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Abstract

Most large shared-memory multiprocessors use directory protocols
to keep per-processor caches coherent. Some memory references in
such systems, however, suffer long latencies for misses to remotely-
cached blocks. To ameliorate this latency, researchers have aug-
mented standard coherence protocols with optimizations for specific
sharing patterns, such as read-modify-write, producer-consumer,
and migratory sharing. This paper seeks to replace these directed
solutions with general prediction logic that monitors coherence
activity and triggers appropriate coherence actions.

This paper takes the first step toward using general prediction to
accelerate coherence protocols by developing and evaluating the
Cosmos coherence message predictor. Cosmos predicts the source
and type of the next coherence message for a cache block using
logic that is an extension of Yeh and Patt’s two-level PAp branch
predictor. For five scientific applications running on 16 processors,
Cosmos has prediction accuracies of 62% to 93%. Cosmos’ high
prediction accuracy is a result of predictable coherence message
signatures that arise from stable sharing patterns of cache blocks.

1  Intr oduction

Most shared-memory multiprocessors accelerate memory accesses
using per-processor caches. Caches are usually made transparent to
software with a cache coherence protocol. Most large shared-memory
multiprocessors use directory protocols [3, 21, 19]. Directory proto-
cols maintain a directory entry per memory block that records which
processor(s) currently cache the block. On a miss, a processor sends
a coherence message over an interconnect to a directory, which often
forwards message(s) to processor(s) currently caching the block.
These processors may forward data or acknowledgments to the
requesting processor and/or directory.

Unfortunately, this cache miss and directory activity can disturb a pro-
grammer’s performance model of shared memory by making some
memory accesses tens to hundreds of times slower than others. This
problem has led to many proposals, including weaker memory models
[2], multithreading [36], non-blocking caches [18], and application-
specific coherence protocols [27]. To date, all proposals possess one
or more of the following drawbacks: require a more complex pro-
grammer interface or model, retard uniprocessor performance, or
require sophisticated compilers.

Another class of proposals predict future sharing patterns [7, 13] and
take actions to overlap coherence message activity with current work.
Predictions can be made by programmers [14, 38, 1, 25], compilers
[23, 32, 31, 15], software [4], or hardware. Specialized predictors in
hardware include read-modify-write operation prediction in the SGI
Origin protocol [19], pair-wise sharing prediction in SCI [34],
dynamic self-invalidation [20], and migratory protocols [12, 35].
Other examples of hardware predictors are described in [17, 5, 29, 28].
Existing predictors, however, are directed at specific sharing patterns
knowna priori. Furthermore, a protocol implementation is often made
more complex by intertwining predictors with the standard coherence
protocol.

This paper seeks a more general predictor to accelerate coherence pro-
tocols. Predictors would sit beside each standard directory and cache
module to monitor coherence activity and request appropriate actions.
If a directory predictor, for example, anticipates that a processor ask-
ing for a block B “shared” will subsequently ask for block B “exclu-
sive,” the directory can answer the “shared” request with block B
“exclusive.”

The first contribution of this paper is the design of theCosmos coher-
ence message predictor for accelerating coherence protocols
(Section3). Cosmos’ design is inspired by Yeh and Patt’s two-level
PAp branch predictor [39]. Cosmos makes a prediction in two steps.
First, it uses a cache blockaddress to index into aMessage History
Table to obtain one or more<processor,message-type> tuples.
These<processor,message-type> tuples correspond to sender
and message type of the last few coherence messages received for that
cache block.Message-type identifies specific coherence actions for
a sharing pattern, whereasprocessor identifies the specific sharers
involved in the sharing pattern. Second, Cosmos uses these<pro-
cessor,message-type> tuples to index aPattern History Table to
obtain a<processor,message-type> prediction. Notably, Cos-
mos faces a greater challenge than branch predictors because the Cos-
mos’ prediction is a multi-bit<processor,message-type> tuple
rather than a single bit branch outcome.

This paper concentrates on coherence protocol message prediction in
isolation (analogous to studying branch prediction in isolation). We
do not integrate the Cosmos predictor into a coherence protocol for
two reasons. First, our tools are not ready to handle a full timing sim-
ulation of a protocol that can be accelerated using prediction. Second,
we do not want initial results in this area obscured by implementation
idiosyncrasies. Nevertheless, we expect such integration to be suc-
cessful because the integration of directed predictions has been suc-
cessful [19, 20, 12, 35]. Section4 briefly discusses possibilities for
such integration.

The second contribution of this paper is a detailed evaluation of the
Cosmos coherence message predictor. Section5 states methodolog-
ical assumptions, including the use of five scientific benchmarks on
a target shared-memory machine with 16 processors running the
Stache directory protocol [30]. Section6 gives Cosmos’ prediction
rates and analyzes application details. Variations of Cosmos predict
the source and type of the next coherence message with surprisingly-
high accuracies of 62-69% (barnes), 84-86% (moldyn), 84-85%
(appbt), 74-92% (unstructured), and 84-93% (dsmc). Cosmos’ high
prediction accuracy results from predictable coherence message pat-
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terns orsignatures associated with specific cache block addresses.
Such signatures are generated by sharing patterns [7, 13] that do not
change or change very slowly during the execution of these applica-
tions. Cosmos’ lower accuracy forbarnes occurs becausebarnes peri-
odically re-builds its principal data structure (an octree), thereby
moving logical nodes (with stable sharing patterns) to different mem-
ory addresses (obscuring sharing patterns from Cosmos).

Section7 explores the implications of Cosmos. Coherence message
prediction works because sharing patterns are often stable. Others
have exploited sharing patterns with directed optimizations, such as
dynamic self-invalidation and migratory protocols. Using Cosmos
could be better (or worse) than directed predictors due to performance
and implementation issues. Cosmos can perform better because it can
discover and track application-specific patterns not known a priori
(e.g., as occurs forunstructured). It can perform worse if it is slower
to recognize known patterns. Cosmos’ implementation complexity
can be less because predictor logic is separated from the standard pro-
tocol logic (unlike previous directed predictors that are intertwined
with the standard coherence protocol). Cosmos, however, is likely to
require more state than directed optimizations. In summary
(Section8), Cosmos’ high prediction accuracies justify more inves-
tigation into using prediction to accelerate coherence protocols.

2  Background

This section describes the structure of a basic directory protocol
(Section2.1) and reviews Yeh and Patt’s two-level adaptive branch
predictor (Section2.2). In the next section we discuss how Cosmos—
a modified version of Yeh and Patt’s two-level predictor—can predict

a directory protocol’s messages with high accuracy. Throughout the
rest of the paper we will use the terms “node” and “processor” inter-
changeably because we consider only single-processor nodes to sim-
plify our discussion.

2.1  Structure of a Directory Protocol

Most large-scale shared-memory multiprocessors use a directory pro-
tocol to keep multiple caches coherent. A directory protocol associates
state with both caches and memory. This state is typically maintained
at a cache block (e.g., 32-128 bytes) granularity. The state associated
with each memory block is referred to as a directory entry. The direc-
tory entry for each memory block records whether or not a memory
block is idle (that is, no cached copies exist), a writable copy of the
block exists, or one or more readable copies of the block exist.

