Parallel Computer Research in the Wisconsin Wind Tunnel Project

Mark D. Hill, James R. Larus, and iid A. Wood

Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton St.
Madison, W1 53706 USA

{markhill, larus, daid}@cs.wisc.edu
http://www.cs.wisc.edu/~wwt

Abstract important, users are disggring that parallel computer

The paper summarizes theistbnsin Whd Tunnel hardware can be more costfeftive than a uniprocessor
Projects research into parallel computer design and meth-because (a) it often uses microprocessors rather than eso-
ods. Our principal design contdtions—Coopeative teric supercomputer processors, and, sona¢ surpris-
Shaed Memoryand theTempest Brallel Programming ingly, (b) it males cost-dective use of epensve lage
Substate—seek to balance the programming benefits of amemories. br example, we found that a 16-processor Sili-
shared address space witcifities for lov-level perfor- con Graphic multiprocessoras more cost-&fctive for
mance optimizations. problems requiring 1GB of memory than a uniprocessor

The project has refined and comparedaety of ideas ~ Whenerer speedups were tgr than just 4.3 [43].
with a unique mixture of techniques that include micro- So wty is parallel computing such a neit success? At
architecture-leel simulation, softare prototyping, and the high-end, masstly parallel processors (MPPsiled
rapid hardwre prototyping. An important by-product of because their custom harave and softare incurred high

this research has been imative tools, such as th&iscon- fixed costs that limited these machines to the most demand-

sin Wnd Tunneland theExecutable Editing Likary. ing applications, and because theiveloand unfogiving
programming evironments required programs to be

1 Introduction crafted for a particular machine.

] In the middle range, netwks of workstations (N@QVs)
Parallel computers shiogreat promise (and e shaovn offer lower hardvare cost than an MPP byuilding on

great promise for 30 years!)aRillel hardvare ofers an commodity hardare and softare. Most NOVs are lim-
attractve solution for problems whose computation needsjieq to a message-passing programming model arfer suf
outstrip @en the rapidly impraing uniprocessors. Equally from high communication lateyc attritutable to both
hardware and softare. Academic research (e.g., Begy)
This paper is a summary of research performed by tisedisin Whd and the commercial success of the W@ke IBM SP-1
Tunnel project. Most ideas described hereimehbeen pngously pub: - . . .
lished. Appendix A reprinted, with permission, from COMPCON and SP-2 makit likely that NQWs will remain a promis-

(San Francisco, California, March 1995, pp. 327-332)yGgipt © 199¢ ing parallel alternatie.
IEEE. Abstracts and information on our papers can be found at URI))
http: // wwv. cs. wi sc. edu/ ~wat Nevertheless, the success story of parallel computing is

This work is generously supported by NSF grant MIP-9225097 symmetric multiprocessors (SMPs). Vhare cost-déc-

Wright Laboratory Aionics Directorate, Air 6rce Material Comman tive, because the nginal performance ajn—both to
USAF, under grant #F33615-94-1-1525 and AR®der no. B550. Add '

tional support has been pided by NSF PYI/NYI Avards CCR reduce jOb Igtenpof_parallel pr_ograms and in_c_rease jOb
9157366, MIPS-8957278, and CCR-9357779, NSF Grant CCR-91(throughput with multiprogramming—of an additional pro-

DOE Grant DE-FG02-93ER25176, Waisity of Wsconsin Gradua cessor tends to be Signiﬁcant'y h|gher than thegmar
School Grant, Wconsin Alumni Researchobndation Fellaship anc hard ti 431, Al SNPh d add
donations from A.R.T. Bell Laboratories, Digital Equipment Corpc araware Cost Increase [] SO, ared aadress

tion, Sun Microsystems, Thinking Machines Corporation, and Xerox space programming model is arokitionary step for uni-

poration. Our Thinking Machines CHBl-was purchased through N processor Soﬂwe, particu'ar'y modern softke written
Institutional Infrastructure Grant No. @E9024618 with matching fun

ing from the Uniersity of Wsconsin Graduate School. The wie anc using th_reads [12]. SMPs are increasingly Commpn as
conclusions contained herein are those of the authors and should commodity processors, such as IrgdP6, and operating

interpreted as necessarily representing thiiaf policies or endors: systems, such as MicrosaftiMindows NT, routinely sup-
ments, either xpressed or implied, of the Wright Laboratoryidnics

Directorate or the U.S. @ernment. port small-scale SMP systems. SMPs’ Achilles’ heel is
their shared bis, which limits their size and scalability

Existing systems accommodate only 20-32 processorsware must be portable to machines at a wide range of cost-
Moreover, faster processors will limit future SMPs to no performance points.

more than about 16 processors, which is too small for The net sections discuss our design proposals, meth-
mary important applications. ods, and technology transfékppendix A describesem-

] pest and &mpest implementations in greater detail.
When users outgvo an SMP thg are ficed with tvo

alternatves: (a) re-write their applications or (b) use dis-
tributed shared memanRe-writing an application to a
variety of programming models anendorspecific pro- 2.1 Cooperative Shared Memory

gramming ewironments imposes a sofime cost that will Our initial designCoopeative Shaed Memorywas an
strangle this approach to parallel computing. Although eyolutionary etension to coventional HSM softare and
considerable ébrts have succeeded in standardizing mes- pargware. Cooperate Shared Memory asks programmers
sgge—passing with MPI and data—parallell programmingig identify expected data sharing befi@r through the
with HPF the problem of te programming models check-In/Check-Out (CICO) performance annotations so
remains a fundamental barrier to scalable parallel computyhat the system could figiently handle subsequent refer-

ing. We pelieve the shared-memory programmiqg model gnces, with less complérardvare than a traditional HSM
will dominate the net wave of parallel computing, as (g g, DifSW [18]).

SMPs become ubiquitous and shared address spaces Tpe key CICO annotations are:
become the programming norm.

