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Abstract 1 Introduction

This paper investigates hardware support for fine-grain distrib-  Technological and economic trends make it increasingly cost-
uted shared memory (DSM) in networks of workstations. T effective to assemble lge-scale parallel systems fromf-tfe-
reduce design time and implementation cost relative to dedicatedshelf workstations and networks [2]. These “networks of worksta-
DSM systems, we decouple the functional hardware componentgions”, or NOWSs, primarily tayet message-passing applications.
of DSM support, allowing greater use of-tfe-shelf devices. Although shared-memory applications can be run on these

We present two decoupled systemgfioond and phooni. machines, the lack of explicit support for this model introduces
Typhoond uses an 6fthe-shelf protocol processor and network significant overheads. This paper explores hardware support for
interface; a custom access control device is the only DSM-specificcache-coherent distributed shared memory (DSM) on workstation-
hardware. & demonstrate the feasibility and simplicity of this based systems. In keeping with the original motivation for net-
access control device, we designed and built an FPGA-based verworks of workstations, we focus on leveragin§tb&-shelf com-

sion in under one yeafyphoon4 also uses anfefhe-shelf proto- ponents and minimizing the amount of custom, DSM-specific
col processgrbut integrates the network interface and access hardware.
control devices for higher performance. In a DSM system, processors transparently access both local

We compare the performance of the two decoupled systemsand remote memory using loads and stores. References to non-
with two integrated systems via simulation. For six benchmarks onlocal data are completed by copying the data into a local cache and
32 nodes, ¥phoond ranges from 30% to 309% slower than the performing the reference on the cofyhe functions required to
best integrated system, whileyphooni ranges from 13% to  implement DSM can be divided into three areas:

132% slowerFour of the six benchmarks achieve speedups of 12 messagingrovides the intenode communication required for

to 18 on Yphoon® and 15 to 26 onyphoon4, compared with 19 parallel computation,

to 35 on the best integrated systemobenchmarks are hampered

by high communication overheads, but selectively replacing . - . )

shared-memory operations with message passing provides speed- local action, e.g., a load of data for which there is no valid

ups of at least 16 on both decoupled systems. These speedups indi- 1°cal copy and

cate that decoupled designs can potentially provide a destie¢ ® protocol pocessing sequences messages and manipulates

alternative to complex high-end DSM systems. access control to satisfy processor memory references while
maintaining a globally consistent image of memory

Industry trends suggest that nawv in the near future, we can
apply commodity components in two of these three areas. General-
purpose microprocessors rapidly and flexibly sequence operations
and manage data, making them suitable for protocol processing.
This work is supported in part byright Laboratory Aionics Directorate, Commercial network technologies such as switched Ethernet,

Air Force Material Command, USAkEnder grant F33615-94-1-1525 and ATM’, and Myrlnet [71, and researchf@rfts such as SHRIMP [6],
ARPA order no. B550, NSF PYlward CCR-9157366, NSF Grant MIP-  Promise rapid advances in messaging performance. Access control
9225097, an A&T Graduate Fellowship, and donations from&a Bell is the only function for which there is no prospectivietoé-shelf
Laboratories, Digital Equipment Corp., Sun Microsystems, Thinking solution. W\ can leverage available components by decoupling
Machines Corp., and Xerox Corp. Our Thinking Machines CM-5 was pur- DSM support—that is, by building simple access control hardware
chased through NSF Institutional Infrastructure Grant No. CDA-9024618 that co-exists with dfthe-shelf processors and networks.
with matching funding from the _University ofig¢onsin G(adl_Jate Scho_ol. In contrast, dedicated DSM systems [1, 28, 13, 25, 33, 37] inte-
£he .. overnment s authoized o reproduce and st eprits Slorat allthree functions in custom hardware. This hardware pro-
The views and conclusions contained herein are those of the authors ané('des high performan_ce, but requires complex custom chips that
should not be interpreted as necessarily representingfitialgiolicies or are costly both to design and to m{inufacture. At the other extreme,
endorsements, either expressed or implied, of trightLaboratory Ai- many systems use no DSM-specific hardware. These systems send
onics Directorate or the U.S. Government. messages over existing networks and do protocol processing in
software on general-purpose CPUs—as do the decoupled systems
we propose. Howevgethey perform access control either entirely
in software [4, 39, 23] or using standard virtual memory hardware
[29, 10, 24]. The cost of avoiding custom hardware for access con-
trol is that the user must compromise on performance, program-
ming model, or both.

access contl detects memory references that require non-




This paper has two primary contributions: the design of two
decoupled systemsyphoon-0 and {iphoon-1, and the quantita- Node 0 Node N-1
tive comparison of their (simulated) performance with two sys-
tems with integrated DSM support.

Both Typhoon-0 and §iphoon-1 rely on general-purpose CPUs
for protocol processing.yphoono also uses a generic network; a
custom access control module per node is its only DSM-specific
hardware. ® demonstrate the feasibility and relative simplicity of
this access control device, two people implemented it in less than
one year using two FPGAs and two SRAMs [34jpfoon4 uses ‘
a similar access control device that also integrates the network m
interface. This integration improves performance by eliminating . L
data movement through the protocol procesBoth devices use Figure 1. Common system ganization.
cacheable condl registers a novel technique that increases the
efficiency of communication from bus devices to processors by
leveraging the local bus coherence protocol.