To simplify our discussion we only consider a full-map and write-
invalidate directory protocol, such as the SGI Origin protocol [21]. A
directory entry in such a protocol maintains logical pointers to caches
that hold a valid copy of the block and invalidates all outstanding cop-
ies of the block when one processor wishes to write to it. Similarly,
a block in a cache is usually in one of three quiescent states: invalid,
shared, or exclusive. These states define whether a processor’s load
or store can access the cache block. Processors must invoke coherence
actions on loads to invalid blocks and on stores to shared (i.e. read-
only) and invalid blocks.

A cache coherence protocol can, therefore, be viewed simply as a col-
lection of finite-state machines that change state in response to pro-
cessor accesses and external messages. For caches, state transitions
occur in response to processor accesses and messages from the direc-
tory (and possibly other caches). A directory entry changes state in
response to messages from caches. Figure1 shows an example of mes-
sage exchange and state transitions in two caches and a directory.

Unfortunately, the finite-state machines that implement the coherence
logic often incur multiple long-latency operations. These latencies can
become severe if coherence actions are implemented in software (e.g.,
[30]) or firmware (e.g., [22]). Additionally, a directory may need to
exchange messages with other caches before it can respond to a pro-
cessor’s request for a memory block. Such message exchange can also
introduce substantial delay in the critical path of a remote access. For
example, Figure1a shows that a processor’s store to a block that
resides in another node’s cache may require five coherence protocol
actions and four messages. Other protocols differ (e.g., SGI Origin
reduce coherence actions to four and messages to three by directly for-
warding processor two’s response to processor one), but this should
have no first-order effect on coherence prediction’s usability.

2.2  Two-Level Adaptive Branch Predictor

A branch predictor predicts whether the branch will be taken or not
taken. Correct prediction of branch directions improves the perfor-
mance of wide-issue, deeply pipelined microprocessors because it
allows them to fetch and execute probable instructions without wait-
ing for the outcome of previous branches. J. Smith [33] proposed sev-
eral dynamic branch predictors that use program feedback to increase
the accuracy of branch prediction. More recently, Yeh and Patt pro-

Proc. one’s Dir. Proc. two’s
cachecache

get_rw_request

get_rw_responseinval_rw_response

inval_rw_request

Coherence protocol action

I

Proc. one Dir.

Proc. two

Protocol State Transitions

FIGURE 1. (a) shows message exchange between a directory and
two caches and (b) shows the corresponding state transitions.
Table1 explains the coherence message types. I = invalid, E =
exclusive, Dir. = Directory, Proc. = Processor. Initially, processor
two has an exclusive copy of a cache block. Processor one issues a
store to the block (1). This invokes processor one’s cache coherence
protocol, which sends a message to the directory (2). The directory
examines its state and sends a message to processor two requesting
it to return the block to the directory and invalidate its copy of the
block (3). When the directory receives the block from processor
two (4), it forwards it to processor one, which marks the cache
block as exclusive in processor one (5). The states “I to E” and “E
to E” represent transition states.

(1)

(5)

(2)

I to E

E

E in
Proc. two

E to E

E in
Proc. one

E

I

(3)

(4)

(a) (b)

Messages Received by Directory from Caches Messages Received by a Cache from a Directory

Message Description Message Description

get_ro_request get block in read-only (shared) state get_ro_response response to get_ro_request

get_rw_request get block in read-write (exclusive) state get_rw_response response to get_rw_request

upgrade_request upgrade block from read-only to read-writeupgrade_responseresponse to upgrade_request

inval_ro_response response to inval_ro_request inval_ro_request invalidate read-only (shared) copy of block

inval_rw_responseresponse to inval_rw_request inval_rw_request invalidate read-write (exclusive) copy and return block

TABLE 1. A sample of coherence messages usually found in full-map, write-invalidate coherence protocols.
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posed a general dynamic branch predictor calledPAp [39]. PAp is a
two-level adaptive predictor that makes a prediction for a branch based
on the past behavior of the same branch. First, it uses the program
counter of a branch to index into aBranch History Table to obtain k
bits, which represent the last k outcomes of the branch at this program
counter. Second, it uses these k bits to index a Per-BranchPattern His-
tory Table to obtain a prediction. Each entry in the Pattern History
Table is a finite-state machine, which returns predictions based on the
behavior of a finite number of previous occurrences of this branch (and
the k bits from the Branch History Table). In the next section we will
show how PAp can be modified to obtain coherence message predic-
tions.

3  Predicting Coherence Protocol Messages

This section describes the Cosmos coherence message predictor. The
next section briefly outlines how Cosmos can accelerate coherence
protocols. This section begins with an example of a producer-con-
sumer sharing pattern and its corresponding coherence message sig-
nature. The rest of the section uses this example to describe Cosmos
in detail.

3.1  Producer-Consumer Sharing Pattern’s Signature

Figure2 shows an example of a producer-consumer sharing pattern
and how it can lead to predictable message patterns orsignatures for
a particular cache block. For example, assuming no false sharing, the

producer executing the code in Figure2a observes the following mes-
sage sequence for the cache block containing the variable
shared_counter:

sendget_rw_request to directory
receiveget_rw_response from directory
receiveinval_rw_request from directory
sendinval_rw_response to directory

Figure2b shows the incoming message signature that results from the
above message sequence. Note that examining the incoming messages
is sufficient to interpret both the sharing pattern (i.e. producer-con-
sumer) and the local processor’s actions (i.e., processor store to pro-
duced block).

Consider a slightly more complex example in which we extend the
pseudo code in Figure2a to support two consumers instead of one. In
this case the producer and the two consumers will still follow the same
predictable signatures as shown in Figure2b. However, at the direc-
tory the twoget_ro_request messages can now arrive in any order
from the two consumers. But, the arrival of aget_ro_request from
the first consumer suggests strongly the possibility of the arrival of
anotherget_ro_request from the second consumer and vice versa.
To achieve high accuracy a predictor must adapt to such variations in
the incoming message stream. The rest of this section discusses the
design of such an adaptive predictor called Cosmos.

3.2  Basic Structure of Cosmos

The previous subsection suggests that a coherence message predictor
must adapt to an incoming coherence message stream based on two
properties:

• address of cache blocks, because sharing patterns of different
cache blocks may differ, and

• history of messages for a cache block, because a stream of

/* private_counter = private variable */
/* shared_counter = shared variable */
repeat
...
if (producer)
private_counter++
shared_counter = private_counter
barrier

else if (consumer)
barrier
private_counter = shared_counter

else
barrier

endif
...

until done

get_rw_response inval_rw_request

get_rw_request inval_ro_response

inval_rw_response get_ro_request

producer

consumer

directory

(b)

from producer from consumer

from consumerfrom producer

cache

cache

(a)

get_ro_response inval_ro_request

FIGURE 2. This figure shows the incoming message signature
generated by a producer-consumer sharing pattern for a cache
block. (a) shows a pseudo code for the producer-consumer sharing
pattern. A producer writes to a shared counter and a consumer
reads the shared counter. (b) shows the sequence of messages
received by the producer cache, consumer cache, and directory for
the cache block containing the shared counter (assuming no false
sharing). Table1 explains the different message types shown in
this figure.