2 Design Overview

) o * ched_out_X expect eclusive data access,
The second option taxpand bgond an SMP isidtrib-

uted shaed memory(DSM), which &tends the shared
memory programming model yend a lus. Traditional e ched_in: expect end of data access.
DSM implementations are either (mostly) hasdershared
memory (HSM) or virtual shared memory (VSM). HSM
machines, such aseiidall Square KSR-1, Stanford\BH,
MIT Alewife, and Sequent $NG use hardware to retrige
and cache blocks, implement a globalygsibal address

space, and run a single (multithreadeeinlel. By contrast, nication that may suggest code imygments (e.g., Mo

VSMs, such as éde/l':’nnceton IyRice Munlp, and Rice ing communication out of an inner loop). Third, when
Treadmarks, use virtual memory mechanisms to cache

a0es. do not need avsical alobal address space. and run inserted automatically (e.g., with a trace-based tod lik
pages, ysical g pace, Cashier [10]), thg can sha a programmer where commu-
a kernel per node. In mgnrespects, HSMs and VSMs . .
nication actually occurs.
complement each otheHSMs approach SMP perfor- . . .
: . CICO annotations can be used aggkedgito opti-
mance, bt require gtensive custom hardare (e.g., cache .
: . . : mized the epected case, because ytheever afect pro-
controllers, directories, or attraction memories) and custom : .
. gram semantics. EBwn randomly-inserted CICO
operating systems—el dravbacks of MPPs. VSMs, on : :)
; annotations will not change a progranpossible xecu-
the other hand, use commodity haester and softare, . . .
. . tions. This separation of performance and correctness
sometimes with modest hardve accelerators. In general, :) :
) . . . malkes automatic use of CICO annotations much simpler
VSMs' performance is Wwer because their coherence is at .
. ; than softvare cache coherence management, which must
a virtual memory page granularity (e.g., 4K bytes). T)
) be correct to presegvsemantics.
improve performance, some VSM systems, such as MIT CICO alters proaram beviar and permits simpler
CRL and Rice Teadmarks, use alternai programming prog b P

models that reduce the coherenceitrafecessary for fine- coherence protp cols, such_as BwW .[18]' DinSW uses
. ; several state bits and a single pointer/counter field per
grain sharing [4, 20].

block and, more importanthdoes not hae to implement
The goal of our research is combine the best of HSMscomplex composite state transitions, as required by the
and VSMs (and ne results from our research). ek more comentional DigNB protocol. The pointer/counter
HSMs, we support the SM®’fine-grain coherenceub either identifies a single writer or counts readers. Simple
seek to reduce hardwe complgity (and cost) and, at the hardware entirely handles cases conforming to the CICO
same time, permit programmers with a richer collection of model by updating the pointer/counter and faring data
mechanisms for impking performance. Li&k VSMs, we to a requesting processdo cases require multiple mes-
exploit existing hardvare and rely on usdevel supportto sages (bgond a single request-response pair) or transient
improve performanceer simple shared memaorlyinally, states. Programs not conforming to the CICO model or
like uniprocessors, ourosk rests on the belief that soft- using CICO incorrectly run correctlyput trap to system

ched_out_Sexpect shared data access, and

CICO annotations seevseeral purposes [26]. First,
they can direct the underlying coherence protocol to per-
form performance enhancing operations (e.g., cache flush
on ched in). Second, when inserted by the programmer
they can force a reasoning about shared-memory commu-

software that performs more compleperations (in a man- As defined sodr, Tempest preides messages, which

ner similar to MIT Alavife [1]). Hardware for &le, supports message-passing applications and message pass-
need not handle the complease of a writer encountering ing within shared-memory applicationgjtidoes not inte-

mary extant shared copies, because proper use ofgrate messaging and shared memdgmpess final two
ched_in’s male this case rare. mechanisms prade this intgration.

Extensve simulations sheed that Cooperate Shared
Memory reduced hardave complgity relative to an HSM,
allowved moderate interconnection netw lateny to be
tolerated, and &s a good design point [42,34].

We net asled if we could:

First, Tempest allars usetlevel software to control ha
pages in a specialgment are mapped, using virtual mem-
ory mechanisms similar to those used by VSM systems.
Consistent use of these mechanism«iges page-based
coherent shared memory

* reduce hardare complgity further, The final, neel Tempest mechanism isné-grain

* tolerate gen longer interconnection netvk latencies, access conti, which allavs usetlevel software to tag
and blocks (e.g., 32 bytes) as read-write, read-ontinvalid.

Combined with the other mechanisms, fine-grain access

control supports shared-memory implementations that

A particularly frustrating aspect of performance optimi- maintain coherence on the same granularity—i.e., cache
zation in a shared memory model, such as CSM, is thablocks—as SMPs.

sometimes a message igetly the right communication
mechanism [25,6]. CSM direuéis can approximate a mes-
sage send,ut the approximation is not semantically per-
fect and costs performance. So, we added the question:

¢ provide solutions at manprice-performance points.

With Tempest, a standard librarg compiler run-time
system, or a demanding application program can imple-
ment a shared-memory coherence protocol. Most program-
mers will derelop their applications using transparent
* can messages be igtated with coherent shared mem- shared memory (obtained by linking their program with a

ory in a portable way? standard protocol). After a program runs correchpro-
Our afirmative answer to these questions isTampest ~ 9rammer can impke its performance by selecting alterna-
parallel programming substrate. tive library protocols to manageykdata structures that are
bottlenecks [14,7,9,35]. If no protocol performs well, the
2.2 Tempest programmer can write a custom protocol for the program.
Tempestis a portable inteaice that preides caching, Similarly, compilers can use custom protocols to imple-
naming, and communication mechanisms thawaliser ment highetdevel programming language constructs or

level software to prwide applications with SMP-l& optimize compiled programs [27].

shared memorymessage-passing, oydrid models. &m- A commonly misunderstood aspect ofripest is
pest portably ingrates shared memory and messages,no—in practice—will write the policies.efmpest leges

while alloving: policy to usetlevel software. People he interpreted this
* simpler hardwre, including running on an unmodified to mean eery programmer must write theiwa coherence
NOW, policy. Just as ery fav programmer today write assembly

. language or mak kernel modifications, wexpect that
* the selected use of message-passing or custom coher-

T most programmers will rely on coherence policies pro-
ence protocols to tolerate greater communication laten- . . X ;
cies. and vided by compilers or system libraries.

* mary implementations, including simulateggotheti- 2.3 Tempest Implementations
cal machines (e.g.,yphoon), an MPP (Blizzard on a

CM-5), a NQV (Blizzard on Wsconsin CAV), and a
NOW with selected hardare acceleration (1&tonsin
COW with TO, designed with the help of Sun Microsys-
tems).

Tempest wuld be a paper tiger if not implemented.
Tempest wuld be a mildly interesting design if it could not
be implemented on geral platforms. W hare spend con-
siderable dbrt to ensure that neither situation happens.

