
Parallel Computer Research in the Wisconsin Wind Tunnel Project

Mark D. Hill, James R. Larus, and David A. Wood

Computer Sciences Department

University of Wisconsin–Madison

1210 West Dayton St.

Madison, WI 53706 USA

{markhill, larus, david}@cs.wisc.edu
http://www.cs.wisc.edu/~wwt

Abstract
The paper summarizes the Wisconsin Wind Tunnel

Project’s research into parallel computer design and meth-
ods. Our principal design contributions—Cooperative
Shared Memory and theTempest Parallel Programming
Substrate—seek to balance the programming benefits of a
shared address space with facilities for low-level perfor-
mance optimizations.

The project has refined and compared a variety of ideas
with a unique mixture of techniques that include micro-
architecture-level simulation, software prototyping, and
rapid hardware prototyping. An important by-product of
this research has been innovative tools, such as theWiscon-
sin Wind Tunnel and theExecutable Editing Library.

1 Introduction

Parallel computers show great promise (and have shown
great promise for 30 years!). Parallel hardware offers an
attractive solution for problems whose computation needs
outstrip even the rapidly improving uniprocessors. Equally

important, users are discovering that parallel computer
hardware can be more cost-effective than a uniprocessor,
because (a) it often uses microprocessors rather than eso-
teric supercomputer processors, and, somewhat surpris-
ingly, (b) it makes cost-effective use of expensive large
memories. For example, we found that a 16-processor Sili-
con Graphic multiprocessor was more cost-effective for
problems requiring 1GB of memory than a uniprocessor,
whenever speedups were larger than just 4.3 [43].

So why is parallel computing such a mixed success? At
the high-end, massively parallel processors (MPPs) failed
because their custom hardware and software incurred high
fixed costs that limited these machines to the most demand-
ing applications, and because their novel and unforgiving
programming environments required programs to be
crafted for a particular machine.

In the middle range, networks of workstations (NOWs)
offer lower hardware cost than an MPP by building on
commodity hardware and software. Most NOWs are lim-
ited to a message-passing programming model and suffer
from high communication latency, attributable to both
hardware and software. Academic research (e.g., Berkeley)
and the commercial success of the NOW-like IBM SP-1
and SP-2 make it likely that NOWs will remain a promis-
ing parallel alternative.

Nevertheless, the success story of parallel computing is
symmetric multiprocessors (SMPs). They are cost-effec-
tive, because the marginal performance gain—both to
reduce job latency of parallel programs and increase job
throughput with multiprogramming—of an additional pro-
cessor tends to be significantly higher than the marginal
hardware cost increase [43]. Also, SMP’s shared address
space programming model is an evolutionary step for uni-
processor software, particularly modern software written
using threads [12]. SMPs are increasingly common as
commodity processors, such as Intel’s P6, and operating
systems, such as Microsoft’s Windows NT, routinely sup-
port small-scale SMP systems. SMPs’ Achilles’ heel is
their shared bus, which limits their size and scalability.

This paper is a summary of research performed by the Wisconsin Wind
Tunnel project. Most ideas described herein have been previously pub-
lished. Appendix A reprinted, with permission, from COMPCON ‘95
(San Francisco, California, March 1995, pp. 327–332). Copyright © 1995
IEEE. Abstracts and information on our papers can be found at URL:

http://www.cs.wisc.edu/~wwt

This work is generously supported by NSF grant MIP-9225097 and
Wright Laboratory Avionics Directorate, Air Force Material Command,
USAF, under grant #F33615-94-1-1525 and ARPA order no. B550. Addi-
tional support has been provided by NSF PYI/NYI Awards CCR-
9157366, MIPS-8957278, and CCR-9357779, NSF Grant CCR-9101035,
DOE Grant DE-FG02-93ER25176, University of Wisconsin Graduate
School Grant, Wisconsin Alumni Research Foundation Fellowship and
donations from A.T.&T. Bell Laboratories, Digital Equipment Corpora-
tion, Sun Microsystems, Thinking Machines Corporation, and Xerox Cor-
poration. Our Thinking Machines CM-5 was purchased through NSF
Institutional Infrastructure Grant No. CDA-9024618 with matching fund-
ing from the University of Wisconsin Graduate School. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of the Wright Laboratory Avionics
Directorate or the U.S. Government.

2

Existing systems accommodate only 20–32 processors.
Moreover, faster processors will limit future SMPs to no
more than about 16 processors, which is too small for
many important applications.

When users outgrow an SMP they are faced with two
alternatives: (a) re-write their applications or (b) use dis-
tributed shared memory. Re-writing an application to a
variety of programming models and vendor-specific pro-
gramming environments imposes a software cost that will
strangle this approach to parallel computing. Although
considerable efforts have succeeded in standardizing mes-
sage-passing with MPI and data-parallel programming
with HPF, the problem of two programming models
remains a fundamental barrier to scalable parallel comput-
ing. We believe the shared-memory programming model
will dominate the next wave of parallel computing, as
SMPs become ubiquitous and shared address spaces
become the programming norm.

The second option to expand beyond an SMP is distrib-
uted shared memory(DSM), which extends the shared
memory programming model beyond a bus. Traditional
DSM implementations are either (mostly) hardware shared
memory (HSM) or virtual shared memory (VSM). HSM
machines, such as Kendall Square KSR-1, Stanford DASH,
MIT Alewife, and Sequent STiNG use hardware to retrieve
and cache blocks, implement a global physical address
space, and run a single (multithreaded) kernel. By contrast,
VSMs, such as Yale/Princeton Ivy, Rice Munin, and Rice
Treadmarks, use virtual memory mechanisms to cache
pages, do not need a physical global address space, and run
a kernel per node. In many respects, HSMs and VSMs
complement each other. HSMs approach SMP perfor-
mance, but require extensive custom hardware (e.g., cache
controllers, directories, or attraction memories) and custom
operating systems—key drawbacks of MPPs. VSMs, on
the other hand, use commodity hardware and software,
sometimes with modest hardware accelerators. In general,
VSMs’ performance is lower because their coherence is at
a virtual memory page granularity (e.g., 4K bytes). To
improve performance, some VSM systems, such as MIT
CRL and Rice Treadmarks, use alternative programming
models that reduce the coherence traffic necessary for fine-
grain sharing [4, 20].