Global Address
of cache block

Pattern History TablesMessage History Table
(Per Block Address) (Per Block Address)

(a)

<P1,get_rw_request> <P2,inval_ro_response>
<P2,inval_ro_response> <P2,get_ro_request>

<P2,get_ro_request> <P1,inval_rw_response>
<P1,inval_rw_response><P1,get_rw_request>

Pattern History Table forshared_counter

<P2,get_ro_request>

Global Address of

Message History

Index Prediction

 shared_counter

 Table

(b)
FIGURE 3. (a) shows the logical structure of the Cosmos
coherence message predictor and (b) shows an example of how the
message and pattern history tables for a directory may look like for
theshared_counter in Figure2. In this example, we assume
that the last message received by the directory is a get_ro_request
from the consumer (denoted as P2). So, Cosmos will predict the
next message to be an inval_rw_response from the producer
(denoted as P1).
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incoming coherence messages correspond to fixed sharing pat-
terns for specific cache blocks.1

Fortunately, a modified version of Yeh and Patt’s two-level adaptive
branch predictor calledPAp [39] satisfies the above requirements! We
call such a coherence message predictorCosmos. Given the address
of a cache block and the history of messages received for that block,
Cosmos can predict with high accuracy the sender and type of the next
incoming message for the same block. We allocate a Cosmos predictor
for every cache or directory in the machine.

Figure3a shows the logical structure of Cosmos. Cosmos is a two-
level adaptive predictor. The first-level table—called theMessage
History Table (MHT)—consists of a series ofMessage History Reg-
isters (MHRs). Each MHR corresponds to a different cache block
address. An MHR contains a sequence of<sender, type> tuples
corresponding to the last few coherence messages that arrived at the
node for the specific cache block. We call the number of tuples main-
tained in each MHR thedepth of the MHR.

The second-level table of Cosmos consists of a sequence ofPattern
History Tables (PHT), one for each MHR. Each PHT contains pre-
diction tuples corresponding to possible MHR entries. Each PHT is
indexed by the entry in the MHR entry. The next two subsections out-
line how to obtain predictions from and update entries in Cosmos.

Figure3b shows the entries in an MHR and its PHT corresponding to
theshared_counter variable in Figure2. The MHT in Figure3b
has a depth of one, so this MHR entry contains only one<sender,
type> tuple. The<P2, get_ro_request> tuple shown in this figure
denotes that the last message received for the cache block containing
theshared_counter is aget_ro_request message from the pro-
cessor P2, which is consumer of theshared_counter in this case.
The corresponding PHT captures patterns of messages received for
shared_counter. For example, earlier Cosmos observed a
get_ro_request message from processor P1 followed by an
inval_ro_response from processor P2. The first entry of the PHT
reflects this relationship. Thus, Cosmos will predict the arrival of an
inval_ro_response message from processor P2, next time it sees
a messageget_ro_request from processor P1. Because the MHR
contains the tuple corresponding to the last message received, to
obtain a prediction we simply find the correct MHR, and use that entry
to index into the PHT, which will give us a prediction if an entry exists
for that tuple.

Cosmos differs from Yeh and Patt’s two-level adaptive branch pre-
dictor called PAp (see Section2.2) in three ways. First, the first-level
table in Cosmos is indexed by the address of a cache block, whereas
PAp is indexed by the program counter of a branch. Second, Cosmos
must choose one prediction from several alternatives, whereas PAp
usually chooses between two alternatives—branch taken or branch
not taken. Third, the state machine in each PHT entry in PAp encodes
the history of the last few outcomes of the same branch. Instead, a PHT
entry in Cosmos simply consists of a prediction. Additionally, PHT
entries in Cosmos can contain state machines (Section3.6), but these
are typically used as filters to remove noise from the incoming mes-
sage stream.

Below we outline the exact steps involved in obtaining a prediction
from and updating Cosmos. Specific implementations of Cosmos may
either separate or combine these two steps.

1.  Cosmos could predict the next coherence protocol state, instead of the
next incoming coherence message. We believe these two approaches are
equivalent. However, Cosmos predictors for specific protocols may con-
sume less space if Cosmos captures messages, instead of coherence protocol
states. For example, at the directory the coherence protocol state of the Wis-
consin Stache protocol (Section5.1) consumes eight bytes, whereas the
message information could be captured in two bytes (Table7).

3.3  Obtaining Predictions from Cosmos

Here are the steps involved to obtain a prediction from Cosmos:

• index into the MHR table with address of a cache block,
• use the entry in MHR to index into the corresponding PHT, and
• return the prediction entry (if one exists) in the PHT as the pre-

dicted tuple, which contains the predicted sender and type of the
next incomng message corresponding to that cache block; other-
wise, return no prediction.

3.4  Updating Cosmos

Typically, we expect Cosmos to be updated after every message recep-
tion when we know for sure the<sender, type> tuple of a message.
Here are the steps involved in updating Cosmos:

• index into the MHR table with the address of a cache block,
• use the entry in MHR to index into the corresponding PHT,
• write new <sender,type> tuple as new prediction for the index

corresponding to the MHR entry, and
• left shift the<sender,type> tuple into the MHR for the cache

block.

3.5  How Cosmos Adapts to Complex Signatures?

Cosmos can adapt to complex message streams, such as the one out-
lined at the end of Section3.1. If two get_ro_request messages
arrive out of order from two different consumers (P1 and P2), the PHT
table will contain the following two entries:

Therefore, Cosmos can effectively predict the next incoming coher-
ence message, even though incoming messages may arrive in a dif-
ferent order in different instances.2

For more complicated sequences of incoming messages, Cosmos may
need an MHR with depth greater than one. For example, if three
get_ro_request messages come out of order from three consumers
(P1, P2, and P3), then the PHT for a Cosmos predictor with MHR of
depth = 2 may contain the following three entries:

Clearly, this allows Cosmos to predict the third incoming coherence
message accurately based on the history of previous messages. For-
tunately, several studies (e.g., [13, 38, 25]) have shown that the average
number of sharers of a cache block is usually less than two. Conse-
quently, we do not expect the depth of the MHR to be very high for
most applications. Specifically, we found that an MHR of depth three
is sufficient in most cases for the five parallel applications we studied
in this paper.3

2.  A more aggressive predictor could ignore the senders for the
get_ro_request messages. However, this may not be possible if there
are intervening messages of other types for the same cache block.

3.  We cannot ignore the processor number of the messages, even though it
may appear so in the example. This is because actions taken by the directory
(e.g., sending an invalidation message) based on the prediction may require
accurate prediction of the processor number. However, it may be possible to
group the processor numbers into a set and perform actions on the entire set
of processors.