To exploit the flexibility of software protocol processing, both
decoupled designs run udevel protocol handlers and support the
Tempest interface [35]. This allows the use of previously written
application-specific protocols [14, 32], which selectively replace
shared-memory operations with message passing operations t s
improve performance. Shadow spaces allow-lesesl handlers to % SyStem deﬁcrlptlons
directly convey protected addresses to the bus devices [6, 19, 43].  Tg study the performance impact of decoupling, we compare

Using simulation, we quantify the performance impact of foyr systems that use the same base workstation and network tech-
decoupling—that is, given subsystems with similar capabilities, nology but difer in the level of integration of DSM support. The
what is the performance penalty for implementing those sub- first part of this section discusses the common features of all four
systems as separate components rather than integrating them intogstems. The second subsection describes the integrated systems.

single device? & compare the performance ofphoond and The final subsection describes features common to both decoupled
Typhoon1 with two integrated systems. The first integrated sys- systems and then the systems themselves.

tem is an idealized Simple COMA [18] implementation that com-
bines a network interface and access control with an infinitely fast2.1 Common framewor k
hardwired protocol state machine. The second, modeled after Figurel depicts the common ganization: a set of worksta-

LA N ]

cate that decoupled designs have the potential to provide cost-
effective parallelism [46] for shared-memory programs.

In the next section, we describe the systems in more detail.
Section3 presents simulated performance results. Sedtidis-
cusses related work, and Sectihprovides a summary and con-
clusions.

Typhoon [37], replaces the state machine with a-lesed proto- tion-based nodes connected by a point-to-point network. The DSM
col processor to allow execution of optimized application-specific support hardware (represented by the “cloud” in Figiirencom-
protocols. All of these systems can be built fronftioé-shelf passes three components: access control, messaging, and protocol
workstations, unlike those that replace standard cache or memonprocessing.
controllers, such as Alewife [1], FLASH [13], and S3.mp [33]. As in Simple COMA [18] and yiphoon [37], each nodelocal

In our evaluation, all of the systems use a single processor peIDRAM acts as a cache for remote data using a combination of vir-
node for computation, although small-scale (e.g.,-foay) bus-  tual address translation and fine-grain access contidiuaV/
based multiprocessor nodes may be more céstigfe. All of the address translation directs remote data accesses to local physical

designs we describe are compatible with multiprocessor nodesmemory Accesses that require local memory allocation are
The decoupled systems add a second general-purpose CPU dedifetected and handled via page faults.
cated to protocol processing. This configuration provides a direct The systems maintain coherence at cache-block granularity
comparison to the integrated systems, which also have dedicateqe.g., 32 to 128 bytes) using fine-grain access control. Each cache-
protocol processing resources. Howevier the long term, we  plock-sized piece of memory has an associated access tag, which
expect that decoupled systems will dynamically schedule protocolmay beread-writg read-only or invalid. (These tags correspond,
processing along with computation across all of the processors in gespectively to theexclusive shaed, andinvalid states found in
multiprocessor node [15]. most hardware caches.) Every processor memory access is
We find, not surprisinglythat the decoupled designs have sig- checked against the access tag of the referenced block. A conflict-
nificantly higher communication overheads. A simple remote miss ing access (a read or write to an invalid block or a write to a read-
takes roughly four times longer ogphoon® than on either of the  only block) causes block access faylivhich suspends the access
integrated systemsyphoond’s integration of access control and and invokes a coherence protocol action. These actions are per-
networking cuts this latency nearly in half, but is still twice as slow formed by hardware on Simple COMA and by software handlers
as the integrated designs. Howewee net dect on overall per-  on the other systems. The protocol resumes the access once the
formance is application dependent. Four of six benchmarks spenctonflict is resolved (e.g., after the remote data is fetched). Non-
more than half of their time computing on the integrated systems, conflicting accesses proceed normally
mitigating the impact of higher communication overheads. On 32 A snooping device on the memory bus enforces fine-grain
nodes, these benchmarks achieve speedups of 12 to 18 o@ccess control using the signals intended for local bus-based
Typhoon® and 15 to 26 onyphoond, compared with 19 to 35 0n  coherencé.On every bus transaction caused by a processor cache
the Simple COMA system. The other two benchmarks spend 30%mijss, the device checks its on-board tag store in parallel with the
or less of their time computing on the integrated systems, so highemain memory access. If the access conflicts with the tag, the
overheads have a severe impact. Howewagplication-specific
protocols significantly improve their performance, providing ] o ) )
speedups of 16 or more on both decoupled systems. These speed- Ve assume an ownership-based invalidation protocol with write-back

ups, combined with the simplicity of the required hardware, indi- caches. Other bus protocols do not necessarily preclude implementing
’ ’ access control via snooping, but they are less common and introduce some

complications, so we do not address them here.




device inhibits the memory controllsrresponse (as if to perform

a cache-to-cache transfer) and suspends the access. If the acces
does not conflict with the tag, the device allows the memory con-
troller to respond. In the case of a read access to a read-only block,
the device asserts the “shared” bus signal to force the processor
cache to load the block in a non-exclusive state. A subsequent
write to the block will cause the processor to initiate an invalida-
tion operation on the bus, which the device can then detect and

CPU

NI/AC/PP

suspend. to memory bus
Once a block is loaded into the processeoache, accesses that

hit cannot be snooped; these hits must be guaranteed not to conflict | Bus Interface |
with the access tag. For this reason, tag changes that decrease the | | |
accessibility .of a bl_ock (e.g., from reaq-wrlte to |nvalld) require a RTLB sll pata LTl st
bus transaction to invalidate any copies that may be in the hard- L