The goal of our research is combine the best of HSMs
and VSMs (and new results from our research). Like
HSMs, we support the SMP’s fine-grain coherence, but
seek to reduce hardware complexity (and cost) and, at the
same time, permit programmers with a richer collection of
mechanisms for improving performance. Like VSMs, we
exploit existing hardware and rely on user-level support to
improve performance over simple shared memory. Finally,
like uniprocessors, our work rests on the belief that soft-

ware must be portable to machines at a wide range of cost-
performance points.

The next sections discuss our design proposals, meth-
ods, and technology transfer. Appendix A describes Tem-
pest and Tempest implementations in greater detail.

2 Design Overview

2.1 Cooperative Shared Memory
Our initial design,Cooperative Shared Memory, was an

evolutionary extension to conventional HSM software and
hardware. Cooperative Shared Memory asks programmers
to identify expected data sharing behavior through the
Check-In/Check-Out (CICO) performance annotations so
that the system could efficiently handle subsequent refer-
ences, with less complex hardware than a traditional HSM
(e.g., Dir1SW [18]).

The key CICO annotations are:

• check_out_X: expect exclusive data access,

• check_out_S: expect shared data access, and

• check_in: expect end of data access.

CICO annotations serve several purposes [26]. First,
they can direct the underlying coherence protocol to per-
form performance enhancing operations (e.g., cache flush
on check_in). Second, when inserted by the programmer,
they can force a reasoning about shared-memory commu-
nication that may suggest code improvements (e.g., mov-
ing communication out of an inner loop). Third, when
inserted automatically (e.g., with a trace-based tool like
Cashier [10]), they can show a programmer where commu-
nication actually occurs.

CICO annotations can be used aggressively to opti-
mized the expected case, because they never affect pro-
gram semantics. Even randomly-inserted CICO
annotations will not change a program’s possible execu-
tions. This separation of performance and correctness
makes automatic use of CICO annotations much simpler
than software cache coherence management, which must
be correct to preserve semantics.

CICO alters program behavior and permits simpler
coherence protocols, such as Dir1SW [18]. Dir1SW uses
several state bits and a single pointer/counter field per
block and, more importantly, does not have to implement
complex composite state transitions, as required by the
more conventional DirNNB protocol. The pointer/counter
either identifies a single writer or counts readers. Simple
hardware entirely handles cases conforming to the CICO
model by updating the pointer/counter and forwarding data
to a requesting processor. No cases require multiple mes-
sages (beyond a single request-response pair) or transient
states. Programs not conforming to the CICO model or
using CICO incorrectly run correctly, but trap to system

3

software that performs more complex operations (in a man-
ner similar to MIT Alewife [1]). Hardware for example,
need not handle the complex case of a writer encountering
many extant shared copies, because proper use of
check_in’s make this case rare.

Extensive simulations showed that Cooperative Shared
Memory reduced hardware complexity relative to an HSM,
allowed moderate interconnection network latency to be
tolerated, and was a good design point [42,34].

We next asked if we could:

• reduce hardware complexity further,

• tolerate even longer interconnection network latencies,
and

• provide solutions at many price-performance points.

A particularly frustrating aspect of performance optimi-
zation in a shared memory model, such as CSM, is that
sometimes a message is exactly the right communication
mechanism [25,6]. CSM directives can approximate a mes-
sage send, but the approximation is not semantically per-
fect and costs performance. So, we added the question:

• can messages be integrated with coherent shared mem-
ory in a portable way?

Our affirmative answer to these questions is theTempest
parallel programming substrate.

2.2 Tempest
Tempest is a portable interface that provides caching,

naming, and communication mechanisms that allow user-
level software to provide applications with SMP-like
shared memory, message-passing, or hybrid models. Tem-
pest portably integrates shared memory and messages,
while allowing:

• simpler hardware, including running on an unmodified
NOW,

• the selected use of message-passing or custom coher-
ence protocols to tolerate greater communication laten-
cies, and

• many implementations, including simulated hypotheti-
cal machines (e.g., Typhoon), an MPP (Blizzard on a
CM-5), a NOW (Blizzard on Wisconsin COW), and a
NOW with selected hardware acceleration (Wisconsin
COW with T0, designed with the help of Sun Microsys-
tems).

Tempest provides two classes of messages. First, active
messages—like Berkeley’s [41]—transfer control informa-
tion (e.g., requests for data), and small amounts of data
(e.g., a 32-byte “cache” block) [33]. Second, bulk data
transfer primitives—like CM-5 channels—provide higher
bandwidth for large messages, which can afford the higher
start-up cost.

As defined so far, Tempest provides messages, which
supports message-passing applications and message pass-
ing within shared-memory applications, but does not inte-
grate messaging and shared memory. Tempest’s final two
mechanisms provide this integration.

First, Tempest allows user-level software to control how
pages in a special segment are mapped, using virtual mem-
ory mechanisms similar to those used by VSM systems.
Consistent use of these mechanisms provides page-based
coherent shared memory.

The final, novel Tempest mechanism is fine-grain
access control, which allows user-level software to tag
blocks (e.g., 32 bytes) as read-write, read-only, or invalid.
Combined with the other mechanisms, fine-grain access
control supports shared-memory implementations that
maintain coherence on the same granularity—i.e., cache
blocks—as SMPs.

With Tempest, a standard library, a compiler run-time
system, or a demanding application program can imple-
ment a shared-memory coherence protocol. Most program-
mers will develop their applications using transparent
shared memory (obtained by linking their program with a
standard protocol). After a program runs correctly, a pro-
grammer can improve its performance by selecting alterna-
tive library protocols to manage key data structures that are
bottlenecks [14,7,9,35]. If no protocol performs well, the
programmer can write a custom protocol for the program.
Similarly, compilers can use custom protocols to imple-
ment higher-level programming language constructs or
optimize compiled programs [27].

A commonly misunderstood aspect of Tempest is
who—in practice—will write the policies. Tempest leaves
policy to user-level software. People have interpreted this
to mean every programmer must write their own coherence
policy. Just as very few programmer today write assembly
language or make kernel modifications, we expect that
most programmers will rely on coherence policies pro-
vided by compilers or system libraries.

2.3 Tempest Implementations

Tempest would be a paper tiger if not implemented.
Tempest would be a mildly interesting design if it could not
be implemented on several platforms. We have spend con-
siderable effort to ensure that neither situation happens.
The current Tempest systems are:

• Blizzard/CM-5 implements Tempest on a Thinking
Machines CM-5 using access control implemented with
either (a) executable editing or (b) purposely set bad
ECC [40]. It requires significant kernel modifications to
add user-level virtual memory to the native CMOST
operating system.

