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Abstract Another class of proposals predict future sharing patterns [7, 13] and
take actions toeerlap coherence messagettiwith current vork.
Predictions can be made by programmers [14, 38, 1, 25], compilers
[23, 32, 31, 15], softare [4], or hardware. Specialized predictors in
hardware include read-modify-write operation prediction in the SGI

mented standdrcoheence potocols with optimizations for specific Origin _protocpl [.19]‘. pamwise Sha”ng prediction in SCI [34],
sharing patterns, sticas ead-modify-write producerconsumer dynamic self-inalidation [20], _and migratory _protc_)cols [12, 35].
and migatory sharing This paper seeks teplace these dicted Othere(amplgs of hardere predlcpors are descrlpgd in [17, 5,29, 28].
solutions with gneal prediction lajic that monitos coheence  EXisting predictors, heever, are directed at specific sharing patterns
activity and triggers appppriate coheence actions. knowna priori. Furthermore, a protocol implementation is often made
more complg by intertwining predictors with the standard coherence
protocol.

Most laige shaed-memory multimcessos use diectory potocols
to keep petprocessor cates cohegnt. Some memorgfeiences in
sudh systems, hower, sufer long latencies for misses temotely-
cacthed blogs. D amelioate this latencyreseachers have aug-

This paper taks the fist step towat using gneal prediction to
acceleate coheence potocols by deeloping and ealuating the
Cosmos cohence mesge predictor Cosmos pdicts the sowe  This paper seeks amore general predictor to accelerate coherence pro-
and type of the n& coheence mesge for a cabe blok using tocols. Predictors wuld sit beside each standard directory and cache
logic that is an etension of &h and Rtt's two-level PAp brancdh  module to monitor coherence attly and request appropriate actions.
predictor For five scientific applications running on 160pessos, If a directory predictqifor exkample, anticipates that a processor ask-
Cosmos has pdiction accuacies of 62% to 93%. Cosmos’ high ing for a block B “shared” will subsequently ask for block Bcle-

prediction accuacy is a esult of pedictable cohence mesg®  sjve’ the directory can answer the “shared” request with block B
signatues that arise im stable sharing patterns of ¢ecblods. “axclusive”

1 Introduction The first contrilotion of this paper is the design of thesmosoher-

Most shared-memory multiprocessors accelerate memory accesi%ge message predictor for accelerating coherence protocols

using peiprocessor caches. Caches are usually made transparen 8Ct'°n3)' COS“?OS design is inspired byeIYar_]d Bit's two-level
software with a cache coherence protocol. Mogidahared-memory P branch predictor [39]. Cosmos neska prediction in ta/steps.
multiprocessors use directory protocols [3, 21, 19]. Directory protd: 'St it Uses a cache bloakidr ess to indeinto aMessge History
cols maintain a directory entry per memory block that records whiclf-P/€ {0 obtain one or morepr ocessor , message- t ype> tuples.
processor(s) currently cache the block. On a miss, a processor se Bsse<pr ocessor, message- t ype> tuples correspond to sender
a coherence messageeoan interconnect to a directpwhich often 319 message type of the last feoherence messages reeedifor that

forwards message(s) to processor(s) currently caching the bloGche blockvessage- t ype identifies specific coherence actions for
These processors may famd data or ackwdedgments to the a sharing pattern, wheremsocessor identifies the specific sharers
involved in the sharing pattern. Second, Cosmos uses ¢hese

requesting processor and/or director . >
q gp i ] ) y o ) cessor, nessage- t ype> tuples to inde aPattern History @bleto
Unfortunatelythis cache miss and directory &itji can disturbapro- - obtain a<pr ocessor, message-t ype> prediction. NotablyCos-

grammers performance model of shared memory by making somgos fices a greater challenge than branch predictors because the Cos-
memory accesses tens to hundreds of timegesithan others. This  mos’ prediction is a multi-bitpr ocessor , message- t ype> tuple
problem has led to mguproposals, including weakmemory models  rather than a single bit branch outcome.

[2], multithreading [36], non-blocking caches [18], and application-

specific coherence protocols [27p @ate, all proposals possess onel Nis paper concentrates on coherence protocol message prediction in

or more of the follwing dravbacks: require a more complero- isolation (analogous to studying branch prediction in isolatioe). W

grammer intedce or model, retard uniprocessor performance g0 not intgrate the Cosmos predictor into a coherence protocol for
require sophisticated compillers ' “two reasons. First, our tools are not ready to handle a full timing sim-

ulation of a protocol that can be accelerated using prediction. Second,

This work is supported in part by Wright Laboratoryinics Directorate, Air we do not vant initial results in this area obscured by implementation
Force Material Command, USABnder grant #F33615-94-1-1525 and ARp _idiosyncrasies. Neertheless, wexpect such ingration to be suc-
orderno. B550, National Sciencatfdation with grants MIP-9225097, MIPS-  cessful because the igtation of directed predictions has been suc-
9625558, and CR-9623632, a Wsconsin Romnes Feliship, and donations  cessful [19, 20, 12, 35]. Sectidrbriefly discusses possibilities for
from Sun Microsystems. The U.S. @onment is authorized to reproduce and g ch intgration.

distribute reprints for Geernmental purposes notwithstanding anpyright

notation thereon. The ws and conclusions contained herein are those of thd'he second contriliion of this paper is a detailedagduation of the

authors and should not be interpreted as necessarily representirfictae of cosmos coherence message predi@ectiors states methodolog-

Rf’,'ig:r']‘?cssolg‘?rne%%fgg%?tfﬁee'g'gf%:fﬁg]ggpp“ed’Ofthewr'gh“‘aboratory ical assumptions, including the use okfiscientific benchmarks on
a taget shared-memory machine with 16 processors running the
Stache directory protocol [30]. Secti6rgives Cosmos’ prediction
rates and analyzes application detailiadtions of Cosmos predict
the source and type of thexteoherence message with surprisingly-
high accuracies of 62-69%bdrne3, 84-86% (noldyn, 84-85%
(appb), 74-92% (instructued), and 84-93%dsmg. Cosmos’ high
prediction accuracresults from predictable coherence message pat-
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a directory protocaod messages with high accuyathroughout the

rest of the paper we will use the terms “node” and “processor” inter-
changeably because we consider only single-processor nodes to sim-
plify our discussion.