B|| Cache Cache
ware caches. BAF Buffer B

Each node interfaces to the network through a pair of 64-bit— | |
wide hardware queues, one in each direction. Sending a message | | |

requires writing a header word indicating the destination node and ’é‘ Block | | Dis- Protocol

message length, followed by the message data, into the send Xfer || patch || 5o ooy
queue. A message is received by reading words out of the receive Unit || Cudl
gueue. A separate signal indicates when a message is waiting at the
head of the receive queue. Inyphoon, ¥phoon®, and

Typhooni, the message queues are memory-mapped and directly
accessible from usdevel software via loads and stores, as in the Figure 2. A Typhoon node, including a block diagram of th

CM',S' The queues are direqtly accessed .by the Simple COMA SYS network interface/access control/protocol processor devideB|
tem’s hardware state machine. Though it is impossible to predict i< iha reverse TLB: BB is the block bier: the BAE bufer holds
the commodity network interface of the future, we believe that it information on blbck access faults. T’he second network st

will provide a queue gbstractlon [8] and have roughly similar per- queue is for use by the compute processor(s).
formance characteristics.

2.2 Integrated systems 2.3 Decoupled systems

To provide a reference point for the decoupled designs’ perfor-  Simple COMA and ¥phoon rely on complex, highly inte-
mance, we study two systems that tightly integrate DSM supportgrated devices to provide high performance. This section presents
functions in a single device. two decoupled designsyfihoon® and fphoon4, that sacrifice

The first system is an idealized implementation of Simple some of this performance to reduce design cost and complexity
COMA [18]. The network interface queues and access control Both perform protocol processing in software on general-purpose
snooping logic are tightly coupled with an infinitely fast hardwired CPUs. phoon® also uses a generic network interface.
state machine implementing a full-map invalidation-based coher-  |n this paperwe assume thatBhoono and Jphoond have a
ence protocol. & assume this device has zero-cycle access to alldedicated protocol processor per node, corresponding to the pro-
protocol state information. Only network queue and memory bus cessor on the integrategiphoon’s network interface device. How-

to network

interface delays are clggd. _ ) ever protocol processing can be dynamically scheduled along with
The second systemyfihoon [37], combines a network inter-  computation across all of the CPUs in a node.
face, access control logic, and a tesel protocol processor on a The down side of decoupling is itsedt on performance. The

single device (see Figu®). Dispatch hardware rapidly invokes components must communicate across the system bus, which is
user handlers in response to message arrivals and block accessoth slower than an on-chip interconnect and subject to conten-
faults. By virtue of running on the integrated proces@se han- tion. Both Typhoon® and Wphooni use a novel technique,
dlers have single-cycle access to the memory-mapped registergacheable contl registers to eficiently transfer information
that manipulate access control and send and receive message datgcross the bus. A cacheable control register is a device register
Typhoon implements access control using a “reverse transla-accessed using the local bus cache coherence protocol. When the
tion lookaside bdér”, or RTLB. The RILB is an on-chip cache  register is read, the device responds with a cache block of data.
indexed by physical page numbg&ach entry contains the page’  \Whenever the contents of the register change, the device issues a
access tags, the corresponding virtual page nyrahdra pointer bus transaction to invalidate the cached cépgacheable control
to the petpage protocol data structure. Each bus transaction is register has two features:
checked against the tags stored in ti&BR On an access fault,
the virtual page number is used to reverse translate the physical
address from the bus to a virtual address for thelagel handler
The Typhoon device also contains a blockfeufand an inde-
pendent bLOCE t;anﬁfer u(;‘ét lo stage (:.ita betwﬁen the ne}work akr:d interrupts are expensive in modern CPUs, the protocol proces-
memory The bufer has address tags, like a cache, to accelerate the sor polls for events in bothyphoono and fphoon4.
completion of remote misses. Arriving data is written into the ) ) ) )
buffer and the tag is set to match the memory address. Data® An entire cache block of data is transferred in a single burst. If
requested by the compute processor (e.g., when it retries a faulting  Multiple words of data must be fetched from the device, a burst
access) can be fetched from theféufas a cache-to-cache trans- is much more éitient than a series of uncached loads, each
fer) without waiting for the data to be written to memocfe requiring a separate bus transaction.
block bufer also keeps data transfers from polluting the protocol Another issue is the protected communication of addresses
processds data cache. across the bus.empess useilevel protocol software needs to

As long as the registervalue does not change (and the block

is not replaced), repeated accesses are satisfied in the proces-
sors cache, reducing access latency and budictrafhis
allows a processor to fafiently poll the registerBecause



Because data must be copied explicitly to and from the network

compute | | protocol interface, every shared-memory data transfer passes through the
CPU CPU protocol processor twice—once on the sender and once on the
receiver Even for network interfaces that support DMA, like the