4

• Blizzard/COW implements Tempest on a network of 40
dual-processor SPARCstations-20s connected with
Myricom Mryinet. Access control is implemented with
(a) executable editing, (b) purposely set bad ECC, or (c)
an Mbus board implemented in cooperation with Sun
Microsystems. System code is in the form of loadable
device derives that require no changes to the Solaris 2.4
kernel.

• Several simulated implementations that explore new
design options, including Typhoon [38], Typhoon-1,
and Typhoon-2 [39].

Appendix A describes Tempest and the implementa-
tions in more detail.

3 Methods

Research in parallel computer design requires a mix of
evaluation methods. Abstract modeling helps in the initial
phases, but the real work is at the level of detail that can be
evaluated only with simulation and prototyping. Detailed
evaluation methods are necessary because abstractions in
engineering, in general, and computer systems, in particu-
lar, are approximations. Extended manipulation of abstrac-
tions, without reference to the details, often leads to
unworkable solutions. Simulating and building are neces-
sary.

3.1 Our Approach
A widely held, but false, dichotomy is whether it is bet-

ter to simulate (build wind tunnels) or prototype (build air-
planes). In reality, architects must rely on multiple methods
and understand and exploit the continuum between the
flexibility of simulation and single-design-point fidelity of
prototypes. Even the most realistic and concrete academic
machine remains but a wind tunnel model of a commercial
product.

The Wisconsin Wind Tunnel project employed a mix-
ture of complementary methods:

• Micro-architectural level simulation (e.g., of Typhoon,
Typhoon-1, and Typhoon-2) using the Wisconsin Wind
Tunnel [37,36,15,2,8] and other simulators.

• New tools for performance measurement and modelling
[30, 29, 28].

• User- and system-software prototyping and develop-
ment on existing commercial platforms (e.g., Blizzard/
CM-5 and Blizzard/COW).

• Surgical hardware prototyping, as exemplified by the
MBus card we designed with Sun Microsystems to
accelerate COW. Surgical refers to the approach of
building no more than what needs to be built. This

board is not a prototype of optimal hardware, but it
demonstrated that no unforeseen hardware or software
problems stand in the way of Tempest acceleration.

Two of the important methodology artifacts of our
project are the Wisconsin Wind Tunnel (WWT) and the
Executable Editing Library (EEL).

3.2 Wisconsin Wind Tunnel
We developed and implemented an innovative, execu-

tion-driven simulation system called the Wisconsin Wind
Tunnel (WWT) [37]. WWT runs a parallel shared-memory
program on a parallel computer (Thinking Machines CM-
5) and uses execution-driven, distributed, discrete-event
simulation to accurately calculate program execution time.
WWT directly executes all shared-memory program
instructions and memory references that hit in the hypo-
thetical machine's cache. WWT's speed and the CM-5's
memory capacity permit evaluations to use more realistic
workloads than are feasible with other simulation tech-
nique.

3.3 Executable Editing Library
Executable editing changes executable (compiled) code

by removing existing instructions and addingforeign code
that observes or modifies a program’s execution. It is an
effective technique for measuring and modifying program
behavior since executables hold an entire program (includ-
ing libraries) and editing them does not require source code
or modification to system tools such as compilers and link-
ers.

Executable editing is widely used for three purposes:
emulation, observation, and optimization. An edited exe-
cutable can emulate features that hardware does not pro-
vide. For example, the Wisconsin Wind Tunnel
architecture simulator [37] drives a distributed, discrete-
event simulation of a parallel computer from the logical
cycle times of processors directly executing a parallel pro-
gram. The underlying hardware (a SPARC processor in a
Thinking Machines CM-5) does not provide a cycle
counter or an efficient mechanism for interleaving compu-
tation and simulation. The Wind Tunnel system edits pro-
grams so that they update a cycle timer and return control
at timer expirations. Similarly, one version of the Blizzard
distributed shared-memory system [40] edits programs to
insert fine-grain access tests before shared loads and stores.
These tests permit data sharing at cache-block granularity,
which reduces the false sharing incurred by page-granular-
ity distributed shared-memory systems.

EEL (Executable Editing Library) is a library for build-
ing tools to analyze and modify an executable (compiled)
program [28]. Currently, however, tools of this sort are dif-
ficult and time-consuming to write and are usually closely
tied to a particular machine and operating system. EEL

5

supports a machine- and system-independent editing model
that enables tool builders to modify an executable without
being aware of the details of the underlying architecture or
operating system or being concerned with the conse-
quences of deleting instructions or adding foreign code.

4 Technology Transfer

Our project employes many methods of technology
transfer. Like other academics, we write conference papers,
visit and give talks at companies, and have students gradu-
ate to industrial jobs.

Like a few projects, we hold semi-annual affiliates
meetings. These are very effective at engaging industry in a
dialog. They force industrial people to spend a block of
time thinking about our project, which leads them to make
many useful suggestions. Furthermore, students get excited
when they see that people care about their work. Recent
meetings have included representatives from Cray, IBM,
Intel, Portland Group, Sun, and Thinking Machines.

Finally, as a new experiment, one of us (Hill) is spend-
ing an academic year on sabbatical in an industrial product
group (at Sun Microsystems). His very positive experi-
ences with technology exchange appears is his position
paper (elsewhere in these proceedings).

5 Summary

The paper summarizes research into parallel computer
design and methods performed by the Wisconsin Wind
Tunnel Project. Our principal design contributions—Coop-
erative Shared Memory and theTempest Parallel Program-
ming Substrate—seek to portably surpass the benefits of
SMP-like shared-memory. We refine and compare design
proposals with a mixture of techniques, including micro-
architecture-level simulation, software prototyping, and
“surgical” hardware prototyping. Furthermore, the evalua-
tion requirements of our design provided impetuous to the
methodological advances embodied in theWisconsin Wind
Tunnel and theExecutable Editing Library.

6 Acknowledgments

We would like to thank the many people who made important contri-
butions to the Wisconsin Wind Tunnel project: Douglas Burger, Satish
Chandra, Sashikanth Chandrasekaran, Trishul Chilimbi, Glen Ecklund,
Babak Falsafi, Alain Kagi, Sangtae Kim, Rahmat Hyder, Alvin Lebeck,
James Lewis, Shubhendu Mukherjee, Subbarao Palacharla, Steven Rein-
hardt, Brad Richards, Anne Rogers, Timothy Schimke, Eric Schnarr, Yan-
nis Schoinas, Steve Swartz, Frank Trankle, and Guhan Viswanathan.