) 2.1 Structure of a Directory Protocol

Prac. %nes Dir. Proc. tw’s
cache cache
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,spoﬂse Most lage-scale shared-memory multiprocessors use a directory pro-

tocolto keep multiple caches coherent. Adirectory protocol associates

4
Proc. tvo state with both caches and memdlyis state is typically maintained
at a cache block (e.g., 32-128 bytes) granularitg state associated

—
@m
~

Proc. one Dir. with each memory block is referred to as a directory efilrg direc-
| Coherence protocol action Protocol State fnsitions tory entry for each memory block records whether or not a memory
(a) (b) block is idle (that is, no cached copiesse), a writable cop of the
FIGURE 1. (a) shws messagexehange between a directory : block eists, or one or more readable copies of the bladt.e
two caches and (b) sis the corresponding state transitic 14 gimplify our discussion we only consider a full-map and write-

Tablel explains the coherence message types. lvalith E = PN ; P
exclusie, Dir. = Directory Proc. = Processomitially, processc invalidate directory protocol, such as the SGI Origin protocol [21]. A

two has anxclusive copy of a cache block. Processor one isst directory entry in such a protocol ma_inte_\ins logical pointer_s to caches
store to the block (1). Thisvokes processor oretache coheren  thathold aalid coy of the block and walidates all outstanding cop-
protocol, which sends a message to the directory (2). The dir ies of the block when one processor wishes to write to it. Similarly
examines its state and sends a message to process@questin a block in a cache is usually in one of three quiescent statakdjn

it to return the block to the directory andiatidate its cop of the shared, orxclusive. These states define whether a proceskmatl
block (3). When the directory reges the block from process or store can access the cache block. Processors nuk& aoherence

two (4), it forwards it to processor one, which marks the ¢ actions on loads tovalid blocks and on stores to shared (i.e. read-
block as &clusive in processor one (5). The states “I to E” an only) and ivalid blocks.

to E” represent transition states.

- - - — A cache coherence protocol can, therefore, veadesimply as a col-

terns orsignatues associated with specific cache block addressesection of finite-state machines that change state in response to pro-
Such signatures are generated by sharing patterns [7, 13] that do gaksor accesses andeznal messagesoFcaches, state transitions
change or changeewy slavly during the gecution of these applica-  occur in response to processor accesses and messages from the direc-
tions. Cosmo_s’ Iwgr accyrgyforbarnes)ccurs becaudmrneyeri- tory (and possibly other caches). A directory entry changes state in
odically re-huilds its principal data structure (an octree), thereb)’responseto messages from caches. Fishavs an &ample of mes-

moving logical nodes (with stable sharing patterns) tiedht mem-  sage grchange and state transitions irteaches and a directory

ory addresses (obscuring sharing patterns from Cosmos). - . .
y ( g gp ) Unfortunatelythe finite-state machines thatimplement the coherence

Section7 explores the implications of Cosmos. Coherence messagRgic often incur multiple long-lategoperations. These latencies can

prediction vorks because sharing patterns are often stable. Othegecome seere if coherence actions are implemented in sofie.g.,

have e<pI0|ted.sha.lr|ng patterns ywth directed optimizations, such ag30]) or firmware (e.g., [22]). Additionallya directory may need to

dynamic self-inalidation and migratory protocols. Using Cosmos exchange messages with other caches before it can respond to a pro-

could be better (orerse) than directed predictors due to performanceessors request for a memory block. Such messageange can also

and implementation issues. Cosmos can perform better because it Gafloduce substantial delay in the critical path of a remote acaess. F

discover and track application-specific patterns notvkma priori  example, Figurdla shevs that a processer'store to a block that

(e.g., as occurs famstructued). It can perform wrse ifitis slover  yesides in another nodetache may require écoherence protocol

to recognize knan patterns. Cosmos’ implementation comflie  actions and four messages. Other protocofsrdie.g., SGI Origin

can be less because predictor logic is separated from the standard ReQtuce coherence actions to four and messages to three by directly for-

tocol logic (unlile previous directed predictors that are intertwined warding processor tws response to processor onei, this should

with the standard coherence protocol). Cosmosgher, is likely to  haye no first-order déct on coherence predictianisability

require more state than directed optimizations. In summar% . .

(Section8), Cosmos’ high prediction accuracies justify more#n 2 Two-Level Adaptive Branch Predictor

tigation into using prediction to accelerate coherence protocols. A branch predictor predicts whether the branch will bertar not
taken. Correct prediction of branch directions imy@® the perfor-

2 Background AL e . :
mance of wide-issue, deeply pipelined microprocessors because it

This section describes the structure of a basic directory protocallows them to fetch andkecute probable instructions withoudity

(Section2.1) and reiews Yeh and Btt's two-level adaptve branch  ing for the outcome of pvéous branches. J. Smith [33] proposedt se

predictor (Sectior2.2). In the net section we discuss wCosmos—  eral dynamic branch predictors that use program feedback to increase

amodified ersion of ¥h and Btt's two-level predictor—can predict the accurag of branch prediction. More recentlyeh and Btt pro-

Messages Receed by Directory from Caches Messages Receed by a Cache fom a Directory
Message Description Message Description
get_ro_request |get block in read-only (shared) state get_ro_response [response to get_ro_request

get_rw_request |get block in read-write ¢elusive) state get_rw_response response to get_rw_request

upgrade_request |upgrade block from read-only to read-writepgrade_responsgresponse to upgrade_request
inval_ro_response|response to iral_ro_request inval_ro_request |invalidate read-only (shared) oppf block
inval_rw_responsgresponse to iral_rw_request inval_rw_request |invalidate read-write ¢elusive) copy and return block

TABLE 1. A sample of coherence messages usually found in full-map, wrikdiate coherence protocols.
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/* private_counter = private variable */ (Per Block Address) (Per Block Address)
/* shared_counter = shared variable */ Message Historydble Pattern History @bles

r epeat
if (producer) /7
privat e_count er ++ //'l__

shared_counter = private_counter —
barrier /

else if (consuner) —
barrier 2
private_counter = shared_counter —
else
barrier Global Address
endi f of cache block (a)
until done Pattern History &ble forshar ed_count er
(a) Index Prediction
<P1, get rw request> <P2,inval _ro_response>
) i P2, get _ro_request >
roducer <P2,inval _ro_response>< get_ro_
%ache <P2, get _ro_request> <P1,inval _rw response>
@, i nval _rw_response><Pl, get _rw_request >
Message History
et_ro_response ' consumer
cache Table

Global Address 0o
shar ed_count er

’r<P2, get _ro_request >

tfival _ro_response
rom consuner

(b)

FIGURE 3. (a) shes the logical structure of the Cosn
coherence message predictor and (bjvshem @ample of hav the
message and pattern history tables for a directory may lcokolil
theshar ed_count er in Figure2. In this &ample, we assun
(b) ]Ehat thy? last messaged recs c?y thg 2direSctor(3£ is a get_.rl(l)_re%y

N . . . rom the consumer (denoted as . So, Cosmos will predi
FIGURE 2. This figure shes the incoming message signat next message to b(e anvhd_rw_res)ponse from the p?odw
generated by a produeeonsumer sharing pattern for a ca (denoted as P1)
block. (a) shers a pseudo code for the producensumer sharin —= — -
pattern. A producer writes to a shared counter and a con:  producer gecuting the code in Figua obseres the follaving mes-

reads the shared countéb) shavs the sequence of messa sage sequence for the cache block containing theable
receved by the producer cache, consumer cache, and directc shared_counter:
the cache block containing the shared counter (assumirgsa .
sharing). &blel explains the difierent message types st in sendget _rw_request to directory
receveget _rw_r esponse from directory

this figure. : ¢
recevei nval _rw request from directory

posed a general dynamic branch predictor cathgu[39]. PAp is a sendi nval _rw_r esponse to directory

two-level adaptve predictor that mads a prediction for abranch based Figyre2b shovs the incoming message signature that results from the
on the past bekér of the same branch. First, it uses the programapo/e message sequence. Note thahgining the incoming messages
counter of a branch to indénto aBrandh History Bbleto obtain k s suficient to interpret both the sharing pattern (i.e. prodaoer

bits, which represent the last k outcomes of the branch at this prografimer) and the local processoactions (i.e., processor store to pro-
counterSecond, it uses these k bits to mdé@etBranchPattern His-  qyced block).

tory Tableto obtain a prediction. Each entry in thattern History . . . .