Myrinet in our actual implementation, cache block transfers typi-
cally are too small to amortize setup overheads.
|Mem || NI H AC | A protocol action that combines a data transfer and a block
i access change must be sequenced carefatexample, to send a
writable (potentially modified) block to another node, the protocol

to network to memory bus processor changes the tag—causing a read-invalidate from the
access control device—then copies the contents of the blofek buf
Bus Interface | to the network interface. The protocol processor cannot directly
i i $2 access the block after the tag has changed becgplsedho must
1 [status Block L data enforce access tags for both CPUs to avoid illegal bus protocol_
from NI Regs Buffer g 1 states. The system cannot send the block data before the tag is
_‘SRA?M changed, or writes made by the compute processor after the send
but before the tag change would be lost.
A similar situation arises when a message arrives containing
Figure 3. A Typhoon® node, including a block diagram of t- data for a previously invalid block. The message handler cannot

access control device. directly write the data without changing the blachtcess tag, but

- ) ] changing the tag first would create a race where another thread
manipulate access control hardware using virtual addresses. Howgould access the old contents. Instead, the message handler writes
ever passing virtual addresses as data requires a translation and fye data via an uncached alias that bypasses the access tag check.
protection check in the receiving componene Wroid both of Once memory is updated, the tag can be upgraded.

these using ahadow spacfb, 19, 43]. The access control device Typhoon© supports dispatch of access fault and message han-
supports a physical address range—the “shadow space™-gas lar glers using a cacheable control register callediiggatch egister

as, and at a fixed fskt from, the maching’physical memoty  The dispatch register combines a tsgecified base address with
Accesses to the shadow space are interpreted as operations on tReatus information to form a program counter [21]. The status por-
real memory space. A user process can directly access a shadoyipn of the PC forms an index into a code table, much like a pro-
space page if and only if it has permission to manipulate the corre-cessor trap vector table. The protocol processor polls for events by
sponding physical memory page. performing an indirect jump to the PC location. If no events are
2.3.1 Typhoon-0 pending, the code table entry simply returns to the polling loop.

Typhoond separates DSM support functions across three com- The cacheable nature of the register allofisiet polling when
ponents: a protocol processametwork interface, and a fine-grain the status changes llnfrequenﬂ‘yle burst transfer capability of the .
access control device. The first two components drthefshelf cacheable register is used on access faults to transfer the physical
devices, while the third is custom hardware. demonstrate the ~ address of the block on which the fault occurred, the access type
feasibiy ofthe access convol deic, we mpementd i ora (599 Y1) 20 0 Hosecy v 1 s e s cpeer,
cluster o station workstations . The device is a ‘ o . X '
standard-sized MBus module (approximately 3.3" by 5.8") con- the physical page number is in a separate word and is pre-shifted to
taining two Altera 8188-2A FPGAs (each containing 12,000 form an index into the inverted page table. Only eight instructions
“susable gates”), two 4M by 1 static RAMs, and a few miscella- @re required to determine the virtual address of the faulting block
neous parts. Ea{ch workstation has two ROéS HypeREFCPUS: and select and invoke a handler specific to the page and fault type.
by software convention, one acts as the compute processor and theel-lr 22 ;ZEQOO?;) l?isq_agghmfgizteé Stigtm;,ls'srzgﬁtsriﬁ: dagriv;qlseatse .
-Oth?r acts as the protocol prcécg Sgd,{i nOdeS,\lﬂn (_)ury'bhoonok 7 \r,1val signal sshsowrlf i?\' Figurg thsatgisscor?nelcted to the ngtworkX
implementation are connecte a Myricom Myrinet network [7]. : X N ;

pFigureS shows a block diagrgm ofyeyﬂhoong node. Access[ ] interface. The network interfacemessage arrival interrupt signal
Lallgska_re irrr:plt_emlented as _Izz\htwg-bitldir_ect%ry with one tag f?]r every |(rI1f1 ag)rl%gr%gt?oen rg;n;?p?hg% ;%@@g:g@;;rfs. E_TEhDe ggizca:lsft?cflrgnthe

ock in sical memoryThe bus logic observes every coherent ) X . )
bus trangaztion, and inéexes the ?ag SRAM with t)l‘/le physical Myrinet network |nterface..) The integration of access fault and
address. Depending on the tag value and the access type, the bjaessage status allows a single poll on a (cacheable) value to check
logic may intervene in the transaction, as described in Sex:tion or all possible protocol events. Unlikgphoon, Yphoon's dis-
The Typhoond card only provides fine-grain access control; it Patch logic only notifies the processor of the existence of a mes-
does not duplicate the full functionality of thgphoon RILB. sage; the NI must explicitly be accessed to determine the address

Reverse translation and geage state lookup are performed in ©f the message handler to invoke.
software using an inverted page table structure. 2.3.2 Typhoon-1

Typhoon© provides protected uskvel tag access using a Typhooni combines access control and the network interface
shadow space, as described above. A read from the shadow spags 3 single device, as shown in Figdrelyphoon-1 significantly
returns the corresponding tag value. A bledklg is modified by  improves performance oveyfhoono without a lage increase in

writing the new tag value to the shadow space. When access to g@omplexity No major new control or datapath features are added
block is downgraded (e.g., from read-write to invalid)pffoono

issues a read-invalidate bus operation to invalidate any cached

copies and retrieve the current version, which may be in a proces-l' This total comprises two loads to the cacheable dispatch register

S indirect jump on the dispatch PC, two loads to read the 128-bit inverted
sors cache. The bIOCI_( Um (shown in Figur@) stores the data page table entryne load to read the protocol handler PC, an indirect call
returned by the read-invalidate. The blockfeufs a cacheable 5 the handlerand an OR to combine the virtual page number with the

control registerso a processor can read its contents in a single page ofset. Assuming cache hits, this sequence takes ten cycles on the
burst. HyperSARC, which has a one cycle load-use delay




3 Performance evaluation
compute | | protocol

CPU CPU In this section, we use simulation to compare the performance
of our four designs. First we describe the simulation parameters
and methodologythen we present results for a simple microbench-
mark and a set of macrobenchmarks.