References
[1] Anant Agarwal, Ricardo Bianchini, David Chaiken, KirkL.

Johnson, David Kranz, John Kubiatowicz, Beng-Hong Lim, Ken-
neth Mackenzie, and Donald Yeung. The MIT Alewife Machine:
Architecture and Performance. InProceedings of the 22nd Annu-
al International Symposium on Computer Architecture, pages 2–

13, June 1995.

[2] DouglasC. Burger and DavidA. Wood. Accuracy vs. Perfor-
mance in Parallel Simulation of Interconnection Networks. In
Proceedings of the 9th International Parallel Processing Sympo-
sium, April 1995.

[3] JohnB. Carter, JohnK. Bennett, and Willy Zwaenepoel. Imple-
mentation and Performance of Munin. InProceedings of the 13th
ACM Symposium on Operating System Principles (SOSP), pages
152–164, October 1991.

[4] JohnB. Carter, JohnK. Bennett, and Willy Zwaenepoel. Tech-
niques for Reducing Consistency-Related Communication in Dis-
tributed Shared-Memory Systems.ACM Transactions on Com-
puter Systems, 13(3):205–243, August 1995.

[5] David Chaiken, John Kubiatowicz, and Anant Agarwal. Limit-
LESS Directories: A Scalable Cache Coherence Scheme. InPro-
ceedings of the Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS IV), pages 224–234, April 1991.

[6] Satish Chandra, JamesR. Larus, and Anne Rogers. Where is
Time Spent in Message-Passing and Shared-Memory Programs?
In Proceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS VI), pages 61–75, October 1994.

[7] Satish Chandra, Brad Richards, and JamesR. Larus. Teapot: Lan-
guage Support for Writing Memory Coherence Protocols. InPro-
ceedings of the SIGPLAN ’96 Conference on Programming Lan-
guage Design and Implementation (PLDI), May 1996.

[8] Sashikanth Chandrasekaran and MarkD. Hill. Optimistic Simu-
lation of Parallel Architectures Using Program Executables. In
Proceedings of Tenth Workshop on Parallel and Distributed Sim-
ulation (PADS ’96), May 1996.

[9] Trishul Chilimbi, Thomas Ball, Stephen Eick, and James Larus.
StormWatch: A Tool for Visualizing Memory System Protocols.
In Proceedings of Supercomputing ’95, December 1995.

[10] TrishulM. Chilimbi and JamesR. Larus. Cachier: A Tool for Au-
tomatically Inserting CICO Annotations. InProceedings of the
1994 International Conference on Parallel Processing (Vol. II
Software), pages II–89–98, August 1994.

[11] D. E. Culler, A.Dusseau, S.C. Goldstein, A.Krishnamurthy,
S.Lumetta, T.von Eicken, and K.Yelick. Parallel Programming
in Split-C. In Proceedings of Supercomputing ’93, pages 262–
273, November 1993.

[12] Helen Custer.Inside Windows NT. Microsoft Press, 1993.

[13] William J. Dally and D.Scott Wills. Universal Mechanism for
Concurrency. InPARLE ’89: Parallel Architectures and Lan-
guages Europe. Springer-Verlag, June 1989.

[14] Babak Falsafi, Alvin Lebeck, Steven Reinhardt, Ioannis Schoin-
as, MarkD. Hill, James Larus, Anne Rogers, and David Wood.
Application-Specific Protocols for User-Level Shared Memory.
In Proceedings of Supercomputing ’94, pages 380–389, Novem-
ber 1994.

[15] Babak Falsafi and DavidA. Wood. Cost/Performance of a Paral-
lel Computer Simulator. InProceedings of the 8th Workshop on
Parallel and Distributed Simulation (PADS ’94), July 1994.

[16] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Rob-
ert Manchek, and Vaidy Sunderam. PVM 3 users’s Guide and
Reference Manual. Technical Report ORNL/TM-12187, Oak
Ridge National Laboratory, May 1994.

[17] Erik Hagersten. Toward Scalable Cache Only Memory Architec-
tures. Technical report, The Royal Institute of Technology Swed-
ish Institute of Computer Science, October 1992. Stockholm,
SwedenPh.D. Thesis, Swedish Institute of Computer Science Dis-
sertation Series 08.

[18] Mark D. Hill, JamesR. Larus, StevenK. Reinhardt, and DavidA.
Wood. Cooperative Shared Memory: Software and Hardware for
Scalable Multiprocessors.ACM Transactions on Computer Sys-
tems, 11(4):300–318, November 1993. Earlier version appeared

6

in it Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS V)/.

[19] Mark D. Hill, JamesR. Larus, and DavidA. Wood. Tempest: A
Substrate for Portable Parallel Programs. InCOMPCON ’95, pag-
es 327–332, San Francisco, California, March 1995. IEEE Com-
puter Society.

[20] Kirk L. Johnson, M.Frans Kaashoek, and DeborahA. Wallach.
CRL: High-Performance All-Software Distributed Shared Mem-
ory. In Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP), pages 213–228, December 1995.

[21] Pete Keleher, Sandhya Dwarkadas, Alan Cox, and Willy Zwaene-
poel. TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. Technical Report 93-214,
Department of Computer Science, Rice University, November
1993.

[22] Kendall Square Research. Kendall Square Research Technical
Summary, 1992.

[23] Jeffrey Kuskin etal. The Stanford FLASH Multiprocessor. In
Proceedings of the 21st Annual International Symposium on
Computer Architecture, pages 302–313, April 1994.

[24] JamesR. Larus. C**: a Large-Grain, Object-Oriented, Data-Par-
allel Programming Language. In Utpal Banerjee, David Gelernt-
er, Alexandru Nicolau, and David Padua, editors,Languages And
Compilers for Parallel Computing (5th International Workshop),
pages 326–341. Springer-Verlag, August 1993.

[25] JamesR. Larus. Compiling for Shared-Memory and Message-
Passing Computers.ACM Letters on Programming Languages
and Systems, 2(1–4):165–180, March–December 1994.