Table is a finite-state machine, which returns predictions based on tfgnsider a slightly more compl@xample in which wexiend the
behavior of a finite number of préous occurrences of this branch (and PS€udo code in FiguiZa to support twconsumers instead of one. In
the k bits from the Branch Historaile). In the net section we will this case the producer and themonsumers will still follav the same

shav how PAp can be modified to obtain coherence message predi@'dictable signatures as shoin Figurezb. However, at the direc-
tons. fory the twoget _ro_r equest messages canwairrive in ary order

from the two consumers. But, the araill of aget _r o_r equest from

3 Predicting Coherence Potocol Messages the first consumer suggests strongly the possibility of theahot
anotheget _ro_request fromthe second consumer and vieesa.

To achiee high accuraca predictor must adapt to sudriations in

the incoming message stream. The rest of this section discusses the
gag,ign of such an adaydi predictor called Cosmos.

directory

inval _rw_ response
om producer

This section describes the Cosmos coherence message prétiietor
next section briefly outlines ko Cosmos can accelerate coherence
protocols. This section gas with an gample of a produceson-
sumer sharing pattern and its corresponding coherence message
nature. The rest of the section uses tkaple to describe Cosmos 3.2 Basic Structue of Cosmos

in detail ) ) The previous subsection suggests that a coherence message predictor
3.1 PmoducerConsumer Sharing Rittern’s Signature must adapt to an incoming coherence message stream basex on tw
Figure2 shavs an @ample of a producesonsumer sharing pattern properties: )

and hev it can lead to predictable message pattersigoatuesfor ~ ® address of cache blocks, because sharing patternsferfedi

a particular cache blockoFexample, assuming nalse sharing, the cache blocks may dér, and
® history of messages for a cache block, because a stream of
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incoming coherence messaases correspond ¢al fharing pat- 3.3 Obtaining Predictions from Cosmos
terns for specific cache blocks.

Fortunately a modified ersion of ¥h and RBit's two-level adaptie
branch predictor calld@Ap[39] satisfies the alve requirements! &/
call such a coherence message predictamosGiven the address

of a cache block and the history of messageswedéor that block, dicted tuple, which contains the predicted sender and type of the

_Cosmps can predict with high accurdiee sender and type ofthe<_ne next incomng message corresponding to that cache block; other-
incoming message for the same block.aNocate a Cosmos predictor  \yise. return no prediction.

for every cache or directory in the machine.

Here are the stepsviolved to obtain a prediction from Cosmos:

index into the MHR table with address of a cache block,
use the entry in MHR to indénto the corresponding PHand
return the prediction entry (if oneists) in the PHT as the pre-

. ) i 3.4 Updating Cosmos
Figure3a shas the logical structure of Cosmos. Cosmos is@ tw

level adaptie predictor The first-leel table—called thdMessge  Typically, we expect Cosmos to be updated afteary message recep-
History Table (MHT)—consists of a series Messae History Rg-  tion when we knw for sure thesender, t ype>tuple ofamessage.
isters (MHRs) Each MHR corresponds to afeifent cache block Here are the stepsvoived in updating Cosmos:

address. An MHR contains a sequencesainder, type> tuples * index into the MHR table with the address of a cache block,
corresponding to the lastWecoherence messages thatwdiat the  ® use the entry in MHR to indénto the corresponding PHT
node for the specific cache blocke\dall the number of tuples main- ® write nev <sender , t ype> tuple as ne& prediction for the inde

tained in each MHR theepthof the MHR. corresponding to the MHR enjrand
o ! .
The second-kel table of Cosmos consists of a sequendéatiérn Itflgcskh'ﬁ the<sender , type> tuple into the MHR for the cache

History Tables (PHT) one for each MHR. Each PHT contains pre- )
diction tuples corresponding to possible MHR entries. Each PHT i§.5 Hov Cosmos Adapts to Complex Signates?

indexed by the entry in the MHR entifhe net two subsections out-  ~ysmos can adapt to complaessage streams, such as the one out-
line haw to obtain predictions from and update entries in COSMOS. |ined at the end of Sectidl. If two get_ro réquest messages
Figure3b shavs the entries in an MHR and its PHT corresponding toarrive out of order from tevdifferent consumers (P1 and P2), the PHT
theshar ed_count er variable in Figure€. The MHT in Figure8b  table will contain the follwing two entries:
has a depth of one, so this MHR entry contains only<seeder , Index Prediction
t ype>tuple. The<P2, get _ro_r equest >tuple shavninthis figure
denotes that the last message rexmbfor the cache block containing
theshar ed_count er isaget _ro_request message from the pro- |<F2, get_ro_request> <P1, get_ro_request>

cessor P2, which is consumer of #ier ed_count er in this case.  Therefore, Cosmos canfettively predict the ne incoming coher-

The corresponding PHT captures patterns of messagegse@éei  ence messageyen though incoming messages mayvarin a dif-
shared_counter. For example, earlier Cosmos obsedr a  fgrent order in dierent instance<

get _ro_request message from processor P1 folewl by an . . .

i nval _ro_response from processor P2. The first entry of the PHT FOr more complicated sequences of incoming messages, Cosmos may
reflects this relationship. Thus, Cosmos will predict theardf an ~ "€€d an MHR with depth greater than oner &ample, if three

i nval _ro_response message from processor P2rteme it sees get _ro_r equest messages come out oforderfrom_three consumers
a mesgagéet _ro_request from processor P1. Because the MHR (P1, P2, and P3), then the PHT for a Cosmos predictor with MHR of

contains the tupie corresponding to the last messagevedcgo ~ d€Pth = 2 may contain the folling three entries:

<Pl1l, get_ro_request> <P2, get_ro_request>

obtain a prediction we simply find the correct MHR, and use that entryndex Prediction

to index into the PHTwhich will give us a prediction if an entryists <Pl, get_ro_request>, <P3, get_ro_request>
for that tuple. <P2, get_ro_request>

Cosmos diers from Yeh and Btt’'s two-level adaptie branch pre- [<P2, get_ro_request>, <Pl, get_ro_request>
dictor called Rp (see Sectio@.2) in three ays. First, the first-lel <P3, get_ro_request>

table in Cosmos is inded by the address of a cache block, whereag<P3. get_ro_request >, <P2, get_ro_request>

sP1, get_ro_request>

PAp is indexed by the program counter of a branch. Second, Cosm
must choose one prediction fronveeal alternaties, whereasAp  Clearly, this allovs Cosmos to predict the third incoming coherence
usually chooses betweendwalternatvtes—branch tadn or branch message accurately based on the history efque messagesoF

not talen. Third, the state machine in each PHT entnAiméhcodes  tunately several studies (e.g., [13, 38, 25]Messhavn that the werage

the history of the last#eoutcomes of the same branch. Instead, a PHThumber of sharers of a cache block is usually less thanGanse-
entry in Cosmos simply consists of a prediction. Addition&igT quently we do not gpect the depth of the MHR to bery high for
entries in Cosmos can contain state machines (Se&&byrtutthese  most applications. Specificallwe found that an MHR of depth three
are typically used as filters to remeonoise from the incoming mes- is suficient in most cases for the éparallel applications we studied
sage stream. in this paper

Below we outline the xact steps ivolved in obtaining a prediction
from and updating Cosmos. Specificimplementations of Cosmos may
either separate or combine these sieps.