)) ~ The current Empest systems are:
Tempest praides two classes of messages. First,\acti

messages—Iik Berleley’s [41]—transfer control informa- ¢ Blizzard/CM-5 implements dmpest on a Thinking
tion (e.g., requests for data), and small amounts of data Machines CM-5 using access control implemented with

(e.g., a 32-byte “cache” block) [33]. Secondikbdata either (a) gecutable editing or (b) purposely set bad
transfer primitves—like CM-5 channels—pxade higher ECC [40]. It requires significaneknel modifications to
bandwidth for lage messages, which catficaél the higher add usetevel virtual memory to the nag CMOST
start-up cost. operating system.

Blizzard/CQV implements @mpest on a netwk of 40
dual-processor FRCstations-20s connected with
Myricom Mryinet. Access control is implemented with
(a) executable editing, (b) purposely set bad ECC, or (c)
an Mhus board implemented in cooperation with Sun
Microsystems. System code is in the form of loadable

device derves that require no changes to the Solaris 2.4

kernel.

Several simulated implementations thatplore nev
design options, including yphoon [38], §phoon-1,
and Typhoon-2 [39].

Appendix A describes éimpest and the implementa-
tions in more detail.

3 Methods

Research in parallel computer design requires a mix of

evaluation methods. Abstract modeling helps in the initial
phases, Wt the real wrk is at the leel of detail that can be
evaluated only with simulation and prototyping. Detailed

board is not a prototype of optimal haahe, hut it
demonstrated that no unforeseen handwor softvare
problems stand in theay of Tempest acceleration.

Two of the important methodology asdts of our
project are the Wconsin Whd Tunnel (WWT) and the
Executable Editing Library (EEL).

3.2 Wisconsin Wind Tunnel

We developed and implemented an imative, execu-
tion-driven simulation system called theidtbnsin Whd
Tunnel (WWT) [37]. WWT runs a parallel shared-memory
program on a parallel computer (Thinking Machines CM-
5) and usesxecution-drven, distrituted, discreteaent
simulation to accurately calculate prograxe@ution time.
WWT directly eecutes all shared-memory program
instructions and memory references that hit in tiyeoh
thetical machine's cache. WWT's speed and the CM-5's
memory capacity permitvaluations to use more realistic
workloads than are feasible with other simulation tech-

nigue

evaluation methods are necessary because abstractions ®3 Executable Editing Library

engineering, in_ ger)eral, and computer_syste_ms, in particu- Executable editinghangesecutable (compiled) code
I{ir, are a_pproxmatlons. Extended man!pulatlon of abstrac-by remaing existing instructions and addirfgreign code
tions, without reference to the details, often leads to

unworkable solutions. Simulating andiltling are neces-
sary

3.1 Our Approach

A widely held, lut false, dichotomy is whether it is bet-
ter to simulate (bild wind tunnels) or prototype (iid air-
planes). In realityarchitects must rely on multiple methods
and understand andkmoit the continuum between the
flexibility of simulation and single-design-point fidelity of

prototypes. Egn the most realistic and concrete academic

machine remainsub a wind tunnel model of a commercial
product.

The Wisconsin Whd Tunnel project emplged a mix-
ture of complementary methods:

Micro-architectural leel simulation (e.g., of yiphoon,
Typhoon-1, and yiphoon-2) using the W&consin Whd
Tunnel [37,36,15,2,8] and other simulators.

[30, 29, 28].

User and system-softare prototyping and delop-
ment on &isting commercial platforms (e.g., Blizzard/
CM-5 and Blizzard/CW).

Sumgical hardvare prototyping, asxemplified by the

that obsergs or modifies a programeecution. It is an
effective technique for measuring and modifying program
behaior since gecutables hold an entire program (includ-
ing libraries) and editing them does not require source code
or modification to system tools such as compilers and link-
ers.

Executable editing is widely used for three purposes:
emulation, obseation, and optimization. An editeckes
cutable can emulate features that hamwdoes not pro-
vide. For example, the Wsconsin Whd Tunnel
architecture simulator [37] dres a distribted, discrete-
event simulation of a parallel computer from the logical
cycle times of processors directlyesuting a parallel pro-
gram. The underlying hardwe (a SRRC processor in a
Thinking Machines CM-5) does not pide a gcle
counter or an étient mechanism for interlgang compu-
tation and simulation. The M8 Tunnel system edits pro-
grams so that tlyeupdate aycle timer and return control
at timer &pirations. Similarly one \ersion of the Blizzard

New tools for performance measurement and modelling distributed shared-memory system [40] edits programs to

insert fine-grain access tests before shared loads and stores.
These tests permit data sharing at cache-block granularity
which reduces theafse sharing incurred by page-granular-
ity distributed shared-memory systems.

EEL (Executable Editing Library) is a library fould-
ing tools to analyze and modify areeutable (compiled)

MBus card we designed with Sun Microsystems to program [28]. Currentlyhowever, tools of this sort are dif-
accelerate C®. Sugical refers to the approach of ficult and time-consuming to write and are usually closely
building no more than what needs to beiltb This tied to a particular machine and operating system. EEL

supports a machine- and system-independent editing model
that enables tooldilders to modify anecutable without [2]
being avare of the details of the underlying architecture or
operating system or being concerned with the conse-
guences of deleting instructions or adding foreign code. [3]

4 Technology Transfer

Our project emplges may methods of technology 4

transfer Like other academics, we write conference papers,
visit and gve talks at companies, andvleastudents gradu-
ate to industrial jobs. 5]
Like a fav projects, we hold semi-annualfibdtes
meetings. These areny efective at engging industry in a
dialog. The force industrial people to spend a block of
time thinking about our project, which leads them to enak (6]
mary useful suggestions. Furthermore, studentsgatesl
when thg see that people care about theorkv Recent
meetings hee included representaedis from Cray IBM,
Intel, Portland Group, Sun, and Thinking Machines.
Finally, as a n& experiment, one of us (Hill) is spend-
ing an academic year on sabbatical in an industrial product
group (at Sun Microsystems). Hiery positve eperi- (8]
ences with technologyxehange appears is his position
paper (elsehere in these proceedings).