[26] JamesR. Larus, Satish Chandra, and DavidA. Wood. CICO: A
Shared-Memory Programming Performance Model. In Jeanne
Ferrante and Tony Hey, editors,Portability and Performance for
Parallel Processors, chapter5, pages 99–120. John Wiley &
Sons, 1994.

[27] JamesR. Larus, Brad Richards, and Guhan Viswanathan. LCM:
Memory System Support for Parallel Language Implementation.
In Proceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS VI), pages 208–218, October 1994.

[28] JamesR. Larus and Eric Schnarr. EEL: Machine-Independent
Executable Editing. InProceedings of the SIGPLAN ’95 Confer-
ence on Programming Language Design and Implementation
(PLDI), pages 291–300, June 1995.

[29] Alvin R. Lebeck and DavidA. Wood. Cache Profiling and the
SPEC Benchmarks: A Case Study.IEEE Computer, 27(10):15–
26, October 1994.

[30] Alvin R. Lebeck and DavidA. Wood. Active Memory: A New
Abstraction for Memory-System Simulation. InProceedings of
the 1995 ACM Sigmetrics Conference on Measurement and Mod-
eling of Computer Systems, pages 220–230, May 1995.

[31] Daniel Lenoski, James Laudon, Truman Joe, David Nakahira,
Luis Stevens, Anoop Gupta, and John Hennessy. The DASH Pro-
totype: Logic Overhead and Performance.IEEE Transactions on
Parallel and Distributed Systems, 4(1):41–61, January 1993.

[32] Kai Li and Paul Hudak. Memory Coherence in Shared Virtual
Memory Systems.ACM Transactions on Computer Systems,
7(4):321–359, November 1989.

[33] ShubhenduS. Mukherjee, Babak Falsafi, MarkD. Hill, and
DavidA. Wood. Coherent Network Interfaces for Fine-Grain
Communication. InProceedings of the 23rd Annual International
Symposium on Computer Architecture, page?, May 1996.

[34] ShubhenduS. Mukherjee and MarkD. Hill. An Evaluation of Di-
rectory Protocols for Medium-Scale Shared-Memory Multipro-
cessors. InProceedings of the 1994 International Conference on
Supercomputing, pages 64–74, Manchester, England, July 1994.

[35] ShubhenduS. Mukherjee, ShamikD. Sharma, MarkD. Hill,
JamesR. Larus, Anne Rogers, and Joel Saltz. Efficient Support
for Irregular Applications on Distributed-Memory Machines. In

Fifth ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming (PPOPP), pages 68–79, July 1995.

[36] StevenK. Reinhardt, Babak Falsafi, and DavidA. Wood. Kernel
Support for the Wisconsin Wind Tunnel. InProceedings of the
Usenix Symposium on Microkernels and Other Kernel Architec-
tures, September 1993.

[37] StevenK. Reinhardt, MarkD. Hill, JamesR. Larus, AlvinR.
Lebeck, JamesC. Lewis, and DavidA. Wood. The Wisconsin
Wind Tunnel: Virtual Prototyping of Parallel Computers. InPro-
ceedings of the 1993 ACM Sigmetrics Conference on Measure-
ment and Modeling of Computer Systems, pages 48–60, May
1993.

[38] StevenK. Reinhardt, JamesR. Larus, and DavidA. Wood. Tem-
pest and Typhoon: User-Level Shared Memory. InProceedings
of the 21st Annual International Symposium on Computer Archi-
tecture, pages 325–337, April 1994.

[39] StevenK. Reinhardt, RobertW. Pfile, and DavidA. Wood. De-
coupled Hardware Support for Distributed Shared Memory. In
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, May 1996.

[40] Ioannis Schoinas, Babak Falsafi, AlvinR. Lebeck, StevenK. Re-
inhardt, JamesR. Larus, and DavidA. Wood. Fine-grain Access
Control for Distributed Shared Memory. InProceedings of the
Sixth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VI), pag-
es 297–307, October 1994.

[41] Thorsten von Eicken, DavidE. Culler, SethCopen Goldstein, and
KlausErik Schauser. Active Messages: a Mechanism for Inte-
grating Communication and Computation. InProceedings of the
19th Annual International Symposium on Computer Architecture,
pages 256–266, May 1992.

[42] DavidA. Wood, Satish Chandra, Babak Falsafi, MarkD. Hill,
JamesR. Larus, AlvinR. Lebeck, JamesC. Lewis, ShubhenduS.
Mukherjee, Subbarao Palacharla, and StevenK. Reinhardt.
Mechanisms for Cooperative Shared Memory. InProceedings of
the 20th Annual International Symposium on Computer Architec-
ture, pages 156–168, May 1993. Also appeared in it CMG Trans-
actions,/ Spring 1994.

[43] DavidA. Wood and MarkD. Hill. Cost-Effective Parallel Com-
puting.IEEE Computer, 28(2):69–72, February 1995.

[44] William A Wulf. Compilers and Computer Architecture.IEEE
Computer, 14(7):41–47, July 1981.

Appendix A. Tempest: A Portable Substrate
for Parallel Programs1

This paper describes Tempest, a collection of mecha-
nisms for communication and synchronization in parallel
programs. With these mechanisms, authors of compilers,
libraries, and application programs can exploit—across a
wide range of hardware platforms—the best of shared
memory, message passing, and hybrid combinations of the
two. Because Tempest provides mechanisms, not policies,
programmers can tailor communication to a program’s
sharing pattern and semantics, rather than restructuring the
program to run with the limited communication options
offered by existing parallel machines. And since the mech-
anisms are easily supported on different machines, Tem-
pest provides a portable interface across platforms. This
paper describes the Tempest mechanisms, briefly explains

1. Reprinted from Compcon ‘95 with the permission of the IEEE. Copy-
right © 1995 IEEE [19].

7

how they are used, outlines several implementations on
both custom and stock hardware, and presents preliminary
performance results that demonstrate the benefits of this
approach.

1.1 Introduction
Uniprocessor computers flourish, in part, because they

share a programming model suitable for programs written
in many styles and high-level languages. The common
model allows programmers to select a language appropri-
ate for their applications and to transfer most programs
between computers without worrying about the underlying
machine architecture. Computers did not always provide
such a congenial environment. Several decades ago, every
program was crafted for a particular machine in its own,
machine-specific assembly language.