Index Prediction

<P1, get_ro_request> <P2, get_ro_request>

<P2, get_ro_request> <P1, get_ro_request>

Index Prediction

<P1, get_ro_request>,
<P2, get_ro_request>

<P3, get_ro_request>

<P2, get_ro_request>,
<P3, get_ro_request>

<P1, get_ro_request>

<P3, get_ro_request>,
<P1, get_ro_request>

<P2, get_ro_request>
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3.6  Filtering Noise from Coherence Message Stream

When updating Cosmos we can usefilters to reduce noise from the
coherence message stream in the same way Yeh and Patt’s PAp pre-
dictor removes noise from a stream of branches. For example, if 99%
of the time, message B follows message A, then on seeing message
A, Cosmos will predict the next message to be B. We do not want our
prediction to change if these messages arrive rarely in the sequence:
A, C, and B, instead of the sequence A, B. Branch predictors have a
similar problem when programs exit loops. Frequently, the exit from
loops is a taken branch; however, when the loop is executed com-
pletely, the exit is a not-taken branch. Branch predictors typically
avoid updating their prediction on exiting a loop via a two-bit satu-
rating counter proposed by J. Smith [33]. One bit of the two-bit counter
represents the direction of the branch and other bit represents the
counter. Because a message needs more than one bit to represent a
<sender, type> tuple, we simplify the counter and use only a single
bit. With this single-bit counter, we update the prediction for a cache
block to a different message only if we see two consecutive message
mis-predictions for the same block.

Our results (Section6.2) suggest that filters increase the prediction
accuracy for Cosmos predictor with MHR depth of one, but they do
not help Cosmos predictors with MHR depth greater than one. This
is because both history and filters reduce noise from the message
stream. However, history information adapts to the noise, while filters
simply remove it.

3.7  Implementation Issues for Cosmos

Cosmos is a two-level adaptive predictor with the first level containing
message history registers (MHRs) and the second level containing pat-
tern history tables (PHT). It may be possible to merge the first-level
table with the cache block state maintained at both directories and
caches. However, this may lead to a loss of Cosmos’ history infor-
mation when cache blocks are replaced. This problem may not arise
for the directory because directory state is usually persistent during
the entire duration of a parallel application.

The second-level table is more challenging to implement because it
may require large amounts of memory to capture pattern histories for
each cache block. However, our results (Section6.2) show that Cos-
mos’ memory overhead for 128 byte cache blocks is less than 14% for
an MHR depth of one. This is because the number of pattern histories

corresponding to a cache block is low, that is, less than four (on aver-
age) for an MHR depth of one for all five applications we studied in
this paper. Consequently, we could preallocate four pattern history
entries corresponding to each cache block. If a cache block needs more
pattern histories, then it can allocate them from a common pool of
dynamically allocated memory in the same way LimitLESS [10]
directory entries capture the list of sharers for a particular cache block.
Nevertheless, higher prediction accuracies may require greater MHR
depths, which may result in larger amounts of memory.

4  Using Coherence Protocol Message Predictors

This section briefly discusses how a coherence protocol message pre-
dictor, such as Cosmos, can be integrated with a coherence protocol.
Predictors would sit beside each standard directory and cache module
and accelerate coherence activity in two steps. First, they would mon-
itor message activity and make aprediction. Second, based on the pre-
diction, they will invoke anaction in the standard coherence protocol.
Key challenges include mapping predictions to actions, performing
actions at the right time (not too early or late), dealing with mis-pre-
dictions, and determining how coherence prediction affects runtime.

4.1  Mapping Predictions to Actions

Mapping predictions to actions is straightforward in many cases.
Table2 lists several examples of prediction-action pairs. For example,
a directory action corresponding to a read-modify-write prediction for
a block would be to return the block to the requesting cache in “exclu-
sive” state, instead of the “shared” state.1 Figure4a shows another
example where the predictor in processor two’s cache predicts a write
miss from another processor. A consequent action—as done by an
implementation of Lebeck and Wood’s dynamic self-invalidation pro-
tocol [20]—would be to replace the block from processor two’s cache
to the directory before the directory receives the write miss request
from processor one’s cache. More generally, each directory and cache
can predict incoming coherence messages, execute protocol actions
speculatively (which may include sending messages speculatively),
and take appropriate actions on mis-predictions (Figure4b). Specu-
lative execution of coherence protocol action may also involve exe-
cuting a sequence of protocol actions, instead of executing a single
action (that is normally done). This allows a directory and a cache to
optimize for sharing patterns not known a priori.

1.  Cosmos can identify a read-modify-write operation from the signature:
<P,get_ro_request>, <P,upgrade_request>.

Proc. one’s Dir. Proc. two’s Proc. one’s Dir. Proc. two’s
 cachecache cachecache

get_rw_request

get_rw_response

inval_rw_response
get_rw_request

get_rw_response

inval_rw_request

inval_rw_response

Coherence protocol action
Speculative execution of coherence protocol action

FIGURE 4. Two examples of using prediction to accelerate
coherence protocols. (a) shows a protocol in which protocol
actions are accelerated in anticipation of processor one’s write
miss. (b) shows a protocol that predicts incoming coherence
messages, updates protocol state, generates (but does not send)
messages speculatively, and commits protocol state and messages
only if the predicted message arrives. Dir. = Directory, Proc. =
Processor. Section4 outlines possible triggers for the speculative
actions shown in this figure.
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FIGURE 5. This figure displays a crude execution model that
translates coherence message prediction rates into a parallel
program’s speedup. We assume that execution time is determined
purely by the delay of messages in the critical path of the program.
Results in this figure (based on a prediction rate of 0.8 for all
graphs) show that coherence prediction can result in substantial
speedups.

p = 0.8



6

To appear in theProceedings of the 25th Annual International Symposium on Computer Architecture (ISCA), 1998

4.2  Determining When to Perform Actions

Detecting when to perform actions is simple in some cases, but can
be tricky in others. An obvious time to trigger actions would be to do
so on certain protocol transitions. For example, the directory can trig-
ger the action corresponding to a read-modify-write prediction when
a read miss request arrives for a block. In Figure4a, processor two’s
cache can trigger the block replacement action when it sees
inval_rw_request messages for other spatially contiguous
blocks.1

4.3  Detecting and Handling Mis-predictions

Directories and caches can detect prediction success or failure by sim-
ply verifying whether the next message for a cache block is indeed the
predicted message or not. Additionally, if any action sends messages
speculatively to other directories or caches, then these directories or
caches must be informed of the mis-prediction. This allows a directory
or a cache to recover from mis-predictions caused by other directories
and caches.

Mis-predictions can leave the processor state, protocol state, or both
in an inconsistent state. Consequently, a protocol must recover from
mis-predictions. In general, actions can be classified into three cate-
gories. Below we outline possible recovery mechanisms for each
action.

• Actions that move the protocol between two “legal” states
require no recovery on mis-prediction. Replacement of a cache
block that moves the block from “exclusive” to “invalid” state is
an example of such an action (Figure4a). While there is no
explicit recovery in this example, a mis-prediction may still hurt
performance by resulting in an extra cache miss for the replaced
block.

• Actions that move the protocol state to a future state, but do not
expose this state to the processor, can recover from mis-predic-
tions transparently. On detecting a mis-prediction a protocol
simply discards the future state. On detecting a prediction suc-
cess, however, the coherence protocol state must commit the
future state and expose it to the processor. Mis-predictions corre-
sponding to actions in Figure4b can use such recovery actions.