(71

(9]
5 Summary

The paper summarizes research into parallel computeFlO]

design and methods performed by thésansin Whd
Tunnel Project. Our principal design contrilons—Coop-
erative Shaed Memoryand theTempest Brallel Program- (11]
ming Substite—seek to portably surpass the benefits of
SMP-like shared-memory\e refine and compare design
proposals with a mixture of techniques, including micro- [12]
architecture-leel simulation, soft@re prototyping, and [13]
“surgical” hardware prototyping. Furthermore, theatua-
tion requirements of our design pided impetuous to the

methodological adances embodied in théisconsin Vihd 4
Tunneland theExecutable Editing Likary.
6 Acknowledgments [15]

We would like to thank the manpeople who made important contri-
butions to the Wsconsin Whd Tunnel project: Douglas Bger, Satish
Chandra, Sashikanth Chandrasekaraightil Chilimbi, Glen Ecklund, (16]
Babak Flsafi, Alain Kagi, Sangtae Kim, Rahmat HydAtvin Lebeck,

James Lwis, Shubhendu Mukherjee, Subbaradaeharla, Steen Rein-
hardt, Brad Richards, Anne Rogerandthy Schimle, Eric SchnarrYan-
nis Schoinas, Ste Swartz, Frank Tankle, and Guhaniswanathan. [17]

References

[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, Kirk
Johnson, David Kranz, John Kubiatowicz, Beng-Hong Lim, Ken- [18]
neth Mackenzie, and Donald Yeung. The MIT Alewife Machine:
Architecture and Performance.Pnoceedings of the 22nd Annu-
al International Symposium on Computer Architectypages 2—

13, June 1995.

DouglasC. Burger and David. Wood. Accuracy vs. Perfor-
mance in Parallel Simulation of Interconnection Networks. In
Proceedings of the 9th International Parallel Processing Sympo-
sium April 1995.

JohnB. Carter, JohiK. Bennett, and Willy Zwaenepoel. Imple-
mentation and Performance of Munin Rroceedings of the 13th
ACM Symposium on Operating System Principles (SQ&Bgs
152-164, October 1991.

JohnB. Carter, JohiK. Bennett, and Willy Zwaenepoel. Tech-
nigues for Reducing Consistency-Related Communication in Dis-
tributed Shared-Memory SystenSCM Transactions on Com-
puter Systemd.3(3):205-243, August 1995.

David Chaiken, John Kubiatowicz, and Anant Agarwal. Limit-
LESS Directories: A Scalable Cache Coherence Scherfeoin
ceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS IV)pages 224-234, April 1991.

Satish Chandra, JamBs Larus, and Anne Rogers. Where is
Time Spent in Message-Passing and Shared-Memory Programs?
In Proceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS Vlpages 61-75, October 1994.

Satish Chandra, Brad Richards, and Jamdsarus. Teapot: Lan-
guage Support for Writing Memory Coherence ProtocolBrin
ceedings of the SIGPLAN '96 Conference on Programming Lan-
guage Design and Implementation (PLIN)ay 1996.

Sashikanth Chandrasekaran and MarlHill. Optimistic Simu-
lation of Parallel Architectures Using Program Executables. In
Proceedings of Tenth Workshop on Parallel and Distributed Sim-
ulation (PADS '96) May 1996.

Trishul Chilimbi, Thomas Ball, Stephen Eick, and James Larus.
StormWatch: A Tool for Visualizing Memory System Protocols.
In Proceedings of Supercomputing ,¥¥ecember 1995.

Trishul M. Chilimbi and JameR. Larus. Cachier: A Tool for Au-
tomatically Inserting CICO Annotations. Proceedings of the
1994 International Conference on Parallel Processing (Vol. Il
Software) pages [1-89-98, August 1994.

D.E. Culler, A.Dusseau, . Goldstein, AKrishnamurthy,
S.Lumetta, Tvon Eicken, and KYelick. Parallel Programming
in Split-C. In Proceedings of Supercomputing ,93ages 262—
273, November 1993.

Helen Custerlnside Windows NTMicrosoft Press, 1993.

William J. Dally and DScott Wills. Universal Mechanism for
Concurrency. INPARLE ’'89: Parallel Architectures and Lan-
guages EuropeSpringer-Verlag, June 1989.

Babak Falsafi, Alvin Lebeck, Steven Reinhardt, loannis Schoin-
as, MarkD. Hill, James Larus, Anne Rogers, and David Wood.
Application-Specific Protocols for User-Level Shared Memory.
In Proceedings of Supercomputing ;3#ages 380-389, Novem-
ber 1994.

Babak Falsafi and Davill. Wood. Cost/Performance of a Paral-
lel Computer Simulator. IRroceedings of the 8th Workshop on
Parallel and Distributed Simulation (PADS '94uly 1994.

Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Rob-
ert Manchek, and Vaidy Sunderam. PVM 3 users’s Guide and
Reference Manual. Technical Report ORNL/TM-12187, Oak
Ridge National Laboratory, May 1994.

Erik Hagersten. Toward Scalable Cache Only Memory Architec-
tures. Technical report, The Royal Institute of Technology Swed-
ish Institute of Computer Science, October 1992. Stockholm,
SwedenPh.D. Thesis, Swedish Institute of Computer Science Dis-
sertation Series 08.

Mark D. Hill, Jame<R. Larus, SteveK. Reinhardt, and Davié.
Wood. Cooperative Shared Memory: Software and Hardware for
Scalable Multiprocessor&CM Transactions on Computer Sys-
tems 11(4):300-318, November 1993. Earlier version appeared

(19]

(20]

[21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

in it Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS V)/.

Mark D. Hill, JamesR. Larus, and David. Wood. Tempest: A [36]
Substrate for Portable Parallel Program&@MPCON '95 pag-

es 327-332, San Francisco, California, March 1995. IEEE Com-
puter Society.

Kirk L. Johnson, MFrans Kaashoek, and DeborahWallach. [37]
CRL: High-Performance All-Software Distributed Shared Mem-

ory. In Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSPages 213-228, December 1995.

Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaene-
poel. TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. Technical Report 93-214,[38]
Department of Computer Science, Rice University, November
1993.

Kendall Square Research. Kendall Square Research Technical
Summary, 1992. [39]

Jeffrey Kuskin etl. The Stanford FLASH Multiprocessor. In
Proceedings of the 21st Annual International Symposium on
Computer Architecturgpages 302—313, April 1994.

Jame<R. Larus. C**: a Large-Grain, Object-Oriented, Data-Par- [40]
allel Programming Language. In Utpal Banerjee, David Gelernt-

er, Alexandru Nicolau, and David Padua, editbesyguages And
Compilers for Parallel Computing (5th International Workshop)
pages 326-341. Springer-Verlag, August 1993.

JameR. Larus. Compiling for Shared-Memory and Message-
Passing ComputerdCM Letters on Programming Languages [41]
and System®(1-4):165-180, March—December 1994.