Parallel computers still languish at this stage. They do
not share a common programming model or support many
vendor-independent languages. To address this problem,
the Wisconsin Wind Tunnel research project developed the
Tempestinterface, which provides a common parallel com-
puter programming model. Figure1 summarizes this paper
by showing how Tempest provides a substrate that allows
compilers and programmers to exploit different program-
ming styles across a wide range of parallel systems.

Tempest provides the mechanisms necessary for effi-
cient communication and synchronization: active mes-
sages, bulk data transfer, virtual memory management, and
fine-grain access control. The first two are commonly-used
mechanisms for short, low-overhead messages and effi-
cient data transfer, respectively. The latter two mechanisms
allow a program to control its memory, so it can implement
a shared address space. Fine-grain access control is a novel
mechanism that associates a tag with a small block of
memory (e.g., 32–128 bytes). The system checks this tag at
each LOAD or STORE. Invalid operations—LOADs of
invalid blocks orSTOREs to invalid or read-only blocks—
transfer control to an application-supplied handler.
Section1.2 describes Tempest in more detail.

Because Tempest provides mechanisms, not policies, it
supports many programming styles. Current parallel
machines are designed for a single programming style—
message passing or shared memory—which forces pro-
grammers to fit a program to a machine rather than allow-
ing them to choose the tools appropriate for the task at
hand. Programs written for a particular parallel machine
are rarely portable, which has limited the appeal and use of
these machines. By separating mechanism from policy,
Tempest allows a programmer to tune a program without
restructuring it. In particular, Tempest supports custom
shared-memory coherence protocols that provide an appli-
cation with both a shared address space and efficient com-
munication. Section1.3 discusses how Tempest supports
different programming styles.

Tempest’s success depends on effective implementa-
tions throughout the parallel machine pyramid (Figure2).
Uniprocessor and multiprocessor workstations and servers
form the base of this pyramid. Most programs are, and will
continue to be, developed on these inexpensive and ubiqui-
tous machines. Larger jobs with low communication
requirements may require a step up to networks of desktop
workstations (NOWs). Networks of dedicated worksta-
tions, possibly with additional special hardware, can trade
higher cost for increased performance. Finally, at the pyra-
mid’s apex, supercomputers and massively parallel proces-
sors (MPPs) offer the highest performance for those able to
pay for it.

Section1.4 describes several Tempest implementa-
tions.Typhoon is a proposed high-end design. It uses a net-
work interface chip containing the inter-processor network
interface, a processor to run access-fault handlers, and a
reverse translation lookaside buffer to implement fine-grain
access control. TheBlizzard system implements Tempest
on existing machines without additional hardware. It cur-
rently runs on a non-shared-memory Thinking Machines
CM-5 and uses one of two techniques to implement fine-
grain access control.Blizzard-E uses virtual memory page
protection and the memory system’s ECC (error correcting
code) to detect access faults.Blizzard-Srewrites an execut-
able program to add tests before shared-memoryLOAD and
STORE instructions. We are currently porting Blizzard to
the Wisconsin COW (aClusterOf Workstations).

Section1.5 presents preliminary performance numbers,
which show that, with adequate hardware support, shared
memory implemented on Tempest is competitive with
hardware shared memory. In addition, Blizzard implemen-

Tempest Interface

Typhoon
System

Typhoon

Blizzard/CM-5
(Software)

Shared-

Application

SM Library

Message-

Application

MP Library

Hybrid
Application

SM/MP

Message-

(Hardware) Machine

 Blizzard/COW
(Software)

 Workstation

Software

Cluster

Passing

(CM-5)

Memory

Library

Passing

FIGURE 1. The Tempest interface . This figure sum-
mariz es the paper: Section 1.2 describes the T em-
pest interface , our substrate f or parallel
programming on a wide rang e of platf orms.
Section 1.3 discusses T empest’ s suppor t for diff er-
ent pr ogramming styles (abo ve Tempest).
Section 1.4 describes alternative T empest imple-

8

tations on stock hardware offer acceptable shared-memory
performance on current machines. However, the real bene-
fits and large performance improvements come from the
custom coherence protocols made possible by Tempest.

1.2 Tempest Mechanisms
To form a portable parallel programming substrate,

Tempest must provide mechanisms that suffice to imple-
ment most parallel programming abstractions and that per-
mit efficient implementations across a broad range of
parallel machines.

As a common denominator, Tempest assumes a distrib-
uted memory hardware base constructed fromP processing
nodes (see Figure3) [38]. To simplify the exposition, this
paper assumes a single program multiple data (SPMD)
programming model with one processor per node and one
computation thread per processor. Each thread runs in a
private address space augmented by an optional shared seg-
ment. Shared-memory and hybrid applications can use
Tempest mechanisms (or Tempest shared-memory librar-
ies) to manage the shared address space.

The four types of Tempest mechanism are:
Active messages are short, low-latency messages

[41]. They are useful for sending control, synchronization,
or short data messages. Upon receipt of an active message,
the system invokes the handler specified by the message
and passes two arguments: the sender’s processor number
and the message length.The handler reads the message
body from the incoming message queue.

Bulk data transfer efficiently moves large quantities
of data between nodes, much like conventional DMA. In
most systems, a single transfer is less costly than a
sequence of shorter messages, so Tempest supports both
mechanisms.

Virtual memory management allows an applica-
tion to control its virtual address space. With this mecha-
nism, Tempest programs can support page-granularity
shared memory similar to distributed shared memory
(DSM) systems [32,3,21]. These systems use virtual mem-

ory page protection to identify non-local data (by mapping
it out of a processor’s address space). Unfortunately, large
pages (typically, 4–8K) causes expensive false sharing
when an application places writable data for two proces-
sors on the same page.

Fine-grain access control alleviates this problem by
greatly reducing the granularity of access control. It associ-
ates a tag with each small, aligned memory block (e.g., 32–
128 bytes) and atomically checks a referenced block’s tag
at everyLOAD orSTORE instructions. The tags areInvalid,
Read-Only, andRead-Write. LOADs of Invalid blocks and
STOREs to Invalid or Read-Only blocks invoke user-level
handlers. This mechanism enables Tempest to support
coherence at the same granularity as hardware shared-
memory systems [31].

Tempest provides mechanisms to implement program-
ming paradigms, but leaves policy to user-level code [13].
Table1 summarizes the Tempest mechanisms that support
different programming paradigms. This code may reside in
unprivileged libraries, be generated by a compiler, or be
written specifically for an application. By separating policy
from mechanism, Tempest avoids the pitfalls inherent in
system-level policies that are too general and expensive or
too specific and incomplete [44].