• Actions that allow both the processor and the protocol to move
to future states need greater support for recovering from mis-
predictions. Before speculation begins both the processor and
the protocol can checkpoint their states. Then, on detecting a
mis-prediction, both the processor and the coherence protocol
must roll back to the checkpointed states. On detecting a suc-
cess, the current protocol and processor states must be commit-

1.  Note that the activity of a processor can be interpreted from the incoming
coherence message, even though a Cosmos predictor sitting next to a pro-
cessor cache predicts incoming coherence messages (and not local processor
activity). For example, a Cosmos prediction ofget_ro_response sug-
gests that the local processor will incur a read miss for a cache block. This
information can be used to properly “time” an action corresponding to a pre-
diction.

ted. Such actions can be created by coupling a speculative
processor, such as the MIPS R10000, with a coherence protocol
accelerated with prediction.

4.4  How Coherence Prediction Affects Performance?

A final aspect of coherence prediction is determining exactly how it
affects application runtime. As stated in the introduction, this paper
concentrates primarily on prediction accuracies. Nevertheless, it
would be useful to gain a rough understanding of how prediction
affects runtime.

A simplistic execution model is as follows. Let:

• p be the prediction accuracy for each message,
• f be the fraction of delay incurred on messages predicted cor-

rectly (e.g.,f=0 means that the time of a message predicted cor-
rectly is completely overlapped with other delays), and

• r be the penalty due to a mis-predicted message (e.g.,r=0.5
implies a mis-predicted message takes 1.5 times the delay of a
message without prediction).

If performance is completely determined by the number of messages
in the critical path of a parallel program, then speedup due to predic-
tion is:

Figure5 displays the model’s result for a prediction accuracy of 80%
(p=0.8) The model shows, for example, that speedup can be as high
as 56% with a mis-prediction penalty of 100% (r=1) and a prediction
success benefit of 30% (f=0.3).

5  Methodology

We evaluate Cosmos’ prediction accuracy using traces of coherence
messages obtained from the Wisconsin Stache protocol (Section5.1)
running five parallel scientific applications (Section5.2). Each appli-
cation has a start-up phase to initiate the computation (e.g., initiate
data structures). Our traces do not contain coherence messages gen-
erated in this start-up phase. The traces were generated by the Wis-
consin Wind Tunnel II simulator [26] simulating a 16-node parallel
machine, with each node having one processor, a coherent memory
bus, and an optimized network interface [24].

The simulated parameters are shown in Table3. Cosmos’ prediction
accuracy is largely insensitive to variations in network latency. For
example, changing the network latency from 40 nanoseconds
(Table3) to one microsecond hardly changes Cosmos’ prediction
rates of the five applications we studied in this paper.

5.1  Wisconsin Stache Protocol

We obtained our coherence message traces from the Wisconsin Stache
protocol. Stache is a software, full-map, and write-invalidate directory
protocol that uses part of local memory as a cache for remote data [30].

Table1 shows all the types of coherence messages generated by

time (without prediction)

time (with prediction)
=

1

p * f + (1 - p) * (1 + r)

Prediction Prediction
Location

Static/
Dynamic

Action Protocol

Load/store from processor Cache Static Prefetch block in shared or exclusive state Stanford DASH protocol [21]

Read-modify-write Directory Static Directory responds with block in exclusive state on read
miss for idle block

SGI Origin protocol [19]

Read-modify-write Cache Static Cache requests exclusive copy on read miss Dir1SW [14], Dir1SW+ [38]

Store from different processorCache Static Replace block and return to directory Dir1SW [14], Dir1SW+ [38]

Store from different processorDirectory Dynamic Invalidate and replace block to directory if exclusive Dynamic Self-Invalidation [20]

Block migrates between dif-
ferent processors

Directory Dynamic On read miss return block to requesting processor in
exclusive state

Migratory protocols [12, 35]

TABLE 2. Examples of prediction-action pairs in existing protocols
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Stache. These coherence messages are common to most full-map,
write-invalidate directory protocols. For all our Stache simulations we
use a (software) cache block size of 128 bytes.

Our implementation of Stache differs other full-map, write-invalidate
coherence protocols in five ways:

• Unlike the DASH protocol, Stache uses thehalf-migratory opti-
mization. In this optimization a directory requests a cache to
mark an exclusive block invalid, and not shared, when it receives
a read or write miss request from another cache. This is benefi-
cial if this same cache block is not immediately read from the
former cache.

• Our Stache implementation allocates pages in round-robin fash-
ion across the 16 nodes. For example, if page X is allocated to
node 10, then page X+1 will be allocated to node 11. The owner
of each page functions as the directory for that page. The direc-
tory pages are optimized to function as cache pages for the local
node. Consequently, in most cases Stache does not generate local
messages between the cache and directory within a particular
node.

• Cache blocks on a cache page in a local node communicate only
with one specific directory page in another node. Consequently,
for blocks on a cache page, the sender is always a fixed node
containing the directory page. A directory page can, however,
receive messages from any node caching the page.

• Currently, Stache does not replace pages (and, hence, cache
blocks) from the portion of local memory it designates as a
cache for remote memory. This implies that Cosmos’ history
information for cache blocks persists over time. Protocols that
replace cache blocks may need to preserve the history informa-
tion even after the block is replaced. Alternatively, such proto-
cols can speculate only at the directory, where Cosmos’ history
information is persistent during the duration of a parallel appli-
cation.

• Barriers are implemented with point-to-point messages. Conse-
quently, our prediction accuracies do not include prediction rates
for barrier variables.

Depth of MHR appbt barnes dsmc moldyn unstructured

C D O C D O C D O C D O C D O

1 91 77 84 80 42 62 94 73 84 92 79 86 85 65 74

2 90 79 85 81 56 69 95 77 86 91 80 86 90 86 88

3 89 80 85 79 57 69 94 92 93 90 79 85 90 88 89

4 89 80 85 78 56 68 94 92 93 90 77 84 96 88 92

TABLE 5. Prediction rates (expressed in percentage of hits) obtained from Cosmos. Depth of MHR denotes the number of messages used by
Cosmos to predict the next incoming coherence message. C = prediction rate at cache, D = prediction rate at directory, and O = overall
prediction rate.

Benchmarks Input Data Sets Iter

appbt 24x24x24 cubes 30

barnes 16K particles 19

dsmc 48600 initial particles, 9720 cell 320

moldyn 2048 particles 40

unstructured 9428 nodes, 59863 edges, 5864 faces 10

TABLE 4. Benchmarks. Iter = number of iterations.appbt is from
NASA Ames [6] and parallelized at the University of Wisconsin
[9], barnes is from the Stanford SPLASH-2 suite [37], anddsmc,
moldyn, andunstructured are from the Universities of Maryland
and Wisconsin [27].

Nevertheless, Cosmos’ prediction results with Stache should not be
significantly different from what would be obtained with a full-map,
write-invalidate directory protocol.