JamegR. Larus, Satish Chandra, and Da#idWood. CICO: A
Shared-Memory Programming Performance Model. In Jeanne
Ferrante and Tony Hey, editoRprtability and Performance for

Parallel Processors chaptes, pages 99-120. John Wiley & [42]
Sons, 1994.

JameR. Larus, Brad Richards, and Guhan Viswanathan. LCM:

Memory System Support for Parallel Language Implementation.

In Proceedings of the Sixth International Conference on Architec-

tural Support for Programming Languages and Operating Sys-

tems (ASPLOS Vlpages 208-218, October 1994. [43]
t

JameR. Larus and Eric Schnarr. EEL: Machine-Independen
Executable Editing. IProceedings of the SIGPLAN '95 Confer-
ence on Programming Language Design and Implementation [44]
(PLDI), pages 291-300, June 1995.

Alvin R. Lebeck and David. Wood. Cache Profiling and the

Fifth ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming (PPOPRpages 68-79, July 1995.

SteverK. Reinhardt, Babak Falsafi, and DaidWood. Kernel
Support for the Wisconsin Wind Tunnel. Broceedings of the
Usenix Symposium on Microkernels and Other Kernel Architec-
tures September 1993.

SteverK. Reinhardt, MarlD. Hill, JamesR. Larus, AlvinR.
Lebeck, Jame€. Lewis, and DavidA. Wood. The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel ComputersPio-
ceedings of the 1993 ACM Sigmetrics Conference on Measure-
ment and Modeling of Computer Systempages 48—-60, May
1993.

SteverK. Reinhardt, JameR. Larus, and David. Wood. Tem-
pest and Typhoon: User-Level Shared MemoryPilaceedings

of the 21st Annual International Symposium on Computer Archi-
tecture pages 325-337, April 1994.

SteverK. Reinhardt, RobeMV. Pfile, and DavidA. Wood. De-
coupled Hardware Support for Distributed Shared Memory. In
Proceedings of the 23rd Annual International Symposium on
Computer ArchitectureMay 1996.

loannis Schoinas, Babak Falsafi, ANR1 Lebeck, SteveK. Re-
inhardt, JameR. Larus, and Davi&. Wood. Fine-grain Access
Control for Distributed Shared Memory. Rroceedings of the
Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOSagh

es 297-307, October 1994.

Thorsten von Eicken, Davif. Culler, SettCopen Goldstein, and
KlausErik Schauser. Active Messages: a Mechanism for Inte-
grating Communication and Computation.Aroceedings of the
19th Annual International Symposium on Computer Architecture
pages 256-266, May 1992.

David A. Wood, Satish Chandra, Babak Falsafi, MBrkHill,
JamegR. Larus, AlvinR. Lebeck, JameS. Lewis, Shubhend8.
Mukherjee, Subbarao Palacharla, and StdterReinhardt.
Mechanisms for Cooperative Shared MemoryPtaceedings of
the 20th Annual International Symposium on Computer Architec-
ture, pages 156-168, May 1993. Also appeared in it CMG Trans-
actions,/ Spring 1994.

David A. Wood and MarlD. Hill. Cost-Effective Parallel Com-
puting.|[EEE Computer28(2):69-72, February 1995.

William A Wulf. Compilers and Computer ArchitecturEEE
Computer 14(7):41-47, July 1981.

SPEC Benchmarks: A Case StutiyfEE Computer27(10):15—
26, October 1994.

Alvin R. Lebeck and David. Wood. Active Memory: A New
Abstraction for Memory-System Simulation. Rroceedings of

Appendix A. Tempest: A Portable Substrate
for Parallel Programs!

This paper describeseinpest, a collection of mecha-

the 1995 ACM Sigmetrics Conference on Measurement and Mod- | T T .
eling of Computer Systenpages 220-230, May 1995. nisms for communication and synchronization in parallel

Daniel Lenoski, James Laudon, Truman Joe, David Nakahira, programs. Wh these mechanisms, authors of compilers,
Luis Stevens, Anoop Gupta, and John Hennessy. The DASH Pro-llbrarIeS, and appllcatlon programs Ca('plelt_across a

totype: Logic Overhead and Performan&sEE Transactions on .
Parallel and Distributed Systené(1):41-61, January 1993. wide range of hardare platforms—the best of shared

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Me€MOry message passing, angbhd Combinations Of_the
Memory SystemsACM Transactions on Computer Systems two0. Because é'mpest pmldes meChan|SmS, not p0||C|eS,

7(4):321-359, November 1989. _ . programmers can tailor communication to a progsam’
Shubhendis. Mukherjee, Babak Falsafi, Maik Hill, and gharing pattern and semantics, rather than restructuring the
DavidA. Wood. Coherent Network Interfaces for Fine-Grain
Communication. IProceedings of the 23rd Annual International Program to fun with the “m'teq Commumlcatlon options
Symposium on Computer Architectupage?, May 1996. offered by aisting parallel machines. And since the mech-
Shubhend®. Mukherjee and MarR. Hill. An Evaluation of Di- anisms are eas”y supported onfeliént machines, éim-
rectory Protocols for Medium-Scale Shared-Memory Multipro- ; : :
cessors. IfProceedings of the 1994 International Conference on pest prmde§ a portable inteate across pIa_tforms._Thls
Supercomputingoages 64-74, Manchester, England, July 1994. paper describes theefpest mechanisms, brieflypgains
Shubhend®. Mukherjee, Shamik. Sharma, Marlp. Hill, - .) .

JameR. Larus, Anne Rogers, and Joel Saltz. Efficient Support 1 Reprinted from Compcon ‘95 with the permission of the IEEEyCop
for Irregular Applications on Distributed-Memory Machines. In right © 1995 IEEE [19].

how they are used, outlines &ral implementations on
both custom and stock hardwe, and presents preliminary

performance results that demonstrate the benefits of this

approach.

1.1 Introduction
Uniprocessor computers flourish, in part, becausg the

share a programming model suitable for programs written

in mary styles and high-ieel languages. The common

model allavs programmers to select a language appropri-
ate for their applications and to transfer most programs

between computers withoutwying about the underlying
machine architecture. Computers did natagls proide
such a congenial gmonment. Seeral decades agoyery
program vas crafted for a particular machine in itsny
machine-specific assembly language.