1.3 Using Tempest
Perhaps the best way to understand Tempest is to see

how it is used. With its mechanisms, coarse-grain message
passing (e.g., PVM [16]) or NUMA (no caching) shared
memory (e.g., Split-C [11]) are easily implemented.

More interesting are cache-coherent shared memory and
hybrid models that exploit program locality by caching
data at processors that reference them.Stacheis an applica-
tion-level library that uses Tempest mechanisms to imple-
ment sequentially consistent, transparent shared memory.
A unique feature is that Stache uses a programmable frac-
tion of a node’s physically local memory to cache data

Workstations

Networks of

MPPs

FIGURE 2. The parallel mac hine p yramid.

Workstations

Active
Messages

Bulk
Data
Transfer

Virtual
Memory
Mgmt.

Fine-
Grain
Access
Control

Message
Passing

X X

Data Par-
allelism

X X

NUMA
Shared
Memory

X

Coherent
Shared
Memory

X X X

Hybrid X X X X

TABLE 1. Use of T empest mec hanisms.

9

from remote processors (the “stache”). This large, fully-
associative cache reduces memory latency and message
traffic by keeping data that does not fit in the hardware
cache near the processor that accessed it.

Stache is similar to DSM systems in some respects.
Each page in the user-managed shared segment has a
“home” node. When a non-home processor first references
a page, it is not mapped and, consequently, the reference
causes a page fault that invokes a Tempest user-level han-
dler. That handler allocates a local page frame, maps the
page, and obtains the referenced location from its home.

Stache differs from DSM systems because it uses fine-
grain access control to mitigate false sharing. When a new
page is allocated, all its blocks are taggedInvalid. The pro-
tocol then obtains the referenced block from its home node.
Only this block’s tag is changed. A subsequent reference to
another block in the page causes a fine-grain access control
fault, which invokes a handler to obtain the block. Fine-
grain access control permits processors to read and write
different blocks on the same page without false sharing.

Stache, and other sequentially-consistent shared-mem-
ory protocols, send more messages than necessary for
some communication patterns. For example, Stache and
other write-invalidate protocols require four messages to
update a value in a producer and consumer relationship:
consumer request, producer response, producer invalidate,
and consumer acknowledgment. This excess communica-
tion is a consequence of “one-size fits all” coherence poli-
cies, which implement widely-applicable semantics that
can be unnecessarily general in many situations.

Tempest mechanisms enable a compiler or programmer
to retain the advantages of shared memory (a shared
address space and caching [6,25]) but communicate more
efficiently by customizing a coherence protocol to an appli-
cation’s sharing patterns and semantics. To demonstrate
these ideas, we developed custom update protocols for
three applications: NAS Appbt, Berkeley EM3D, and
SPLASH Barnes [14]. The three protocols differ substan-
tially in how they detect sharing. Appbt’s protocol exploits
the application’s static and predictable sharing pattern to
send updates directly. Barnes’ dynamic and changeable
sharing requires updates to be forwarded through a home
node that maintains a sharing list. Finally, EM3D’s sharing
pattern is static, but unknown until run time. EM3D uses an
augmented version of Stache to record the sharing in the
first iteration and a direct update protocol for subsequent
iterations. Section1.5 presents results that demonstrate the
large gains possible from custom coherence protocols.

Custom protocols can also help support high-level par-
allel programming languages, which offer semantically
attractive constructs that can be difficult to implement effi-
ciently on parallel machines. An example is the copy-in,
copy-out semantics that Fortran 90 provides for some data

structures and built-in functions. The C** data parallel pro-
gramming language [24] offers this semantics for general
routines and data structures. We used Tempest to assist a
compiler in efficiently supporting this language semantics.
Loosely Coherent Memory (LCM) [27] implements fine-
grain copy-on-write operations, which allows C** pro-
grams to run correctly, even when compiler cannot analyze
their sharing pattern because of pointers or function calls.

1.4 Implementing Tempest
To develop and demonstrate the Tempest interface, we

implemented it on several platforms with different levels of
hardware support.Typhoonis a hardware implementation
that uses a highly-integrated custom chip.Blizzard is a
software-only system that runs on an unmodified CM-5.

Our implementations assume a base architecture ofP
nodes connected by a point-to-point network (see
Figure3). Each node is similar to a workstation, with one
or more commodity processors with caches, a MOESI
cache-coherent memory bus, memory (DRAM), and mem-
ory controller (not shown). A parallel machine built from
these nodes connects them with a point-to-point network
that is accessed through a network interface (NI).

Typhoon implements Tempest through the network
interface chip depicted in Figure4 [38]. Typhoon’s Net-
work Interface (NI) includes a reverse translation lookaside
buffer (RTLB) to implement fine-grain access control, a
processor to run user-level handlers, DMA logic to support
block transfers, and the network interface itself.

Typhoon logically validates access control tags on all
LOADs andSTOREs—without modifications to a node’s
processor, cache, or memory controller. Consider the situa-
tion when a processor loads a block that it has not accessed
before. The reference misses in the processor’s hardware
cache(s) and appear on the memory bus. As the memory
processes the request, the NI snoops the physical address
and uses its RTLB to find the block’s tag.1 If the tag is

L1 $

NI DRAM

CPU

L2 $

L1 $

CPU

L2 $

Processor N-1

L1 $

NI DRAM

CPU

L2 $

L1 $

CPU

L2 $

Processor 0

Network

FIGURE 3. Base parallel mac hine har dware .

10

Read-Write, the NI remains inactive and the block is
loaded into hardware cache(s), where it can be subse-
quently accessed at full speed. If the tag isRead-Only, the
NI asserts the “shared” line, so subsequentLOADs succeed
but STOREs access the memory bus again for another tag
check. OnSTOREs to Read-Only blocks orLOADs and
STOREs of Invalid blocks, the NI delays the requesting
processor and runs a user-level handler on its processor. In
all cases, the NI follows the bus’s snooping protocol and
appears to be another processor. In some sense, the NI is
the agent for other nodes in the system that helps achieve
global coherence with only locally-coherent hardware.

Blizzard implements Tempest on a CM-5 [40]. The
CM-5 provides no support for shared memory but does fit
the machine model depicted in Figure3.1 The CM-5’s net-
work interface is mapped into a user program’s address
space and provides fast messages. The Tempest virtual
memory management mechanisms are provided by an
extended CM-5 node kernel [36].