5.2  Benchmarks

Table4 depicts the five benchmarks used in this study. Appbt is a par-
allel three-dimensional computational fluid dynamics application [9]
from the NAS benchmark suite. The code is spatially parallelized in
three dimensions. The main data structures are a number of 3D arrays,
each of which is divided up among different processors as 3D sub-
blocks. Each processor is responsible for updating the sub-block it
owns. Sharing occurs between neighboring processors in 3D along the
boundaries of these sub-blocks.

Barnes simulates the interaction of a system of bodies in three dimen-
sions using the Barnes-Hut hierarchical N-body method [37]. The
main data structure is an octree. The octree’s leaves contain informa-
tion about each body and internal nodes represent space cells. In each
iteration the octree is rebuilt and traversed once per body to compute
the forces on individual bodies. The communication pattern induced
by such traversals is quite irregular.

Dsmc studies the properties of a gas by simulating the movement and
collision of a large number of particles in a three-dimensional domain
with discrete simulation Monte Carlo method [27].Dsmc divides
domains into cells in a static Cartesian grid. Each cell contains par-
ticles, which collide only with other particles in the cell. The cells are
spatially divided up among processors. At the end of each iteration,
particles move from one cell to another. The primary communication
occurs during this movement.

Moldyn is a molecular dynamics application, whose computational
structure resembles the non-bonded force calculation in CHARMM
[8]. Molecules inmoldyn are uniformly distributed over a cuboidal
region with a Maxwellian distribution of initial velocities. A mole-
cule’s velocity and force exerted by other particles determine the mol-
ecule’s position. Force computation limits interactions to molecules
within a cut-off radius. An interaction list—rebuilt every 20 itera-
tions—records pairs of interacting molecules. The arrays that record
the force exerted on molecules and molecules’ coordinates induce the

Number of parallel machine nodes 16

Processor speed 1 GHz

Cache block size 64 bytes

Cache size one megabyte

Cache associativity direct-mapped

Main memory access time 120 ns

Memory bus coherence protocol MOESI

Memory bus width 256 bits

Memory bus clock time 250 MHz

Network message size 256 bytes

Network latency 40 ns

Network Interface access time 60 ns

TABLE 3. System Parameters
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maximum communication.

Unstructured is a computational fluid dynamics application that uses
an unstructured mesh to model a physical structure, such as an airplane
wing or body [27]. The mesh is represented by nodes, edges that con-
nect two nodes, and faces that connect three or four nodes. The mesh
is static, so its connectivity does not change. The mesh is partitioned
spatially among different processors using a recursive coordinate
bisection partitioner. The computation contains a series of loops that
iterate over nodes, edges, and faces. Most communication occurs
along the edges and faces of the mesh.

6  Results

In this section we examine Cosmos’ basic prediction accuracy
(Section6.1) and then delve into Cosmos’ sensitivity to noise and ini-
tialization effects and Cosmos’ memory requirements (Section6.2).

6.1  Basic Prediction Rate

Table5 shows that Cosmos achieves high prediction accuracy. With
an MHR depth of one, Cosmos’ overall prediction accuracy ranges
between 62-86%. Cosmos achieves such high accuracy because cache
blocks in most applications generate predictable coherence message
signatures. These signatures are related directly to sharing patterns of
an application’s data structures. All our applications, exceptbarnes,
have fixed signatures (see Figures6 and 7) throughout the entire exe-
cution of the parallel application.Barnes has slightly lower accuracy
because shared-memory addresses are reassigned to different objects
across iterations. Below we discuss each application’s prediction
accuracy in detail.

Table5 shows that Cosmos has higher accuracy for a cache compared

inval_rw_request get_ro_response

upgrade_response inval_ro_request

95/1093/11

94/9

93/997/9

get_ro_request upgrade_request

inval_rw_response inval_ro_response

87/989/9

92/9

70/887/8

inval_rw_request get_ro_response

upgrade_response inval_ro_request

88/9

77/993/9 72/8 90/8

get_rw_response

95/4
80/3

inval_rw_request get_ro_response

inval_ro_request

99/11 100/11

get_rw_response

100/12100/12

get_ro_request

inval_rw_response inval_ro_response

get_rw_request 99/10

98/11

30/12

92/11

FIGURE 6. Dominant (incoming) message signatures forappbt,
barnes, anddsmcat the cache and directory. Arcs represent the
order in which two messages arrived. Each arc is labelled as X/Y,
where X = percentage of correct predictions for that particular arc
and Y = percentage of references to that arc. For example, an arc
labelled 94/9 is predicted correctly 94% of the time and constitutes
9% of the total references to all arcs. All X and Y numbers are
measured with a Cosmos predictor with MHR depth of one. All Y
for a benchmark do not add upto 100% because we only present
the dominant transitions we observe. The dotted lines represent
dominant message signatures observed in the message stream.

appbt
cache

appbt
directory

barnes
cache

barnes
directory

dsmc
cache

dsmc
directory

get_ro_request upgrade_request

inval_rw_response inval_ro_response

62/9 54/4

42/4

26/449/4

44/5
29/4

get_rw_request

61/3 30/3

19/4

36/5

inval_rw_request get_ro_response

upgrade_response inval_ro_request

97/897/8

97/11

97/1198/11

get_ro_request

inval_rw_response

upgrade_request
88/6

96/11

96/10

97/10

moldyn
cache

moldyn
directory

inval_rw_request get_ro_response

upgrade_response inval_ro_request

99/12

73/1299/12 50/6 98/6

get_ro_request

inval_rw_response

upgrade_request

62/11 86/9

87/938/4

52/3

inval_ro_response

34/4

56/7 31/2
44/2

unstructured
cache

unstructured
directory

FIGURE 7. Dominant (incoming) message signatures formoldyn
and unstructured. See caption of Figure6 for an explanation of
the figure. We show unstructured’s second dominant message
signature (at the cache) using bold and dashed lines.
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to a directory. For the Stache protocol, a cache receives messages from
a fixed sender—that is, a fixed directory, which limits the number of
<sender,message-type> tuples Cosmos must choose its predic-
tions from. In contrast, a directory receives messages from multiple
caches (i.e. senders) for the same cache block. Consequently, Cosmos’
predictions are more accurate for Stache caches than Stache directo-
ries.

Table5 also shows that Cosmos’ prediction accuracy usually
increases with the increase in the MHR depth. With MHR depth of
two, the accuracy ranges between 69-88%, while a depth of three
results in prediction accuracy that ranges between 69-93%. Having
history information helps because it allows Cosmos to recognize pre-
dictable coherence streams (Section3.5). However, most of our appli-
cations do not benefit beyond an MHR depth of three (Table5).

Below we examine why Cosmos achieves high prediction rates for
each of the five applications. Surprisingly, variations in simple sharing
patterns studied by Bennett, et al. [7] and Weber and Gupta[13], can
lead to sequences of coherence actions (and consequent signatures)
that are significantly different from those generated by simple sharing
patterns (e.g., seeunstructured’s sequence of messages below). Con-
sequently, predictors based on simple sharing patterns may not be able
to correctly speculate the sequence of coherence actions that may be
generated. However, Cosmos can capture such variations in sharing
patterns because Cosmos adapts to the incoming message stream,
which directly determines the sequence of coherence actions to fol-
low.