We simulate 32-node systems. Each node has &ex0dual-
issue SRRC processoMe assume a perfect instruction cache and
a 1MB direct-mapped data cache with 64-byte address blocks and

to memory bus 32-byte subblocks. The instruction latencies, issue rules, and

memory hierarchy are modeled after the Ross Hyp&dREP[38,

| Bus Interface | 41].
i $ $2 The processor(s), memomccess control and/or network inter-

s locK oa face devices within each node are connected byMHMBuUS.
Rtgtguss ‘E‘ ’_—__‘ BBU%Cer g The MBus is a 64-bit, multiplexed address/data bus that maintains
= _Tag coherence on 32-byte blocks using a MOESI protocol [42]. On a

SRAM ; " > ]
cache miss, the critical word is returned from main memory 140 ns
(seven bus cycles or 28 processor cycles) after the request is issued

to network on the MBus. Miss detection, processor/bus clock synchroniza-

tion, and bus arbitration add.-1L4 processor cycles to the total
miss latencyBus occupangycontention, and arbitration are fully
simulated.

other than the network interface itself, which could be a separate 10 isolate the éécts of decoupling, yiphoon-0, Yphoon-1,
single-chip device such as the Myrinet LANai [7], Dolphin/LSI and the integratedyphoon are given the same protocol-process-

Figure 4. A Typhoond node, including a block diagram of th
network interface/access control device.

Logic SCI NodeChip [30], or Cray SCX adapter [40fpfiooni ing resource—a dedicated CPU, identical to the compute CPU.
incorporates three specific advances owgshton®: usetlevel Although this assumption results in a more controlled experiment,
cache block DMA with combined access control, a tagged block it diverges from expected practice in two ways. First, the symmet-
buffer, and enhanced message dispatching. ric dual-processor nodes of the decoupled designs may be more

First, Typhoond uses Jphoon-05 shadow space to support efficiently used by dynamically scheduling protocol handlers and
userlevel DMA at cache-block granularity so that data transfers Computation across both processors. Second, the desmn ef
need not pass through the protocol procedsafect, Typhoon-0 required for an actualyphoon implementation would likely result
interprets a write to the shadow space as a command to change i@ @n integrated protocol processor that is a generation or more
block’s access tag:yphoon-1 simply adds a few new commands. Pehind the compute processor
One of these commands copies the corresponding memory block 11Ming parameters for theyphoon-0 and Jiphoon-1 access
to the message send queue; anothiectiely copies data from control_dewces are _taken from our FPGA-basgghdon-0 imple-
the message receive queue to the memory block. An additional sefféntation. The devices are clocked at bus speeklhg0Tag and
of commands atomically combine an access tag modification with CONtrol register accesses take three and four bus cycles, respec-
block DMA to or from the network queues. These commands tively. For reads to cacheable control registers, the first data word
eliminate the awkward copiesyfhoon® must perform when is returned in three bus cycles and additional words are returned on
invalidating a modified block or receiving data for a previously €Vvery second cycle. , _ _ _
invalid block. Since ¥phoon-0 can become a bus master and issue =~ OUr Simulated §phoon’s network interface is an indepen-
burst transactions, these additional features do not significantlydent MBus device, similar to the CM-5 NI, with a message arrival

increase complexity signal that feeds the access control desidéspatch registeReg-
The shadow space mapping solves the address translation an{$ter access delays are set to match our measured results from the
protection issues usually associated with dmseel DMA [5]. CM-5: seven bus cycles for reads and three for writes.

Because the DMA size is limited to a single cache block, there is. The integrated yiphoons embedded protocol processor is
only a small window during which the virtual-to-physical transla- identical to the primary CPU, as discussed above. This processor
tion must remain valid, so we can use a simple technique to pre-nas single-cycle memory-mapped access to all on-chip control reg-
vent the DMA mechanism from using a stale translation [19]. isters and the network interface queues. Up to 64 bits of data per
Typhoond provides a single status bit that indicates that a DMA is cycle can be transferred between the network interface queues and
outstanding; the operating system temporarily disables DMA initi- the data cache or block tied We assume an infiniteTRB.
ation and waits for this bit to clear before invalidating a translation "€ Simple COMA controller processes each access fault or
that was potentially used for DMA. message with zero overhead, including manipulation of protocol
A second enhancement, borrowed from the integrated state and the injection of an arbitrary number of messages. Events
Typhoon, is the addition of address tags and snooping to the blockd'® Processed at a maximum rate of B{z. Messages observe
buffer. Copies from the network to memory are performed by mov- latency due to network transport, potential queueing at the control-
ing the data into the block ef and tagging it with the destination ~ !€r and fetching data over the MBus. Due to the structure of our
physical address; the new data will be provided on a future acces§imulator messages observe an additional cycle of pipelined
to that block as a cache-to-cache transfee data is also written  laténcy between arrival and processing.