Blizzard implements fine-grain access control through
two alternative methods. First,Blizzard-E uses a CM-5
diagnostic mode to intentionally set double-bit ECC errors
in Invalid blocks. As depicted in Figure5, a LOAD or
STORE that misses in the CM-5’s hardware cache goes to
memory for a cache-line fill. The fill succeeds for valid
tags, but the ECC error for anInvalid tag causes a trap,
which Blizzard-E vectors to a user-level handler. The
Read-Only state is synthesized with page-level protection.
No ECC coverage is lost with this approach, because Bliz-
zard-E verifies that ECC errors arise fromInvalid blocks,
Invalid blocks do not contain valid data, and Blizzard sets
double-bit errors on multiple doublewords in a memory
block. Blizzard-E, however, will not work on processors
that do not allow restartable exceptions on ECC errors.

1. RTLB misses delay the processor while the NI loads the entry from
memory. Special mappings treat private memory as Read-Write [38].
1. Blizzard does not use the CM-5 vector units.

To increase portability, we developed the all-software
Blizzard-S. Blizzard-S modifies executable programs
(a.out files) with a tool based on EEL [28] to add an
explicit tag check before allLOADs andSTOREs that could
access the shared segment. The current version uses several
optimizations to reduce the frequency of tests and imple-
ment them in five instructions, in the best case. Protocol
software and application executables (before EEL) are
identical for Blizzard-S and Blizzard-E.

We are currently porting Blizzard to a network of dedi-
cated workstations. The Wisconsin COW (Cluster Of
Workstations) is built from 40 Sun SPARCstation-20
workstations, each with two Ross HyperSparc processors.
The nodes will be interconnected with a Myricom Myrinet.
Blizzard/COW will implement fine-grain access control
three ways: with ECC (like Blizzard-E), by executable
editing (like Blizzard-S), and with custom hardware that
snoops the memory bus. Blizzard/COW presents some new
challenges, including longer network latencies, a commod-
ity operating system (Solaris 2.4), and dual processors.

1.5 Preliminary Performance
We have reported preliminary performance results for

these ideas in several papers. The numbers, unfortunately,
are not directly comparable, because that they come from
different systems (simulation or implementation), different
Tempest implementations, different benchmarks, and dif-
ferent protocols. Reinhardt et al. [38] used simulations on
the Wisconsin Wind Tunnel [37] to compare Typhoon
against a CC-NUMA machine modeled after the Stanford
DASH [31]. The results showed that Typhoon performs
very closely to the all-hardware implementation when both
systems ran their base coherence protocols. Typhoon per-
formed slightly worse when a program’s working set fit in
the CC-NUMA’s 256KB hardware cache and slightly bet-
ter when it did not. However, Typhoon performed up to
35% better for EM3D when running a custom update pro-
tocol that would be difficult to implement in hardware.

Schoinas et al. [40] present early measurements for
Blizzard running on a 32-node CM-5. The results show
that Blizzard-S is a viable implementation that runs than

RTLB
Data Instr .

Cache

Network I/F

Bloc k
Xfer
Unit

Dis-
patc h
Ctrl

Integ er
Processor

B
X
B

T
L
B

MBus Interface

Cache

FIGURE 4. Typhoon’ s Netw ork Interface .

Data ECC

Trap

Application Blizzard
Run-Time

Protocol
Software

ref

Cache
miss

Memory

FIGURE 5. Blizzar d-E: Tempest on a CM- 5

11

two times slower than Blizzard-E, in the worst case. More
recent versions of Blizzard-S closed this gap to 1.5X and
run some programs faster than Blizzard-E—when high
miss rates makes Blizzard-S’s lower miss overhead more
important that its higher lookup overhead at each access.

Finally, Falsafi et al. [14] demonstrate the enormous
potential of custom coherence protocols. They improved
the 32-processor Blizzard-E performance of NAS Appbt,
Berkeley EM3D, and SPLASH Barnes by factors of 5.7,
16.0 and 1.4—over optimized shared memory versions—
by changing the coherence protocols, as described in
Section1.3. On the CM-5, the shared-memory EM3D ran
as fast as a native message-passing version.

1.6 Related Work
Several interfaces share Tempest’s goal of providing

portability among parallel machines. PVM [16] is a
widely-used, coarse-grain message-passing system. Berke-
ley’s Active Messages [41] provides a portable interface
for fine-grain messages, but, unlike Tempest, no support
for transparent caching. DSM systems, such as Rice’s
Munin [3] and Treadmarks [21], support shared memory,
but since their coherence is limited to page granularity,
they require more complex semantic models to mitigate the
adverse effects of false sharing. Tempest’s fine-grain
access control avoids page-level false sharing.

Several other systems also support custom protocols,
including MIT Alewife [5], Rice Munin [3], and Stanford
FLASH [23]. We are not aware, however, of another sys-
tem that gives a user complete, protected control over pro-
tocols. Some Tempest protocols have predecessors. In
particular, Stache is similar to a DSM protocol extended to
cache-sized blocks and to a software implementation of the
hardware COMA protocols of the Data Diffusion Machine
[17] and Kendall Square KSR-1 [22].

Several machines share features with Tempest imple-
mentations. The MIT J-Machine shares Tempest’s goal of
providing mechanisms, not policy, but uses a custom pro-
cessor [13]. Stanford FLASH is similar in many respects to
Typhoon. FLASH, however, uses a custom memory con-
troller, rather than a snooping device, runs handlers on all
hardware caches misses, and runs protocols in privileged
mode without address translation. Blizzard’s kernel inter-
face and ECC use come from its ancestor, the Wisconsin
Wind Tunnel [37].

1.7 Summary
The Tempest mechanisms provide a substrate for porta-

ble and efficient parallel programs. A programmer or com-
piler writer can use these mechanisms to implement an
efficient parallel program through the time-proven process
of successive refinement. Most programmers will start with
a shared memory program that uses a pre-written transpar-
ent shared-memory library such as Stache. As the program

develops, a programmer will find bottlenecks, which can
be eliminated without restructuring the program by choos-
ing another shared-memory protocol, such as the update
protocols discussed in this paper. Of course, programmers
seeking the highest level of performance can both write
their own protocols and use message passing where appro-
priate. Tempest supports all of these approaches across a
wide range of parallel systems.