Appbt’s high prediction accuracy results from its producer-consumer
sharing pattern.Appbt is a three-dimensional stencil-style code in
which a cube is divided up into subcubes. Each subcube is assigned
to one processor. Communication occurs between neighboring pro-
cessors along boundaries of the subcubes.

The sharing pattern that results in the sequence of messages shown for
appbt in Figure6 is: producer reads, producer writes, and consumer
reads. This pattern repeats for most cache blocks throughout the entire
application. Consequently, Cosmos adapts well toappbt resulting in
a prediction accuracy of 85%.

Note that the half-migratory optimization discussed in Section5 hurts
appbt because the producer first reads a block before writing to it. In
the absence of this optimization, the producer pattern would have sim-
ply cycled through the two messages:inval_rw_request and
upgrade_response. Clearly, a dynamic predictor, such as Cosmos,
can be used to either inhibit (e.g.,appbt) or trigger (e.g., see discus-
sions ondsmc andmoldyn below) the half-migratory optimization.

Figure6 shows that all transitions forappbt have high prediction accu-
racy except the transition from upgrade_request to
inval_ro_response at the directory. The low accuracy on this tran-
sition results from false sharing in two data structures. It appears that
this false sharing generates multiple signatures that the protocol oscil-
lates between randomly. This confuses the predictor resulting in lower
accuracy.

Barnes’s prediction accuracy ranges between 62-69% for different
MHR depths. This is slightly lower than that for our other applications.
This is because inbarnes nodes of the octree can be assigned different

shared-memory addresses in different iterations. Unfortunately, Cos-
mos cannot make accurate predictions for these nodes of the octree.
This is because Cosmos’ prediction is based on information it col-
lected on past behavior (e.g., previous iterations) of a particular
shared-memory address (at a cache block granularity).

Figure6 shows thatbarnes has a variety of sharing patterns, some of
which exhibit dominant signatures throughout the execution of the
program. However, the low accuracies on most arcs improve with
more history information (i.e. greater MHR depth).

Dsmc shows the highest accuracy among all our applications.Dsmc’s
dominant sharing pattern is the classical producer-consumer pattern
in which the producer writes and the consumer reads shared cache
blocks. This happens because at the end of each iterationdsmc com-
municates information between two processors via shared buffers.
This leads to the message sequence shown in Figure6. Note that the
half-migratory optimization helpsdsmc because the producer does not
read the data before it writes to it. Consequently, invalidating the pro-
ducer’s cache blocks, instead of converting them to read-only, avoids
an extra handshake with the directory.

Figure6 shows that the transition fromget_ro_request to
inval_rw_response has a low prediction accuracy. This low accu-
racy, however, disappears with increased MHR depth because updates
to shared buffers frequently follow deterministic patterns. Neverthe-
less, in some cases multiple processors compete for exclusive access
to a shared buffer. This creates somewhat oscillating patterns that con-
fuse Cosmos. Fortunately, Cosmos learns to isolate these cases using
either more history information or via noise filters (see Section6.2).

Moldyn’shigh accuracy results from two dominant sharing patterns:
migratory and producer-consumer patterns. The migratory sharing
pattern results in the message sequence<get_ro_response,
upgrade_response, inval_rw_response> in both processors a
block is migrating between. The same pattern is exhibited for the pro-
ducer in the producer-consumer pattern. However, the consumer for
the producer-consumer pattern sees the sequence:
<get_ro_response, inval_ro_request>. Hence, the number of
references to the pattern <get_ro_response,
upgrade_response, inval_rw_response> is greater than the
number of references to the pattern<get_ro_response,
inval_ro_request> (Figure7). The sequence seen at the directory
results primarily from the migratory pattern.

Moldyn’s migratory pattern results from the way it reduces a shared
array, which contains force calculations for simulated molecules. In
each iteration each processor collects its contribution for different ele-
ments of the shared array in a private array. At the end of the iteration
each processor adds its contribution from the private array to the
shared array. Updates to each element in the shared array happens in
a critical section, which results in the migratory pattern. Note that the
half-migratory optimization helpsmoldyn. In the absence of this opti-
mization moldyn would have probably seen the signature:
<get_ro_request, inval_rw_response, upgrade_request,
inval_ro_response> at the directory.

Moldyn’s producer-consumer sharing pattern results from updates to
a shared array that contains the coordinates of simulated molecules.

Depth of
MHR

appbt barnes dsmc moldyn unstructured

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

1 84 85 85 62 66 66 84 86 86 86 86 86 74 78 78

2 85 85 86 69 71 71 86 88 88 86 86 86 88 89 89

TABLE 6.  This table shows the prediction accuracy of Cosmos as we vary the maximum count of the saturating counter from 0 to 2. The
saturating counter filters noise from the coherence message stream (Section3.6). The overall prediction rates in Table5 correspond to this
table’s column 0 (i.e. no filter).
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Moldyn’s producer-consumer pattern results in message signatures
similar to that ofappbt’s at both the producer and consumer caches.
However, the average number of consumers formoldyn is 4.9, whereas
for appbt the number of consumers is one. Consequently, at the direc-
tory we see back-to-backget_ro_request messages arriving with
high predictability.

Unstructured is different from the rest of our applications because it
has different dominant signatures for the same data structures in dif-
ferent phases of the application. The same data structures oscillate
between migratory and producer-consumer sharing patterns. The
migratory sharing pattern is similar tomoldyn’s and occurs when each
processor updates different elements of the shared arrays in critical
sections. The migratory pattern is followed by the producer-consumer
pattern in which a producer is itself a consumer of the data. The aver-
age number of consumers per producer is 2.6. The signature shown
in bold and dashed arrows in Figure7 represents the transition from
migratory to producer-consumer pattern. The directory sees corre-
sponding signatures.

Figure7 shows thatunstructured’s prediction accuracy for several
arcs with MHR depth of one is low. This is because of the change in
sharing pattern. Table5 shows, however, that Cosmos’ accuracy
increases from 74% to 92% as the MHR depth increases from one to
four. This increase in prediction accuracy from the increase in MHR
depth also results in high prediction accuracies for these arcs.

6.2  Additional Analysis

Effect of Filters on Prediction Accuracy. Noise filters can increase
the prediction accuracy of Cosmos. We implement Cosmos’ noise fil-
ter as a saturating counter, which counts upwards from zero and sat-
urates at a maximum count. Table6 shows the prediction accuracy of
Cosmos as we vary the maximum count between 0 and 2.

Filters increase prediction accuracy slightly (up to around 6%) only
for Cosmos predictors with MHR depth of one. For MHR depth of two
or beyond filters do not help much. This is because both filters and his-
tory information remove noise from the message stream. However,
history information allows Cosmos to learn from and adapt to the
noise. Consequently, if the noise repeats, then Cosmos can achieve
higher accuracy. In contrast, filters simply remove noise, but do not
let Cosmos adapt to it. Hence, predictors with filters and MHR depth
of one achieve lower accuracy than predictors with greater MHR
depths. Additionally, filters do not help predictors that have MHR
depth greater than one.