2. A more aggress predictor could ignore the senders for the
get _ro_request messages. Heever, this may not be possible if there

1. Cosmos could predict thexteoherence protocol state, instead of the &€ interening messages of other types for the same cache block.

next incoming coherence messagee \belize these tw approaches are 3. We cannot ignore the processor number of the messagesthough it
equialent. Havever, Cosmos predictors for specific protocols may con- may appear so in the@mple. This is because actionsaalby the directory

sume less space if Cosmos captures messages, instead of coherence prot@cgl, sending anvalidation message) based on the prediction may require
states. Br example, at the directory the coherence protocol state of the W accurate prediction of the processor numblewever, it may be possible to
consin Stache protocol (Sectibrl) consumes eight bytes, whereas the group the processor numbers into a set and perform actions on the entire set
message information could be captured io bwtes (&ble7). of processors.
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Proc. one Dir. Proc.tw’s Proc.ones Dir. Proc. two's
cache cac h

(b)

a
|Coherence protocol action
ISpecuIat've execution of coherence protocol act

FIGURE 4. Twvo examples of using prediction to acceler
coherence protocols. (a) st® a protocol in which protoc
actions are accelerated in anticipation of processorsongte
miss. (b) shavs a protocol that predicts incoming cohere
messages, updates protocol state, generatgsd@@s not senc
messages speculaly, and commits protocol state and messi
only if the predicted message a&s. Dir = Directory Proc. =
ProcessorSection4 outlines possible triggers for the specula
actions shan in this figure.

3.6 Filtering Noise fom Coherence Message S¢éam

When updating Cosmos we can fiters to reduce noise from the

coherence message stream in the saayeh and Btt's FAp pre-
dictor remaes noise from a stream of branches.&ample, if 99%

=0.8 =—=1=0.00
P +—1=0.25
4 4 *—%r=0.50
&--4Ar=1.00
I > - »r=2.00
3t ~—r=4.00] |

Speedup from prediction

%o 02 0.4 0.6 08 1.0
f (fraction of delay for messages that are successfully predicted)

FIGURE 5. This figure displays a crud&eeution model the
translates coherence message prediction rates into a
programs speedup. Wassume thatxecution time is determine
purely by the delay of messages in the critical path of the pro
Results in this figure (based on a prediction rate of 0.8 fc
graphs) she that coherence prediction can result in subste
speedups.

corresponding to a cache block iwjdhat is, less than four (omex-

age) for an MHR depth of one for all éapplications we studied in

this paperConsequentlywe could preallocate four pattern history
entries corresponding to each cache block. If a cache block needs more
pattern histories, then it can allocate them from a common pool of
dynamically allocated memory in the samaywLimitLESS [10]
directory entries capture the list of sharers for a particular cache block.
Nevertheless, higher prediction accuracies may require greater MHR
depths, which may result in ggr amounts of memary

of the time, message B folle message A, then on seeing messag ; ;
A, Cosmos will predict the mémessage to be B.&¥lo not vant our 4 Using Coheence Potocol Message Redictors

prediction to change if these messages@amarely in the sequence: This section briefly discussesia coherence protocol message pre-
A, C, and B, instead of the sequence A, B. Branch predictoeseha dictor, such as Cosmos, can be greged with a coherence protocol.
similar problem when programsitloops. Frequentiythe it from Predictors wuld sit beside each standard directory and cache module
loops is a takn branch; heever, when the loop isx@cuted com-  and accelerate coherencetyiin two steps. First, thyavould mon-
pletely the &it is a not-taken branch. Branch predictors typically itor message asfity and male aprediction.Second, based on the pre-
avoid updating their prediction orxiging a loop via a tw-bit satu-  diction, the will invoke anactionin the standard coherence protocol.
rating counter proposed by J. Smith [33]. One bit of theeltitcounter ~ Key challenges include mapping predictions to actions, performing
represents the direction of the branch and other bit represents taetions at the right time (not too early or late), dealing with mis-pre-
counter Because a message needs more than one bit to represemtictions, and determining tnocoherence predictionfatts runtime.
<sender, type>tuple, we simplify the counter and use only a single ; it ;

bit. With this single-bit countexwe update the prediction for a cache 4.1 Mapping Predictions to Actions
block to a diferent message only if we seeotaonsecutie message
mis-predictions for the same block.

Our results (Sectiof.2) suggest that filters increase the prediction
accurag for Cosmos predictor with MHR depth of onef they do

not help Cosmos predictors with MHR depth greater than one. Th
is because both history and filters reduce noise from the message

stream. Hwever, history information adapts to the noise, while filters Iss from another pracessdr consequent action—as done by an
simply 'remuve it’ y P ' implementation of Lebeck anddd’s dynamic self-imalidation pro-

tocol [20]—would be to replace the block from processar'sweache
3.7 Implementation Issuesdr Cosmos

to the directory before the directory re@s the write miss request
Cosmos s aterlevel adaptie predictor with the firstieel containing frorr]n prr%ciefisnor omnﬁ]cachﬁ : 'r\/";re grzralneralkyachu;ilrecr;t?ry alnd ‘iiac;]he
message historygesters (MHRs) and the seconddécontaining pat- can predict incoming conerénce messages;ee protocol actions
tern history tables (PHT). It may be possible togeehe first-lgel

speculatiely (which may include sending messages speealgji
table with the cache block state maintained at both directories al ti(\j/ tale ap;t)ironprl?te ﬁCtr'or?S onrrrtns-plredlt?tlr?r:: (F|gitb)z|_Specu-
caches. Hwoever, this may lead to a loss of Cosmos’ history infor- ative eecution of conerence protocol action may alSove e&e-
mation when cache blocks are replaced. This problem may not ari

ggting a sequence of protocol actions, insteackefting a single
for the directory because directory state is usually persistent duri tion (that is normally done). This all a directory and a cache to
the entire duration of a parallel application.

timize for sharing patterns not kmoa priori.
The second-kel table is more challenging to implement because it
may require lage amounts of memory to capture pattern histories for
each cache block. Maver, our results (Sectiof.2) shev that Cos-
mos’ memory werhead for 128 byte cache blocks is less than 14% fot. Cosmos can identify a read-modify-write operation from the signature:
an MHR depth of one. This is because the number of pattern historig5> 9et _ro_request >, <P, upgrade_r equest >.