to memory in the background, but unlikgpfioon-0 this copy is To emphasize the performance impact of DSM support, we
not on the critical path of a remote miss. assume an aggressive network latency of 100 processor cycles
Typhoond’s third major improvement overyphoond is (500 ns) from the injection of the tail at the sending network inter-

greater support for message handler dispatch. When a messagfélc‘? to the arrivz.;ll of the head at the receiving.interface. Although
arrives, the entire message header is transferred in the dispatcfedicated MPP interconnects may surpass this speed, cuffrent of
register block, saving several uncached loads per message receiv&€-shelf networks are typically slower by an order of magnitude



or more. Contention occurs at network inputs and outputs, but not

internally We assume that the network is reliable. Step S-COMA | Typhoon | Typhoon-1| Typhoon-0
End-to-end flow control is enforced by the network interface. detect L1 cache miss

Each node may have at most four messages outstanding to ead-S |issue bus transaction 10 10 10 10

other node. The NI generates an acknowledgment as each messa( £ detect rault

is read by the protocol process@e avoid deadlock by bigfring 2 diessgtc?mcﬁgﬁ?u;u ' 0 6 101 101

blocked messages at the sending node and injecting them a|S

acknowledgments arrive. The Simple COMA controller has an |§ |9€t fault state 0 16 18 18

infinite send buer and can inject a bigied message one cycle send msg 0 13 45 45
after an acknowledgment is received. On thghibon systems, the
run-time library queues blocked messages in the sendddress

request msg latency 100 100 100 100

space and sets an NI mode bit that causes acknowledgments t| |dispatch msg handler 1 6 78 159

invoke a §oftware handler in the same manner as protocol mes; o |read msg 0 3 7 40

sages. This handler sends queued messages and clears the mode(gQ —

when the queue is empty < ﬂ'r;er‘,’éﬁry lookup, 0 20 20 20
Fine-grain access control is performed as described in|g

Section2.1. On a block access fault, the access control device| |send msg header 0 17 38 52

inhi_bits _the memory controller and giv_es the requesting Processor & [fetch data, change
“relinquish and retry” response, forcing the processor to re-arbi-| |tag, send 48 48 122 293
trate for the bus. The access control device masks the arbiter t
keep the processorfahe bus until the access can be completed
[28]. While this may be diicult to implement on existing systems, dispatch msg handler 1 6 78 159

response msg latengy 100 100, 100 100

its performance is representative of egeg systems which sup-  |g [(o5q msg header 0 3 7 40
port deferred responses, either explicitly (like the Intel P6 [17]) or |2

using a split-transaction bus. (Unfortunatelyr SRRCstation 20 o |read msg data, 0 12 20 261
. . ; . |.€ |change access tag

implementation must generate a bus error; the kernel trap vector iss

modified to spin on a flag which is set when the data arrives.) & [unmask CPU, reissye 10 10 32 32

Results were obtained using a detailed execution-driven dis-|~ |Pus transaction
crete-event simulatofhe cache, MBus, and device simulation are fetch data, resume 31 31 31 31
detailed enough that they were used for initial design verification
of the Typhoon® implementation. Actual $IRC binaries are 200 MHz CPU cycle so1 401 807 1461
rewritten (using a tool based on EEL [27]) to replace memory 50 MHz bus cycles 76 101 202 366
accesses with calls to the simulator and to add instrumentation td" [, ;s transactions 3 3 16 36
count instruction execution cycles. All software protocols were -
written in C and compiled and linked with the simulated bench- Table 1. Breakdown of remote miss latentsalues are 200 MH
marks. Full application results were obtained by simulating the processor cycle counts except where noted.
nodes of a system in parallel on a Thinking Machines CM-5 using

2

Total

depending on whether the data is dirty in the remote proc¢essor

a conservative, synchronous parallel simulation algorithm basedCache [20]1
on the Wsconsin Whd Tunnel [36]. Because these fundamental latencies domingfghdbn takes
3.1 Micro-evaluation only 33% longer to satisfy the miss despite the cost of running

oftware handlers. The decoupled designs do not fare as well in
this comparison. Going fromyphoon to V¥phooni, the miss
heltency roughly doubles; going toyghoond, it nearly doubles

To gain insight into the overheads of these systems, we trace
single remote read miss and break down the latency into its com
ponents. W assume a cache page has been previously allocated off” - X ) X .
the caching node and the block is unshared at the home node. Oﬁga'g' Asf gxp?cted, t?'s correlé;ltedst W'tht. @é?;mre.ase in the
the caching node, the miss access invokes a block access fault hafiumber or bus transactions needed (o sa isfy € miss.

We also timed this remote miss on oypfioon® implementa-

dier—part of the hardware state machine on Simple COMA, or tion. The results cannot be directly compared with the simulation

software on the yiphoon systems—which sends a request to the ecause the current platform has slower processors (66 MHz rather
h de. At the h th handler d des th ) h
pme Hode e nome, e Message hander downgraces an 200 MHz) and a much slower network (a Myricom Myrinet

block from read-write to read-only and sends a copy to the " .
requesterBack at the caching node, the response message handle‘fylth thg |nterfage on the 25.MHZ SBus I/O bus). Howewer can
determine the implementatientoherence overhead by subtract-

writes the data to memarghanges the bloaktag to read-only ing the total miss latency—{&s—from the round trip time for

and signals the compute processor to retry the access. sending a short request and a receiving a 32-byte replys-6n

The results are presented imblel. Our common system ing laverhis | 330 les. f
assumptions lead to a minimum latency of 299 processor cycles.Our messaging layeThis leaves yis, or processor cycies, tor