Time to Adapt. A critical question for predictors, such as Cosmos,
is how long it takes them to achieve the steady-state prediction rates.
Cosmos predictors need time to achieve steady-state behavior because
they adapt to the incoming stream. We use number of iterations of each

Depth
of MHR

appbt barnes dsmc moldyn unstructured

Ratio Ovhd Ratio Ovhd Ratio Ovhd Ratio Ovhd Ratio Ovhd

1 1.2 5.4% 3.8 13.5% 0.8 3.9% 0.8 4.0% 1.7 6.8%

2 1.4 9.6% 6.9 35.4% 0.4 5.1% 1.1 8.3% 2.1 12.8%

3 1.9 16.4% 9.3 63.0% 0.3 6.7% 1.6 14.9% 2.8 21.9%

4 2.6 26.5% 10.9 91.8% 0.3 8.9% 2.0 21.6% 3.4 33.0%

TABLE 7. Memory overhead of Cosmos predictors (with no filter). Ratio = total number of PHT entries / total number of MHR entries.
MHR entries correspond to cache blocks that were referenced at least once in the parallel section of an application. Ovhd expresses the
average memory overhead per 128-byte block as a percentage of the block size. More precisely, Ovhd = (tuple size * [MHR depth + Ratio *
(MHR depth + 1)] * 100 / 128)%. We assume the tuple size of two bytes (12 bits for processors and 4 bits for coherence message types).
Note that some Ratios are less than one. This is because unless the number of protocol references to a cache block is greater than the MHR
depth, we do not allocate a PHT for that MHR. This makes all ofdsmc’s Ratios less than one because some ofdsmc’s shared-memory data
structures are touched rarely. For the same reason, unlike other benchmarks,dsmc’s Ratio decreases with increase in MHR depth because the
number of such shared-memory blocks that are touched greater number of times than the MHR depth is even fewer.

application as an approximation to time. This is because the five par-
allel applications we examined in this paper iterate over a number of
steps or iterations. Cosmos can predict incoming coherence messages
for a cache block fairly accurately because sharing pattern of a cache
block in one iteration is usually similar to its sharing pattern in the pre-
vious iteration.

We found thatunstructured andbarnes achieve steady-state behavior
quickly (in less than 20 iterations).Appbt andmoldyn take slightly
longer (around 30 iterations).Dsmc, however, takes a large number
of iterations (around 300) to achieve steady state prediction rates. This
is because specific transitions indsmc take a large number of iterations
to achieve reasonable prediction accuracies (Table8).

Memory Requirement of Cosmos Predictors. Table7 shows that
dynamic memory overhead incurred by Cosmos predictors is accept-
able—that is, less than 22%—for most applications for predictors
with MHR depths of three or lower. Additionally, the number of PHT
entries per cache block (or MHR entry) is less than three in most cases.
The low PHT to MHR ratio suggests that perhaps a scheme that stat-
ically allocates three or four PHT entries per cache block and dynam-
ically allocates the rest from a common pool of memory may work.
Only for barnes the memory overhead is as high as 63% for MHR
depth of three becausebarnes reassigns shared-memory addresses to
logically different objects, which confuses Cosmos and leads to
greater number of coherence message patterns.

7  Comparison with Directed Optimizations

In this section we compare Cosmos with directed optimizations—that
is, optimizations introduced in a coherence protocol for specific shar-
ing patterns. Dynamic self-invalidation [20] and migratory protocols
[12, 35] are examples of two such protocols. Both can be thought of
as implementing predictors directed at specific optimizations. Cos-
mos could be less cost-effective than predictors for directed optimi-
zations because Cosmos requires more hardware resources to store,
access, and update the Message and Pattern History Tables. However,
Cosmos’ memory requirement can perhaps be reduced by grouping
predictions for multiple cache blocks together (similar to Johnson and
Hwu’smacroblocks [16]).

Cosmos could be better than directed optimizations for two reasons.
First, including the composition of predictors of several directed opti-
mizations in a single protocol could be more complex than Cosmos.
Predictors in existing coherence protocols are usually integrated with
the finite-state machine of the protocol. Such integration may work
well when one considers these protocols individually. Unfortunately,
combining multiple such predictors into a single protocol can lead to
an explosive number of interactions and states, which can make the
resulting protocol bulky and hard to debug [11]. More critically,
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extending a bulky protocol with other kinds of speculation becomes
even harder. In contrast, Cosmos captures the predictors for directed
optimizations in a single predictor. Figure8 shows the coherence mes-
sage signatures that trigger the dynamic self-invalidation and migra-
tory protocols. Cosmos can capture these signatures easily.
Additionally, protocols accelerated with Cosmos are easier to extend
because Cosmos separates the predictor from the protocol itself.

Second, Cosmos can not only identify known sharing patterns, but can
also discover application-specific patterns not known a priori. For
example, Section6.1 shows that one ofunstructured’s signatures is a
complex composition of migratory and producer-consumer sharing
patterns. Predictors directed only at migratory or producer-consumer
pattern will fail to trackunstructured’s transition between migratory
and producer-consumer sharing patterns. As Section6.1 also shows,
Cosmos can easily capture, filter, and adapt to different message sig-
natures generated by variations in simple sharing patterns studied by
Bennett, et al. [7] and Gupta and Weber [13].

8  Summary and Conclusions

This paper explores using prediction to accelerate coherence proto-
cols. A coherence protocol can execute faster if it can predict future
coherence protocol actions and execute them speculatively. It shares
with branch prediction the need to have a sophisticated predictor. The
first contribution of this paper is the design of theCosmos coherence
message predictor. Cosmos predicts the next <processor,mes-
sage-type> in two steps reminiscent of Yeh and Patt’s two-levelPAp
branch predictor. Cosmos faces a greater challenge than branch pre-
dictors because the Cosmos’ prediction is a multi-bit<proces-
sor,message-type> tuple rather than a single branch outcome bit.

The second contribution of this paper is a detailed evaluation of the
Cosmos coherence message predictor. Using five scientific bench-
marks on a target shared-memory machine with 16 processors running
the Stache directory protocol, variations of Cosmos predict the source
and type of the next coherence message with surprisingly-high accu-
racies of 62-69% (barnes), 84-86% (moldyn), 84-85% (appbt), 74-
92% (unstructured), and 84-93% (dsmc).

Cosmos’ high prediction accuracy results from predictable coherence
message patterns orsignatures associated with specific cache block
addresses. Such signatures are generated by sharing patterns that do
not change or change very slowly during the execution of these appli-
cations. Cosmos is more general than directed optimizations, such as
dynamic self-invalidation and migratory protocols. Cosmos could be
less cost-effective than the directed optimizations because it uses more
resources (e.g., tables). Cosmos could be better than directed optimi-
zations because (1) including the composition of these optimizations
could be more complex than Cosmos and (2) Cosmos can discover and
track application-specific patterns not known a priori.

More work is needed to determine whether the high prediction rates

of Cosmos can significantly reduce execution time with a coherence
protocol. This is work is analogous to taking a branch predictor with
high prediction rates and integrating it into a micro-architecture to see
how much it affects the bottom line. We believe that results in this
paper on Cosmos’ high prediction rates indicate that work on the next
step is justified.
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