Mapping predictions to actions is straightfand in mag cases.
Table? lists sgeral kamples of prediction-action pairofexample,
adirectory action corresponding to a read-modify-write prediction for
a block would be to return the block to the requesting cachexiitie

ive” state, instead of the “shared” sthtEigure4a shavs another

| . . , . .
§<ample where the predictor in processar'sicache predicts a write
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Prediction Prediction |Static/  |Action Protocol

Location |Dynamic
Load/store from processor |Cache Static Prefetch block in shared ox@usive state Stanford DASH protocol [21]
Read-modify-write Directory |Static Directory responds with block irxelusive state on read5GI Origin protocol [19]

miss for idle block

Read-modify-write Cache Static Cache requestxelusive copy on read miss Dir,SW [14], DinpSW+ [38]
Store from diferent processorCache Static Replace block and return to directory Dir,SW [14], DirpSW+ [38]
Store from diferent processofDirectory |Dynamic |Invalidate and replace block to directory xcisive  |Dynamic Self-Ivalidation [20]
Block migrates between dif- | Directory |[Dynamic [On read miss return block to requesting processor jMigratory protocols [12, 35]
ferent processors exclusive state

TABLE 2. Examples of prediction-action pairs xising protocols

4.2 Determining When to Rrform Actions ted. Such actions can be created by coupling a speeulati
processarsuch as the MIPS R10000, with a coherence protocol

Detecting when to perform actions is simple in some casésan accelerated with prediction.

be tricky in others. An obious time to trigger actionsauld be to do .
S0 on certain protocol transitionsrfexample, the directory can trig-  4-4 Haw Coherence Pediction Affects Rerformance?

ger the action corresponding to a read-modify-write prediction whem final aspect of coherence prediction is determinicargy haw it

a read miss request ares for a block. In Figuréa, processor s affects application runtime. As stated in the introduction, this paper
cache can trigger the block replacement action when it segncentrates primarily on prediction accuraciesveMbeless, it
inval _rw request messages for other spatially contiguousygyld be useful to an a rough understanding ofviagrediction
blocks: affects runtime.

4.3 Detecting and Handling Mis-pedictions A simplistic execution model is as fols. Let:

Directories and caches can detect prediction succesfoefby sim- @ p be the prediction accunafor each message,

ply verifying whether the n¢ message for a cache block is indeed the® f be the fraction of delay incurred on messages predicted cor-
predicted message or not. Additionaifyary action sends messages  rectly (e.g.f=0 means that the time of a message predicted cor-
speculatiely to other directories or caches, then these directories or rectly is completely eerlapped with other delays), and

caches must be informed of the mis-prediction. Thiswlmdirectory ® I be the penalty due to a mis-predicted message (e@.5

or a cache to rever from mis-predictions caused by other directories  implies a mis-predicted messageeskl.5 times the delay of a
and caches. message without prediction).

Mis-predictions can la the processor state, protocol state, or botH Performance is completely determined by the number of messages
in an inconsistent state. Consequerdlprotocol must reeer from In th? critical path of a parallel program, then speedup due to predic-
mis-predictions. In general, actions can be classified into three catdn IS:

gotr_ies. Belaw we outline possible regery mechanisms for each time (without pediction) 1

action. =

® Actions that mee the protocol between ow“legal” states

require no receery on mis-prediction. Replacement of a cachefigures displays the modeiresult for a prediction accusaof 80%
block that mees the block from “eclusive” to “invalid” state is  (,=0.8) The model shwes, for xample, that speedup can be as high

an eample of such an action (Figuta). While there is no 55 5604 with a mis-prediction penalty of 100841) and a prediction
explicit recovery in this @ample, a mis-prediction may still hurt success benefit of 30%=0.3).

performance by resulting in artea cache miss for the replaced
block. 5 Methodology

® Actions that mae the protocol state to a future statat, ¢ho not , - .
expose this state to the processmn recwer from mis-predic- We evaluate Cosmos’ prediction accuyassing traces of coherence
tions transparentlyOn detecting a mis-prediction a protocol Messages obtained erm t_hes\bbngn _Stache prqtocol (Sect|5r1)_
simply discards the future state. On detecting a prediction sud¢unning fie parallel scientific applications (Sectis2). Each appli-
cess, hwever, the coherence protocol state must commit thecation has a start-up phase to initiate the computation (e.g., initiate
future state andx@ose it to the processdvlis-predictions corre- ~ data structures). Our traces do not contain coherence messages gen-
sponding to actions in Figudb can use such regery actions. erated in this start-up phase. The traces were generated bysthe W

* Actions that allev both the processor and the protocol toveno consin Wnd Tunnel Il simulator [26] simulating a 16-node parallel
to future states need greater support for vegng from mis-  machine, with each nodeiag one processpa coherent memory
predictions. Before speculationdies both the processor and bus, and an optimized netwk interface [24].
the protocol can checkpoint their states. Then, on detecting ff‘ imulated hon Table3. C ' oredicti
mis-prediction, both the processor and the coherence protoc € simulated parameters arewnon Table3. Cosmos’ prediction
must roll back to the checkpointed states. On detecting a su@Scuray is lagely insensitre to \ariations in neterk lateng. For

cess, the current protocol and processor states must be comnf¥@mple, changing the netrk lateny from 40 nanoseconds
(Table3) to one microsecond hardly changes Cosmos’ prediction

rates of the fig applications we studied in this paper

1. Note that the asfity of a processor can be interpreted from the incomings 1 \AMsconsin Stache Potocol

coherence messageje@ though a Cosmos predictor sitting«nt a pro-

cessor cache predicts incoming coherence messages (and not local proce$¥erobtained our coherence message traces fromisietegin Stache
activity). For example, a Cosmos prediction @&t _r o_r esponse sug- protocol. Stache is a sofare, full-map, and write-iralidate directory
gests that the local processor will incur a read miss for a cache block. Thisrotocol that uses part of local memory as a cache for remote data [30].

information can be used to properly “time” an action corresponding to a pre-
diction. Tablel shavs all the types of coherence messages generated by

time (with pediction) p*f+(1-p)*(1+r)
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Number of parallel machine nodes 16 Benchmarks |Input Data Sets Iter
Processor speed 1 GHz appbt 24x24x24 cubes 30
Cache block size 64 bytes barnes 16K particles 19
Cache size one meabyte dsmc 48600 initial particles, 9720 cell 320
Cache associaity direct-mapped moldyn 2048 particles 40
Main memory access time 120 ng unstructued  [9428 nodes, 59863 edges, 586dds 10
Memory tus cgherence protocol MOESI TABLE 4. Benchmarks. Iter = number of iteratioappbtis from
Memory tus width 256 bitg NASA Ames [6] and parallelized at the Waisity of Wisconsin
Memory hus clock time 250 MHz [9], barnesis from the Stanford SPLASH-_2 s_u_ite [37], aseing
Network messane size 556 byie moldyn andunstructued are from the Uniersities of Maryland
9 Y and Wsconsin [27].
Network lateny 40 ng
Network Interface access time 60 ng Nevertheless, Cosmos’ prediction results with Stache should not be

TABLE 3. System Rrameters significantly diferent from what wuld be obtained with a full-map,

write-invalidate directory protocol.

Stache. These coherence messages are common to most full-map
write-invalidate directory protocolsoFall our Stache simulations we 5.2 Benchmarks

use a (softare) cache block size of 128 bytes.

