis and Scott [26] propose using network inter-
faces such as SHRIMP [6] to implement weakly consistent page-
based DSM. Rather than changing the coherence model to suit a
specific style of network interface, we propose simple hardware—
either separate from or integrated with the network interface—to
support both traditional fine-grain coherence and application-spe-
cific protocols.

5  Summary and conclusions
This paper explores the performance impact of decoupling

DSM support functions—usually integrated in high-performance
designs—and implementing them using off-the-shelf components.
Decoupling leads to simpler systems and a shorter design cycle.

We present two decoupled designs, Typhoon-0 and Typhoon-1.
Typhoon-0 combines an off-the-shelf processor and network inter-
face with a simple access-control device. A new technique, cache-
able control registers, provides efficient polling and data transfer.
A shadow space allows the processor to communicate addresses to
bus devices in a protected manner. To demonstrate the feasibility
and simplicity of the access control device, two people completed
an FPGA-based implementation in less than one year. Typhoon-1
improves on Typhoon-0’s performance by integrating the network
interface with the access control device. Typhoon-1 leverages
Typhoon-0’s cacheable control registers and shadow space for
messaging without greatly increasing complexity.

Although decoupling significantly increases communication
overheads, the impact is mitigated on applications that spend most
of their time computing. On 32 nodes, four of our six benchmarks
achieve speedups of 12 to 18 on Typhoon-0 and 15 to 26 on
Typhoon-1, compared with 19 to 35 on the Simple COMA system.
At the other extreme, overheads dominate some applications,
including two of our benchmarks. In these cases, application-spe-
cific protocols reduce the overheads resulting in speedups of at
least 16 on the decoupled systems.

We demonstrate that decoupled designs greatly simplify DSM
hardware by avoiding protocol state machines and integrated pro-
cessors, yet provide significant speedups on unmodified shared-
memory applications—within a factor of four, and usually within a
factor of two, for our benchmarks. These results indicate that
decoupled hardware support for DSM can potentially provide a
cost-effective alternative to complex integrated systems.
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