Parallel computers still languish at this stage.yrtde
not share a common programming model or supporyyman
vendorindependent languageso Bddress this problem,
the Wisconsin Whd Tunnel research project\ddoped the
Tempestnterface, which preides a common parallel com-
puter programming model. Figutesummarizes this paper
by shaving hav Tempest preides a substrate that alle
compilers and programmers tapdoit different program-
ming styles across a wide range of parallel systems.

Tempest preides the mechanisms necessary fdi- ef
cient communication and synchronization: a×-
sages, blk data transfewirtual memory management, and
fine-grain access control. The firstohare commonly-used
mechanisms for short, Weoverhead messages andi-ef
cient data transferespectiely. The latter tv mechanisms
allow a program to control its memgo it can implement

n?ha%rc?%} Hylbrid. l\l/alessage
assin
Application Application Applicat?on
SM Library] f'l\"bﬁ'\;'r'; MP Library,
| Tempest I nterface |
Typhoon
stem Blizzard/CM-5| |Blizzard/COW,
Software (Software) (Software)
Typhoon WEELE
Passing Wor kstation
(Hardware) Machine
(CM-5) Cluster

FIGURE 1. The Tempest interface . This figure sum-
mariz es the paper: Section 1.2 describes the T em-
pest interface , our substrate f or parallel
programming on a wide rang e of platf orms.
Section 1.3 discusses T empest’ s suppor t for diff er-
ent programming styles (abo ve Tempest).
Section 1.4 describes alternative T empest imple-

Tempest success depends orfeefive implementa-
tions throughout the parallel machingramid (Figure2).
Uniprocessor and multiprocessoonkstations and seevs
form the base of thisyamid. Most programs are, and will
continue to be, deloped on these irpensve and ubiqui-
tous machines. Lger jobs with la&w communication
requirements may require a step up to ek of desktop
workstations (N@s). Networks of dedicated wrksta-
tions, possibly with additional special ham@w, can trade
higher cost for increased performance. Finaltythe pra-

a shared address space. Fine-grain access controlisla no mid's ap&, supercomputers and maasy parallel proces-
mechanism that associates a tag with a small block ofsors (MPPs) dér the highest performance for those able to
memory (e.g., 32-128 bytes). The system checks this tag dtay for it.

each LOAD or STORE. Invalid operations—=0ADs of
invalid blocks orSTOREs to irvalid or read-only blocks—
transfer control to an application-supplied handler
Sectionl.2 describes@mpest in more detail.

Because &mpest preides mechanisms, not policies, it
supports may programming styles. Current parallel

Sectionl.4 describes seral Tempest implementa-
tions. Typhoonis a proposed high-end design. It uses a net-
work interface chip containing the intprocessor netark
interface, a processor to run accemshf handlers, and a
reverse translation lookasideffer to implement fine-grain
access control. ThBlizzad system implementsempest

machines are designed for a single programming style—on &isting machines without additional hardse. It cur-
message passing or shared memory—which forces prorently runs on a non-shared-memory Thinking Machines

grammers to fit a program to a machine rather thamwallo

CM-5 and uses one of oamechniques to implement fine-

ing them to choose the tools appropriate for the task agrain access contraBlizzad-E uses virtual memory page
hand. Programs written for a particular parallel machine protection and the memory systsn2CC (error correcting
are rarely portable, which has limited the appeal and use ofode) to detect accesaults.Blizzad-Srewrites an gecut-

these machines. By separating mechanism from ypolic
Tempest alls a programmer to tune a program without
restructuring it. In particularTempest supports custom
shared-memory coherence protocols thavigean appli-
cation with both a shared address space ditiest com-
munication. Sectiod.3 discusses o Tempest supports
different programming styles.

able program to add tests before shared-mem@AD and
STORE instructions. W are currently porting Blizzard to
the Wisconsin CQV (aClusterOf Workstations).

Sectionl.5 presents preliminary performance numbers,
which shev that, with adequate har@we support, shared
memory implemented onempest is competite with
hardware shared memarin addition, Blizzard implemen-

ory page protection to identify non-local data (by mapping
it out of a process@’address space). Unfortunajdfyge
pages (typically 4-8K) causes xpensve false sharing
when an application places writable data foo fproces-
sors on the same page.

Fine-grain access control alleviates this problem by
greatly reducing the granularity of access control. It associ-
ates a tag with each small, aligned memory block (e.g., 32—
128 bytes) and atomically checks a referenced kdoelg
at every LOAD or STORE instructions. The tags ahevalid,
Read-Only andRead-Write LOADs of Invalid blocks and
STOREs toInvalid or Read-Onlyblocks irvoke usetlevel
handlers. This mechanism enablesmpest to support
FIGURE 2. The parallel mac hine p yramid. coherence at the same granularity as hardwshared-
memory systems [31].

Networ ks of
Wor kstations

Wor kstations

tations on stock hardave ofer acceptable shared-memory

performance on current machines wéwer, the real bene- _Tempest proides mechanisms to implement program-
fits and lage performance impwements come from the ~MiNg paradigms, ut leaves polig to userevel code [13].
custom coherence protocols made possibledmypest. Tablel summarizes theempest mechanisms that support

different programming paradigms. This code may reside in
1.2 Tempest Mechanisms unpriileged libraries, be generated by a compitar be

To form a portable parallel programming substrate, written specifically for an application. By separating polic
Tempest must pride mechanisms that sice to imple- from mechanism, @mpest @ids the pitalls inherent in
ment most parallel programming abstractions and that perSystem-leel policies that are too general angpensve or
mit efficient implementations across a broad range of 00 specific and incomplete [44].