Ourimplementation of Stache fdifs other full-map, write-walidate

coherence protocols in ways:

® Unlike the DASH protocol, Stache uses thalf-migratory opti-

mization In this optimization a directory requests a cache t

mark an &clusive block irvalid, and not shared, when it reces - . ; .
a read or write miss request from another cache. This is benefWNns- Sharing occurs between neighboring processorsin 3D along the

cial if this same cache block is not immediately read from thdoundaries of these sub-blocks.

former cache.

® Qur Stache implementation allocates pages in round-rabh f

(6]

Table4 depicts the fig benchmarks used in this studlppbtis a par-

allel three-dimensional computational fluid dynamics application [9]
from the NAS benchmark suite. The code is spatially parallelized in
three dimensions. The main data structures are a number of 3D arrays,
each of which is dided up among di¢érent processors as 3D sub-
blocks. Each processor is responsible for updating the sub-block it

Barnessimulates the interaction of a system of bodies in three dimen-
sions using the Barnes-Hut hierarchical N-body method [37]. The

ion across the 16 nodesorFexample, if page X is allocated t0  5in data structure is an octree. The ocsreaves contain informa-
node 10, then page X+1 will be allocated to node 11. Wrep )

of each page functions as the directory for that page. The dire
tory pages are optimized to function as cache pages for the lo
node. Consequentlin most cases Stache does not generate loc
messages between the cache and directory within a particu

node.

tion about each body and internal nodes represent space cells. In each
?[E?ration the octree is rabt and trarersed once per body to compute

e forces on indidual bodies. The communication pattern induced
Ry such traersals is quite ingular

Dsmcstudies the properties of agby simulating the nvement and

® Cache blocks on a cache page in a local node communicate orggllision of a lage number of particles in a three-dimensional domain
with one specific directory page in another node. Consequentlwith discrete simulation Monte Carlo method [2Dsmcdivides
for blocks on a cache page, the sendervigays a fixed node
containing the directory page. A directory page camyeler,

receve messages fromymode caching the page.

domains into cells in a static Cartesian grid. Each cell contains par-
ticles, which collide only with other particles in the cell. The cells are
spatially dvided up among processors. At the end of each iteration,

* Currently Stache does not replace pages (and, hence, cachgicles moe from one cell to anothéFhe primary communication

blocks) from the portion of local memory it designates as
cache for remote memoryrhis implies that Cosmos’ history
information for cache blocks persistgeo time. Protocols that
replace cache blocks may need to preséine history informa-

tion even after the block is replaced. Alterwaty, such proto-

cols can speculate only at the directompere Cosmos’ history

ccurs during this m@ment.

Moldynis a molecular dynamics application, whose computational
structure resembles the non-bonded force calculation in CHARMM
[8]. Molecules inmoldynare uniformly distribted aver a cuboidal
region with a Maxwellian distribtion of initial velocities. A mole-

information is persistent during the duration of a parallel applicule’s \elocity and forcexerted by other particles determine the mol-

cation.

ecules position. Brce computation limits interactions to molecules

* Barriers are implemented with point-to-point messages. Consgyithin a cut-of radius. An interaction list—relilt every 20 itera-
quently our prediction accuracies do not include prediction rategions—records pairs of interacting molecules. The arrays that record

for barrier \ariables.

the force gerted on molecules and molecules’ coordinates induce the

Depth of MHR appbt barnes dsmc moldyn unstructured
C D O C D (0] C D (0] C D 0] C D 0]
1 91 77 84 | 80 | 42 62 94 73 84 | 92 79 86 85 65 74
2 90 79 85 | 81 56 69 95 77 86 91 80 86 90 | 86 88
3 89 80 | 85 79 57 69 94 92 93 90 79 85 90 | 88 89
4 89 80 | 85 78 56 68 | 94 92 93 90 77 84 | 96 88 92

TABLE 5. Prediction rates gpressed in percentage of hits) obtained from Cosmos. Depth of MHR denotes the number of messay
Cosmos to predict the xieincoming coherence message. C = prediction rate at cache, D = prediction rate at daedt@y= weral

prediction rate.
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appbt
cache

appbt
directory

barnes
directory

directory

FIGURE 6. Dominant (incoming) message signaturesafipbt
barnes anddsmcat the cache and directorircs represent th
order in which tv0 messages aved. Each arc is labelled as X
where X = percentage of correct predictions for that particule
and Y = percentage of references to that aoc.ekample, an ar
labelled 94/9 is predicted correctly 94% of the time and const
9% of the total references to all arcs. All X and Y numbers
measured with a Cosmos predictor with MHR depth of one. ¢
for a benchmark do not add upto 100% because we only p
the dominant transitions we observihe dotted lines represe
dominant message signatures obsédmn the message stream.

get_ro_(espons

97/8| moldyn
97/8 cache

inval_rn«_reques)

unstructued
98/6 cache

unstructued
directory

FIGURE 7. Dominant (incoming) message signaturesnioidyn
and unstructued See caption of Figui@ for an &planation of
the figure. V@ shav unstructueds second dominant messa
signature (at the cache) using bold and dashed lines.

maximum communication.

Unstructuedis a computational fluid dynamics application that uses
an unstructured mesh to model ggibal structure, such as an airplane
wing or body [27]. The mesh is represented by nodes, edges that con-
nect two nodes, anditces that connect three or four nodes. The mesh
is static, so its connewtty does not change. The mesh is partitioned
spatially among diérent processors using a recuescoordinate
bisection partitioneThe computation contains a series of loops that
iterate @er nodes, edges, andcks. Most communication occurs
along the edges anddes of the mesh.

6 Results

In this section we >amine Cosmos’ basic prediction accyrac
(Section6.1) and then deévinto Cosmos’ sensitity to noise and ini-
tialization efects and Cosmos’ memory requirements (Sed@iéh

6.1 Basic Pediction Rate

Table5 shavs that Cosmos achies high prediction accunadiith

an MHR depth of one, Cosmos’erall prediction accurgcranges
between 62-86%. Cosmos aalhée such high accunabecause cache
blocks in most applications generate predictable coherence message
signatures. These signatures are related directly to sharing patterns of
an applicatiors data structures. All our applicationsceptbarnes

have fixed signatures (see Figui@and 7) throughout the entinese

cution of the parallel applicatioBarneshas slightly laver accurag
because shared-memory addresses are reassignddrendibbjects
across iterations. Balowe discuss each applicatienprediction
accuray in detail.