The home node latency includes two bus cycles (eight processthe block access fault detection and handler dispatch on the cach-
cycles) to request and acquire the bus and ten bus cycles (40 prdpg node, the tag downgrade on the home, and the tag upg.rade.and
cessor cycles) to fetch the block. (Block data is not pipelined into CPU restart back_ on the caching node—a value not out of line with
the network.) On the caching node, the final step (“fetch data, those presented irablel.

resume”) includes seven bus cycles (28 processor cycles) to fetcl3 2 M acro-evaluation

the critical word and three processor .cycle.s to fqrward the data to To determine how these overheads translate into application
the CPU and complete the load. The idealized Simple COMA sys- performance, we simulated the six shared-memory benchmarks

tem requires one additional cycle per message, for a total of 301 : . .
processor cycles, or about 116. For comparison, the FLASH ]1|sted in Table2. Appbtis from the NAS parallel benchmark suite

designers report remote read miss latencies df antl 1.4%us,

1. Because our systems always fetch data over the coherent memory bus,
latencies are independent of dataardware cache status.
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Figure5. Speedups on 32-node systems.
SC=Simple COMA, T=yphoon, T1=Yphoon4, TO=Typhoono.
tion list is occasionally rebuilt, resulting in an iteration that is an
Bench- |Application |Primary data order of magnitude longer than the others; we simulate far enough
mark domain structure(s) |Dataset to include the first of these rebuilddsmcsimulates gas particles
appbt CFD 3D array 32x32x32 arrays iterations in a region with an incoming flgvso at fII.’St the r)umber pf parti-
- - - - cles increases with each iteration. It is impractical to simulate far
barnes R‘?b’g{fh'ca' oct-tree 35?638_%%%9& ﬁgg‘t"‘i:ggz enough to reach steady state, so we arbitrarily chose to run for 400
Y p=> iterations. As the number of particles increases, the speedup also
Monte Carlo | .o arra 48,000 particles in 9720 increases, but very slowly; we do not expect results for a longer
dsmc palrlt'c'e"”' particle st cellts_, increasing to 72,000 run to be qualitatively diérent.
ce particles, fterations Figure5 shows speedups for 32-node systems relative to our
~ hinartite | 192,000 nodes, degree 5, best sequential version on a workstation identical to one node of
electro- static bipartite
em3d |1t lorann 5% remote edges, the parallel system. The shortehaded bars indicate the speedup
9 grap 20iterations p S
for the unmodified shared-memory applications. For t@pest
ist |8788 particles, systems, this merely requires linking with the standard protocol
molecular  |molecule list, : - : — > p BT ) )
moldyn | junamics | interaction list fgblh?lrtaé'r?cr‘:' interaction lis library, which implements the same sequentially consistent full-
map invalidation protocol used in the Simple COMA system. The
unstruc- | ~ep static mesh | 2428 nodes, 5986&ges, unmodified benchmarks achieve speedups of 19 or better on the
tured 5864faces, Sterations Simple COMA system, with the exception afstructued at

Table 2. Benchmark descriptions and inputs.

[3], parallelized for shared memory [9Barnesis from the
SPLASH-2 suite [44]Em3dis a shared-memory version of an
original Split-C program from Berkeley [12Dsm¢ moldyn and
unstructued are irregular applications originally from Maryland
[32]. All of the benchmarks are written in C and compiled with gcc
version 2.6.3 at optimization level -O2.

All of the benchmarks excegim3duse a first-touch migrate-

under five. (The lgre speedups fappbtandem3dwith the cus-
tom protocol are due to cache and TLERefs.)

We ran all of the benchmark/system combinations for block
sizes of 32, 64, 128, and 256 bytes. For thgelablock sizes,
every internode coherence action involves multiple 32-byte MBus
blocks. Due to space restrictions, we only present results for 64-
byte coherence blocks. The 64-byte block size is within 5% of the
best performance for most cases. The only exceptiorezBdon
Typhoond, which does 20% better with a 256-byte block size, and

once scheme [31] to improve the assignment of pages to homaunstructued, for which each of the systems does 10-20% better at

nodes. The first node to touch a page after the parallel phase of th&28 or 256 bytes.

program begins becomes the pageme for the remainder of the For each of the @mpest systems, we also ran existing custom

execution. This scheme is simple to implement and guarantees thaprotocols that were hand-optimized for each application [14, 32].

every page is assigned to one of the nodes that refereriees3. In general, these protocols use the prograrsniemowledge of

explicitly allocates the graph so that writes are always to local sharing and synchronization patterns to send explicit update mes-

pages. sages for critical data in the computation loop. Speedups for these
Although we simulate the full application, we focus on the por- versions are presented as the taliatched bars in Figute These

tion of execution where a production version will spend most of its protocols were written and optimized for a verfetiént system—

time by measuring only the second and following computation BlizzardE [39] on the CM5—with much slower processors and

iterations. For most of the applications, iteration times are very even higher relative overheads. Although their impact is reduced

regular so we can get meaningful results with only a few itera- by the lower overheads of these hardware-assisted systems, all of

tions. There are two exceptions.roldyn the molecule interac-  the protocols still provide some improvement over the default
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Figure 6. Execution time breakdown for standard shared memaory applications.
SC=Simple COMA, T=yphoon, T1=Yphoon4, TO=Typhoono.

shared memory Two show dramatic improvement even on cution spends over 90% of its time waiting for cache and TLB