parallel machines. _ . .
. L Active Bulk Virtual Fine-
As a common denominatofempest assumes a distrib- Messages | Data Memory | Grain
uted memory hardare base constructed frdPrprocessing Transfer | Mgmt. | Access
nodes (see Figui®) [38]. To simplify the &position, this Control
paper assumes a single program multiple data (SPMD) Message X X
programming model with one processor per node and one | pagsing
computation thread per processBach thread runs in a
ivate add ted b tional shared se | Daafr | X X
private address space augmented by an optional shgred se | ,qjism
ment. Shared-memory andybirid applications can use
T . . NUMA X
empest mechanisms (oemffipest shared-memory librar- Shared
ies) to manage the shared address space. Memory
The_four types of @mpest mechanism are: Coherent X X X
Active messages are short, lo-lateny messages Shared
[41]. They are useful for sending control, synchronization, Memory
or short data messages. Upon receipt of ameantessage, Hybrid X X X X

the system iwokes the handler specified by the message
and passes twaguments: the sendsrprocessor number
and the message lengtihhe handler reads the message 1.3 Using Tempest

body from the incoming message queue. Perhaps the bestay to understandempest is to see
Bulk data transfer efficiently moves lage quantities how it is used. With its mechanisms, coarse-grain message
of data between nodes, muchelikoventional DMA. In passing (e.g., PVM [16]) or NUMA (no caching) shared
most systems, a single transfer is less costly than amemory (e.g., Split-C [11]) are easily implemented.
sequence of shorter messages, smfest supports both More interesting are cache-coherent shared memory and
mechanisms. hybrid models that »@loit program locality by caching
Virtual memory management allows an applica- data at processors that reference thsiaheis an applica-
tion to control its virtual address spaceitithis mecha- tion-level library that usesémpest mechanisms to imple-
nism, Tempest programs can support page-granularityment sequentially consistent, transparent shared memory
shared memory similar to distited shared memory A unique feature is that Stache uses a programmable frac-
(DSM) systems [32,3,21]. These systems use virtual memdion of a nodes ptysically local memory to cache data

TABLE 1. Use of T empest mec hanisms.

from remote processors (the “stache”). Thigdarfully-
associatie cache reduces memory latgrend message
traffic by keeping data that does not fit in the haaidsv
cache near the processor that accessed it.

Stache is similar to DSM systems in some respects.
Each page in the useranaged shared gment has a
“home” node. When a non-home processor first references
a page, it is not mapped and, consequettily reference
causes a pageadlt that ivokes a Empest uselevel han-
dler. That handler allocates a local page frame, maps the
page, and obtains the referenced location from its home.

Stache dfiers from DSM systems because it uses fine-
grain access control to mitite flse sharing. When awe
page is allocated, all its blocks are tagtrealid. The pro-
tocol then obtains the referenced block from its home node.
Only this blocks tag is changed. A subsequent reference to

another block in the page causes a fine-grain access contr@tryctures anduilt-in functions. The C** data parallel pro-
fault, which ivokes a handler to obtain the block. Fine- gramming language [24] fefrs this semantics for general
grain access control permits processors to read and writegytines and data structureseWsed &mpest to assist a
different blocks on the same page withalisé sharing. compiler in eficiently supporting this language semantics.
Stache, and other sequentially-consistent shared-memtoosely Coherent Memory (LCM) [27] implements fine-
ory protocols, send more messages than necessary fajrain copy-on-write operations, which alls C** pro-
some communication patternsorFexample, Stache and grams to run correctleven when compiler cannot analyze
other write-ivalidate protocols require four messages to their sharing pattern because of pointers or function calls.
update a alue in a producer and consumer relationship:
consumer request, producer response, producaiidate, 1.4 Implementing Tempest
and consumer ackmdedgment. This xcess communica- To derelop and demonstrate thempest intedce, we
tion is a consequence of “one-size fits all” coherence poli-implemented it on seral platforms with dferent levels of
cies, which implement widely-applicable semantics that hardware supportTyphoonis a hardware implementation
can be unnecessarily general in maituations. that uses a highly-inggated custom chipBlizzad is a
Tempest mechanisms enable a compiler or programmegoftware-only system that runs on an unmodified EM-
to retain the adwntages of shared memory (a shared Our implementations assume a base architectui® of
address space and caching [6,2%1) tommunicate more nodes connected by a point-to-point netiv (see
efficiently by customizing a coherence protocol to an appli- Figure3). Each node is similar to aaskstation, with one

Processor N-1

Processor 0

FIGURE 3. Base parallel mac hine har dware.

cations sharing patterns and semantice. demonstrate

or more commodity processors with caches, a MOESI

these ideas, we deloped custom update protocols for cache-coherent memoryg memory (DRAM), and mem-

three applications: NS Appbt, Berleley EM3D, and
SPLASH Barnes [14]. The three protocoldfafifsubstan-
tially in how they detect sharing. Applst’protocol &ploits

the applicatiors static and predictable sharing pattern to

ory controller (not shan). A parallel machinewlt from
these nodes connects them with a point-to-point ortw
that is accessed through a nethvinterface (NI).

Typhoon implements @mpest through the nebnk

send updates directhBarnes’ dynamic and changeable interface chip depicted in Figuke[38]. Typhoons Net-
sharing requires updates to be farded through a home work Interface (NI) includes a verse translation lookaside

node that maintains a sharing list. Final§13D’s sharing

pattern is static,ut unknavn until run time. EM3D uses an

buffer (RTLB) to implement fine-grain access control, a
processor to run uséavel handlers, DMA logic to support

augmented ersion of Stache to record the sharing in the block transfers, and the nedvk interface itself.

first iteration and a direct update protocol for subsequent

Typhoon logically alidates access control tags on all

iterations. Sectiof.5 presents results that demonstrate the| 0aADs and STOREs—without modifications to a nodge’

large auins possible from custom coherence protocols.
Custom protocols can also help support higlellgar-
allel programming languages, whichfesf semantically
attractize constructs that can befditilt to implement -
ciently on parallel machines. Arxample is the copin,
copy-out semantics thatdrtran 90 preides for some data

processqgrcache, or memory controlléZonsider the situa-

tion when a processor loads a block that it has not accessed
before. The reference misses in the procesdmtdvare
cache(s) and appear on the memaug.bAs the memory
processes the request, the NI snoops tlysipil address

and uses its R.B to find the blocks tag! If the tag is

MBus Interface

)B(Data -II_— Instr.
RTLB W cacne || 5 flcache

Blizzard
Run-Time

Application

ref Trap
Cache[
M AI— miss Memory|
I ||
— | — " Bloc k Integer Data ECC
Processor
Network I/F FIGURE 5. Blizzar d-E: Tempest on a CM- 5
To increase portabilitywe deeloped the all-softare
FIGURE 4. Typhoon’ s Netw ork Interface . Blizzad-S Blizzard-S modifies »@cutable programs

(a. out files) with a tool based on EEL [28] to add an
explicit tag check before allOADs andSTOREs that could
access the sharedyseent. The currentersion uses seral
optimizations to reduce the frequgnaf tests and imple-
ment them in fie instructions, in the best case. Protocol
software and application xecutables (before EEL) are
identical for Blizzard-S and Blizzard-E.