Table5 shavs that Cosmos has higher accyrie a cache compared
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Depth of appbt barnes dsmc moldyn unstructured
MHR 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
1 84 85 85 62 66 66 84 86 86 86 86 86 74 78 78
2 85 85 86 69 71 71 86 88 88 86 86 86 88 89 89

TABLE 6. This table shaes the prediction accurpof Cosmos as weavy the maximum count of the saturating counter from 0 to 2
saturating counter filters noise from the coherence message stream ($6é§tidhe werall prediction rates inable5 correspond to th
table’s column O (i.e. no filter).

to a directoryFor the Stache protocol, a cache reesmessages from shared-memory addresses ideliént iterations. Unfortunatelgos-

a fixed sender—that is, a &d directorywhich limits the number of mos cannot makaccurate predictions for these nodes of the octree.
<sender, message- t ype> tuples Cosmos must choose its predic- This is because Cosmos’ prediction is based on information it col-
tions from. In contrast, a directory reaes messages from multiple lected on past behmr (e.g., preious iterations) of a particular
caches (i.e. senders) for the same cache block. ConseqGestlyos’  shared-memory address (at a cache block granularity).

predictions are more accurate for Stache caches than Stache direqiﬂjureG shavs thatbarneshas a ariety of sharing patterns, some of

nes. which exhibit dominant signatures throughout theeeution of the
Table5 also shars that Cosmos’ prediction accuyaasually  program. Havever, the lav accuracies on most arcs impeowith
increases with the increase in the MHR deptithWIHR depth of ~ more history information (i.e. greater MHR depth).

two, the accuracranges between 69-88%, while a depth of thre
results in prediction accunathat ranges between 69-93%.viihay
history information helps because it alCosmos to recognize pre-

dictable coherence streams (Sec8ds). Havever, mostofourappli-  5cks This happens because at the end of each itedatiortom-
cations do not benefit pend an MHR depth of three4fles). municates information betweendwprocessors via sharedfters.
Below we examine wly Cosmos achies high prediction rates for This leads to the message sequence/shio Figure6. Note that the
each ofthe fig applications. Surprisinglyariations in simple sharing half-migratory optimization helmtsmdecause the producer does not
patterns studied by Bennett, et al. [7] anelbbét and Gupta[13], can read the data before it writes to it. Consequemthalidating the pro-
lead to sequences of coherence actions (and consequent signatuckg)ers cache blocks, instead of eenting them to read-onlgvoids
that are significantly diérent from those generated by simple sharingan etra handshakwith the directory

patterns (e.g., _se;mstructueds sequence qf messages bglcon- Figure6 shavs that the transition fromget_ro_request to
sequentlypredictors based on simple sharing patterns may not be abl%va| _rw_r esponse has a la prediction accurac This lov accu-

. |
to correctly speculate the sequence of coherence actions that mayrg& however, disappears with increased MHR depth because updates
to shared bffers frequently follev deterministic patterns. Nerthe-

generated. Hoever, Cosmos can capture sudiriations in sharing
, in some cases multiple processors competgdiusee access

patterns because Cosmos adapts to the incoming message stre
which directly determines the sequence of coherence actions 10 fql 5 sharedufer. This creates somat oscillating patterns that con-
fuse Cosmos.dttunately Cosmos learns to isolate these cases using

low.

Appbt’s high prediction accurgeesults from its produceonsumer  either more history information or via noise filters (see Seé&idn
sharing patternAppbtis a three-dimensional stencil-style code in m

®smcshaws the highest accunpamong all our applicationBsmcs
dominant sharing pattern is the classical prodaoasumer pattern
in which the producer writes and the consumer reads shared cache

oldyn’s high accurag results from tw dominant sharing patterns:

which a cube is dided up into subcubes. Each subcube is assigne igratory and producezonsumer patterns. The migratory sharing

to one processo€ommunication occurs between neighboring PrO-pattern results in the message sequenget ro_response,

cessors along boundaries of the subcubes. upgr ade_r esponse, inval _rw_response> in both processors a
The sharing pattern that results in the sequence of messagedsho block is migrating between. The same patterrlidted for the pro-
appbtin Figure6 is: producer reads, producer writes, and consumeducer in the produceronsumer pattern. haever, the consumer for
reads. This pattern repeats for most cache blocks throughoutthe entine ~ produceconsumer  pattern sees the  sequence:
application. Consequenflosmos adapts well appbtresultingin  <get _ro_response, i nval _r o_r equest >. Hence, the number of

a prediction accurgoof 85%. references to the pattern <get _ro_response,

Note that the half-migratory optimization discussed in Se@ioarts ~ UPYrade_r esponse, inval _rw_response> is greater than the
appbt because the producer first reads a block before writing to it. fymPer of references to the patteryet ro_response,

the absence of this optimization, the producer pattetidhave sim- ' Nval _r o_request > (Figure7). The sequence seen at the directory
ply cycled through the tey messagesinval rw request and 'eSults primarily from the migratory pattern.

upgr ade_r esponse. Clearly a dynamic predictpsuch as Cosmos, Moldyn's migratory pattern results from thawit reduces a shared
can be used to either inhibit (e.gppb) or trigger (e.g., see discus- array which contains force calculations for simulated molecules. In
sions onrdsmcandmoldynbelow) the half-migratory optimization.  each iteration each processor collects its canttoh for diferent ele-
ments of the shared array in avpte arrayAt the end of the iteration
each processor adds its conitibn from the prate array to the
shared arrayJpdates to each element in the shared array happens in
a critical section, which results in the migratory pattern. Note that the
nglf-migratory optimization helpsoldyn In the absence of this opti-
mization moldyn would hae probably seen the signature:
<get _ro_request, inval _rw response, upgrade_request,

i nval _ro_r esponse> at the directory

Figure6 shavs that all transitions f@appbthave high prediction accu-
raoy except the transition from upgrade_request to

i nval _r o_r esponse at the directoryThe lav accurag on this tran-
sition results fromdlse sharing in tevdata structures. It appears that
this false sharing generates multiple signatures that the protocol osc
lates between randomlfhis confuses the predictor resulting wé
accurag.

Barnes's prediction accurgcranges between 62-69% forfdifent
MHR depths. Thisis slightly leer than that for our other applications.
This is because imarnesnodes of the octree can be assignddmift

Moldyn's produceiconsumer sharing pattern results from updates to
a shared array that contains the coordinates of simulated molecules.
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Depth appbt barnes dsmc moldyn unstructured
of MHR Ratio Ovhd Ratio Ovhd Ratio Ovhd Ratio Ovhd Ratio Ovhd
1 1.2 5.4% 3.8 13.5% 0.8 3.9% 0.8 4.0% 17 6.8%
2 14 9.6% 6.9 35.4% 0.4 5.1% 1.1 8.3% 21 12.8%
3 1.9 16.4% 9.3 63.0% 0.3 6.7% 1.6 14.9% 2.8 21.9%
4 2.6 26.5% 10.9 91.8% 0.3 8.9% 2.0 21.6% 34 33.0%

TABLE 7. Memory overhead of Cosmos predictors (with no filter). Ratio = total number of PHT entries / total number of MHR
MHR entries correspond to cache blocks that were referenced at least once in the parallel section of an applicatiqre§»awdtle
average memoryverhead per 128-byte block as a percentage of the block size. More pr&ely= (tuple size * [MHR depth + Ratic
(MHR depth + 1)] * 100 / 128)%. ¥assume the tuple size oftlytes (12 bits for processors and 4 bits for coherence message ty
Note that some Ratios are less than one. This is because unless the number of protocol references to a cache block is greater
depth, we do not allocate a PHT for that MHR. This esadll ofdsm¢s Ratios less than one because sonuswoits shared-memory de
structures are touched rardipr the same reason, urdibther benchmarkdsmcs Ratio decreases with increase in MHR depth becau
number of such shared-memory blocks that are touched greater number of times than the MHRweptavisre

Moldyn's produceiconsumer pattern results in message signaturespplication as an approximation to time. This is because thpdiv
similar to that ofappbts at both the producer and consumer cachesllel applications wexamined in this paper iterateer a number of
However, the aerage number of consumerstieoldynis 4.9, whereas  steps or iterations. Cosmos can predictincoming coherence messages
for appbtthe number of consumers is one. Consequeatttite direc-  for a cache blockdirly accurately because sharing pattern of a cache
tory we see back-to-baget _ro_request messages awing with  block in one iteration is usually similar to its sharing pattern in the pre-
high predictability vious iteration.