Typhoon—a factor of two foem3dand almost five founstruc- misses.
tured—causing them to outperform the Simple COMA system by This grouping of the benchmarks also predicts tfecBfeness
nearly the same mgins as well. Moving to yphooni and of the application-specific protocols. Intuitivelhe applications

Typhoon9, the higher overheads leave greater room for improve- with higher overheads have more to gain by eliminating those
ment, so the more fidient protocols have a greater impact. Only overheads. As mentioned abowwm3d and unstructued show

for moldyn and barnesdo the custom protocols on each of the impressive gains, while the improvements dsmcand moldyn
Tempest platforms fail to outperform standard shared memory onbarnesare smallerAppbtstraddles the fence: the customized pro-
any system—including Simple COMA. Of course, prefetching and tocol gains a factor of 2 onypphoon® but only 18% on {iphoon.
weak consistency could improve performance on all of the plat- The application-specific protocols also serve to diminish the
forms. performance dference between the variousripest implementa-

To facilitate a direct comparison of the systems, Figupee- tions. Typhoon® is 22% to 71% slower tharyfhoon for the stan-
sents execution times for the standard shared-memory benchmarkdard shared memory benchmarks, but only 6% to 17% slower for
normalized to the Simple COMA system for each benchmaek. W the custom protocols. Similarlyfyphoond’s worst-case perfor-
break out the time spent on read, write, and synchronization stallsmance disadvantage is reduced from 48%18&b.1There are two
Nearly all of the remaining time is computation, so we label that reasons for this trend. First, the custom protocols eliminate most of
segment “compute”, even though it includes some factors (such agshe demand fetches from the computation iterations. The access
TLB misses) that are negligible in all of these cases. control mechanism is only lightly used, if at all, so its overheads

For every application, the total stall time increases significantly are insignificant. Second, the optimized communication in the cus-
as we move from Simple COMA to the decoupled designs—by tom protocols usually takes the form of message sends from the
92% to 525% for ¥phoond and by 41% to 181% foryphoon4. compute processoifhese sends must cross the bus on all three
However the efect of this increase on bottom-line performance systems; the tight coupling of the network interface and protocol
varies according to the contribution of the stall times to the overall processor on yphoon only improves performance on the receiv-
execution. ing node.

We can roughly divide the benchmarks into groups according
to the fraction of time spent on computation in the Simple COMA 4 Related wor k
system.Appbt barnes dsm¢ and moldyn form the first group, ) ] ]
spending 65% or more of the Simple COMA execution in compu-  Alewife [1] was the first hybrid hardware/software DSM sys-
tation. For these benchmarks, théeef of increased overheads is  tem. As with later variants from other researchers [22, 45, 16], cus-

mitigated by their smaller overall contributionyghoon® is at tom hardware generates requests and handles responses on the
most 94% slower than Simple COMA (71% excludippb), and caching side and implements some basic directory functions. In all
Typhoon4 is at most 38% sloweln the second grougm3dand of these designs, a single device integrates this hardware control

unstructued, less than 32% of the Simple COMA execution is With the cache and/or memory controllers and the network inter-
spent computing. Here, the decoupled designs show their weakface. © avoid deadlock, the CPU must handle interrupts while
ness, turning in performance a factor of two or more slower thanmemory accesses are outstanding, precluding some existing of
Simple COMA. Unstructued fails to produce much speedup for the-shelf microprocessors.

any platform.Em3ds speedup stems primarily from cache and ~ FLASH [13], StarING [11], and phoon [37] perform all

TLB effects: the data set is over RIB, so the uniprocessor exe- ~ Protocol processing—on both the directory and the caching
nodes—in software. FLASH andy/ghoon execute protocol soft-



ware on a custom processor integrated with the network interface;Refer ences

FLASH also incorporates the memory controller on this device.
Like Typhoon© and phoon4, StartNG uses a commodity CPU
as a protocol processaalthough StarNG places the network
interface on the CP8’level 2 cache bus.

Typhoond and fphoond use virtual address translation to
map remote pages into local DRAM, a feature shared with [2]
Typhoon, Simple COMA [18], and page-based software DSM sys-
tems [29, 10, 24]. Because cached remote data is transparently
accessed, protocol handlers are only executed when coherencp]
action is required. In contrast, StaMG runs a software handler
for every remote reference that misses in the hardware cache, even
if the data is cached in local DRAM; FLASH must execute soft- [4]
ware on every local hardware cache miss.

Kontothanassis and Scott [26] propose using network inter-
faces such as SHRIMP [6] to implement weakly consistent page-[5]
based DSM. Rather than changing the coherence model to suit a
specific style of network interface, we propose simple hardware—
either separate from or integrated with the network interface—to
support both traditional fine-grain coherence and application-spe-[
cific protocols.
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5 Summary and conclusions

This paper explores the performance impact of decoupling 7]
DSM support functions—usually integrated in high-performance
designs—and implementing them usin§tbi-shelf components.
Decoupling leads to simpler systems and a shorter design cycle.

We present two decoupled designgpfoon® and phooni.
Typhoond combines an éthe-shelf processor and network inter-
face with a simple access-control device. A new technique, cache-
able control registers, providedieient polling and data transfer  [g]
A shadow space allows the processor to communicate addresses to
bus devices in a protected manrkr demonstrate the feasibility
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and simplicity of the access control device, two people completed[10] JohnB.

an FPGA-based implementation in less than one ygphooni
improves on yphoon®'s performance by integrating the network
interface with the access control devicgipfooni leverages
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