We are currently porting Blizzard to a nefk of dedi-
cated verkstations. The Wgconsin CQV (Cluster Of
Workstations) is bilt from 40 Sun SRRCstation-20
workstations, each with wRoss HyperSparc processors.
The nodes will be interconnected with a Myricom Myrinet.
Blizzard/CON will implement fine-grain access control

Blizzard implements dmpest on a CNb- [40]. The three vays: with ECC (lile Blizzard-E), by eecutable
CM-5 provides no support for shared memonyt bloes fit editing (like Blizzard-S), and with custom hardre that
the machine model depicted in Fig&é The CM5's net- snoops the memoryub. Blizzard/COV presents some we
work interface is mapped into a user programaddress challenges, including longer nedvk latencies, a commod-
space and pmides Bst messages. Theemipest virtual ity operating system (Solaris 2.4), and dual processors.
memory management mechanisms arevideml by an o
extended CM5 node lernel [36]. 1.5 Preliminary Performance

. . , . We have reported preliminary performance results for

Blizzard |_mplements fme_-gral_n access control throughthese ideas in seral papers. The numbers, unfortungtely
tV,VO alternatve methods. _F'rStBI'Zza'd'E uses a CMe are not directly comparable, because thay twme from
diagnostic mode to intentionally set double-bit ECC errors it ot systems (simulation or implementation)fedént

in Invaliﬂ blogks. A_S iepicte,d Ln I;iguﬁa a EOA‘D or Tempest implementations, fiifent benchmarks, and dif-
STORE that misses in t € C_M'S ardvare cache goes 00 ferent protocols. Reinhardt et al. [38] used simulations on
memory for a cache-line fill. The fill succeeds fatlia the Wsconsin Vihd Tunnel [37] to compare yphoon
tag.s, ot Fhe ECC error for ainvalid tag causes a trap, against a CC-NUMA machine modeled after the Stanford
which Blizzard-E ectors to a usdevel handler The DASH [31]. The results sheed that Jphoon performs
Read-Onlystate is synthesized with pagedeprotection. very closely to the all-hardave implementation when both

No ECC coerage is lost with this z_;lpproach, l_)ecause Bliz- systems ran their base coherence protocgishdon per-
zard—_E erifies that ECC errors arise frolmvallq blocks, formed slightly vorse when a prograsworking set fit in
Invalid blpcks do not contgmahd data, anq Blizzard sets 1 cc.NUMAs 256KB hardwre cache and slightly bet-
double-bit errors on multiple doulwerds in a memory ... \vhen it did not. Hoever, Typhoon performed up to

brlloclfj. B|IZZB.|:’d-E, hwevslr, will not work on processors - 3gy, petter for EM3D when running a custom update pro-
that do not all restartable>xceptions on ECC errors. tocol that vould be dificult to implement in hardare.

1. RTLB misses delay the processor while the NI loads the entry from ~ Schoinas et al. [40] present early measurements for
memory Special mappings treat pate memory as Read-Write [38]. Blizzard running on a 32-node CBI-The results sho
1. Blizzard does not use the Chsector units. that Blizzard-S is a viable implementation that runs than

Read-Write the NI remains inacte and the block is
loaded into hardare cache(s), where it can be subse-
quently accessed at full speed. If the taBémd-Onlythe

NI asserts the “shared” line, so subsequgMDs succeed
but STORES access the memoryd agin for another tag
check. OnSTOREs to Read-Onlyblocks orLOADs and
STOREs of Invalid blocks, the NI delays the requesting
processor and runs a ugevel handler on its processdn

all cases, the NI folles the lus’s snooping protocol and
appears to be another processorsome sense, the NI is
the agent for other nodes in the system that helpsvachie
global coherence with only locally-coherent haadev

10

two times slaver than Blizzard-E, in the evst case. More develops, a programmer will find bottlenecks, which can

recent ersions of Blizzard-S closed thigggto 1.5X and be eliminated without restructuring the program by choos-

run some programsaster than Blizzard-E—when high ing another shared-memory protocol, such as the update

miss rates mads Blizzard-S lover miss @erhead more protocols discussed in this pap@®f course, programmers

important that its higher lookuprerhead at each access. seeking the highest\el of performance can both write
Finally, Falsafi et al. [14] demonstrate the enormous their avn protocols and use message passing where appro-

potential of custom coherence protocols. ylproved priate. Bmpest supports all of these approaches across a

the 32-processor Blizzard-E performance &SNAppbt, wide range of parallel systems.

Berkeley EM3D, and SPLASH Barnes bwdtors of 5.7,

16.0 and 1.4—eer optimized shared memorgnsions—

by changing the coherence protocols, as described in

Sectionl.3. On the CM-5, the shared-memory EM3D ran

as fist as a nate message-passingrgion.

1.6 Related Work

Several interbces share émpest goal of prweiding
portability among parallel machines. PVM [16] is a
widely-used, coarse-grain message-passing systeme-Berk
ley’'s Active Messages [41] pvades a portable inteate
for fine-grain messagesuty unlike Tempest, no support
for transparent caching. DSM systems, such as Rice’
Munin [3] and Teadmarks [21], support shared memory
but since their coherence is limited to page granularity
they require more compkesemantic models to mitige the
adwerse diects of flse sharing. @mpess fine-grain
access controlhaids page-leel false sharing.

Several other systems also support custom protocols,
including MIT Alewife [5], Rice Munin [3], and Stanford
FLASH [23]. We are not ware, havever, of another sys-
tem that gies a user complete, protected contrargoro-
tocols. Some @mpest protocols kea predecessors. In
particular Stache is similar to a DSM protocottended to
cache-sized blocks and to a safte implementation of the
hardware COMA protocols of the Data Rision Machine
[17] and Kendall Square KSR-1 [22].

Several machines share features witbmpest imple-
mentations. The MIT J-Machine sharesnipest goal of
providing mechanisms, not policbut uses a custom pro-
cessor [13]. Stanford FLASH is similar in nyarespects to
Typhoon. FLASH, hwever, uses a custom memory con-
troller, rather than a snoopingwee, runs handlers on all
hardware caches misses, and runs protocols wilgged
mode without address translation. Blizzaréernel inter-
face and ECC use come from its ancestur Wsconsin
Wind Tunnel [37].

1.7 Summary

The Tempest mechanisms pide a substrate for porta-
ble and dicient parallel programs. A programmer or com-
piler writer can use these mechanisms to implement an
efficient parallel program through the time-peo process
of successie refinement. Most programmers will start with
a shared memory program that uses a pre-written transpar-
ent shared-memory library such as Stache. As the program

11