Unstructured is different from the rest of our applications because itWe found thatinstructuedandbarnesachieve steady-state bebiar
has diferent dominant signatures for the same data structures in diguickly (in less than 20 iterationsdppbtandmoldyntake slightly
ferent phases of the application. The same data structures oscilliager (around 30 iterationdpsmg hawever, takes a lage number
between migratory and produessnsumer sharing patterns. The ofiterations (around 300) to achésteady state prediction rates. This
migratory sharing pattern is similartwldyris and occurs when each is because specific transitionsismdake a lage number of iterations
processor updates flifent elements of the shared arrays in criticalto achiee reasonable prediction accuraciesh(€8).

sections. The migratory pattern is folled by the producezonsumer Memory Requirement of Cosmos Redictors. Table7 shavs that

pattern in which a produceris itself a consumer of the (_jata.v'éhe a dynamic memorywerhead incurred by Cosmos predictors is accept-
age number of consumers per producer is 2.6. The signatuva sho

in bold and dashed ams in Figure? represents the transition from able—that is, less than 22%—for most applications for predictors
migratory to produceconsumer pattern. The directory sees corre-W'th.MHR depths of three orveer. Additionally, the number of PHT
sponding sianatures : entries per cache block(pr MHR entry) is less than three in most cases.
P 9sig ’ The lav PHT to MHR ratio suggests that perhaps a scheme that stat-
Figure7 shavs thatunstructueds prediction accurgcfor several ically allocates three or four PHT entries per cache block and dynam-
arcs with MHR depth of one isvo This is because of the change in ically allocates the rest from a common pool of memory markw
sharing pattern. able5 shavs, havever, that Cosmos’ accurgc  Only for barnesthe memory eerhead is as high as 63% for MHR
increases from 74% to 92% as the MHR depth increases from onedepth of three becaubarnesreassigns shared-memory addresses to
four. This increase in prediction accuydoom the increase in MHR  logically different objects, which confuses Cosmos and leads to

depth also results in high prediction accuracies for these arcs.  greater number of coherence message patterns.
6.2 Additional Analysis 7 Comparison with Directed Optimizations

Effect of Filters on Prediction Accuracy: Noise filters can increase |n this section we compare Cosmos with directed optimizations—that
the prediction accurgof Cosmos. Wimplement Cosmos’ noise fil- js optimizations introduced in a coherence protocol for specific shar-
ter as a saturating counterhich counts uperds from zero and sat- jng patterns. Dynamic selfsmlidation [20] and migratory protocols
urates at a maximum countiile6 shavs the prediction accurgof  [12, 35] are gamples of tw such protocols. Both can be thought of
Cosmos as weary the maximum count between 0 and 2. as implementing predictors directed at specific optimizations. Cos-

Filters increase prediction accuyaslightly (up to around 6%) only Mos could be less costiettive than predictors for directed optimi-
for Cosmos predictors with MHR depth of oner MHR depth of e~ Zations because Cosmos requires more ralvesources to store,

or beyond filters do not help much. This is because both filters and higccess, and update the Message atté i History @bles. Havever,

tory information remuee noise from the message streamwel@r, ~ Cosmos’ memory requirement can perhaps be reduced by grouping
history information alle's Cosmos to learn from and adapt to thepredictions for multiple cache blocks together (similar to Johnson and
noise. Consequentlif the noise repeats, then Cosmos can aehie Hwu's macoblocks[16]).

higher accurag In contrast, filters simply rene noise, bt do not  cosmos could be better than directed optimizations foréasons.

let Cosmos adapt to it. Hence, predictors with filters and MHR depthirst, including the composition of predictors ofeseal directed opti-

of one achiee lover accurag than predictors with greater MHR  mjzations in a single protocol could be more comiitean Cosmos.
depths. Additionallyfilters do not help predictors thatveaMHR  predictors ineisting coherence protocols are usuallygnéged with
depth greater than one. the finite-state machine of the protocol. Suchgraéion may verk
Time to Adapt. A critical question for predictors, such as CosmosWell when one considers these protocolsialtlially. Unfortunately

is haw long it tales them to achie the steady-state prediction rates. combining multiple such predictors into a single protocol can lead to
Cosmos predictors need time to aghisteady-state beviar because ~ an &plosive number of interactions and states, which canentfad

they adapt to the incoming streame\tse number of iterations of each resulting protocol blky and hard to dely [11]. More critically
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get_rw_request fhival_ro_response
from producer from consumer

4 80 320
Transition iterations| iterations| iterations

hits| refs| hits| refs| hits| refs
<get _ro_response, 2%| 20%| 34%| 4%)| 62%| 2%
upgr ade_r esponse> .
<get t 2%| 25%)| 18%| 13%| 30%| 12% val_nw_response geLro_Tequest
<get_ro_request, 0 0 0 0 0 0 from consumer
i nval _rw_response> from producer
<i nval _rw_response, 1%| 19%)| 18%| 4%| 35%| 1% (a) A self-ivalidation signatue

upgr ade_r equest >

TABLE 8. Dsmcs prediction accuracies for specific transitions for ot 10 re
! - . ) _ro_reques
different number of iterations. refs is percentage of total references TOM processor
to the transition. hits is the percentage of hits to the transition.

These numbers are measured with a filterless Cosmos predictor

with MHR depth of one.
upgrade_response

extending a hlky protocol with other kinds of speculation becomes from processor X
even harderln contrast, Cosmos captures the predictors for directed (b) A migatory protocol Signatue

optimizations inasingle predictéiigure8 shavs the coherencemes-  FIGURE 8. This figure shes the coherence message signat
sage signatures that trigger the dynamic se#iidation and migra-  that can trigger dynamic selfvalidation (a) and a migrator
tory protocols. Cosmos can capture these signatures .easilprotocol (b). The dongrade_response, not siin Tablel, is a
Additionally, protocols accelerated with Cosmos are easiextéme response to a amgrade_request sent by the directo@n
because Cosmos separates the predictor from the protocol itself. receving a devngrade_request for a block, a cache must ch

. . . the block from &clusive to shared state.
Second, Cosmos can not only identify mssharing patternsubcan
also discwer application-specific patterns not kwoa priori. For of Cosmos can significantly reduoeseution time with a coherence
example, Sectio6.1 shevs that one ofinstructueds signaturesisa Protocol. This is wrk is analogous to taking a branch predictor with
complex composition of migratory and produessnsumer sharing high prediction rates and ieating it into a micro-architecture to see
patterns. Predictors directed only at migratory or prodacesumer how much it afects the bottom line. Whelieve that results in this
pattern will fil to trackunstructueds transition between migratory Paper on Cosmos’ high prediction rates indicate tioakwn the net
and produceconsumer sharing patterns. As Secohalso shws, ~ step is justified.
Cosmos can easily capture, filtand adapt to diérent message sig- Acknowledgments
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